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Abstract

We consider the problem of triangulating a given point set, using straight-line edges, so that
the resulting graph is "highly connected." Since the resulting graph is planar, it can be at most
5-connected. Under the nondegeneracy assumption that no three points are coUinear, we charac
terize the point sets with three vertices on the convex hull that admit 4-connected triangulations.
More generally, we characterize the planar point sets that admit triangulations having neither
chords nor noncomplex (i.e., nonfacial) triangles. We also show that £iny planar point set can be
augmented with at most 2 extra points to admit a 4-connected triangulation. All our proofs are
constructive, and the resulting triangulations can be constructed in 0(n logn) time. We conclude
by stating several open problems.

Keywords. Discrete geometry, triangulations, ^-connectedness.

'Department of Computer Science, Indiana-Purdue University at Indianapolis, Indianapolis, IN 46202, USA
'Department of Information and Computer Science, University of California, Irvine, California 92727, USA
'Computer Science Group, Tata Institute for Fundamental Research, Bombay 400005, India



Triangulating with High Connectivity 1

1 Introduction

We consider the problem of obtaining a planar network of maximum connectivity when the vertex
locations are specified and only straight-line edges are allowed. Given a finite planar point set S
and an integer k, we say that 5 is k-connectible if there exists a fc-connected planar graph with
straight-line edges having vertex-set S.

Planar point sets that are 1-, 2-, and 3- connectible are easily characterized, and no planar
point set is ib-connectible for k > 5. Our main result is a characterization of the conditions under
which a planar point set in general position^ and having exactly 3 extreme vertices is 4-connectible
(Theorem 3.2). So, in particular, this theorem characterizes those point sets with three extreme
vertices that admit Schegel diagrams [5] of 4-connected 3-polyhedra.

Theorem 3.2 is actually a consequence of a more general theorem, Theorem 3.1, which charac
terizes the conditions under which a planar point set in general position can form the vertices of a
triangulation having neither chords nor complex (i.e., nonfacial) triangles. One consequence of these
results is that any planar point set in general position becomes 4-connectible if we are allowed to
add 2 additional (Steiner) points (Theorem 3.7). All our proofs are constructive, and the graphs can
be constructed in 0(7zlog7i) time. In Section 5, we present examples showing why the restrictions
in our Theorems are necessary, and we state several open problems.

We know of no previous work on the problem of determining whether a given set is A:-connectible.
There have been many other examples of problems where the input is a set of geometrical data
and the desired output is an object that can be described in combinatorial or graph-theoretical
(non-metric) terms. Specific examples of such problems include the joint triangulation problem
(determining whether two labeled point sets admit triangulations such that a labeled edge in one is
a labeled edge in the other) [8], finding a minimum set of lines that cover a given finite planar point
set [7], and finding a tree with low stabbing number that spans a given planar point set [1].

In a sense, the problem addressed in this paper can be viewed as the inverse of the problem
of drawing a planar graph, which has been the subject of considerable attention [3]. In particular,
our results complement recent work, motivated by fioorplanning problems in VLSI circuit design,
concerning layout of triangulations having no complex triangles. A floorplan in VLSI circuit design
is essentially a dissection of a rectangle into a finite number of non-overlapping sub-rectangles. It is
known that a triangulated planar graph has a rectangular dual which is a floorplan only if it does
not have a complex triangle [10].

Triangulations without complex triangles have been previously studied from a purely graph-
theoretical perspective by one of the authors [4]. A classical theorem of graph theory asserts any
triangulation having neither complex triangles nor chords is Hamiltonian [9].

2 Preliminaries

A polygon is a closed, bounded subset of the plane whose boundary is a simple cycle consisting of
the union of a finite collection of line segments. The endpoints of the line segments are the vertices
of the polygon; |P| denotes the number of vertices of polygon P. We say that a point x is inside, on,

'By genera] position, we mean that no three points are collinear. Most of the terms used in this section are defined
in Section 2.



Triangulating with High Connectivity 2

or outside polygon P according to whether x is (respectively) in the interior of, on the boundary of,
or in the complement of P.

Let 5 be a finite set of planar points. A triangulation of 5 is a planar graph T with vertex-set S
such that all edges are line segments, the boundary of the outer face is the boundary of the convex
hull, and all faces of T with the possible exception of the exterior face are bounded by triangles.
A chord of a triangulation T is an edge connecting two nonconsecutive vertices on the boundary,
and a complex triangle is a triangle that does not form the boundary of a face; see Figure 2.1. A
triangulation is said to be noncomplex if it has neither chords nor complex triangles.

A graph is k-connected if it remains connected whenever k —I vertices and their attached edges
are removed. A planar point set S is k-connectible if there exists a k-connected planar graph with
vertex set S such that all edges are line segments. Since adding edges to a graph cannot decrease the
connectivity, 5 is fc-connectible if and only if there is a fc-connected triangulation with vertex set S.

The following characterizations of fc-connected triangulations are immediate consequences of re
sults established in [6].

Lemma 2.1 A triangulation is 3-connected if and only if it does not have a chord.

Lemma 2.2 A triangulation T is 4-connected if and only if

(Al) T does not have a chord.

(A2) T does not have a complex triangle.

(A3) No interior vertex is connected to two or more non-consecutive vertices on the boundary ofT.

Lemma 2.3 If the boundary of the outer face of a triangulation T is a triangle, then T is 4-connected
if and only if it has no complex triangle.

The following lemma contains the elementary facts about connectibility mentioned in the intro
duction.

Lemma 2.4 Let 5 be a planar point set.

(El) 5 is always 1-connectible.

Figure 2.1: Chords and complex triangles: ab is a chord, and the three dark vertices form the
boundary of a complex triangle.
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Figure 3.1: A planar point set that does not admit a noncomplex triangulation.

(E2) S is 2-connectible if and only if the points of 5 do not ail lie on a single line.

(E3) S is 3-connectible provided 5 is 2-connectible and 5 does not consist of the vertices of a convex
polygon.

(E4) 5 cannot be Ar-connectible for A; > 5.

Proof. Statements (El) and (E2) are obvious; note that our general-position assumption implies
that 5 is always 2-connectible. (E3) follows from Lemma 2.1, since we can choose an interior point
y e 5 (i.e., a point not on the boundary of the convex hull of 5), connect all points on the convex
hull boundary to v, and then add each remaining interior point of S to the triangulation in such a
way that no chords are introduced. (E4) follows from Euler's formula. 0

3 Characterizing point sets admitting noncomplex triangulations

We assume throughout this section that our point sets satisfy the general-position assumption intro
duced in Section 1: no three points are collinear. In Section 5, we give an example showing why this
assumption is important. We also assume that all point sets have at least four points.

The planar point set S shown in Figure 3.1 does not admit a noncomplex triangulation. Indeed,
in any triangulation of 5, vertex x must be connected to every other vertex, as are consecutive
vertices around the convex set 5 - {x}. Any triangulation of 5 must also contain a chord of the
convex huU of 5 —{z}. This chord and the two edges joining its endpoints to x form a complex
triangle.

Theorem 3.1, which we establish below, states that the example of Figure 3.1 is essentially the only
3-connectible planar point set that does not admit a noncomplex triangulation. One consequence of
this theorem is Theorem 3.2, which characterizes those planar point sets with triangular convex hull
boundaries that are 4-connectible. This result, in turn, allows us to conclude that any planar point
set becomes 4-connectible with the addition of at most two Steiner points. The proof of Theorem 3.1
is constructive, and leads to an O(nlogn) algorithm for constructing a noncomplex triangulation if
one exists.

The following definition captures the salient properties of the example of Figure 3.1. A planar
point set is anomalous if it contains a point x such that the following properties hold:

(Bl) 5 has exactly three extreme vertices, one of which is z.

(B2) The set 5 —{z} consists of the vertices of a convex polygon, P.
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Theorem 3.1 If 5 is a planar point set in general position, then 5 admits a noncomplex trian-
gulation if and only if (1) it is not anomalous, and (2) it is not the set of vertices of a convex
polygon.

Theorem 3.2 If 5 is a planar point set in general position, with exactly three points on the convex
hull boundary, then 5 is 4-connectibIe if and only if it is not anomalous.

Theorem 3.2 is an immediate consequence of Theorem 3.1 and Lemma 2.3. The necessity of
conditions (1) and (2) in Theorem 3.1 follows from Lemma 2.1 and the preceding discussion of
Figure 3.1. To establish sufficiency of these conditions, we let 5 be a finite planar point set that
satisfies conditions (1) and (2), and we show how to construct a noncomplex trianguiation of 5.
Throughout this section, if A is a polygon whose vertices are a subset of 5, we will use the phrase
"a trianguiation of the region bounded by A'' to mean a trianguiation whose vertices are the points
of S lying on or inside A and having boundary A.

Our construction relies heavily on the convex layer structure [2]. The outermost convex layerof
S is the boundary of the convex hull, and each subsequent convex layer is defined, recursively, to
be the boundary of the convex hull of the set obtained by removing the vertices of all previously
defined convex layers from 5. We let k be the number of convex layers, with layer 1 the outermost
layer and layer k the innermost layer. All layers except the innermost layer consist ofboundaries of
convex polygons. The innermost layer may consist of either a single point, a line segment, or the
boundary of a convex polygon. K it = 1, 5 forms the vertices of a convex polygon, so we mayassume
that k > 2. We refer to the region between two consecutive layers in the convex layer structure
as interlayer regions. If fc > 2, we refer to layers other than the innermost or outermost layers as
intermediate layers.

Our construction also requires adding edges between two consecutive layers in the convex layer
structure to create a trianguiation of the interlayer region. The edges that have one endpoint on
each of the two layers are called cross edges.

Consider the following strategy: compute the convex layers of 5, triangulate the innermost layer
(if it is a convex polygon), and add cross edges to each interlayer region to produce a trianguiation
If we attempt to use this strategy to produce a noncomplex trianguiation, it can fail in one of three
ways. First, if the innermost layer is a convex polygon with four or more vertices, then chords are
introduced when it is triangulated. If the two endpoints of the chord are connected to a common
vertex at layer k - I during the trianguiation of the region between layer k and fc - 1, a complex
triangle results. Second, a trianguiation of an interlayer region may produce a complex triangle
consisting of two cross edges and one edge from the inner or outer layer. (Both of the preceding
conditions arise if we attempt to apply this strategy to Figure3.1.) Third, if any intermediate convex
layer isa triangle, thestrategy clearly fails to produce a noncomplex trianguiation. With appropriate
modification, however, these difficulties can be overcome for non-anomalous point sets. In essence,
the first two difficulties are addressed by carefully choosing the cross edges, and the third difficulty
is addressed by "borrowing" a point from the next outer layer.

The following two lemmas are used to extend noncomplex triangulations from one layer to the
next layer. Given a trianguiation let pgr and pqs be two interior triangular faces incident on edge
pq. The edge pq is called flippable if the quadrilateral prqs can be triangulated with the triangles
prs and qrs (i.e., if we can replace edge pq with rs). Thus an edge is flippable if and only if it is
not a convex hull edge and the union of the two faces incident on it is a convex quadrilateral. If pq
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is flippable, the operation of replacing it with the opposite diagonal in the quadrilateral (i.e., rs) is
referred to as flipping edge pq.

Lemma 3.3 Let pqx be a complex triangle in a triangulation, and suppose that edge pq is flippable.
Then flipping pq cannot introduce any new complex triangle.

Proof. Let T be a triangulation containing a complex triangle pqx^ and let pqr and pqs be the two
triangular faces of T incident on pq. Let T' be the triangulation obtained from T by flipping edgepq,
and suppose that T' contains a complex triangle that was not a triangle in T. This complex triangle
must be incident on the new edge rs. Any complex triangle of T' incident on rs must have an edge
piercing either segment px or qx. But this is impossible, since px and qx are edges ofT' (since they
were edges of T and flipping edge pq did not affect them). S

Lemma 3.4 Let A and B be two consecutive convex layers, with B lying completely inside A, such
that and |5| > 3. Suppose that the region bounded by A is triangrilated so that:

(Zl) The region between A and B is triangulated with cross edges.

(Z2) The region bounded by B is triangulated without anycomplex triangle, and there isno complex
triangle incident on a chord of B.

Then it is possible to construct a noncomplex triangulation of the region bounded A.

Proof. Let T be a triangulation of the region bounded by A satisfying properties (Zl) and (Z2).
Assume T has a complex triangle pqr; otherwise there is nothing to prove. It follows from (Zl) and
(Z2) that the polygon B must lie entirely on or inside this complex triangle; moreover, after suitable
relabeling, the boundary of the triangle must be defined by either (i) a vertex p of B and an edge qr
of A, or (ii) a vertex p of A and an edge qr of B.

In case (i) let x and y be the two vertices adjacent to p on B. The edges pq and pr are incident
on triangles pqx and pry respectively. Let H be the open halfplane supported by px that contains q
and H' be the open halfplane supported by py that contains r. We claim that at least one of pq and
pr is flippable. If this claim were false, then there would be no vertex ofA other than q,r in H UH'.
Since B is contained entirely inside A, this is impossible, and the claim holds. Hence we can always
flip one of pq and pr to destroy pqr.

In case (ii) let x and y be the two vertices on B adjacent to q and r on B respectively. Note that
X = y when B is a triangle. We claim that some edge of pqr is flippable, which implies that, as in
case (i), we can destroy pqr without introducing any new complex triangle. Let H and H' be the
two open halfplanes supported by qx and ry respectively that contain p. If any vertex of A other
than p lies in B UH', at least one of the edges ofpq and pr is flippable. Otherwise, all vertices of A
except p lie in the region 0 where He and B^ are the open halfplanes supported by qx and
ry respectively that do not contain p; this implies that edge qr is flippable.

To complete the proof we observe that by Lemma 3,3, none of the edge flips can produce any
new complex triangles. Moreover, (Zl) implies that the original triangulation had no chords, and
since each case results in a new edge with at least one endpoint on or inside B, no new chords are
introduced. 21
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Now we proceed to prove the main result (Theorem 3.1). The plan of the proof is as follows. We
first show that any planar point set 5 in general position with A; > 3 has a noncomplex triangulation.
We then show that if a planar point set S in general position with k = 2 fails to have a noncomplex
triangulation, it must be anomalous.

Assume k > 3. For j = 1,2, define a good level-j triangulation to be a triangulation for
which the following properties hold:

1. The boundary of the outer face consists of layer j

2. All points of 5 inside the boundary are vertices of the triangulation

3. The triangulation is noncomplex.

The proof of the theorem for fc > 3 follows by induction from the following two lemmas, since a
noncomplex triangulation is simply a good level-1 triangulation:

Lemma 3.5 5 has a good level-(fc - 2) triangulation.

Lemma 3.6 Given a good ievel-j triangulation, for 2 < j < k —2, we can construct a good level-
{j - 1) triangulation.

Proof of Lemma 3.5; Let A be layer k -2, B layer k - I, and C layer k. We distinguish six cases,
which we group as follows. B may be either a polygon having more than three vertices (Part I) or
a triangle (Part II). Within each part, C may consist of a single vertex (|C| = 1), a line segment
(|C1 = 2), or a convex polygon (|C| > 2).

Part \: B IS not a triangle: We first obtain a noncomplex triangulation of the region bounded by
B, using the appropriate case (1, 2, or 3) below. It then follows immediately from Lemma 3.4
that the region bounded by A has a noncomplex triangulation (i.e., that 5 has a good level-(fc —2)
triangulation).

Case 1: B is not a triangle, IC| = 1: Stellate B from the single vertex inside it.

Case 2: B is not a triangle, \C\ = 2: Let C = {ci,C2}. Because B is not a triangle, it has two
nonadjacent vertices p and q on opposite sides of the line ciC2. Triangulate the region between B
and the segment ciC2 by first adding the four edges connecting each of Ci and C2 with each of p and
q, and then adding a single edge connecting each of the remaining vertices of B to either Ci or C2 to
obtain a triangulation. Because is a convex polygon, there is only one way to perform the second
step so that no edges cross.

Case 3: B is not a triangle, |C| > 3: C is the boundary of a convex polygon, inside B. First, compute
some arbitrary triangulation of the region between C and B using cross edges. Let R be the set of
vertices of C that are connected to two or more vertices of B. R contains at least two vertices of C.
There are two subcases, depending on whether R contains two nonconsecutive vertices of C.

Subcase 3a: R contains two nonconsecutive vertices of C. Let ci and be a pair of nonconsecutive
vertices of C in i? (see Figure 3.2(a)). Removing these two vertices from the boundary of C creates
two nonempty arcs, C and C", so no vertex of B can be joined to a vertex of C and a vertex of
C". Hence if C is triangulated using only edges with one endpoint on C and the other on C" (in
other words, triangulated so that ci and C2 are ears), then no such edge can participate in a complex
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Figure 3.2; Obtaioing a good triangulation when the first two layers are convex polygons, (a)
Subcase 3a: Ci and C2 are two nonconsecutive vertices of the inner polygon that have two neighbors
on the outer polygon, (b) Subcase 3b: ci and cj are consecutive, and are the only two vertices of
the inner polygon that have two neighbors on the outer polygon.

triangle. This produces a triangulation T of the region bounded by 5, involving layers B and C
that, satisfies all conditions of Lemma 3.4. Hence, there is a noncomplex triangulation of the region
bounded by B.

Subcase 3b: R contains only a single pair of consecutive vertices of C, ci and C2- ^bis subcase
is illustrated in Figure 3.2(b). All vertices of C are joined to a single vertex x of B. Assume
that C2 is the counterclockwise neighbor of c\ on C; let c\ be the clockwise neighbor of Ci, Cj the
counterclockwise neighbor of C2. If C is a triangle, then c\ = Cj, but that does not affect the following
argument. Now let x\ and X2 be, respectively, the counterclockwise and clockwise neighbors of x
about the boundary of B. If the segment xici does not intersect the interior of polygon C, then
we can obtain a noncomplex triangulation of the region bounded by B by first flipping edge xci
and then triangulating the interior of C by joining Ci to every vertex of C. If the segment X2C2
does not intersect the interior of polygon C, a similar construction works. Suppose neither of these
last two conditions holds; then segments x\c\ and X2C2 both intersect segment C1C2. Let x' be the
counterclockwise neighbor of xi about B. Since B is not a triangle, x' / X2. Since B is convex,
a noncomplex triangulation of the region bounded by B can be obtained by deleting edge C1C2 and
connecting x' to every vertex of C.

Part II: B is a triangle: If B is a triangle, we "borrow" an appropriate vertex from A, and use this
vertex to "augment" B to a quadrilateral, B', whose vertices are the borrowed vertex and the three
vertices of B. We show that one can always choose the quadrilateral B' so that there Is a noncomplex
triangulation with boundary B'. This requires considering three cases (case 4, 5, and 6, below).

Let B = 616263. We first introduce some terminology. Consider the arrangement of the three
lines that support the three edges of B, shown in Figure 3.3. This arrangement has seven planar
regions: the triangular region B, and six other regions exterior to the triangle. We call the three
exterior regions bounded by three lines type-l regions, and the three exterior regions bounded by
two lines type-2 regions, or cones.

Before describing the process of augmenting B, wediscuss how to obtain a noncomplex triangula
tion of the region bounded by A from a noncomplex triangulation of the region bounded by a suitably
chosen augmented quadrilateral B'. Let p be the vertex borrowed from A. In the case analysis that
foUows, we show that if A contains any vertex in a type-1 region, then we can choose p to be a vertex
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Figure 3.3: The arrangement of the lines supporting triangle B in Part II of the proofof Lemma3.5.

Figure 3.4: Obtaining a noncomplex triangulation of the region bounded by A from a noncomplex
triangulation of the region bounded by B'. (a) When possible, p is chosen from a type-1 region,
(b) The case where p cannot be chosen from a type-1 region.

in a type-1 region. This will mean that the augmented quadrilateral B' is convex, as illustrated in
Figure 3.4(a). This implies in turn that the region between A and B' can be triangulated using cross
edges that do not involve p, and so the resulting triangulation of the region bounded by A will not
have complex triangles or chords.

If there is no vertex in any of the type-1 regions, we will choose p from one of the type-2 regions.
In this case the augmented quadrilateral B' will be non-convex only at a single vertex. We may
assume, after suitable relabeling of the 6,'s, that the boundary of B' is the cycle p6i6253, and that
the non-convex vertex of B' is bi (see Figure 3.4(b)). Observe that if there are no vertices of A in
type-1 regions, then each type-2 region (in particular, the cone supported at 62) must contain at
least one vertex of A. To produce a noncomplex triangulation of A, first temporarily add the edge
pb2, and let B" be the triangle P6263. Next, triangulate the region between A and B", using only
cross edges that are not incident on p. The resulting triangulation of the region bounded by A has
a single complex triangle, namely P6263. We claim that edge pb2 is flippable. Indeed, if pb2 were not
flippable then the halfplane supported by the segment 6162 and containing p would contain no vertex
of A other than p. But, as noted above, the cone supported at 62, which lies within this halfplane.
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contains a vertex of A. Hence edge pb2 is flippable. By Lemma 3.3, the triangulation obtained by
flipping this edge is noncomplex.

To complete the proof, we must show that an appropriate point p, an appropriate quadrilateral
B', and a noncomplex triangulation of B' can always be chosen.

Case 4: 5 is a triangle, \C\ = 1: Let c be the unique point inside B. If any vertices of A are in type-1
regions; let p be one such vertex; otherwise, let p be any vertex of A. Without loss of generality, let
6162 be the edge of B crossed by the segment pc. Let B' be the polygon with boundary ^616362, and
stellate B' from c.

Case 5: 5 is a triangle, |C| = 2: Let C = {ci,C2}- Let {6i,62,'>3} be the vertices of B. If there is a
point of /I in a type-1 region, let p be such a point, and use p to augment B to a convex quadrilateral,
B'. Let X and y be two non-consecutive vertices of B' that lie on opposite sides of the line C1C2. Join
each of x, y to each of Ci and C2, and connect ci and C2 to the two remaining vertices of B to obtain
a noncomplex triangulation of the region bounded by B'.

Now suppose there is no point of A in a type-1 region. Relabel the vertices of B if necessary so
that 61 is separated from 62 and 63 by the line C1C2. The points 62? ci, C2, and 63 form the vertices
of a convex quadrilateral; let 62C1C263 be the consecutive vertices of that convex quadrilateral (this
may require switching the labels of ci and C2). If pc\ crosses the edge 6162, augment B to the
quadrilateral B' = 61^6363; otherwise, augment B to the quadrilateral B' = b^pbibi. In either case,
the quadrilateral B' is non-convex only at b\. Add edges Cihi, C261, C162, and 0363. If B' = 61^62635
triangulate the convex quadrilateral 62C1C263 by adding edge 62C2 and replacing edge 6162 by pci.
Otherwise (i.e., if B' = 63P6162), triangulate the convex quadrilateral 62C1C263 by adding 63C1 and
replace 6163 by pc2. This completes the noncomplex triangulation of the region bounded by the
quadrilateral B'.

Case 6: B is a triangle, \C\ > 3;

Subcase 6ai C is a triangle; Triangulate the region between B and C without any noncomplex triangle
using Lemma 3.4.

Suppose that A has a vertex p in one of the type-1 regions. Without loss of generality, assume
that p is separated from triangle B by the edge 6162- Flip 6162 to eliminate B.

Now suppose that A has vertices only in type-2 regions. Let p be a vertex in the type-2 region
consisting of the cone supported at vertex 61. Let bib2Ci and 6163C2 be, respectively, the triangles in
the triangulation between B and C incident on b\b2 and 6163. If pci crosses the edge 61621 augment
B to the quadrilateral 61P6263. Flip 6162 to remove the triangle B. If pci does not cross the edge
6162, it must cross the edge 6163 (due to the general-position assumption), so pc2 also crosses 6163.
Augment B to 63P6162 and flip 6163. In either case the augmented quadrilateral B' is non-convex
only at 61, and the resulting triangulation is a noncomplex triangulation of the region inside B'.

Subcase 6b: C is not a triangle: If there is a vertex p of A in a type-1 region, use p to augment B
to a convex quadrilateral B' and apply the argument of Case 3.

Suppose there is no vertex p of A in any type-1 region. Compute a triangulation of the region
between B and C, using cross edges. If there are three vertices of C that are incident on two cross
edges are all distinct, any type-2 vertex can be used as an augmenting vertex, in conjunction with a
retriangulation of C similar to the construction of Subcase 3a of Part I. Otherwise, a single vertex
of B, which we assume to be 61, is connected to aU vertices of C. Choose p in the type-2 region
supported by the vertex 61 of B. The set U of edges formed by connecting the vertices of C to p lie
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outside C. Let ci, cj, and c'̂ be defined as in Case 3. The situation is as depicted in Figure 3.5.
Since C has at least four vertices, one of the two edges 6162 and 6163 is intersected by at least two
edges in V. Without loss of generality, assume edge 6162 is intersected by edges pc and pc\. Augment
B to the quadrilateral B' = 61P6263. Delete edge 6162, and add edges pci and pc\. Ensure that 62
and C2 are connected; this edge may already be there, but if not, replace edge 63C1 with 62^2- Since
C is not a triangle, C2 and c\ cannot be adjacent on C. Triangulate the interior of polygon C by
connecting all vertices to ci, analogous to Subcase 3b. This construction produces a non-convex
triangulation of the region inside the augmented quadrilateral B'. By the remarks at the beginning
of Part II, this completes the proof.

0

Proof of Lemma 3.6: Let A be layer j —1, B layer j. If is not a triangle, then triangulate the
region between A and B with cross edges and apply Lemma 3.4. If fl is a triangle, augment B to
B' by borrowing an appropriate vertex from A and produce a noncomplex triangulation of B'. The
procedure for doing this is a straightforward modification of Subcase 6a of the proof of Lemma 3.5.
To finish the noncomplex triangulation of the region bounded by A, triangulate the region between
A and B' as described at the beginning of Part II in the proofof Lemma 3.5. 0

Proof of Theorem 3.1: If /: > 2, the theorem follows by induction, using Lemma 3.5 as the base and
Lemma 3.6 for the inductive step.

To complete the proof of Theorem 3.1, it suffices to address the case A: = 2. If the outer layer
has 4 or more points, the existence of a noncomplex triangulation follows immediately from the
constructions in Part I of Lemma 3.5. So suppose the outer layer has 3 points. If there is exactly one
point inside the outer layer, the unique possible triangulation is noncomplex. If there are exactly
two points inside the outer layer, the configuration is anomalous.

Now suppose the inner layer consists of a convex polygon and the configuration is not anomalous.
Triangulate the region between the outer layer and the inner layer using cross edges. If no point on
the outer layer is connected to all points on the inner layer, then there are three different points on
the inner layer with two neighbors on the outer layer. So either the inner layer is a triangle (and we

Figure 3.5: Subcase 6b: Construction for the case when all vertices of C are connected to a single
vertex of triangle B.
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get the graph of the octahedron), or there are two nonconsecutive points on the inner layer with two
neighbors on the outer layer (and we can proceed as in Subcase 3a of Lemma 3.5.)

Finally, suppose the outer layer is a triangle, and the triangulation with cross edges connects a
single vertex of the outer layer, say x, to all points of the inner layer. The condition (Bl) holds.
Since the configuration is not anomalous, (B2) cannot hold. It follows that some vertices of the inner
layer currently connected only to x could also be joined to another vertex of the outer layer, say y.
By making this change (which also requires deleting some other edges from x and adding some edges
from y), we obtain a configuration in which there are three different points on the inner layer with
two neighbors on the outer layer. This situation was dealt with in the preceding paragraph. This
completes the proofof Theorem 3.1. 0

We conclude this section by noting that we can always make a point set 5 in general position
admit a 4-connected triangulation if we allow extra (Steiner) points. Indeed, let p be any point on
the boundary of the convex hull of 5. Add two points q and r such that all points of 5 —{p} are
inside the triangle pqr, choosing the points carefully so that (B2) does not hold. The resulting set
5' = 5 U {9,r} is not anomalous and hence, by Theorem 3.2, is 4-connected. We have shown:

Theorem 3.7 A planar point set 5 in general position can be augmented using at most two extra
points so that it admits a 4-connected triangulation.

4 Algorithms

It is straightforward to show that constructing a good level-(j —1) triangulation from a good level-j
triangulation takes 0(nj + nj_i) time where rij, nj_i are the number of vertices in layers j and j —1,
respectively. Hence, if S admits a noncomplex triangulation, such a triangulation can be constructed
in 0(n) time once we have the convex layers of 5. Convex layers of 5 can be constructed in 0{n log n)
time using the algorithm of [2]. Also, we can check whether a point set is anomalous in O(nlogn)
time by directly checking condition (Bl) and, if necessary, (B2). So we have the following theorem.

Theorem 4.1 Given a planar point set S in general position, in O(nlogra) time we can either
construct a non-complex triangulation of 5 if it admits one, or report that no such triangulation
exists.

5 Remarks and open problems

In this paper we have characterized the point sets that admit a noncomplex triangulation. This
solves the question of 4-connectibility for a point set with three extreme vertices. However, it does
not solve the 4-connectibility problem in general, and this problem remains open.

The two point sets in Figure 5.1 illustrate two ways that a planar point set can fail to be 4-
connectible. The set shown in Figure 5.1(a) fails to be 4-connectible because there are fewer interior
points than convex hull edges. Any triangulation of this point set must either have a chord, violating
condition(Al) of Lemma 2.2, or two triangles having distinct convex hull edges as their bases but
sharing an interior point as their common apex. In the latter case, condition (A3) of Lemma 2.2 is
violated. Figure 5.1(b) also fails to be 4-connectible, even though it has more interior points than
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Figure 5.1: Two point sets that are not 4-connectible.

Figure 5.2: A configuration not in general position that does not admit a non-complex triangulation.
The complex triangle shown must be present in any triangulation of this point set.

convex hull edges. To see this, note that if a 4-connected triangulation of this set exists, then one
of the circled points (call it p) would have to be connected to y; otherwise x and z would have a
common interior neighbor, violating (A3). But then p is connected to both w and y, so (A3) fails
anyway.

We have not addressed the condition of 5-connectibility. It follows from the results in [6] that
a triangulation is 5-connected if it satisfies conditions (A1)-(A3), has no complex (i.e., nonfacial)
quadrilateral, and has no interior edge connected to two or more nonconsecutive boundary vertices.
A simpler problem than general 5-connectibility might be characterizing those planar point sets that
admit triangulations without complex quadrilaterals.

Finally, we briefly discuss the general position assumption made in this paper, namely that no
three points are coilinear. Figure 5.2 illustrates a point set that does not admit a non-complex
triangulation. The points lie on three lines. The complex triangle shown in the figure must be
present in any triangulation of this point set. The authors conjecture that this is essentially the only
non-anomalous point set not admitting a noncomplex triangulation. More precisely, we conjecture
that any such point set must consist of points along three rays with a common origin point, and
must include the origin point.
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