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Abstract 
 
Proviral latency is the main persistence mechanism that precludes eradication of human 

immunodeficiency virus, HIV, from infected patients.  Although latency is a viral 

phenotype, current theories posit that HIV latency is not ‘hardwired’ into viral circuitry 

but directly under cell-state control.  Therefore, latency is thought to be a deterministic 

epiphenomenon with no role in the natural history of the virus.  Here, we synthetically 

reengineer HIV regulatory circuits to define the role of viral gene circuitry and cellular 

state in regulating latency.  The reengineered circuits demonstrate that latency is largely 

autonomous to cellular state in both minimal circuits and full-length replicating viruses.  

Strikingly, in primary cells, cell-driven silencing of viral transcription—the prevailing 

hypothesis for latency establishment—is overcome by tuning viral feedback strength.  

The reengineered minimal circuits also show that, through a combination of mathematical 

modeling and noise measurements, HIV transcription occurs through episodic bursts 

generating large stochastic fluctuations in HIV gene-expression.  It is unclear if these 

stochastic fluctuations influence HIV Tat positive feedback, the decision-making circuit 

encoded by the virus.  Surprisingly, upon stimulation of HIV transcription, Tat positive 

feedback immediately saturates, buffering against stochastic fluctuations once a fate 

decision has been made.  This feedback saturation leads to three striking properties; (i) 

transcriptional kinetics and (ii) steady-state output from the LTR are insensitive to 

variable Tat inputs, and (iii) the LTR converts unimodal, graded Tat inputs, into bimodal 

expression patterns.  Thus, stochastic fluctuations in Tat levels will have the most 

profound affect early in viral infection because, upon commitment to active replication, 

HIV circuitry displays robustness to noise.  Overall these results argue that HIV latency 
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is an intrinsic, stochastic feature of the virus that most likely occurs early in the viral 

lifecycle.  Since HIV circuitry can act autonomous to cell-state, latency seems to be 

‘hardwired’ into viral circuitry and not simply an epiphenomenon stemming from host-

cell factors.  Given the rapid mutation rate of HIV, selection for and conservation of the 

latency phenotype suggests it has a fitness role in the natural history of the virus. 
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Chapter 1: Hypothesis 

1. HIV latency is ‘hardwired’ into viral circuitry  

Upon infection of a CD4+ T lymphocyte, HIV undergoes a developmental bifurcation 

where the virus can either (i) enter a state of active replication, which creates viral 

progeny and destroys the host cell, or (ii) enter a quiescent, metabolically inert state, 

termed proviral latency (Fig. 1) (Chun et al., 1995).  Latently infected cells are not 

detected by the immune system, and cannot be targeted by current standard-of-care 

therapies for HIV infected patients (Richman et al., 2009).  Hence, latency remains one of 

the largest obstacles thwarting completing eradication of HIV from infected individuals 

due to the virus’ ability to rebound from the latent state upon interruption of antiretroviral 

therapy (ART) (Richman et al., 2009).  Although a barrier to a cure, the molecular 

mechanisms regulating latency are poorly understood.  However, current dogma posits 

that HIV latency is a deterministic epiphenomenon dictated by infected host-cell state.  

The notion that HIV exhibits no control over latency has also lead to the hypothesis that 

latency plays no role in the natural history of the virus.  Here, we hypothesize that HIV 

latency is a stochastic, natural viral phenomenon ‘hardwired’ into viral circuitry.  This 

hypothesis is supported by published work (Dar et al., 2012; Razooky et al., 2012; 

Razooky and Weinberger, 2011; Singh et al., 2010a; Singh et al., 2012) highlighted in 

Chapters 3, 5, 6, 7, and 8 and unpublished work presented in Chapters 4 and 9.  
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Figure 1. Schematic of the HIV developmental bifurcation.  

Upon infection of a CD4+ T lymphocyte, HIV can actively replicate (blue arrow) and 
destroy the host cell (blue cell), or enter a state of silenced gene-expression (red arrow) 
after integrating into the host cell DNA (red square in bottom cell). Latent provirus can 
be rescued and enter the active replication fate (red to blue arrow).  

 

Chapter 2: Background on HIV decision-making 

1. Logic in looking for cellular determinants of HIV latency  

The HIV field seems to be biased towards finding cellular determinants of HIV fate.  This 

may be due to the lack of a dedicated gene-expression program for maintaining HIV 

latency (Siliciano and Greene, 2011).  This is atypical for an organism that can enter a 

latent state.  For instance, Enterobacteria phage ! is a phage that infects Escherichia Coli 

and can enter an actively replicating state termed lysis, or a dormant state termed 
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lysogeny (Ptashne et al., 1982).  The fate of the phage is controlled by a genetic toggle 

switch where two competing negative feedback loops ‘lock’ the phage into either the 

lytic or lysogenic state (Ackers et al., 1982).  Interestingly, each state is actively 

maintained through a separate dedicated gene-expression circuit and this feature of a 

dedicated latency program is found in many other viruses, including herpesviruses 

(Farrell et al., 1991).  However, HIV, despite comprehensive identification of the open 

reading frames and characterization of associated protein functions, lacks an obvious 

gene-expression program for maintaining a latent state (Siliciano and Greene, 2011).  

There are no known virally encoded proteins that inhibit viral gene expression to 

maintain the latent state, but there are viral activators of transcription that maintain the 

actively replicating state.  The inability to identify an HIV encoded gene-expression 

program for latency has led to a shift in focus away from viral mechanisms towards host-

cell mechanisms that push and maintain HIV in a latent state.   

 

2. General cellular restriction mechanisms   

Upon infection of a target cell, typically activated CD4+ T lymphocytes, the cell employs 

a few ubiquitous defense strategies against the invading virus; (i) cellular suicide, an 

altruistic action benefiting the overall host or cell population that ensures viral eradication 

along with the infected cell (Barber, 2001), and (ii) restriction of viral replication by 

targeting an aspect of the viral lifecycle (Duggal and Emerman, 2012).  We will review a 

subset of strategies for cellular restriction of the viral lifecycle, specifically discussing the 

restriction of viral gene-expression.  While there are numerous cellular-based hypotheses 
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for cellular control of HIV latency, we will focus on a select few that have heavily 

influenced the direction of the field.  

 

2a. Chromatin state can influence viral fate  

A difficult challenge in uncovering the molecular mechanisms controlling HIV latency is 

to recreate the phenomenon in a reproducible, physiologically relevant system, in the lab.  

One of the first reproducible model systems was developed by utilizing a full-length, 

replication-incompetent HIV virus encoding green fluorescent protein (GFP) (Jordan et 

al., 2003).  In this model system, Jurkat T lymphocytes were infected with the 

replication-incompetent virus, and the population of cells that did not have active virus 

was sorted (the GFP negative population).  To isolate cells with latent provirus, the 

authors took advantage of the NF-kB binding sites within the LTR, which are responsible 

for the responsiveness of the LTR to tumor necrosis factor alpha (TNF-!) since TNF-! 

activates p50/RelA.  Upon activation of the LTR in the GFP negative population, single 

GFP positive cells were sorted into individual wells and grown into isoclonal populations.  

Surprisingly, in the J-lat system, ~10% of infections resulted in latency (Jordan et al., 

2003), a dramatically larger fraction than suggested by studies of patient-derived cells 

where only one in a million cells harbor latent provirus (Chun et al., 1995).  Analysis of 

the chromatin environment in the latently infected J-lat clones showed a significant 

correlation between entrance into the latent state and integration into heterochromatin 

environments (Jordan et al., 2003).  Heterochromatin environments are typified by 

restrictive marks on chromatin that silence expression from the promoter by occluding 

transcription factors involved in either initiation or elongation of transcription (Fig. 2, top 
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left).  Structural remodeling of the chromatin environment, towards an open euchromatin 

state (Fig. 2, top right), was necessary for reactivation of these latent clones.   

 

Although integration of the virus is semi-random in the genome (Schroder et al., 

2002), the above-described study established heterochromatin as a possible ubiquitous 

mechanism towards entrance into the latent state (Williams et al., 2006a).  The possibility 

of heterochromatin restriction as a latency mechanism is supported by the findings that 

the HIV 5’ long terminal repeat LTR promoter, LTR, has two characteristic nucleosomes 

that are dynamically modulated through acetylation and methylation marks that 

determine the activity of the promoter (Bednarik et al., 1990; Kauder et al., 2009; Pearson 

et al., 2008).  The nucleosomes, termed nuc-0 and nuc-1 interfere with transcription 

factor binding and cause elongation stalls on initiated RNA polymerases, respectively 

(Van Lint et al., 1996).  Nuc-1 has been subject to heavy investigation because this 

nucleosome causes RNA polymerase to stall at +60 from the HIV transcription start site 

(TSS) (Kao et al., 1987). The stalling mechanism causes the majority of HIV transcripts 

to become short abortive transcripts.  In further support of a cell-based mechanism for J-

lat viral latency was the observation that exogenous purified Tat protein—the viral 

transactivator of transcription, Tat, alleviates elongation stalls on the HIV long terminal 

repeat promoter, LTR (Laspia et al., 1989)— addition yielded modest effects on J-lat 

proviral reactivation (Jordan et al., 2003).  In contrast, trichostatin A (TSA), a global 

histone deacetylase inhibitor (HDACi) (Yoshida et al., 1990), or tumor necrosis factor 

alpha (TNF-!), a global transcriptional inducer that works through the NF-"B signaling 

pathway (Osborn et al., 1989), were sufficient to reactivate the majority of the J-late 
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clones (Pearson et al., 2008; Williams et al., 2007b).  Subsequent studies on 

heterochromatin and latency led to the observation that latent provirus could be 

reactivated by modulating heterochromatin states with other HDACi’s (Reuse et al., 

2009).  These studies led to a therapeutic strategy for eradicating latent populations by 

administrating an HDACi, vorinostat (Archin et al., 2012).  The administered HDACi 

would purge latent provirus by reactivating it from the latent state. 

 

One pressing question remains from this model system: is integration into 

heterochromatin the mechanism of latency establishment in patient-derived primary 

lymphocytes?  Recent evidence suggests that integration into heterochromatin 

environments does not sufficiently explain latency in resting lymphocytes isolated from 

HIV patients (Ho et al., 2013), hence further studies will have to establish the 

physiological determinant of HIV latency.   

 

2b. Hypermethylation of the HIV 5’ LTR restricts viral gene-expression  

DNA methylation is an epigenetic marker that alters the expression of genes and the 

methylation tag is placed by DNA methyl transferases  (Dnmt), which methylates DNA 

at cytosine-phosphate-guanine (CpG) dinucleotides (Okano et al., 1999).  CpG islands are 

more abundant at the promoters of most genes and the methylation state of the island 

influences the level of expression from that promoter.  The HIV 5’ LTR contains CpG 

islands that can be methylated to restrict HIV gene-expression (Bednarik et al., 1990).  

However, whether methylation of the HIV promoter is sufficient to completely suppress 

HIV gene expression and force HIV into latency remains unclear.   
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In one model, a full-length HIV clone was reduced down to the regulatory 

elements necessary for HIV gene-expression regulation (Pearson et al., 2008).  After 

infection of Jurkat cell lines with the HIV model virus, GFP positive cells were isolated 

and cultured over many months.  Cells that were once GFP positive began to enter a GFP 

negative state, and immunoprecipitation of the HIV LTR showed methylation marks 

indicative of a silenced promoter state accumulating as these transitions occur (Fig. 2).  

Upon stimulation of latently infected populations with global cell regulators, such as 

TNF-!, the methylation marks on the LTR were lost as the cells were reactivated (Fig. 2).  

Once TNF-! was removed the cells entered into the latent state more rapidly than upon 

first infection, accumulating many of the same silencing methylation marks (Pearson et 

al., 2008).  The studies were expanded into a long-term primary lymphocyte model of 

HIV latency.  The authors were able to sustain primary CD4+ T lymphocyte viability on a 

feeder line, infect the lymphocytes with the HIV model virus described above, and check 

for entrance into the latent state (Tyagi et al., 2010).  The studies from this model yielded 

similar results to the Jurkat system, and hence, the authors concluded that methylation 

marks accumulating onto the HIV LTR are the cause of latency.  Other studies have also 

found that CpG methylation can control reactivation of latent HIV (Bednarik et al., 1990; 

Blazkova et al., 2009; Kauder et al., 2009).  However, patient-isolated latently infected 

resting lymphocytes lack the same methylation markers found in these latency models 

(Blazkova et al., 2012; Ho et al., 2013).  Therefore methylation does not seem to be the 

dominant mechanism for entrance into the latent state.    
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2c. Polymerase collisions lead to quiescence  

HIV integrates into a semi-random position in the host genome (Schroder et al., 2002), 

and so the virus must ensure preferential expression of the viral genome over surrounding 

host genes.  Transcription of the randomly placed viral DNA leads to complications 

where transcription from neighboring genes affects the integrated provirus (Fig. 2).  

Specifically, if the host gene is transcribed frequently in the opposing direction, then the 

polymerase from the host gene can collide with the polymerase transcribing the viral 

genome and inhibit transcription of viral genes (Fig. 2) (Greger et al., 1998; Lenasi et al., 

2008).  Transcriptional collisions are a well-documented phenomenon and one method to 

overcome this is for the virus to increase the rate of transcription from the promoter and 

ensure transcription of its own genes.  Another mechanism for transcriptional interference 

occurs when viral integration is oriented in the same direction as the surrounding host 

gene.  This leads to promoter occlusion (Fig. 2), whereby the polymerase from the host 

gene reads-through the integrated provirus (Greger et al., 1998; Lenasi et al., 2008).  

Similarly to the convergent transcription hypothesis, one way to ensure viral transcription 

is to increase the rate of transcription from the viral promoter by bringing transcription 

factors at a more frequent rate than the surrounding gene (Shan et al., 2011).  Perhaps 

HIV evolved Tat positive feedback to overcome transcriptional collisions and promoter 

occlusion to ensure robust HIV gene expression.    

 

2d. Resting lymphocyte environment promotes restriction of HIV gene-expression  

Whether a lymphocyte is in the resting or activated state drastically changes the global 

gene-expression landscape and overall intracellular environment.  The intracellular state 
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in resting cells creates an environment that promotes the silencing of HIV transcription, 

however, resting lymphocytes are difficult to infect and HIV preferentially infects 

activated lymphocytes.  These observations have lead to the hypothesis that latency 

establishment occurs when a cell transitioning from an activated to resting state is 

infected by HIV, silences HIV transcription during this transition, leading to a latent 

infection (Siliciano and Greene, 2011).  Whether, and how, resting lymphocytes promote 

the restriction of viral replication remains subject to intense research.  The global changes 

that result from lymphocyte cellular state transitions, can also affect the localization and 

activity of many of the proteins HIV relies on for gene expression (Ruelas and Greene, 

2013).  For instance, expression of polypyrimide tract-binding protein, PTB, is severely 

reduced in resting lymphocytes (Lassen et al., 2006).  PTB is responsible for export of 

mRNA from the nucleus and is crucial for export of the class of multiply spliced HIV 

mRNAs that encode for Tat, and other HIV regulatory proteins (Lassen et al., 2006).  The 

lack of expression of PTB in resting lymphocytes causes the multiply spliced transcripts 

to be retained in the nucleus, inhibiting the production of Tat.  The lack of translation of 

Tat mRNA breaks HIV Tat positive feedback and may be responsible for entrance into 

the latent state.  These restriction mechanisms can be overcome through either 

overexpression of HIV Tat, thereby reestablishing Tat positive feedback or 

overexpression of PTB (Lassen et al., 2006).  Reactivation of the resting cell can also 

rescue the latent provirus, which allows for export of viral mRNA and reestablishment of 

Tat positive feedback.  In addition to limited PTB expression, resting lymphocytes 

sequesters other transcription factors HIV relies on, such as NFAT, NF-"B, and pTEFb 

(Ruelas and Greene, 2013).  These global transcription factors are crucial for robust HIV 



! %.!

transcription, and their absence can push HIV into the latent state.  Strikingly, all of these 

regulators can be induced as the resting lymphocyte transitions to the activated state (Fig. 

2) (Ruelas and Greene, 2013).  Induction of these gene-expression regulators creates an 

environment conducive to HIV replication leading to activation of latent provirus.  

However, despite cell-state activation with the most potent activators only a fraction of 

latent provirus is reactivated (Ho et al., 2013) suggesting that cell-state modification is 

not sufficient to ‘reawaken’ 100% of latent viruses.  
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!
Figure 2. Potential cellular determinants of HIV latency and active replication. 

The cell can restrict or promote viral gene-expression through chromatin and methylation 
modulation of the HIV LTR.  The orientation of the HIV provirus relative to the 
surrounding gene and the relative strength of expression of said host gene to the HIV 
LTR will dictate if the virus can robustly transcribe its own genome.  The state of the 
infected cell, whether resting or activated, will control whether necessary transcription 
and mRNA export factors are available for HIV gene-expression. 
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3. Viral control of fate  

Although limited, there is some circumstantial evidence for viral control of HIV fate.  

Most studies where viral where the virus exhibits control of fate perturbed HIV circuitry 

or observed naturally occurring mutations that attenuated circuitry in some way.    

 

3a. Tat over-expression suppresses establishment of HIV latency     

Tat’s role in controlling HIV latency has been reinforced many times through various 

studies.  One recent study examined how constitutive Tat expression affects the 

establishment of a latent population across multiple viral replication cycles (Donahue et 

al., 2012).  In this longitudinal study, a Jurkat line stably transduced with a lentiviral 

vector that expresses Tat protein from a constitutive promoter was infected with a 

replication-competent HIV virus.  Overexpression of Tat reduced the size of the latent 

population compared to the control cell that did not constitutively express Tat (Donahue 

et al., 2012).  These findings indicate a role of Tat in HIV latency. 

 

3b. Manipulation of HIV gene-expression noise 

Altering the level of noise in a system can increase or decrease the probability of the 

system entering into a certain state (Balazsi et al., 2011).  Since stochastic fluctuations 

may influence HIV circuitry (Weinberger et al., 2005), manipulation of circuit strength 

and noise could potentially influence decision-making in HIV.  One method to 

manipulate gene-expression noise is to alter the cis regulatory elements on the HIV LTR 
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promoter.  The HIV LTR contains binding sites for ubiquitous cellular transcription 

factors such as NFAT, Sp1, NF-"B, AP-1, and TBP.  The potential regulatory 

interactions within the LTR are complex (Ott et al., 2011).  While studies have mutated 

these regions to quantify the influences on HIV decision-making, the affects of mutating 

cis regulatory elements on HIV gene-expression noise remained untested.  To address 

this, a set of studies individually, and in combination, mutated and deleted the Sp1, NF-

"B, and TATA binding elements in the minimal LGIT (Burnett et al., 2009).   The data 

shows that mutating both NF-"B binding sites and the first Sp1 site had the most drastic 

effects on HIV transcription (Burnett et al., 2009).  Subsequent analysis of the affects of 

these mutations revealed increased switching frequencies between the activated and 

resting state in the LGIT system most likely caused by increased levels of noise from the 

LTR (Burnett et al., 2009; Miller-Jensen et al., 2013). 

 

 Noise in HIV gene-expression can also be modulated through the addition of 

exogenous regulators such as TSA, TNF-!, and JQ1 (Dar et al., 2012).  TSA and JQ1 are 

of special interest due to the possibility of using these compounds, or ones that work 

through similar mechanisms, to reactivate latent provirus in patients (Ruelas and Greene, 

2013).  TSA and TNF-! modulate noise by altering bursting dynamics from the HIV LTR 

(Dar et al., 2012; Singh et al., 2010a).  The interest in JQ1 stems from recent studies that 

the bromodomain and extraterminal proteins (BET), specifically BRD2 and BRD4, 

stabilize the latent state (Banerjee et al., 2012; Bartholomeeusen et al., 2012).  

Knockdown of BRD2 or inhibition through the addition of a small molecule, JQ1, can 

modestly reactivate latent provirus highlighting the potential role of targeting these 
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proteins.  To test the mechanism of action of JQ1, LTR-GFP cells were exposed to the 

compound and gene expression was tracked in single cells by quantitative time-lapse 

fluorescence microscopy. The study found that HIV expression noise significantly 

changes upon BRD2 and BRD4 addition by modulating transcriptional bursting dynamics 

(Boehm et al., 2013).  Unlike TNF-! and TSA, JQ1 does not increase expression levels 

from the HIV LTR.  It would be interesting to further study if the increase in gene-

expression noise significantly contributes HIV decision-making by finding other 

modulators of HIV gene-expression noise that retain similar expression levels to more 

closely study the relationship between HIV noise and decision-making. 

 

3c. Tat positive feedback can exhibit control of HIV fate 

The viral transactivator of transcription, Tat, is obligate for HIV replication.  As 

previously mentioned, the vast majority of transcription initiation events from the HIV 

LTR promoter lead to abortive transcripts, however, in the presence of Tat, the majority 

of transcription events read-through the viral genome (Kao et al., 1987).  While Tat’s 

interactions with cellular factors is complicated (Ott et al., 2011), in the simplest model, 

Tat functions by binding onto an RNA stem-loop structure known as the transactivating 

response element (TAR) hanging from stalled RNA polymerases on the HIV LTR, and 

promotes the interaction of positive elongation factor, pTEFb, with the stalled RNA 

polymerase.  pTEFb then hyper-phosphorylates the C-terminal domain of the stalled 

RNA polymerase leading to transcription of the viral genome.  This can in turn lead to 

the expression of more Tat, increasing the probability of another cycle of transcription, 
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and hence creating a positive feedback loop in HIV gene-expression (Pessler and Cron, 

2004; Razooky and Weinberger, 2011; Weinberger et al., 2005). 

 

There are a few studies that have performed an in-depth analysis of Tat positive 

feedback to understand its influence on HIV decision-making.  In a set of studies testing 

for minimal sufficiency for control of HIV latency, lentiviruses encoding the HIV LTR 

promoter driving the expression of GFP alone (LTR-GFP) or Tat and GFP  (LTR-GFP-

IRES-Tat) were used to create isoclonal cell lines harboring a single copy of either 

integrated provirus (Weinberger et al., 2005).  Strikingly, while the isoclonal LTR-GFP 

populations were unimodal in GFP expression, the LTR-GFP-IRES-Tat isoclonal 

populations displayed significant heterogeneity in GFP expression and bimodal 

distributions.  In these model systems, an expressive ‘ON’ minimal circuit provirus 

represents an actively replicating virus, while a quiescent ‘OFF’ provirus represents the 

latent state.   

A developed mathematical model (mathematical modeling of HIV circuitry is 

discussed in detail in Chapter 3) of HIV Tat positive feedback showed that stochastic 

fluctuations in HIV gene-expression would be sufficient to create a developmental 

bifurcation in HIV without the need for introducing cellular elements (Weinberger et al., 

2005; Weinberger and Shenk, 2007).  In the mathematical model, a low basal rate of HIV 

transcription, coupled with large stochastic fluctuations in the level of Tat could create a 

developmental bifurcation, despite the system starting from the same initial conditions.  It 

is important to note that this system relies on no other elements (i.e. cooperativity) 

besides stochastic fluctuations in positive feedback to establish this bimodality in HIV 
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gene-expression.  This system, unlike a myriad of other studied positive feedback loops, 

lacks the essential indicators of cooperativity or any obvious notions of bistability, and 

the mathematical model suggests that Tat positive feedback is monostable in the OFF 

state (Weinberger et al., 2005; Weinberger et al., 2008a; Weinberger and Shenk, 2007).  

Additional models show that Tat transactivation simply provides a transient pulse of HIV 

gene-expression and the duration of the pulse in transcription could be modulated by 

changing Tat positive feedback.  One example of modulating Tat positive feedback 

included targeting a futile cycle of acetylation by p300 and deacetylation by SirT1 of Tat 

(Pagans et al., 2005).  Since Tat is only functionally active when acetylated on certain 

residues, overexpression of SirT1 in the model system was sufficient to shift the futile 

cycle, attenuate Tat positive feedback, and decrease the transient pulse of expression 

leading to an increase in the number of latently infected cells (Weinberger et al., 2008a).  

Tat activity is directly correlated with entrance into the latent state in primary cells as 

well.  Two separate studies characterized HIV latent provirus from patient-derived cells 

and found that latently infected lymphocytes typically carried mutations in Tat that would 

attenuate positive feedback (Emiliani et al., 1998; Yukl et al., 2009).  The observation 

that latently infected cells carry debilitating mutations in Tat, along with the observation 

that Tat is necessary for HIV replication, reinforces the role of Tat in HIV decision-

making, and more importantly for viral control over its own fate.  The sufficiency of 

modulating Tat to alter HIV phenotype suggests that viral fate is not purely controlled by 

host-cell mechanisms.  The amplification of stochastic fluctuations that stem from HIV 

LTR transcriptional bursting by Tat positive feedback suggests that HIV circuitry has 

evolved into this noisy phenotype as a method to control decision-making.  Importantly, 
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this study establishes a ubiquitous mechanism for control of HIV fate and shows HIV 

latency decision-making is not deterministic but probabilistic.  

 

 

Chapter 3: Modeling HIV circuitry 

 

Chapter 3 was published in Razooky, B.S., and Weinberger, L.S. (2011). Mapping the 

architecture of the HIV-1 Tat circuit: A decision-making circuit that lacks bistability and 

exploits stochastic noise. Methods 53, 68-77. The article can be found on Pubmed: 

http://www.ncbi.nlm.nih.gov/pubmed/21167940  

 

1. Background 

1a. Background on quantitative modeling and the need for kinetic data 

From chemical engineering to meteorology, ecology and infectious-disease epidemiology, 

mathematical modeling has long been a vital and accepted tool for interpreting data, 

deriving mechanism of action, and predicting the behavior of complex systems.  

Modeling even has a storied past in molecular biology—notably Watson and Crick’s 

seminal 1952 paper on the structure of DNA.  During the 1990s, mathematical modeling 

approaches adopted from ecology were pivotal in determining fundamental kinetic rates 

of HIV replication and turnover in patients and transformed our understanding of HIV 

pathogenesis and the evolution of drug resistance (Herz et al., 1996; Ho et al., 1995; 
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Nowak et al., 1996; Perelson et al., 1997b; Perelson et al., 1996; Wei et al., 1995), for a 

review see (Nowak and May, 2000).  These models of HIV were successful largely 

because high quality time-lapse data was available to ’fit’ the models.   

 

In general, the availability of high-frequency time-resolved data is key for many 

types of mathematical modeling and this data is essential for the mathematical modeling 

we focus on here: kinetic modeling with Ordinary Differential Equations (ODEs).  

Although the term ‘mathematical modeling’ encompasses a wide range of computational 

approaches, we focus on ODEs (and the stochastic version of ODEs) since this approach 

has a strong track record of successfully generating accurate, predictive, and testable 

models of many cellular signaling networks (Alon, 2007; Edelstein-Keshet, 1988; 

Lauffenburger and Linderman, 1993; Murray, 2002; Savageau, 1976; Sible and Tyson, 

2007; Singh et al., 2010a; Singh and Weinberger, 2009; Weinberger et al., 2009; 

Weinberger et al., 2005; Weinberger et al., 2008a; Weinberger et al., 2003; Weinberger 

and Shenk, 2007).  Time-lapse data to fit ODE models has been used from a variety of 

different in vitro experimental modalities including Western Blot, gel-shift assay, RT-

PCR, and others—as long as the experimental system can be plotted to generate a kinetic 

curve of quantity versus time. The data from time-lapse experiments can potentially lead 

to a predictive and testable ODE model of the system being studied.  During the past 15 

years technical advances, such as the invent of fluorescent proteins (e.g. GFP) have 

allowed very high frequency time-lapse data to be collected from live cells by flow 

cytometry and live-cell time-lapse microscopy.  Here, we describe how a time-lapse 

imaging approach can be combined with modeling analysis to study the HIV Tat 
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positive-feedback circuit, which regulates active viral replication and plays a crucial role 

in regulating the establishment of proviral latency and viral reactivation.  The HIV Tat 

system represents an illustrative example because the network is tractable, many 

predictions of the model have been validated experimentally, and this model can serve as 

a ‘module’ that can be adapted and expanded to more complex models of HIV regulation. 

 

The mathematical modeling approach we present here utilizes the computer as a 

form of model system to run ‘experiments’.  The computer experiments make predictions 

that must then be validated in other experimental model systems such as cell-culture or 

animal models.  This approach is not dissimilar to how other experimental model systems 

are used: tissue culture acts as a model system that provides data which must eventually 

be validated in other model systems such as murine models and the data from murine 

models must in turn be validated in another system.  When developing murine models, 

those models that do not recapitulate physiological realism are usually discarded and 

more relevant models are developed.  Mathematical models, much like in vitro or in vivo 

models, undergo a cycle of development, testing, and reformation; for example, models 

that do not recapitulate experimental data from tissue culture, are discarded and new 

models are developed.   

 

Each experimental model system has inherent benefits and drawbacks with some 

systems having greater physiological relevance and others having greater resolving power 

to differentiate specific mechanisms.  The tradeoff between physiological relevance and 

resolving power is always a consideration and in this regard mathematical modeling 
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represents a powerful reductionist assay system for resolving between competing models.  

Specifically, the key benefit of mathematical modeling is that upon ‘discarding’ the 

mathematical model, very specific mechanisms can be negated; each ODE model ideally 

represents a specific mechanism and when this model cannot fit experimental data from 

tissue culture, that specific mechanism is eliminated from consideration.  Thus, the most 

informative models are often the models that do not fit the data!  In this way, ODE 

modeling can provide mechanistic and even structural insight.   

 

There is extensive literature on mathematical modeling of HIV-1 intracellular 

dynamics (Althaus et al., 2009; Palsson et al., 1990; Reddy and Yin, 1999; Srivastava et 

al., 2002), intercellular viral transmission (Nowak et al., 1996; Nowak and May, 2000; 

Perelson et al., 1996; Wolthers et al., 1999), and HIV-1 epidemiology (Wilson et al., 

2008).  Here, we argue that the coupling of mathematical modeling with time-lapse 

microscopy experiments is a powerful method to differentiate between alternate models 

and shows that the HIV Tat circuit does not encode a ‘bistable’ circuit architecture.  The 

lack of bistability in the Tat circuit leads to the stochastic model of the HIV Tat circuit 

where the circuit acts as a monostable ‘timer’ switch which inevitably shuts off 

(Weinberger and Shenk, 2007).  Importantly, the HIV Tat circuit was the first 

characterized decision-making circuit that lacks bistability and the coupled modeling + 

imaging method we describe provided a predictive model for the establishment of HIV 

proviral latency.   
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1b. The Problem at Hand: HIV-1 proviral latency (a decision-making circuit) 

Many viruses appear to have the ability to undergo a developmental ‘bifurcation’ 

between two lifecycle states. The lysis-lysogeny decision in bacteriophage-# is the 

prototypical example, for a review see (Singh and Weinberger, 2009).  Mechanistically, 

bacteriophage-# appears to achieve this developmental bifurcation, in part, by encoding 

bistability (the ability to stably ‘rest’ in two different states) within its master regulator 

circuit, the #-operator.  Bistability within the bacteriophage-# circuitry appears to be 

achieved by means of two competing negative-feedback loops acting on the #-operator 

(Arkin et al., 1998; Ptashne, 2004).  Similar to bacteriophage-#, HIV-1 can also enter one 

of two developmental fates:  upon infecting a CD4+ T lymphocyte, HIV-1 can either 

enter an active replication state (productive infection) or enter a post-integration/proviral 

latent state (an analog of phage lysogeny) (Fig. 3A).  HIV’s ability to enter a proviral 

latent state in resting CD4 T cells is considered the most significant obstacle thwarting 

HIV-1 eradication from a patient (Han et al., 2007; Richman et al., 2009) since latent 

cells can ‘reactivate’ during interruption of highly active anti-retroviral therapy 

(HAART) to generate rapid viral rebounds that re-establish pre-treatment HIV-1 levels 

(Finzi et al., 1999).  A substantial body of evidence has confirmed that HIV-1 proviral 

latent cells are quiescent for viral production and that viral gene expression is shut off 

during viral latency (Lassen et al., 2004; Perelson et al., 1996; Seth et al., 2005). Entry 

into proviral latency appears to be multifactorial with many molecular processes 

controlling the decision to enter latency including the integration site of virus within 

repressed chromatin regions (Jordan et al., 2003), transcriptional blocking due to 

surrounding genes (Lenasi et al., 2008), epigenetic silencing of proviral DNA (Coull et 
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al., 2000; Pearson et al., 2008; Ylisastigui et al., 2004), a transition from active to 

memory state of CD4+ T cells during infection (Siciliano and Siciliano, 2004), or a 

function attenuating mutation in the necessary HIV-1 transactivator of transcription, Tat 

(Yukl et al., 2009).  Previous work by our group has demonstrated that the transcriptional 

master circuit of HIV-1, the Tat positive-feedback loop, can control the latency decision 

and appears to be sufficient to drive a ‘decision’ between two states: bright and off (Fig. 

3B) (Weinberger et al., 2005). 

 

Below, we describe how mathematical modeling coupled with flow cytometry 

and single-cell time-lapse imaging can be used to probe whether the Tat circuit 

architecture is bistable and switch-like, as in bacteriophage-#, or whether Tat encodes a 

different circuit architecture (Fig. 3 C-D).  The imaging and modeling experiments below 

demonstrated that the Tat circuit lacks bistability and instead acts as monostable ‘timer’ 

switch, where the latent state appears to be the only true stable state (Weinberger and 

Shenk, 2007).  Finally, we discuss how stochastic modeling approaches demonstrated 

that the Tat circuit’s decision between an on and off state can be accounted for by 

incorporating noise (i.e. molecular fluctuations) into models of Tat gene expression and 

how noise appears sufficient to control fate determination in the Tat circuit (Singh and 

Weinberger, 2009; Weinberger et al., 2005; Weinberger et al., 2008a; Weinberger and 

Shenk, 2007).  

2. Approach 
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We present the following scheme to map the architecture of the Tat positive feedback 

loop and test for bistablility: (i) we develop minimal mathematical models of HIV Tat 

positive feedback that predict specific kinetic behaviors, (ii) we construct simplified HIV-

1 based lentiviral vectors that examine Tat positive feedback in isolation from all other 

viral elements, and (iii) we analyze the kinetic behavior of these vectors using time-lapse 

fluorescence microscopy to test the various mathematical models.  After demonstrating 

that the experimental single-cell data does not support the bistability model in the HIV-1 

Tat positive-feedback decision-making circuit, we discuss how stochastic models of a 

monostable Tat positive-feedback circuit can account for HIV-1’s ability to decide 

between two alternate states. 

2.1 Starting Considerations for Generating a Predictive Model 

 
The modeling discipline faces the philosophical dilemma as to whether models should be 

complex and attempt to fit all known mechanisms or whether models should be simple 

and attempt to fit only the most essential phenomena.  Clearly, what phenomena and 

characteristics qualify as ‘essential’ is subject to interpretation and debate.  However, 

modeling every molecular detail frequently results in models that are difficult to interpret 

and have little predictive value, so here we will focus on constructing ‘simple’ minimal 

models that consider only a skeletal set of processes needed to quantitatively fit a specific 

set of experimental data.  Our approach follows an underlying principle of model 

development: A model should aim to be predictive rather than descriptive.  Modeling 

every molecular detail frequently results in models that are difficult to interpret and have 

little predictive value.  This simplified model approach has strong precedent: models that 

simplified much of the known biological and molecular detail were essential for 
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elucidating key molecular mechanisms such as bi-stability in the !-phage lysis/lysogeny 

decision (Arkin et al., 1998; Dodd et al., 2001; Hochschild et al., 1986; Hochschild and 

Ptashne, 1988; Johnson et al., 1981; Ptashne, 2004; Ptashne and Gann, 2002), multi-

stability and plasticity in the lac operon (Mayo et al., 2006; Ozbudak et al., 2004), 

robustness in the E. coli chemotaxis network (Alon et al., 1999; Barkai and Leibler, 

1997) as well as many other key molecular mechanisms.  Simplified models have been 

particularly successful for HIV, correctly predicting HIV-1 population dynamics 

(Anderson et al., 1991a; Anderson and May, 1988, 1996; Anderson et al., 1991b; 

Anderson et al., 1988; May and Anderson, 1987; Nowak et al., 1996), HIV-1 viral 

kinetics in vivo (Ho et al., 1995; Perelson et al., 1997a; Perelson et al., 1996; Wei et al., 

1995), and have also demonstrated how stochastic molecular fluctuations in HIV-1 Tat 

contribute to viral latency (Weinberger et al., 2005).  Arguably the best example of the 

utility of simple models over complex models is in protein folding which appears to be 

“relatively insensitive to details of the interatomic interactions” where Baker and 

colleagues established that low-resolution models have far better predictive power than 

high-resolution thermodynamic models (for a review see (Alm and Baker, 1999)).  

Complex models that account for many of the molecular details are eventually developed 

but it is very rare for comprehensive models to be constructed de novo.  Helpful and 

comprehensive models must be developed in a stepwise fashion, and we describe the 

development of the initial models for HIV in a stepwise fashion in sections 3.1-3.3. 
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2.2 Designing Lentiviral Vectors and Creating Cell Lines to Test the Different Models 

 
To determine quantitative values for different components of a system and ‘parameterize’ 

an ODE model, minimal circuit constructs can be used.  We present maps for a number of 

different HIV-1 circuit constructs of increasing circuit complexity in Fig. 4 since these 

maps will provide a helpful guide for the ODE models presented in Fig. 5.  Each minimal 

circuit construct is important for differentiating between the different levels of control in 

HIV-1 gene expression.  The LTR-GFP (LG) system contains the HIV-1 5’ long terminal 

repeat promoter (5’ LTR) driving expression of the green fluorescent protein (GFP) 

followed by the 3’ LTR.  Gene expression from this system depends purely on the 

integration site of that particular cell, which controls the basal rate of transcription from 

the 5’ LTR (Jordan et al., 2001).  The LG provides a means to estimate basal promoter 

strength of the LTR and fold activation in response to inducers in the absence of the Tat 

positive-feedback loop.  

 

The LTR-GFP-IRES-Tat (LGIT) construct removes many of the complex regulatory 

processes present in full-length HIV-1, such as splicing or other feedback components, 

and just leaves the interactions between Tat and the LTR.  The LGIT system has the 5’ 

LTR driving a single mRNA that contains GFP, an internal ribosomal entry sequence 

(IRES) (Pelletier and Sonenberg, 1988), and the HIV-1 Trans-Activator of Transcription 

(Tat), all followed by the 3’ LTR (Weinberger et al., 2005; Weinberger et al., 2008a; 

Weinberger and Shenk, 2007). The single mRNA species does not contain any splicing 

signals, however, the IRES sequence allows for GFP and Tat expression from the same 

mRNA in related and measureable amounts with the Tat protein being expressed at a 10-
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100 fold lower level (Mizuguchi et al., 2000).  The HIV$Env system is a ‘full-length’ 

derivative of the HIV-1 pNL 4-3 virus (Adachi et al., 1986) with a point mutation at the 

start codon of the env gene and GFP in place of nef (Jordan et al., 2003).  Like LGIT, 

HIV$Env can also be used to examine Tat positive-feedback kinetics since Nef, Tat, and 

Rev act as alternative-splice variants of one another.  

 

Below, we will focus on the LGIT circuit, since we address the architecture of the 

feedback circuitry.  However, the LG construct is helpful to probe LTR regulation in the 

absence of feedback and any other HIV factors and the HIV$Env construct is helpful to 

verify the results of studies with LGIT and to probe more complex regulation in HIV-1.  

 

To create cell lines expressing our construct of interest, we use standard lentiviral 

packaging systems (Dull et al., 1998) and tranduce Jurkat T lymphocytes with the 

packaged lentivirus to create stable cell lines that expresses our genes of interest.  We 

typically infect at low multiplicity of infection (MOI % 0.01-0.1) to ensure that infected 

cells contain only a single integration.  Enrichment of infected-cell populations is then 

achieved by fluorescence activated cell sorting (FACS) for fluorescent proteins such as 

GFP. For a complete discussion on the use of lentiviral vectors see (Franz et al., 2010). 

  



! &+!

!

Figure 3. The HIV-1 proviral latency decision and two potential decision-making 
mechanisms.  

(A) Schematic of HIV-1 infecting a CD4+ T cell and ‘choosing’ between active 
replication and proviral latency (left) and schematic of the HIV-1 proviral genome where 
the HIV-1 Tat positive feedback is essential for active replication and entry into proviral 
latency (right).  (B) A minimal Tat circuit LTR-GFP-IRES-Tat (LGIT) can generate a 
bifurcation in GFP between two states: Off and Bright (Weinberger et al., 2005).  Flow 
cytometry histogram of a Jurkat cell clonal population expressing LGIT from a single 
locus and exhibiting a developmental bifurcation.  The bifurcation is not consistent with 
chromatin silencing or position effect variation but is consistent with stochastic 
fluctuations in Tat (Weinberger et al., 2005).  (C) The bistability model for 
developmental bifurcation.  If a transcriptional positive-feedback circuit encodes a self-
cooperative threshold (e.g. homodimerization of the transactivator or multiple DNA 
binding sites that must all be bound by the transactivator), the circuit can exhibit 
bistability (the ability to stably rest in two alternate states). (D) An alternate model of 
kinetic partitioning (or a ‘timer’ switch) for developmental bifurcation.  In this model, the 
positive-feedback loop is not required to encode a self-cooperativity threshold and all 
trajectories eventually fall to an off state (red) and the strength of positive feedback 
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determines the duration of time that a circuit resides in the on state (green). Figure 
originally published as Figure 1 in Razooky and Weinberger, Methods, 2011.  
 

2.3 Choosing Between Different Methods for Obtaining Time Lapse-Data 

 
Data from various experimental methods can be used for ODE modeling including data 

from qPCR, RT-PCR, Western blot, Western immunoprecipitation (IP), chromatin IP 

(ChIP), Northern blot, or other methods.  If one has the luxury of choosing which 

experimental method to use to obtain time-lapse data for ODE models, a number of 

considerations come into play.  Most of the biochemical assays mentioned above provide 

only data on the mean of a large population of cells in the culture (hundreds of thousands 

to millions of cells), which can obscure or complicate analysis if cell behaviors are not 

well synchronized. Alternative methods include flow cytometery, which presents the 

advantage of allowing one to assay both population means and distributions, or 

fluorescence microscopy that provides the unique advantage of tracking individual cells 

over time.  The automated fluorescence microscope is an ideal tool to collect time-lapse 

data since data can be captured for thousands of cells in an automated fashion at an 

exceptionally high frequency (up to once every second) for hours to days.  In this way, a 

vast amount of data is collected and this method has been used to probe dynamics of gene 

expression (Elowitz and Leibler, 2000; Elowitz et al., 2002; Weinberger et al., 2008a; 

Weinberger and Shenk, 2007), network cascades (Ting et al., 2001), and many other 

spatiotemporally regulated systems of the cell (Kagan et al., 2008; Maeda and Sano, 

2006).  Here, we focus primarily on the technique of fluorescence time-lapse microscopy 

to track gene expression of HIV-1 in single mammalian cells over time.  We show how 

single-cell fluorescence trajectories can be interpreted by mathematical modeling to 
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provide insight into the architecture of the specific gene circuit and how HIV-1 may enter 

a latent state.  
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Figure 4. Experimental approach to map HIV-1 Tat circuit architecture using 
single-cell time-lapse imaging.  

Various lentiviral vector constructs can be used for analyzing Tat circuitry.  The 
HIV&Env construct contains the full-length HIV-1 genome, with GFP in place of the nef 
reading frame, and has a start codon mutation in the env so it does not produce infectious 
virus (Jordan et al., 2003).  Nef and Tat are alternatively spliced, so GFP acts as an 
ectopic reporter for Tat kinetics.  The LTR-GFP-IRES-Tat (LGIT) construct expresses a 
single bicistronic mRNA that codes only for GFP (the first cistron) and for Tat (the 
second cistron) which is translated from an internal ribosomal entry sequence (IRES).  
Tat positively feeds back onto the 5’ LTR to transactivate it (black arrows).  The LTR-
GFP (LG) construct codes only for GFP driven by the HIV-1 5’ long terminal repeat 
(LTR) promoter.  The LG construct is useful as a non-feedback control.  Each lentiviral 
construct can be packaged using standard approaches (Dull et al., 1998) and Jurkat T 
cells can be infected at low multiplicity of infection (MOI), FACS sorted to generate 
isoclonal (or polyclonal) populations, and then imaged on a live-cell fluorescence 
microscope system (Weinberger and Shenk, 2007). Single-cell trajectories are extracted 
from time-lapse imaging movies and can be analyzed by mathematical models.  Figure 
originally published as Figure 2 in Razooky and Weinberger, Methods, 2011.  
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3. Methods 

3.1 Developing and Analyzing ODE Models  

3.1a ODE Model of Tat expression without feedback 

 
To begin, we normally draw a schematic or cartoon of the system that describes the key 

interactions to be assessed (Sible and Tyson, 2007).  We consider a set of alternate 

models for possible architectures of the Tat feedback circuit (Fig. 5) and we predict the 

output of each model in terms of HIV-1 gene expression.  First, in Figure 5A we consider 

a model without any feedback and we draw the schematic for this model (Fig. 5A, left).  

Then, we deduce the ODEs that describe this schematic (Fig. 5A, middle), and we 

simulate the kinetics of Tat and GFP expression (Fig. 5A, right).  The differential 

equations that describe this system are: 

!
!" !"#$ ! !!!!!!!!!!! !!!!!!"#$ !!"#$      (Eq. 1) 

!
!" !"# ! !!"# ! !"# ! !!"# ! !"#          (Eq. 2) 

where " is the basal rate of mRNA expression, #mRNA is the per-capita decay rate of the 

expressed mRNA, !Tat is the translation rate of Tat from mRNA, and #Tat is the per-capita 

decay rate of Tat protein. Equations 1 and 2 can be lumped into a simplified version by 

making the quasi steady-state assumption of mRNA expression off of the LTR.  We can 

solve for the steady-state mRNA levels by setting the left-hand side of Equation 1 to zero. 

We then obtain !"#$ = "/#mRNA, and this can be plugged into Eq. 2 to yield: 

!
!" !"# ! !!!!!!!!!!!!"# !!!!!!!! !!!!!!!!!!"# ! !"#     (Eq. 3) 
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where $Tat = ("*!Tat)/#mRNA.   The numerical solution of Eq. 3 can then be plotted on a log 

scale using any number of software programs (e.g Matlab™ or Mathematica™) to 

predict/observe the kinetics of Tat expression in the absence of any feedback.  Eq 3 

predicts that Tat is expressed in a linear fashion since it only depends on basal rate of 

expression from the promoter and Tat reaches a steady state that is equal to $Tat/#Tat (Fig. 

5A, right).  This steady state occurs when the rate of Tat production matches the rate of 

Tat decay; as the decay rate begins to approach the production rate we can see the plot 

approaching the asymptote of $Tat/#Tat.  

 

Next, in Fig. 5B, we consider a construct expressing both a GFP reporter and Tat driven 

by an internal ribosomal entry sequence (IRES) from the same mRNA as GFP.  We 

assume this construct encodes no feedback (i.e. the LG construct).  The equations that 

describe the dynamics of GFP expression were formulated in the same fashion as those 

for Tat from Fig. 5A.  We assume the same " for Tat and GFP since they are derived 

from the same mRNA species.  We present this model to illustrate that both Fig. 5A and 

Fig. 5B have very similar dynamics because the IRES allows for expression of both GFP 

and Tat in stoichiometric amounts off of the same mRNA species (Pelletier and 

Sonenberg, 1988).  The log plot shows the same characteristic asymptote for GFP and Tat. 

3.1b ODE Model of Tat Positive Feedback loop without potential for bistability (i.e. H=1, 

no Tat self-cooperativity) 

 
Tat is known to establish a positive-feedback loop (D'Orso and Frankel, 2009; Feinberg 

et al., 1991; Frankel, 1992; Kwon et al., 2008; Weinberger et al., 2005) via binding to an 

RNA stem loop within the 5’LTR, termed the TAR loop (TransActivation Responsive 
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loop that extends from -18 to -70 in the 5’LTR) and relieving an elongation stall in RNA 

Polymerase II (RNAPII) (Fujinaga et al., 1998; Gatignol et al., 1991; Wei et al., 1998).  

There is a rich literature detailing the complex array of molecular interactions involved in 

Tat transactivation (D'Orso and Frankel, 2009; Feinberg et al., 1991; Frankel, 1992; 

Kwon et al., 2008) but we follow the minimalist philosophy above and by assuming that 

these molecular processes are non-limiting we ‘lump’ many of these processes into two 

parameters to generate a minimal model of HIV-1 Tat transactivation (Fig. 5C).  The 

resulting minimal model can be described by the following set of ODEs: 

!
!" !"# ! !!"# !!! !!!!! !!!"#

!!!! ! !!!!! !!!!!"# ! !"#               (Eq. 4) 

We use the same terms found in Eqs. 1-3, however the middle term represents a saturable 

positive feedback loop, where x represents the positive-feedback strength, and kM is the 

saturation constant of the system.  The strength of the Tat activation term is dependent 

upon the amount of Tat present, so as the Tat concentration rises, the rate of activation 

also increases (i.e. the amount of Tat produced per unit time increases).  This increasing 

rate manifests as an exponential rise, which on a log scale appears as a linear increase 

(Fig. 5C) and thus Eq. 4 generates behavior that differs significantly from the linearly 

increasing rate generated by Eqs. 1-3. 

 In this system with positive feedback, if the system operates far from saturation 

(i.e. kM >> Tat(t)), the middle term is approximately (x/kM)*Tat(t) which gives an 

exponential increase.  As the system approaches saturation (i.e. the amount of Tat(t) >> 

kM) then the positive-feedback terms collapse to x, since Tat(t) + kM % Tat(t).  This 

equation becomes very similar to the system without any feedback (Fig. 5A).  Overall, 

the system displays exponential increase at early times and asymptotes at later times (i.e. 
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linear on a log scale at early times and asymptotes at later times). Below, we will show 

that the HIV-1 Tat feedback system exhibits this type of exponential increase over time.   
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Figure 5. Mathematical models that predict the behavior of potential feedback 
architectures underlying the HIV-1 Tat circuit. 

(A) Schematic, ODE model, and numerical solution of a hypothetical LTR-Tat circuit 
without any feedback; the basal rate of mRNA transcription, ", the degradation of mRNA, 
#mRNA, translation rate of Tat, !Tat, and the degradation rate of Tat, #Tat, are considered in 
the model.  The basal rate, $Tat, of Tat expression can be approximated by lumping the 
terms (bottom equation) within the black-framed box.  The top equation is an ordinary 
differential equation (ODE) that describes the dynamics of Tat in this circuit.  A plot of 
Tat versus time (with the log of Tat plotted versus time) shows that Tat approaches a 
steady state at a linear rate of increase (i.e. a sub-linear rate of increase on the log-linear 
plot). (B) Schematic, ODE model, and numerical solution of the LGIT system without 
any positive feedback. The production of GFP, $GFP, was calculated using the approach 
as used above for Tat.  The first (top) equation describes the GFP dynamics, the second 
(middle) equation is the same as that in panel A.  The plot on the right shows that GFP 
and Tat dynamics mirror each other and are qualitatively very similar.  (C) Schematic, 
ODE model, and numerical solution of the LGIT system positive feedback added.  Tat 
and GFP expression both depend on a positive-feedback term with a Hill coefficient (H) 
= 1. This model generates an exponential rise in Tat and GFP levels (i.e. a linear rise on 
the log scale).  For this simulation a=1, kM=1, and all other parameters are unchanged 
from above. (D) Schematic, ODE model, and numerical solution of the LGIT system 
encoding a positive-feedback loop with nonlinear self-cooperativity (i.e. H > 1).  H = 2 
can drastically changes the shape of both GFP and Tat dynamics.  All parameters are the 
same as in panel c except that H = 2 in this simulation.  All simulations where performed 
in Mathematica™. Figure originally published as Figure 3 in Razooky and Weinberger, 
Methods, 2011. 
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3.1c ODE Model of Tat Positive Feedback loop with potential for bistability (i.e. H>1, 

Tat is self-cooperative) 

 
 Here we model the possibility that Tat positive-feedback is nonlinear or operates 

in a self-cooperative manner.  Self-cooperativity in positive-feedback loops can generate 

multistability (or the ability to rest in multiple states) and provide a mechanism for 

choosing between alternate fates (Ferrell, 2002, 2008; Ozbudak et al., 2004).  Self-

cooperativity can be modeled by adding a Hill coefficient (H) to the positive feedback 

term in Eq. 4 to generate: 

!
!" !"# ! !!"# !!!!!!!!! !!!!!!!!! !!!"#

!

!!!!"#!
!!!!!!!!!!! !!! !!!!!!"# ! !"#        (Eq. 5) 

Self-cooperativity of H=2 or H=3 could have a number of molecular interpretations 

including (i) Tat forming a dimer or trimer to transactivate the LTR, (ii) that there are two 

or three Tat binding sites on the LTR that must be bound for transactivation to occur, or 

(iii) that Tat is multiply phosphorylated in a cooperative manner.  The kinetics of GFP 

and Tat expression in a self-cooperative system (Fig. 5D) are qualitatively distinct from 

the kinetics of GFP expression in a system without cooperativity (i.e. Eq. 4 and Fig. 5C). 

Self-cooperative functions grow at rates that exhibit far greater curvature than 

exponential growth (H=1) or linear growth (H=0).  The increased curvature is due to rates 

of increase being relatively low below the self-cooperative threshold (because feedback is 

not active), and the rate being relatively high and increasing quickly once the self-

cooperative threshold is reached. 
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Notably, the model in Eq. 5 collapses into equation 4 when H=1 (and to Eq 3 when H=0) 

and we will utilize this fact to differentiate between models.  The model described by Eq. 

5 allows for the possibility that Tat could act as a multistable switch and that HIV-1 may 

be able to stably rest in multiple states (e.g. active replication or proviral latency).  The 

model described by Eq. 4 does not allow for bistability or multistability in Tat positive 

feedback.  Below, we differentiate between the models in Eqs. 4 and 5 by fitting the data 

from the single-cell microscopy experiments to our ODE models to determine the value 

of H.   

3.2 Time-lapse Microscopy 

3.2a Preparing Cells for Imaging 

 
Once an appropriate fluorescently-labeled cell line expressing the constructs has been 

created, the next step in the process is imaging.  Jurkat T lymphocytes are non-adherent 

cells and in order to perform time-lapse microscopy the cells must be immobilized.  Non-

adherent cells can be immobilized in a confluent monolayer by trapping them within 

microfluidic or small-chambered devices (Groisman et al., 2005), trapping within a 

polymer matrix (Upton et al., 2007), or using a ‘sticky’ film coating on a glass-bottom 

imaging dish (www.glassbottomdishes.com).  The type of sticky substance used can be 

fibronectin, poly-L-lysine, or other substrates.  We have successfully used BD Cell-

TakTM (www.BDBiosciences.com) a formulation of proteins isolated from marine 

mussels.  A thin film of this substance allows for uninterrupted imaging of individual 

Jurkat cells for up to 30 hours.  We use 35mm glass-bottom dishes or glass-bottom 96-
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well plates on which we ‘stick down’ Jurkat cells as a monolayer of cells.  Once cells are 

stuck down, the imaging process can begin.  

3.2b Imaging Conditions and Image Acquisition 

 
For time-lapse imaging of live cells, an inverted fluorescent microscope, with a 

motorized stage, and environmental incubation chamber (5% CO2, 70-90% humidity, 

37°C) is necessary.  Software to control the microscope and automate the image 

acquisition process is essential (an excellent open-source microscope controller software 

is µManager which is available at: http://valelab.ucsf.edu/~nico/MMweb/overview.php) 

and microscope hardware and software that can minimize focal drift and maintain the 

focal plane of the microscope over the course of a multi-hour imaging experiment is also 

extremely helpful. To ensure cell viability during the course of the experiment, we 

usually monitor and carefully control excitation power, exposure time, humidity, CO2, 

and temperature.  Typically, 20-30 distinct X-Y positions (or nodes) on a glass-bottom 

dish are chosen, with a typical exposure time per node of 300-500ms, and one image 

captured every 5-10 minutes.  We have determined that this exposure time minimizes 

photobleaching and phototoxicity in Jurkat cells, while still maintaining a high signal-to-

noise ratio.  It is important that the camera setting be tuned so that the dynamic range of 

fluorescence increase or decrease over the course of the experiment does not produce 

saturation or allow the signal to drop into a regime of poor signal-to-noise.  The type of 

objective, gain, and offset settings can also be changed to ensure proper image quality (a 

number of web-based resources, e.g. Nikon www.microscopyu.com, provide helpful 

information on microscopy conditions). 
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After acquiring the time-lapse data series, analysis programs are needed to ‘segment’ the 

image.  There are many options for segmentation programs capable of tracking single 

cells, (one commonly used program is CellProfiler (Jones et al., 2008)) and for an 

excellent review of single-cell imaging and segmentation see (Locke and Elowitz, 2009).  

Many labs, including us, utilize custom-written Matlab™ programs for automated cell 

tracking and to quantify GFP fluorescence intensity in individual cells over time 

(Weinberger et al., 2008a).  

3.2c Sample Trajectories from an Experiment 

 
Once the individual cell trajectories have been acquired by ‘image segmentation’ these 

trajectories must be processed before comparison to mathematical models and fitting.  

We follow a scheme of background subtraction of the segmented trajectories followed by 

conversion to a log scale (Fig. 6).  In this experiment, Jurkat T Lymphocytes with a stable 

integration of the LGIT plasmid are stimulated by tumor necrosis factor alpha (TNF!) 

and our automated in-house Matlab™ software extracts and segments raw trajectories for 

25 individual cells.  Background subtraction is then performed so that the fold-increase in 

GFP expression over background can be analyzed – we have found that background 

subtracted data exhibits a fold-increase that agrees with flow cytometery and Western 

Blot data (Weinberger and Shenk, 2007).  The individual cell trajectories are extracted 

from the single-cell movie  (Fig. 6A) and the mean is calculated (Fig. 6B), and then 

converted to log scale (Fig. 6B, inset).  Conversion to log scale is a typical approach used 

to fit data since log conversion minimizes the contribution of outlier data points.  

Although, the exact molecular interactions of Tat and the LTR cannot be deduced from 

the trajectories in Fig. 6C, the GFP expression kinetics do not appear to increase at a rate 
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greater than exponential (i.e. linear on a log scale)(Fig. 6B).  The following sections will 

focus on fitting this time-lapse microscopy data to Eqs. 4 and 5 to determine the value of 

H.   

3.2d Fitting the Single-cell Data to a model 

 
To fit our microscopy data with the ODE model in Eq. 5, any number of different ODE 

solver software packages can be used (e.g. Matlab™ or Mathematica™).  The mean of 

the 25 ‘segmented’ trajectories is imported into the ODE-solver software package for 

fitting to Eq. 5.  Ideally, parameter values for the basal rate of GFP and Tat expression – 

as well as the decay rates of GFP and Tat proteins – are determined from parallel 

experiments (e.g. with the LG construct or similar) but the values of these parameters 

should not effect the shape of the GFP increase.  The only parameter that is essential to fit 

is the Hill coefficient, H.  Fig. 6C shows that H = 1 provides the best fit to the single-cell 

microscopy data for the LGIT construct.  This analysis of the single-cell time-lapse data 

argues strongly that the Tat positive-feedback loop does not encode self-cooperativity 

and that Tat positive feedback lacks the architecture required for bistability.  In support of 

this finding, parallel dose-response experiments, sorting experiments, and FRET-based 

analysis confirm that the Tat positive-feedback loop is not bistable (Weinberger and 

Shenk, 2007). 

 

The lack of bistability in Tat positive-feedback raises the question of how this circuit is 

able to mediate a decision between two states (on vs off) in the absence of bistability.  

Below, we show how simplified models of Tat positive feedback that consider stochastic 
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fluctuations are sufficient to generate a decision between two different states (on vs off) 

without requiring H > 1 or bistability. 
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Figure 6. Time-lapse GFP trajectories from individual LGIT-infected cells show 
that H = 1 for the Tat positive-feedback circuit. 

(A) Plot of raw GFP trajectories versus time obtained after image segmentation of a time-
lapse confocal microscopy movie of LGIT Jurkat cells immobilized on a glass slide and 
imaged live for 18 hours after addition of TNF!.  Each trajectory represents an individual 
cell and each trajectory has been pre-processed by background fluorescence subtraction. 
(B) Plot of the calculated mean of the individual cell trajectories (black line). Inset:  Log-
linear plot of the mean that is used for nonlinear least squares regression fitting to 
mathematical models. (C) Nonlinear least-squares regression fitting of the single-cell data 
to the mathematical model in Eq. 5.  All parameters in Eq. 5 except H were fit to a 
parallel time-lapse movie of LG + TNF! (data not shown, see (Weinberger and Shenk, 
2007)) and H was allowed to vary.  The green line represents the best fit obtained, which 
is H % 1.  Simulations were also performed by fixing the value of H to 0 (blue), 2 (purple), 
or 3 (red); none of these simulations generated a trajectory that could fit the data nearly as 
well as H = 1.  (fits were performed on log-converted data to minimize the influence of 
outlier data points, fits trajectories were then back converted to linear scale). Figure 
originally published as Figure 4 in Razooky and Weinberger, Methods, 2011. 
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3.3 Stochastic Models of the Tat positive-feedback loop 

3.3a Background on Stochastic Fluctuations and Stochastic vs ODE Modeling 

 
Stochastic ‘noise’ arises from random thermal fluctuations in the concentration of protein, 

RNA or other molecules within the cell and is an unavoidable aspect of life at the single-

cell level.   Even cells in a clonal population (i.e. isogenic background) exhibit 

considerable cell-to-cell variation in the level of any specific gene product due to 

stochastic noise (Blake et al., 2006; Kaern et al., 2005; Raj and van Oudenaarden, 2008).  

The origin of this noise is biochemical: it arises from intracellular processes that are 

driven by reactant molecules randomly diffusing and colliding within the cell.  Noise in 

gene expression can arise from the random timing in individual reactions associated with 

promoter remodeling, transcription and translation (Elowitz et al., 2002; Raser and 

O'Shea, 2004; Swain et al., 2002) and intercellular differences in the amount of cellular 

components (for example, RNA polymerase, transcription factors and ribosomes) also 

cause variations in expression levels.  Measurements in live, single cells have shown that 

gene expression noise can lead to large statistical fluctuations in protein and mRNA 

levels in both prokaryotes and eukaryotes (Bar-Even et al., 2006a; Golding et al., 2005; 

Newman et al., 2006; Raj et al., 2006).  These fluctuations (i.e. noise) can have 

significant effects on biological function and phenotype.   

 

The ODE models we have considered until now are continuous approximations (e.g. 

ODE models consider concentration, a quantity that varies smoothly even when 
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describing the transition between a single molecule and zero molecules).  ODE models 

describe the mean of a population, do not typically consider these molecular fluctuations, 

and are essentially an approximation for systems where a large number of molecules are 

present such that molecular fluctuations cancel out (Fig. 7A). 

 

Unlike ODE models, stochastic models describe the state of the system in terms of 

numbers of molecules and they model discrete numbers of molecules for each species 

(not continuous values such as concentration).  Stochastic models are implemented by 

writing down a reaction scheme (Fig. 7A) where the probability of any reaction going 

forward is modeled in a ‘Monte-Carlo’ fashion by choosing random numbers from 

distribution that describe the rate of random collisions between reactant molecules.  Thus, 

the integer numbers of reactants and products fluctuates randomly between any two given 

simulation runs.  In the regime of very large numbers of molecules, the fluctuations begin 

to overlap and cancel out such that stochastic models collapse to the ODE model 

(Gillespie, 2009).  A clear difference between ODE models and stochastic Monte-Carlo 

models is that in Monte-Carlo models, each simulation trajectory can and will vary from 

every other simulated trajectory.  Thus, by running many simulations we can generate a 

histogram of the trajectories for a given point in time, compare the simulated histogram 

to flow cytomtery histrograms (Weinberger et al., 2005), and even use the variation 

around the mean to quantitatively analyze promoter architecture (Singh et al., 2010a).  

For a thorough review on analyzing noise in gene circuits see (Kaern et al., 2005).  Below, 

we present a stochastic model of HIV Tat transactivation, and demonstrate how this non-

bistable model is sufficient to reproduce the HIV-1 decision-making phenotype. 
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3.3b Moving from an ODE to a Stochastic Model 

 
 Much like the setup of the wiring diagram in ODE models, a wiring diagram or 

‘cartoon’ of the molecular reactions is helpful in generating a stochastic model.  Based on 

our single-cell analysis (Weinberger and Shenk, 2007) and literature studies (Pagans et al., 

2005), we can propose the wiring diagram  and corresponding set of chemical reactions 

(Fig. 7B).  The reaction scheme in Fig. 7B is by no means comprehensive and is intended 

to describe a minimal set of reactions that are sufficient to generate a ‘decision’ (or 

bifurcation) in a positive-feedback loop without self-cooperativity (Weinberger et al., 

2005).  Each arrow indicates the direction of the reaction and the speed (or probability) of 

each reaction is indicated above (or below) each arrow by a parameter constant.  As 

described in the next section, these reactions can be coded into freely available simulation 

programs such as BioNetS (Adalsteinsson et al., 2004) and simulations can then be run to 

analyze the model of interest. 

   

3.3c Running Stochastic Simulations 

 
A variety of programs allow for stochastic modeling by running Monte-Carlo simulation 

using an algorithm now referred to as the ‘Gillespie’ algorithm (Gillespie, 1976, 1977). 

Chemical reaction schemes can be coded for simulation using the Gillespie algorithm in a 

programming language (e.g. FORTRAN or C++), Matlab™, or a web-based freeware 

graphical user-interface (GUI) software tool such as BIONETS (Adalsteinsson et al., 

2004).  In Fig. 7B, we show a schematic and reaction scheme for the LGIT circuit.  The 

reaction scheme models a positive-feedback circuit lacking a bistable threshold 
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(Weinberger and Shenk, 2007) and we present a sample simulation of 10,000 individual 

trajectories (where each trajectory represents a single cell).  

 

At time=0 (the start of the simulation) each cell contains identical initial conditions, but 

over time, each cell follows a different (random) path.  At any point in time we can 

analyze all GFP values to generate a histogram. The simulated model of Tat positive 

feedback is sufficient to reproduce the GFP bifurcation from the flow-cytometry data in 

Fig. 1.   From the histogram and simulation we can see that each individual cell has the 

potential of entering one of two states (Bright or Off).  Importantly, in this model, every 

trajectory will eventually fall into the Off state (the off state is essentially a form of 

molecular extinction of Tat and acts as a trap from which the LGIT circuit cannot 

recover).  This model coupled with experimental analysis (Weinberger et al., 2005; 

Weinberger and Shenk, 2007) was the first demonstration that a decision-making circuit, 

which lacked bistability, could generate a developmental bifurcation.  Later work went on 

to demonstrate that the duration of the Tat transient in the bright state controlled entry 

and exit from HIV-1 proviral latency in full-length HIV&Env system (Weinberger et al., 

2008a). 

  



! (,!

 
Figure 7. Stochastic fluctuations in the levels of Tat account for the developmental 
bifurcation of HIV-1. 

(A) Deterministic (continuous) ODE models versus stochastic Monte-Carlo models for a 
simple gene circuit (left).  The ODE model (top) generates a single smooth line that 
approximates the population average of a large population of GFP molecules.  The 
stochastic model (bottom) considers a set of chemical reactions and generates a 
fluctuating trajectory that represents the number of molecules in the system (e.g. a single 
cell) over time.  When simulated, each trajectory from such a stochastic model will vary 
and a histogram of GFP can be generated for any point in time.  (B) Schematic, reaction 
scheme, and stochastic simulation results for the LGIT circuit (reproduced from 
(Weinberger et al., 2005)).  The reaction scheme models a positive-feedback circuit 
lacking a bistable threshold (Weinberger and Shenk, 2007) and 10,000 individual 
trajectories (where each trajectory represents a single cell) are shown for simulated time-
span of one week to generate the histogram of 10,000 cells at right.  The simulated model 
of Tat positive feedback is sufficient to reproduce the GFP bifurcation from the flow-
cytometry data in Figure 1.   The initial conditions for this simulation are: all species 
begin with zero value except LTR (1 copy), Tat (1 - 5 molecules), and GFP (25,000 – 
125,000 molecules); the parameter values are:  kbasal = 10-8/sec, kbind = 0.00015/sec, kunbind 
= 0.017/sec, kA = 0.001/sec, kD = 0.13/sec, ktransact = 0.1/sec, decaymRNAn = 0.000048/sec, 
kexport = 0.00072/sec, kGFP = 0.5/sec, kTat = 0.00132/sec, decaymRNAc = 0.000048/sec, 
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decayGFP = 0.00000301/sec, decayTat = 0.0000043/sec. Figure originally published as 
Figure 5 in Razooky and Weinberger, Methods, 2011.   
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4. Conclusions  

 
Here we argue that a coupled single-cell imaging and mathematical modeling approach 

can differentiate between alternate models of the HIV Tat transcriptional circuit and 

enables mapping of the architecture of the HIV-1 Tat latency circuit.  We demonstrate 

that the Tat circuit lacks bistability (the ability to stably rest in two alternate states) by 

measuring the Hill coefficient of Tat feedback in single cells.  We also show that a 

monostable circuit architecture that exploits stochastic noise in gene expression can 

account for the Tat circuit’s ability to ‘choose’ between two alternate states.  Importantly, 

the Tat circuit represents the first example of a natural decision-making circuit shown to 

lack bistability and utilize stochastic noise to probabilistically ‘choose’ between two 

alternate states (Weinberger et al., 2005; Weinberger et al., 2008a; Weinberger and Shenk, 

2007).  

Chapter 4: HIV latency is controlled by viral genetic circuitry 

 

1. Introduction 

The role of intrinsic genetics and environmental factors in determining organism 

phenotype can be clear-cut.  For instance, inheritance of X or Y chromosomes determines 

sex in mammals but the sex of sea turtles is determined by the temperature of the 

surrounding sand (Bull and Vogt, 1979).  These straightforward examples are the 

exception rather than the rule, especially in cell-fate decisions, like in lambda phage, 

where it is unclear if intrinsic genetics (McAdams and Arkin, 1997; Ptashne et al., 1982) 

or environmental factors (St-Pierre and Endy, 2008) determines phenotype.  Here, to 
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understand the contributions of intrinsic genetic circuitry and environmental factors in 

cell-fate decisions, we use the HIV decision-making process as a model system 

(Weinberger et al., 2005).  

 

As previously mentioned, the accepted theory for latency regulation postulates that 

infected cell-state determines HIV’s fate decision between active replication and proviral 

latency (Ruelas and Greene, 2013; Siliciano and Greene, 2011).  Theories where cell-

state controls latency postulate that activated lymphocytes are permissive to HIV 

replication while resting lymphocytes promote latency.  In resting lymphocytes, HIV 

transcription is restricted due to sequestration of host transcription factors to the 

cytoplasm and accumulation of restrictive epigenetic markers on the HIV promoter 

(Pearson et al., 2008; Tyagi et al., 2010).  Upon activation of the cell, these restriction 

factors are alleviated, allowing for HIV transcription and replication.  Because host-cell 

state seems to completely determine viral phenotype, latency is thought to be an 

epiphenomenon with no role in the natural history of the virus (Coffin and Swanstrom, 

2013; Eisele and Siliciano, 2012).  If latency is simply an epiphenomenon stemming from 

host-cell state, then HIV should not be able to control its own phenotype.  However, there 

is circumstantial evidence for viral control of fate, which confounds the deterministic 

hypotheses based on cell-state.  

 

Evidence for viral control of HIV fate is based on the observation that modulation of HIV 

circuitry alters the fraction of active-to-latent infections.  HIV encodes for a 

transcriptional positive feedback loop where the viral transactivator of transcription Tat, 
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amplifies expression from the HIV long terminal repeat promoter, LTR (Razooky and 

Weinberger, 2011).  Attenuation of HIV Tat positive feedback strength can increase the 

number of latent infections (Weinberger et al., 2008a) and patient-derived latently 

infected cells are enriched for debilitating mutations in Tat’s transactivation domain 

(Yukl et al., 2009).  Strikingly, simple stochastic models of Tat positive feedback—that 

do not take cell-sate into account—can successfully recapitulate the developmental 

bifurcation in HIV (Weinberger et al., 2005).  Although limited, this evidence suggests a 

role for viral circuit control of HIV fate.  Consequently, since evidence exists for viral 

and cellular control of HIV phenotype, it is unclear if latency is simply an 

epiphenomenon or an intrinsic feature hardwired into viral circuitry.  

 

The major obstacle in testing for viral circuit and cell-state control of HIV latency is that 

cell-state changes invariably affect viral circuitry, i.e. activation of cell-state recruits 

transcription factors to the LTR and initiates Tat positive feedback (Ott et al., 2011).  To 

test if viral circuitry is sufficient to control HIV fate, it is necessary to independently 

manipulate viral circuitry and cell-state.  If HIV fate is completely dependent on cell-state, 

then activation or relaxation of cell-state should determine HIV phenotype (Fig. 8A).  

However, if latency is hardwired into viral circuitry, tuning viral circuitry, independent of 

cell-state, should be sufficient to control HIV phenotype (Fig. 8B).   

 

Here, to test if HIV latency is hardwired into viral circuitry we synthetically reengineer 

HIV to independently manipulate viral circuitry and cell-state.  The data show that HIV 

Tat positive feedback can control HIV latency despite drastic changes in cellular state.  
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This suggests that HIV latency is an intrinsic virally encoded phenomenon that may play 

a role in the natural history of the virus. 
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Figure 8. Schematic for activity of a viral circuit that is dependent on, or 
autonomous of, cellular state. 

(A) Plot of viral circuit activity versus cellular state with the condition of cell state 
control over circuit activity (left).  Cells in a resting state only harbor silenced, inactive 
virus, while cells in an active state only harbor activated, replicating virus.  Transitioning 
between resting and activated will induce or silence all viruses in a population of cells 
(right).  (B) If viral activity acts autonomously to cellular state (left), then circuit activity 
could act independently of cellular state and resting and activated cells could harbor 
latent or active virus.  Additionally, circuit autonomy would allow for activation of silent, 
inactive virus without a need for changing cellular state (right).!
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2. Minimal Circuit Results 

2a. Tuning viral circuit strength is sufficient to toggle HIV gene expression between 

active and latent 

 

To determine if HIV gene-regulatory circuitry can autonomously control proviral latency 

without changes in cellular-activation state, we developed synthetic circuits where viral 

circuitry could be toggled independent of cell state (Fig. 10).  The synthetic circuits are 

based upon a minimal model of the HIV latency circuit (Jordan et al., 2001; Weinberger 

et al., 2005) and encode for a transcriptional positive-feedback loop where the viral 

transactivator of transcription, Tat, amplifies expression from the HIV long terminal 

repeat promoter, LTR.  The minimal LTR-Tat circuit is sufficient to recapitulate latent 

gene expression and stimulation with cell-state modifiers will reactivate proviral 

expression from an inexpressive ‘OFF’ state to expressive ‘ON’ state (Weinberger et al., 

2005).  Thus, the system provides a minimal-circuit model to test if Tat circuitry is 

sufficient to control latency.  

 

The minimalist synthetic toggle circuit encodes Tat fused to a controllable-proteolysis tag, 

FKBP (Banaszynski et al., 2006) under the control of the HIV LTR (Fig. 10).  FKBP 

degradation is reversibly inhibited by a small molecule, Shield-1, allowing Tat half-life to 

be rapidly tuned.  The Tat-FKBP fusion was tagged with a photo-switchable fluorescent 

protein, Dendra-2 (Gurskaya et al., 2006), which allowed for light-based pulse-chase 

experiments (Zhang et al., 2007) to measure Tat half-life destabilization in single cells 

(Fig. 11).  In this minimal LTR-Tat-Dendra-FKBP viral vector, Tat half-life is reduced to 
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2.5 hours, a ~3.3 fold reduction from the native 8 hour Tat half-life, in the absence of 

Shield-1 but returns to its native half-life (Weinberger and Shenk, 2007) in the presence 

of 1µM Shield-1 (Fig. 12).  Stochastic theoretical models of the Tat positive feedback 

loop (Weinberger et al., 2005) predict that this change in Tat half-life would be sufficient 

to toggle the HIV positive feedback between ‘ON’ and ‘OFF’ at a majority of viral 

integration sites (Fig. 9).   

 

As predicted by simulation (Fig. 9), altering Tat half-life alone, by addition or 

removal of Shield-1, is sufficient to toggle between latent and active expression in the 

isoclonal populations (Fig. 10).  The observed reactivation is not due to pleiotropic 

effects of Shield-1 since, (i) Tat-Dendra fusion proteins lacking FKBP are insensitive to 

Shield-1 (Fig. 13), and (ii) activation is not simply due to an increase in the half-life of 

Dendra-2 (Fig. 14 and 15).  To distinguish between Tat half-life changes from LTR 

activity, the half-life of the fluorescent reporter and half-life of Tat were decoupled (Fig. 

16).  The decoupled system corroborates the finding that Tat positive feedback is 

sufficient to control viral switching from an inexpressive ‘OFF’ to expressive ‘ON’ state 

(Fig. 17).  These data show that Tat positive feedback is sufficient to toggle HIV gene 

expression between a quiescent state and an actively expressing state. 
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Figure 9. ODE and stochastic models of HIV positive feedback predict that 
changing Tat half-life 3.3 fold is sufficient to induce positive feedback. 

The top left graph is an isocline plot showing the relationship between positive feedback 
strength and the basal rate of transcription.  The top right, middle left, and middle right 
graph are isocline graphs showing the relationship between the changes in Tat half-life 
and basal rate of transcription for very strong feedback (a>>km), ‘average’ feedback (a = 
km) and weak feedback (a<<km), respectively.  The color bar of each graph represents 
the log fold change in Tat steady-state values.  Tat positive feedback was modeled using 
ODE’s as described in Chapter 3 and in Razooky and Weinberger, 2011.  The bottom left 
graph plots the results of 100,000 simulations.  10,000 simulations were run of Tat 
positive feedback for a given basal rate and Tat half-live (holding all other parameters 
equal).  The number of simulations that resulted with at least 1 Tat molecule present was 
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considered ON as a most conservative estimate.  Next, 10,000 more simulations were run 
for the same parameters, only changing the Tat half-life 3.3 fold.  The number of ON 
simulations was then subtracted from the number of ON simulations from the first 10,000 
simulations to get each data point.  Tat positive feedback was modeled using the 
stochastic model shown in Chapter 2, Razooky and Weinberger, 2011, and Weinberger et 
al., 2005.   
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Figure 10. Minimal HIV gene-regulatory circuitry is sufficient to control active-vs.-
latent expression even in the absence of changes in intracellular state. 

(A) LTR-Tat-Dendra-FKBP (LTDF) expresses Tat-Dendra-FKBP as a fusion protein.  In 
the absence of Shield-1 (right), the fusion protein is rapidly degraded (red arrow), 
generating weak positive feedback (blue arrow).  Shield-1 addition (left) blocks 
proteolysis (red arrow), allowing strong Tat positive feedback (blue arrow).  Flow 
cytometry histograms of eight isoclonal LTR-Tat-Dendra-FKBP (LTDF) cell populations 
in the absence of Shield-1 (translucent histograms) or the presence of 1 µM Shield-1 
(right histograms).  ‘OFF’ and ‘ON’ thresholds were set based on cellular 
autofluorescence.  (B) The SFFV promoter constitutively expresses rTta transcription 
factor, which binds to the Tet-ON promoter driving the expression of Tat-Dendra upon 
doxycycline addition.  Tat-Dendra will then bind to the HIV LTR leading to the 
expression of mCherry.  Eleven different isoclonal populations (isoclonal for LTR-
mCherry) were exposed to 500ng/mL dox (opaque histograms) or no dox (transparent 
histograms).  (C) 500ng/mL doxycycline, 1ug/mL TNF!, both, or neither were added to 
four isoclonal populations containing the same circuit as in (B) but with Tat-Dendra-
FKBP instead of Tat-Dendra.  Median Tat-Dendra expression (blue columns) and the 
percent of cells in the ‘ON’ state (red columns) for each population are shown for each 
condition.  (D) Summary schematic of circuit activity versus cellular state.  Starting from 
resting cell, ‘OFF’ populations (no doxycycline and no TNF!), resting cell, ‘ON’ 
(doxycycline alone), activated cell, ‘OFF’ (doxycycline and TNF!), and activated cell, 
‘ON’ population (doxycycline and TNF!) phenotypes could be created.!
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Figure 11. Schematic for measuring Tat half-life perturbations.  

(A) The HIV 5' LTR drives the expression of a translational-fusion product of Tat, 
Dendra, and FKBP. Tat abundance is quantified by measuring DendraG fluorescence in 
the green channel. However, upon exposure to UV-light, Dendra’s spectral properties 
change and cause a fraction of DendraG to fluoresce in the red channel (DendraR). 
DendraG and DendraR are degraded at the same rate so, by following DendraR with time-
lapse fluorescence microscopy, the half-life of the protein fusion product, and thus Tat, 
can be quantified. (B) Fluorescent images of Jurkat cells stably transduced with the 
LTDF vector before and after exposure to UV light. (C) After photoconversion, time-
lapse fluorescence microscopy was performed to get the decay trajectories of the ‘Red’ 
signal over time. Using the mean of the single-cell trajectories, the half-life of Tat in 
different Shield concentrations was measured. 
!
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Figure 12. Tat half-life, as measured by single-cell time-lapse microscopy after 
photoconversion, can be tuned from 2.3 – 7.5 hours. 

(A) Normalized mean fluorescence over time of Tat-Dendra-FKBP expressing cells (>50 
cells per condition) after Dendra photoconversion, in the absence of Shield-1 (gray) or 
presence of 1uM Shield-1 (blue).  The purple line is normalized mean fluorescence level 
of Tat-Dendra cells after photoconversion.  Error bars = standard error of the mean. (B) 
Each curve from Fig. 1C were fit with an exponential function. In the absence of Shield-1, 
Tat has a half-life of 2.3 ± 0.1 hours (gray) and in the presence of 1 µM Shield-1, Tat’s 
half-life is 7.5 ± 0.3 hours (blue). When Tat is fused to Dendra alone, Tat’s half-life is 8.0 
± 0.2 hours (purple). Error bars represent the standard error of the mean from the single-
cell trajectories for that condition.!
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Figure 13. Shield-1 does not affect Tat positive feedback. 

(A) An infected Jurkat LTR-Tat-Dendra population was cultured in the presence (blue) or 
absence (red) of 1 µM Shield-1. The level of fluorescence in the LTR-Tat-Dendra 
population does not change upon Shield-1 addition. (B) Incubating an infected Jurkat 
LTR-Tat-Dendra-FKBP population in the presence (blue) or absence (red) of 1 µM 
Shield-1 leads to large changes in fluorescence. Flow cytometry data were created as 
described in materials and methods.!
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Figure 14. Shield-1 does not induce expression from the LTR. 

Two isoclonal LTR-d2GFP-IRES-Tat populations—without a FKBP domain—were 
incubated in the presence (cyan) or absence (red) of 1 µM Shield-1. Shield-1 did not 
change expression from the HIV-1 LTR in either population. Thus, the pleiotropic effects 
of Shield-1 do not affect LTR gene-expression. This circuit is equivalent to the circuit in 
Figure 15 but mCherry fluorescent protein is replaced with GFP. !
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Figure 15. Stabilization of Tat leads to activation of positive feedback. 

Boxplots showing the fold-change in median fluorescence after 1 µM Shield-1 addition 
for each isoclonal population from Figure 9A. The boxplots show the mean fold change 
in the median level (black horizontal line), the edge of the boxes represent the 25th to 75th 
percentile, and the whisker length represents extreme data points not considered outliers 
(MATLAB™ default setting). To generate the red ‘No Feedback’ line, we developed an 
ordinary differential equation model. Under the quasi steady-state assumption of mRNA 
expression, we lump transcription, mRNA decay and translation rate into a single basal 
term, ', and model protein kinetics by zero-order birth and first-order decay processes as 
follows: 

!
!" ! ! ! ! ! ! !      (Eq. 6) 

 
where P is the protein abundance, ' is the basal rate of expression, and ( is the per capita 
death rate. If we only change ( for different Shield-1 concentrations (i.e., ' is not affected 
by Shield-1 (Fig. 12 and Fig. 13)), then the ratio of two different steady-state median 
protein abundances achieved at two different Shield-1 concentrations would be equal to 
the ratio of the two half-lives: 
 

!!!!
!!!!

! !!
!!

      (Eq. 7) 
 

The half-life of Tat is determined for different Shield-1 concentrations (Fig. 11), so we 
can relate the fold change in abundance to the fold change in half-life in the absence of 
feedback.!
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Figure 16. Schematic for a closed-loop feedback system where the perturbation to 
the trans-activator has been decoupled from expression levels. 

In the LTR-mCherry-IRES-Tat-FKBP system, a single polycistronic mRNA is 
transcribed from the HIV-1 LTR that encodes for mCherry and Tat-FKBP in 
stoichiometric amounts. Unlike the LTDF system, this decouples the perturbation and 
transcriptional output so that Tat levels only affect fluorescence intensity through 
transcriptional mechanisms (i.e., not through half-life changes in the fluorescent reporter 
as in the LTDF system).  In the absence of Shield-1, Tat-FKBP is rapidly degraded 
leading to weak-positive feedback, and lower mCherry levels. However, upon Shield-1 
addition, Tat-FKBP is stabilized leading to more Tat and strong positive feedback. 
Subsequently, more Tat should lead to higher-level transcription from the LTR and 
mCherry expression.!
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Figure 17. Tat-positive feedback controls gene-expression from the LTR (measured 
by mCherry). 

Probability distributions of mCherry fluorescence for 12 LTR-Cherry-IRES-Tat-FKBP 
isoclonal populations with (blue histograms) or without (red histograms) Shield-1. 
Stabilization of Tat half-life leads to significant changes in Cherry expression in 11 of the 
12 isoclonal populations tested. Probability density plots were created using the default 
ksdensity function in Matlab®.!
 

  



! *,!

2b. Tuning viral transcriptional strength stimulates HIV gene expression more 

effectively than perturbing cellular-activation state  

 

One caveat of using tunable-proteolysis systems to toggle a circuit is that a minimal level 

of protein (i.e. Tat) must be present in the off state, since modulating protein half-life 

when protein concentration is zero would have no affect.  Thus, the Tat-FKBP approach 

cannot test if Tat can reactivate latent cells that are fully silenced.  To circumvent this 

obstacle so that we may test if Tat induction is sufficient to reactivate completely silent 

LTR’s, we developed a set of open-loop circuits, based on the Tet-On system (Gossen 

and Bujard, 1992), to induce Tat expression de novo.  These systems allow very tight 

induction of Tat expression upon doxycycline addition.  To further reduce off-state Tat 

levels to extremely low levels, we developed a Tet-On system driving expression of Tat-

Dendra-FKBP that requires both doxycycline and Shield-1 for activation (Almogy and 

Nolan, 2009).  To test the effects of Tat induction on HIV gene-expression, these circuits 

were incorporated into cells that encoded an HIV LTR promoter driving mCherry 

fluorescent reporter (Fig. 10 and Fig. 18).   

 

In agreement with the findings from the LTR-Tat-Dendra-FKBP circuits, the Tet-On 

circuits show that Tat alone is sufficient to control ‘OFF’-versus-‘ON’ LTR expression 

state and LTR expression levels (Fig. 10, Fig. 19).  Importantly, a number of clones 

(‘Clones 1-3’) exhibit no detectable LTR expression at all—the conventional threshold 

for latency (Jordan et al., 2003; Jordan et al., 2001; Pearson et al., 2008; Spina et al., 

2013; Tyagi et al., 2010; Williams et al., 2006a; Williams et al., 2007b)—in the absence 
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of Tat induction, but inducing Tat expression is sufficient to fully reactivate these clones 

without the need for any cell-state activation signals.   

 

Next, to test the effects of cell-state activation, isoclonal Tat-inducible 

populations were exposed to combinations of doxycycline and a cell-state activator (Fig. 

10).  TNF! potently activates expression from promoters containing NF-"B binding sites 

by stimulating recruitment of the p50-RelA heterodimer (Pazin et al., 1996).  In the Tat-

inducible populations, cell-state modifications alone only slightly increase expression and 

the percentage of cells in the ‘ON’ state (Fig. 10).  In contrast, modification of cell-state 

and induction of Tat drastically increases expression from the LTR, but only slightly 

more than Tat induction alone (Fig. 10).   Collectively, these data suggest that modulating 

cell-state alone is not sufficient to control HIV transcription (Fig. 10, Fig. 19).  In 

contrast, the most potent reactivation was observed upon modification of cell-state and 

viral circuitry. 
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Figure 18. Schematic of Tet-Tat-Dendra-FKBP + LTR-mCherry.  

The SFFV promoter constitutively expresses the rTta activator, which has the potential to 
transactivate the Tet-On promoter.  Doxycycline (Dox) binds to the rTta transcription 
factor, which then binds to the Tet-On promoter and drives the expression of Tat-Dendra-
FKBP. The junction point between the ‘Dox’ and rTta arrow represents the necessity for 
rTta to bind Dox for Tet-On transactivation. The level of Tat-Dendra-FKBP expression is 
titratable and dependent on the amount of Dox added to the system. Once Tat-Dendra-
FKBP is expressed, Tat can bind to the HIV-1 LTR and trans-activate expression, thereby 
leading to significant increases in LTR expression in a dose-dependent manner.  Tat-
Dendra-FKBP stability can also be modulated through Shield-1 addition. 
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Figure 19. Providing Tat in trans controls expression from the LTR.  

Each heat map consists of 48 different conditions for 11 isoclonal Tet-Tat-Dendra-FKBP 
+ LTR-mCherry populations. The y-axis represents eight doxycycline concentrations (0 
ng/mL, top; 500 ng/mL, bottom), and the x-axis represents six Shield-1 concentrations (0 
nM, left; 1000 nM, right). The color in each graph represents the intensity of either 
Dendra or Cherry fluorescence for that particular heat map and fluorescence levels were 
normalized against the maximum intensity bin for that specific heat map.  Increasing Dox 
or Shield-1 concentration leads to more Tat-Dendra-FKBP expression (top 11 ‘Dendra’ 
heat maps).  As the availability of Tat-Dendra-FKBP increases, Cherry expression from 
the HIV-1 LTR also significantly increases (bottom 11 ‘Cherry’ heat maps).  In most 
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cases the maximum Dendra and Cherry fluorescence occurs when the most Dox and 
Shield-1 are present (bottom right hand corner of heat maps).  Note that the Tet-Tat-
Dendra-FKBP + LTR-mCherry system expression is more dependent on Dox (vertical) 
than Shield-1 (horizontal), because the Shield-1 perturbation is only applicable post-
transcriptionally, and the Tet-On system relies on varied levels of transcriptional 
activation for tuning levels of gene-expression. 
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3. Full-length Virus Results 

3a. Establishment of HIV latency in full-length replicating virus is contingent on viral 

circuit strength  

 

While the above experiments show Tat is sufficient to control gene-expression state in 

minimal circuits, we wanted to test if viral circuitry can control latency in full-length HIV.  

A full-length HIV molecular clone, pNL4-3, containing a Tat deletion, (termed "Tat 

virus, (Huang et al., 1994)) was reengineered to encode either the Tat-Dendra-FKBP 

cassette (termed “Tunable-HIV”, Fig. 20A, top), or a control Tat-Dendra cassette (termed 

“Control-HIV”, fig. 21) in the nef reading frame, which is dispensable for replication in 

culture (Kim et al., 1989).  In these nef-reporter viruses, actively replicating infections 

express reporter, while latent infections do not (Jordan et al., 2003).   

 

Strikingly, modulating Tat positive-feedback strength with Shield-1 alters the percentage 

of actively infected cells by 141%, i.e. >2 fold (Fig. 20B).  The reduction in actively 

infected cells is not due to reduced input virus since Shield-1-positive and Shield-1-

negative cells are infected with equivalent titers of virus (i.e. MOIs).  In striking contrast, 

Control-HIV infection efficiency in the presence and absence of Shield-1 has no 

measureable affect on active infection (Fig. 20B), demonstrating that Shield-1 is not 

inducing abortive infections and that any Shield-1 pleiotropic effects cannot explain the 

difference in active-versus-latent infection.  In summary, modulating viral feedback 

strength is sufficient to control the establishment of active-versus-latent infection in full-

length replicating virus. 
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3b. Full-length latent provirus can be reactivated independent of cellular-activation 

state  

 

Given that viral regulatory circuitry can control establishment of latency in full-length 

virus, we next tested if viral circuitry was sufficient to control reactivation from latency 

in full-length virus.  Unfortunately, as discussed above, the controllable-proteolysis 

systems create difficulties in interpreting reactivation because they require a minimal-

threshold of Tat protein to toggle reactivation; completely silent latent infections, where 

no Tat is present, would likely not reactivate with Shield-1 thereby generating false 

negatives.  Therefore, to test if Tat could reactivate full-length latent virus we developed 

a decoupled system where Tat expression is controlled by the cells (via Tet-On) and is 

induced (by doxycycline) completely independently of the virus.  These Tet-Tat-Dendra 

cells provide in trans complementation for a reengineered Tat-deleted virus where 

mCherry fluorescent protein replaced nef (termed &Tat Cherry virus) so that viral gene-

expression can be toggled on from a starting-Tat level of zero (Fig. 20C).  Inducing Tat 

expression in Tet-Tat-Dendra cells during infection with &Tat Cherry virus shows a 

~400% increase in active infection compared to non-induced &Tat Cherry-infected cells 

(Fig. 20D), corroborating previous results that constitutive expression of Tat protein can 

inhibit the establishment of latency (Donahue et al., 2012).  Infection of non-induced Tet-

Tat-Dendra cells drives &Tat-Cherry infections to enter latency and, most strikingly, 

subsequent induction of Tat expression by doxycycline (e.g. after >2 days), fully 

reactivates latent virus to levels observed in the initial infection with doxycycline (Fig. 
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20D).  Hence, the ability to rescue latent provirus with Tat-induction and without altering 

cellular-activation state demonstrates that Tat is sufficient to control latent reactivation in 

HIV.  
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Figure 20. Viral gene-regulatory circuitry is sufficient to control latency in full-
length replicating viruses in the absence of changes in cellular state.   

(A) CEM cells were infected with full-length Tunable Tat virus, then split into cultures 
with (strong feedback arrow, top) or without 1µM Shield-1 (weak feedback arrow, 
bottom).  (B) Two days post infection, the percentage of active infections could be 
changed from 17.5 ± 1.7% (green column, 1µM Shield-1) to 7.5 ± 1.0% (white column, 
0uM Shield-1).  The presence of Shield-1 did not change the infection rates for the 
Control-HIV infection (25.8 ± 1.0%, black column, 1µM Shield-1 and 26.0 ± 2.7%, white 
column, 0uM Shield-1).  Infections were preformed in triplicate.  Error bars = ±1 
standard deviation.  (C) Stable cell lines expressing Tat-Dendra from the doxycycline 
inducible Tet-ON promoter were infected with &-Tat mCherry virus, then split into 
cultures without doxycycline (weak promoter arrow, bottom) or with 500ng/mL 
doxycycline (strong promoter arrow, top).  Two days post infection, cells from the weak 
promoter case (bottom) were incubated in 500ng/mL doxycycline.  (D) Two days post 
infection, the presence of doxycycline changed the percentage of active infections from 
8% (light red) to 30% (red).  Doxycycline was added to the culture without doxycycline 
(light red), and 28% of cells expressed mCherry (light red to red gradient column) after 
24hrs.  (E) A plot of Percent Infected (red columns) versus Tat Dendra Fluorescence 
(blue columns) in Tunable Tat Cells from (c) infected with the &-Tat Virus in the 
presence of TNF! (4.6% actively infected), doxycycline (13.2%), neither (1.6%), or both 
(23%).  (F) Summary schematic of viral phenotype versus cellular state.  Starting from 
resting cell, latent populations (no doxycycline and no TNF!), resting cell, replicating 
(doxycycline alone), activated cell, latent (doxycycline and TNF!), and activated cell, 
replicating population (doxycycline and TNF!) phenotypes could be created. 

 

 

Figure 21. Control HIV was developed as a control virus.  

Tat-Dendra was placed in the nef reading frame. Multiple premature stop codons were 
placed in the native Tat reading frame to prevent expression of Tat from the native locus. 
This virus is insensitive to Shield-1. 

!
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3b. Reactivating full-length latent provirus by tuning viral circuitry is 400% more 

effective than reactivating by perturbing cellular-activation state  

 

To test the effects of altering cellular-activation state on viral latency, Tet-Tat-Dendra 

cells were infected with &Tat virus in the presence of doxycycline or the cell-state 

activator TNF! (Fig. 20E).  Modifying cell state with TNF!, in the absence of Tat 

induction, only leads to a 1.5-fold change in the percentage of active infections (Fig. 20E).   

In contrast, Tat induction alone, or in combination with TNF!, drastically increases the 

proportion of infections that are active by 400% and 700% more, respectively (Fig. 20E).  

In agreement with data from minimal-synthetic circuits (Fig. 10), perturbing viral 

circuitry (or both cell-state and viral circuitry) provides far more potent latent reactivation 

than targeting of cell-state alone.  

 

4. Viral circuitry dominates the control of HIV latency despite changes 

in cellular-activation state in primary lymphocytes 

 

Given that viral circuitry controls HIV latency in immortalized lymphocyte cells, we next 

tested if viral circuitry controls HIV latency in primary lymphocytes.  Activated primary 

CD4+ T lymphocytes, the main targets of HIV in vivo, undergo a dynamic transition from 

activated (CD25+, CD69+) to resting memory (CD25-, CD69-).  The prevailing hypothesis 

for latency establishment is that a lymphocyte infected during this ‘relaxation’ from 

active to resting globally silences gene expression, including HIV gene expression, and 

generates a latently infected cell (Siliciano and Greene, 2011).  This transitioning of 
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primary lymphocytes provides an ideal system to test between the cell-state and viral 

circuitry hypotheses; if viral circuitry is independent of (i.e. autonomous to) cellular state, 

global silencing of the lymphocyte gene expression during transition from active to 

resting-memory would not silence HIV gene-expression.  To carry out this test, activated 

primary CD4+ T lymphocytes were transduced with the LTR-Tat-Dendra-FKBP lentiviral 

construct and allowed to relax from an active to a resting-memory state while Tat 

feedback circuitry was reduced from wild-type strength to attenuated (Fig. 22A, Fig. 23).   

 

If Tat positive feedback is attenuated (by absence of Shield-1) as lymphocytes relax from 

activated to memory, significant silencing of HIV gene expression occurs (Fig. 22B, red 

histograms).  However, when Tat positive feedback is of wild-type strength (via Shield-1 

addition), only a slight shift in HIV gene expression occurs as lymphocytes transition 

from active to memory (Fig. 22B, blue histograms).  When cell-activation state is 

quantified by the change in CD25 and CD69 (two markers of T-cell activation state (Fig. 

23)), a remarkable relationship emerges.  If Tat feedback is attenuated, the cellular-

activation state tightly controls entry to latency by significantly reducing the percentage 

of cells in active infection (Fig. 22C, red).  However, when Tat feedback is active, the 

cellular activation state has no bearing on entrance into latency as the percentage of cells 

in active infection remains constant (Fig. 22C, blue)—i.e. the intact feedback circuit 

allows viral gene expression to act completely independent of cellular-activation state. 

Thus, active Tat feedback appears to buffer HIV from global gene silencing as primary 

lymphocytes transition from active to resting memory.  Overall, these primary-cell 

studies show that only under attenuated Tat-feedback conditions is cellular-activation 
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state able to control HIV latency (Fig. 22D) and that wild-type Tat feedback circuitry 

appears to act autonomous of cellular state. 
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Figure 22. HIV gene-regulatory circuitry dominates the regulation of active-vs.-
latent expression even as cells relax from active to resting.   

(A) Resting lymphocytes were activated then infected with LTR-Tat-Dendra-FKBP in the 
presence (strong feedback arrow, bottom) or absence (weak feedback arrow, top) of 1µM 
Shield-1.  The 1µM Shield-1 activated lymphocyte culture was washed of activating 
agents and Shield-1 and split into a culture with and without 1µM Shield-1.  (B) Flow 
cytometry of HIV LTR expression (Dendra fluorescence) in activated (opaque 
histograms) or resting (transparent histograms) cells in the presence of 1 µM Shield-1 
(top panels) and absence of Shield-1 (bottom panels).  (C) Plot of CD25 fold-change 
versus the percentage of actively expressing cells in the presence (blue) or absence (red) 
of 1µM Shield-1.  (D) Summary schematic of circuit activity versus cellular state based 
on (A)-(C).  Cells transitioning from an activated state can only silence HIV expression if 
positive feedback is attenuated.  Otherwise, normal Tat feedback would cause cells to 
transition from ‘ON’ and activated to ‘ON’ and resting. 

!
!
!

!
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Figure 23. Activation and relaxation dynamics of primary cells.  

Relaxation kinetics from two donors (Donor 1, solid lines and Donor 2, dashed lines) 
and the fold change in the levels of CD25 (green) and CD69 (red) are shown. Green 
lines correspond to CD25 y-axis on the left, and the red lines correspond to the 
CD69 y-axis on the right. Time points were taken at 0, 2, 3, 4, 6, and 8 days. At day 2, 
CD3/CD28 beads, IL-2, and virus were removed from the culture to allow the 
activated cells to relax back to the resting state. These data are related to Figure 21 
of the main text. 
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5. Discussion 

Here, synthetic engineering of minimal circuits and full-length HIV viruses allowed for 

decoupling of cell-state and viral circuit contributions to HIV decision-making.  The 

minimal circuits establish the sufficiency of Tat to control HIV gene-expression state (Fig. 

10).  Engineering of full-length HIV showed that viral positive feedback strength alters 

the ratio of active to latent infections in the absence of cell-state modification (Fig. 20).  

Importantly, in primary cells, even in the face of drastic cell-state modifications, HIV 

circuitry dominated the decision between active expression and latency (Fig. 22).   

 

Ideally a full-length virus would have been used in the primary-cell experiment (Fig. 22).  

However, actively replicating full-length viruses result in cell death after 1-2 days 

(Weinberger et al., 2008a), not allowing for long-term measurements of cell-state 

relaxation’s effects on HIV transcription.  Nevertheless, minimal circuit models are able 

to recapitulate all of the observed properties of latency (Jordan et al., 2001; Weinberger 

and Shenk, 2007) and silencing of HIV transcription is only dependent on cellular factors 

(Siliciano and Greene, 2011; Tyagi et al., 2010).  Therefore, the result that wild-type 

feedback can sustain robust HIV transcription despite a changing cellular environment 

should translate to a full-length virus.  

 

Why has the finding that viral circuitry can control latency remain unobserved?  Mainly, 

HIV gene-regulatory circuitry doubles as an environmental sensor and the invariable 

coupling of cell-state changes to viral circuitry obfuscates the contributions of each (Ott 
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et al., 2011).  Since cell-state was tuned in most studies (Siliciano and Greene, 2011; 

Tyagi et al., 2010; Williams et al., 2007b), reactivation of HIV from latency could only 

be contributed to the cell-state change.  However, if viral circuit and cell-state changes 

are decoupled, a role for viral circuitry in HIV latency emerges (Jeeninga et al., 2008). 

Here, decoupling of viral circuitry and cell-state established the sufficiency of viral 

circuitry to regulate latency (Fig. 10, 20, 22).  

 

The sufficiency of viral circuitry to control latency suggests it is an evolved phenotype 

with a role in the natural history of the virus.  This is difficult to resolve with theories 

postulating latency is an evolutionary accident only advantageous in response to ART 

(Coffin and Swanstrom, 2013; Eisele and Siliciano, 2012).  While latency may be an 

intrinsic feature of the virus, the natural fitness role remains unresolved.   

 

In general, the tuning of feedback circuitry independent of cell-state changes provides a 

framework for delineating how intrinsic gene-regulatory circuitry and extrinsic 

environmental factors affect cell-fate determination.  A diverse array of gene-regulatory 

circuits double as environmental sensors, so different circuits likely have diverse 

susceptibilities to environmental cues (Balaban et al., 2004; Balazsi et al., 2011; Lahav et 

al., 2004; Zeng et al., 2010).  Thus, the ability to explore the effects of environmental 

cues independently of internal circuitry for diverse systems may isolate the dominant 

factors controlling cellular phenotype. 
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6. Materials and Methods 

6a. Virus production, cell lines, and infections.   

All lentivirus were generated in 293T cells and isolated as described(Weinberger et al., 

2005).  To generate the isoclonal populations, the LTDF lentivirus was added to Jurkat T 

Lymphocytes at a low MOI to ensure a single integrated copy of proviral DNA in 

infected cells.  Cells were stimulated with tumor necrosis factor alpha (TNF-!) and 

Shield-1 for 18 hours before sorting for Dendra expressing cells. Isoclonal and polyclonal 

populations were created as described(Weinberger et al., 2005). Sorting and analysis of 

cells infected was performed on a FACSAria II.  The same procedure was followed to 

create the LTD, LTR-mCherry-IRES-Tat-FKBP cell lines.  The Tet-Tat-Dendra + LTR-

mCherry populations were created by first infecting Jurkats with Tet-Tat-Dendra and 

SFFV-rTta lentivirus at a high MOI. Then LTR-mCherry lentivirus was added to the 

Jurkats at a low MOI. Before sorting for mCherry+ and Dendra+ cells, doxycycline was 

added at 500ng/mL for 24hrs, at which point isoclonal populations were isolated.  The 

same procedure was followed for the Tet-Tat-Dendra-FKBP + LTR-mCherry populations, 

however, 24hrs before the sort 1uM Shield-1 and 500ng/mL doxycycline was added to 

the culture.  All Shield-HIV or noShield-HIV infection experiments were performed by 

incubating 5 x 105 CEM cells in the same titer of Shield-HIV or the same titer of 

noShield-HIV in the presence or absence of Shield-1 and taking a flow cytometry time 

point after 48 hours. 
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6b. Primary CD4+ T cell isolation and culture conditions for primary cells and cell 

lines.  

Jurkat T Lymphocytes, CEMs, and Primary CD4+ T lymphocytes were cultured in RPMI 

1640 (supplemented with L-glutamine, 10% fetal bovine serum, and 1% penicillin-

streptomycin) in a humidified environment at 37°C and 5% CO2. Jurkats and CEM were 

maintained by passage between 2#105 and 2#106 cells/mL.  Primary CD4+ T cells were 

isolated from peripheral blood obtained from Stanford Blood Bank using RosetteSepTM 

Human CD4+ T Cell Enrichment Cocktail from STEMCELLTM Technologies and Ficoll 

as described(Terry et al., 2009).  Once isolated, cells were either cultured as described in 

Supplemental Figure 12 or frozen in 10% DMSO, 90% culture media at a density of 107 

per mL.  Cell activation was measured by flow cytometry with anti-CD25-PE-conjugated 

antibody and anti-CD69-APC-conjugated antibody from BD BiosciencesTM.   

 

6c. Flow Cytometry and analysis.   

Flow cytometry data was collected on a BD FACSCalibur DxP8, BD LSR II, or HTFC 

Intellicyt for stably transduced lines and BD FACSAria II for replication competent virus 

assays and sorting.  All flow cytometry experiments on replication competent virus runs 

were performed in BSL3 conditions, and safety information will be provided upon 

request. Approximately 10,000 live cells were acquired for measurement and compared 

to an uninfected control to establish background fluorescence levels.  Flow cytometry 

data was analyzed in FlowJoTM (Treestar, Ashland, Oregon) and using customized 

MATLAB® code.  
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6c. Microscopy and analysis.   

Microscopy experiments were performed on a Zeiss Axio Vert inverted fluorescence 

microscope equipped with a Yokagawa spinning disc, 405-, 488-, and 561-nm laser 

excitation light sources, CoolSNAP HQ2 14-bit camera from Photometrics, computer 

controlled motorized stage, and environmental enclosure, maintaining a temperature of 

37°C and a humidified atmosphere with 5% CO2.  Photoconversion was performed by 

exposing cells to: (i) 488 nm (10% laser power, 500 ms exposure time), (ii) 561 nm (50% 

laser power, 500 ms exposure time), (iii) 405 nm (100% laser power, 60 s exposure time), 

(iv) 488 nm (10% laser power, 500 ms exposure time), and last of all (v) 561 nm light 

(50% laser power, 500 ms exposure time).  Time-lapse experiments immediately 

followed the photoconversion, and images were captured every 10 min, with a 40x oil, 

1.3NA objective, 1 s exposure time, and 50% power on a 561-nm solid-state laser.  At 

least 50 cells were collected for each experiment and analyzed as described(Weinberger 

et al., 2008a).  Exponential fits for the Tat half-lives were performed on the first 6 hours 

of microscopy data collected. 

 

6d. Cloning information 

The HIV-1 LTR promoter driving a DNA fusion of Tat-Dendra (LTD) was generated 

using fusion PCR with Tat from the LGIT plasmid(Weinberger et al., 2005) and 

pDendra2-N from Evrogen. The primers were: (1) 5' Tat-linker-Dendra primer: TCC 

CGG GGT GTT ACT TCC TCC ACT TCC TCC CTT GTC ATC GTG GTC CTT GTA, 

(2) 3' Tat primer: GGG CCC GGA TCC ATG GAG CCA GTA GAT CCT AGA CTA, 

(3) 5' Dendra-linker-Tat: GAC GAT GAC AAG GGA GGA AGT GGA GGA AGT AAC 
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ACC CCG GGA ATT AAC CTG, (4) 3' Dendra primer: GGG CCC CTC GAG TTA 

CCA CAC CTG GCT GGG CAG GGG GCT. Primers 1 and 3 were added to the PCR 

reaction at a 50-fold lower concentration than 2 and 4. The GFP-IRES-Tat from LGIT 

was restriction digested with BamHI and XhoI, and the Tat-Dendra (TD) PCR product 

was ligated into the backbone of LGIT to generate LTD. The LTD plasmid was used to 

create the LTDF plasmid. To generate the LTDF plasmid, the FKBP #24 domain(Chu et 

al., 2008) from pBMN-HA-YFP-FKBP(E31G-R71G-K105E)-IRES-HcRed-Tandem was 

amplified using the following primers: (5) FKBP forward: GGA GTG CAG GTG GAA 

ACC ATC, and (6) FKBP reverse: TCA TTC CAG TTC TAG AAG CTC. The LTD 

backbone was then amplified using the following primers: (7) Tat-Dendra forward: TTC 

GAT GTG GAG CTT CTA GAA CTG GAA TGA CTC GAG ACC TGG AAA AAC 

ATG, and (8) Tat-Dendra reverse: TCC TGG GGA GAT GGT TTC CAC CTG CAC 

TCC CCA CAC CTG GCT GGG CAG GGG. The two PCR products were then 

incubated together in an isothermal assembly cocktail as described(Gibson et al., 2009) to 

generate the LTDF lentiviral vector. pNL4-3 TDF (Shield-HIV) was generated by 

amplifying TDF from LTDF with the following primers: (9) 5' Tat-Dendra-FKBP: GGA 

CCG CGG ATG GAG CCA GTA GAT CCT AGA and (10) 3' Tat-Dendra-FKBP:  GCG 

TCT AGA TCA TTC CAG TTC GAG AAG CTC CAC ATC GAA GAC GAG AGT 

GGC ATG TGG. Primer 10 encoded a silent mutation where the third base pair of L105 

in FKBP #24 was mutated from A to C to remove an XbaI site. The PCR product was cut 

with SacII and XbaI. The backbone of a double digest with SacII and XbaI was isolated 

from the pNL 4-3 &Tat virus as described(Huang et al., 1994). The backbone and PCR 

product were then ligated to form pNL4-3 TDF. pNL4-3 TD (noShield-HIV in text) was 



! ,-!

generated in the same way as Shield-HIV but by amplifying TD from LTD with the 

following primers: (1) 5' Tat-Dendra: GGA CCG CGG ATG GAG CCA GTA GAT CCT 

AGA and (2) 3' Tat-Dendra: GCG TCT AGA TTA CCA CAC CTG GCT GGG CAG 

GGG GC.  Synthesizing d2GFP-IRES-Tat-FKBP, then swapping that into in the LTR-

d2GFP-IRES-Tat construct using BamHI and XhoI restriction sites developed the LTR-

d2GFP-IRES-Tat-FKBP plasmid.  The sequence of Tat from recombinant clone pNL4-3, 

GenBank: AAA44985.1, M19921, was used. To clone the LTR-mCherry-IRES-Tat-

FKBP construct d2GFP was swapped with mCherry using BamHI and EcoRI restriction 

sites.  To clone the Tet-Tat-Dendra and Tet-Tat-Dendra-FKBP plasmids, Tat-Dendra or 

Tet-Tat-Dendra was swapped with YFP-Pif from the pHR-TREp-YFP-Pif plasmid (a gift 

from Wendell Lim’s Laboratory at UCSF) using BamHI and NotI restriction sites. 
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Chapter 5: Transcriptional bursting from the HIV LTR is a 

significant source of noise in gene-expression 

!
Chapter 5 was published in Singh, A., Razooky, B., Cox, C.D., Simpson, M.L., and 

Weinberger, L.S. (2010b). Transcriptional Bursting from the HIV-1 Promoter Is a 

Significant Source of Stochastic Noise in HIV-1 Gene Expression. Biophys J 98, L32-

L34.  The article can be found on Pubmed: 

http://www.ncbi.nlm.nih.gov/pubmed/20409455 

 

1. Introduction 

Clonal (or isogenic) cell populations can exhibit considerable cell-to-cell variation in 

protein levels due to the inherent stochastic nature of biochemical processes involved in 

gene expression (Kaern et al., 2005; Raj and van Oudenaarden, 2008).  This variation, or 

expression noise, can have significant effects on biological function and can ‘flip’ genetic 

switches to drive probabilistic fate decisions in bacteria (Maamar et al., 2007), viruses 

(Arkin et al., 1998) and stem cells (Losick and Desplan, 2008).  Our recent work has 

shown that stochastic expression of human immunodeficiency virus type 1 (HIV-1) 

proteins immediately after infection can critically influence the HIV-1 fate decision 

between active replication and post-integration latency in single cells (Weinberger et al., 

2005; Weinberger et al., 2008a; Weinberger and Shenk, 2007).  However, the source of 

this noise has remained elusive.  To probe the potential sources of noise in HIV-1 gene 

expression, we systematically quantify stochastic variation in HIV-1 promoter activity 

across different HIV-1 integration sites in the human genome.   
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2. Results 

2a. Measuring the noise in isoclonal populations.  

 HIV-1 encodes a single promoter that drives expression of all its viral gene 

products.  To study viral gene-expression noise, we exploit HIV-1s known ability to 

integrate semi-randomly into sites across the human genome (Schroder et al., 2002).  

Differences in local chromatin microenvironment at each integration site generate vast 

differences in mean expression level of HIV-1 (Jordan et al., 2001) and this difference 

provides a natural method to study noise as a function of mean expression levels.  Using 

a minimal reporter virus encoding the HIV-1 5’ long terminal repeat (LTR) promoter 

driving a short-lived GFP (the vector is referred to as LTR-GFP), we isolated 30 different 

clonal populations each carrying a single integrated copy of LTR-GFP in each cell.  Our 

previous integration-sites analyses show that LTR-GFP clones integrate in positions 

similar to full-length HIV-1 (Weinberger et al., 2005).  Clonal populations are analyzed 

at the single-cell level by flow cytometry and to minimize cell-to-cell differences in 

reporter levels due to heterogeneity in cell size, cell shape, and cell-cycle state (i.e., 

extrinsic noise), we adopt a previously used approach (Newman et al., 2006) of gating the 

smallest possible forward- and side-scatter region that contains at least 30,000 cells.  As 

expected from previous findings (Jordan et al., 2001), the resulting gated data displays a 

40-fold difference in mean GFP levels between the dimmest clone and the brightest clone 

(Fig. 25A).  Importantly, integration-site also appears to shape the stochastic variability 

in gene-expression: two clones with the same mean GFP intensity can display vastly 
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different variability profiles (Fig. 25A, inset), suggesting that extrinsic noise factors 

cannot explain the difference.  
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Figure 24. Transcriptional bursting from the HIV-1 LTR.  

!
(A) Schematic of the LTR-GFP lentivirus and flow cytometry histograms of seven 
representative Jurkat LTR-GFP clones (shaded histogram is uninfected control). Large 
differences in mean LTR expression are evident across clones and large differences in 
expression variability are present within each clonal population. Inset: two clones with 
same mean but different coefficient of variation (CV). (B) Plot of mean GFP abundance 
versus GFP noise level (measured by CV2) for 30 different clonal populations. Solid 
lines are predictions of noise scaling from a best-case, maximally conservative 
constitutive promoter model (red line) or a two-state bursty promoter model (blue lines) 
where average transcriptional burst size, N, is kept fixed and burst frequency is allowed 
to vary (N = 2 corresponds to Eq. 8; N = 4 corresponds to Eq. 9; N = 10 corresponds to 
65,000/). Inset: Three representative clones (red, green, and blue) before induction with 
TNF-! (open circles) and after induction with TNF-! (solid circles). (C) Flow cytometry 
histograms of two representative clones (gray) along with predicted GFP histograms from 
a constitutive gene expression model (red line) and a two-state transcriptional burst 
model (blue). (D) Proposed schematic for the two-state transcriptional burst model: LTR 
promoter fluctuates between an inactive and active elongation state. Figure originally 
published as Figure 1 in Singh et al, Biophysical Journal, 2010. Abhyudai Singh 
performed the experiments and fit the data.  Brandon Razooky performed the simulations 
and the schematic.   
 

2b. Fitting noise to a model of transcriptional bursting.  

To systematically quantify variability in GFP levels, fluorescence intensities were 

converted into GFP molecular abundance using EGFP Calibration Beads (BD 

Biosciences, Clontech, San Jose, CA).  First subtracting the mean background Jurkat 

auto-fluorescence, and then multiplying the value by the measured MESF scaling-factor 

of 3000 molecules per unit fluorescence intensity calculated GFP abundance of a given 

clone.  As in many studies (Bar-Even et al., 2006a; Newman et al., 2006), gene-

expression noise is quantified using the coefficient of variation (CV) squared, defined as 

CV2=!2/"GFP#2, where !2 is the variance in GFP abundance and "GFP# is the average 

number of GFP molecules/cell.  For most clones, expression noise appears to decrease 

with increasing abundance (Fig. 25B) and fit the equation:  
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CV 2 =
15,000
GFP

.
                                  (8) 

Several clones exhibit CV values much larger than predicted by Eq. 8, but appear to 

match a second trend-line of  

CV 2 =
30,000
GFP

.                                   (9) 

The remaining clones can be fit by version of Eqs. 8 and 9 using different values in the 

numerator.  Importantly, this inverse relationship between noise and mean protein levels 

cannot be explained by fluctuations in global or pathway-specific factors, as in that case 

CV would have shown no dependence on mean protein levels (Bar-Even et al., 2006a).  

   To explain this inverse relationship, we first explore constitutive models of gene 

expression that incorporate stochastic birth and death of individual mRNAs.  These 

constitutive models assume that mRNAs are created one at a time in exponentially 

distributed time intervals and predict that  

dpdm
LC

GFP
CCV

+
== ,2                    (10) 

where L, dm, and dp are mRNA translation rate, mRNA half-life and protein half-life, 

respectively.  Qualitatively, the constitutive model gives a scaling of CV2 vs. <GFP> 

similar to Fig. 25B.  However, studies in eukaryotes report the proportionality factor C to 

be ~1,300 molecules (Bar-Even et al., 2006a), which is an order of magnitude smaller 

than the experimental proportionality factors of 15,000 and 30,000 in Eq. 8 and 9.  To 

obtain an upper bound of what C=L/(dm+dp) could be for the GFP variant used in our 

study, we used a maximally conservative approach where C is set to the minimum value 

of CV2 x <GFP> across all clonal populations.  This maximally conservative estimate 

results in a proportionality factor C is approximately = 5000 molecules, which is still 
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many fold smaller than the proportionality factors experimentally observed for the HIV-1 

LTR in Fig. 25B.  Thus, even with the most conservative parameter estimates, a model 

where mRNAs are produced constitutively from the viral promoter cannot account for the 

high HIV-1 gene expression noise levels (Fig. 25B-C).  This result contrasts with 

findings from yeast, where variation in the levels of many proteins results from thermal 

fluctuations in their corresponding mRNA counts (Bar-Even et al., 2006a; Newman et al., 

2006; Zenklusen et al., 2008). 

 

To explain the scaling of noise in Eqs. 8–9, we next consider the dynamics of the 

local chromatin environment at the HIV-1 LTR promoter. Transcriptional initiation from 

the LTR is efficient but the elongating RNA polymerase II (RNAPII) molecule is known 

to stall 50–70 nucleotides after initiating (Jordan et al., 2003). Stalling occurs just 

upstream of a nucleosome (termed nuc-1) until nuc-1 is remodeled by host factors such as 

SWI/SNF (Mizutani et al., 2009). Such blocks in transcriptional elongation have been 

reported across genomic loci (Guenther et al., 2007) and can create rate-limiting steps in 

mRNA production that lead to transcriptional bursting (Raser and O'Shea, 2004). Thus, 

we consider a model where the LTR promoter fluctuates between an inactive state (i.e., 

RNAPII stalled at nuc-1) and active state (nuc-1 remodeled and RNAPII unstalled) with 

rates kon, koff and transcriptional elongation only occurs from the active state at a rate T. 

In such two-state models (Kepler and Elston, 2001b), mRNAs are created in bursts 

during promoter transitions from inactive to active state, with kon and T/koff denoting 

the frequency and the average size of the transcriptional bursts, respectively. Solving the 

Chemical Master Equation corresponding to this two-state model yields: 
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if promoter transitions to the active state are infrequent. Equation 11 illustrates that 

changing the burst frequency kon for a fixed transcriptional burst size will result in a 

similar inverse scaling between noise and protein level as experimentally observed for the 

HIV-1 LTR in Fig. 25B. Moreover, by choosing an appropriate burst size one can match 

the high proportionality factors observed in Eq. 8 and Eq. 9. Using the maximally 

conservative estimate (C of ~5000), Eq. 11 predicts that the clones satisfying Eq. 8 have 

average transcriptional bursts of only two mRNA’s, while clones satisfying Eq. 9, have 

bursts of four mRNA’s. The clones that exhibit very high noise levels in Fig. 25B can 

have transcriptional burst sizes up to 10 mRNA transcripts. Thus, the two-state promoter 

model can explain the observed scaling of noise with protein levels if burst frequency and 

burst size vary across different integration sites. 

 

 The two-state model also provides insight into the mechanisms of HIV-1 LTR 

regulation by signaling factors such as Tumor Necrosis Factor-alpha (TNF-!). 

Experimentally, TNF-! induction raises mean GFP levels without changing the product 

CV2 x <GFP> so that each clone appears to slide along the CV versus mean trend-line 

(Fig. 25B, inset). As Eq. 11 shows, an increase in the burst frequency (kon) will raise 

expression level but reduce noise such that CV2 x <GFP> remains unchanged. Thus, Eq. 

11 suggests that TNF-! enhances HIV-1 gene expression by primarily influencing the 

frequency of transcriptional bursts and not the size of the bursts. The two-state model 

may also explain recent reports on increases in LTR noise when SWI/SNF chromatin 
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remodeling complexes are removed (Mizutani et al., 2009) since removal of SWI/SNF 

reduces nuc-1 remodeling and would lower kon, thereby causing clones to slide up along 

the CV versus mean trend-line to higher noise levels. 

 

3. Discussion 

In summary, a two-state promoter model where the LTR infrequently transitions to an 

elongation-active state can explain the high stochastic variability in HIV-1 gene 

expression. These transitions cause mRNA’s to be made in transcriptional bursts, with 

average burst sizes ranging from 2 to 10 mRNAs across integration sites. Our results 

indicate that the local chromatin environment of the HIV-1 promoter controls the extent 

of gene-expression noise by modulating the dynamics of transcriptional bursts, and 

integration sites with a low frequency of transcriptional bursts and/or high burst size will 

exhibit the broadest distributions in protein levels. Thus, viral integration site may play a 

critical role in biasing the viral fate-decision between active replication and proviral 

latency by influencing the stochasticity in the production of early viral proteins. 

 

!  
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Chapter 6: Transcriptional bursting is the dominant source of 

noise in HIV gene-expression 

!
!
This chapter was published in Singh, A., Razooky, B.S., Dar, R.D., and Weinberger, L.S. 

(2012). Dynamics of protein noise can distinguish between alternate sources of gene-

expression variability. Mol Syst Biol 8, 607. The article can be found on Pubmed; 

http://www.ncbi.nlm.nih.gov/pubmed/22929617 

 

1. Introduction 

Clonal cell populations exhibit considerable cell-to-cell variation in the levels of any 

specific protein (Blake et al., 2003; Elowitz et al., 2002; Kaern et al., 2005; Raj and van 

Oudenaarden, 2008; Raser and O'Shea, 2005; Sigal et al., 2006). This variation or 

expression noise is essential for diverse cellular processes, such as the regulation of 

probabilistic cell-fate decisions and the generation of phenotypic heterogeneity across 

isogenic cell lines (Chang et al., 2008; Losick and Desplan, 2008; Maamar et al., 2007; 

Munsky et al., 2012; Razooky and Weinberger, 2011; Singh and Weinberger, 2009; Suel 

et al., 2006; Sureka et al., 2008). Tight control of expression noise is also vital for 

optimal functioning of housekeeping proteins, and diverse diseased states have been 

attributed to an increase in expression noise in particular genes (Bahar et al., 2006; Cook 

et al., 1998; Fraser et al., 2004; Kemkemer et al., 2002). Collectively, these results 

suggest that gene-expression noise profoundly affects biological function and underscore 

the importance of developing methods that pinpoint the source of noise in a given gene 

circuit. 
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Gene-expression noise is often decomposed into intrinsic and extrinsic noise (Elowitz 

et al., 2002). While extrinsic noise arises from intercellular differences in the amounts of 

cellular components (e.g., RNA polymerases and ribosomes), intrinsic noise results from 

the random timing and discrete nature of biochemical reactions associated with promoter 

remodeling, transcription, translation, and degradation of mRNA and protein species. 

Although several techniques are available to separate extrinsic and intrinsic noise (for 

example, see ((Elowitz et al., 2002; Newman et al., 2006)), methods to discriminate 

between the different sources of intrinsic noise are far less developed. Experimental 

evidence suggests that intrinsic noise originates from two sources: (i) Poisson mRNA 

fluctuations arising from probabilistic synthesis and decay of individual mRNA 

transcripts (mRNA birth/death fluctuations) and (ii) promoter switching between 

different transcriptional states (promoter fluctuations). mRNA birth/death fluctuations 

constitute a major source of stochasticity in gene expression since many mRNA species 

are present at very low molecular counts within cells (Bar-Even et al., 2006a; Newman et 

al., 2006; Taniguchi et al., 2010). These mRNA fluctuations are transmitted downstream 

through translational bursting to generate intercellular variability in protein levels. 

Alternatively, protein variability results from promoter switching between different 

transcriptional states. An important consequence of promoter switching is transcriptional 

bursting, where multiple mRNAs are created per promoter-firing event (Golding et al., 

2005; Muramoto et al., 2012; Raj et al., 2006; Raser and O'Shea, 2004; Suter et al., 

2011a; Yunger et al., 2010). In this study, we sought to develop a method to determine 

the relative contributions of mRNA birth/death fluctuations and promoter fluctuations to 
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intrinsic gene-expression noise, assuming that protein levels are the only observable state 

of the system.  

 

At a qualitative level, both mRNA birth/death and promoter fluctuations generate 

similar predictions for steady-state protein noise levels (Bar-Even et al., 2006a; Ingram et 

al., 2008). Thus, steady-state distributions of protein abundances across cells are 

insufficient to identify the source of intrinsic expression noise. One increasingly popular 

method to quantify the extent of stochastic promoter switching relies on counting 

individual mRNA transcripts in single-cells by single-molecule fluorescence in situ 

hybridization (smFISH) (Raj et al., 2006; Tan and van Oudenaarden, 2010; Zenklusen et 

al., 2008). mRNA smFISH is a powerful and elegant method, but requires that individual 

mRNA molecules be long enough to accommodate the binding of at least 20 individual 

probes. This is needed to insure the spot is sufficiently bright to be distinguished in 

images and counted, and that the specific mRNA species being analyzed are in a 

concentration low enough that individual diffraction-limited spots do not spatially 

overlap. 

 

Here, we report a method for discriminating mRNA birth/death and promoter 

fluctuations that can be used with highly expressed mRNAs and that is easily 

implemented across different cell types. More specifically, we show that the dynamical 

changes in protein noise levels, in response to perturbations, are sufficient to determine 

the source of intrinsic expression noise. These perturbations can be generated relatively 

easily with readily available small-molecule pharmaceutical agents that rapidly and 
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efficiently block transcription and translation. We illustrate the experimental utility of 

this method by perturbing gene-expression from the human immunodeficiency virus type 

1 (HIV-1) long terminal repeat (LTR) promoter. Transient changes in reporter protein 

noise levels, in response to small-molecule drugs, show that LTR gene-expression noise 

results primarily (>90%) from promoter fluctuations.  

 

2. Results 

2a. Stochastic gene-expression model  

To analyze the different sources of intrinsic noise in protein abundance, we considered a 

stochastic model of gene-expression that incorporates both low-copy mRNA fluctuations 

and transcriptional bursting (Fig. 26). In this model, mRNA transcription and degradation 

are stochastic events that occur at exponentially distributed time intervals. Each 

transcriptional event creates a burst of B mRNA molecules, where B is a discrete random 

variable with probability {B = i} = $i, i $ {1,2,3…} and mean %B&, where the symbol % & 

represents the expected value. Note that B=1 with a probability of one corresponds to 

Poisson fluctuations in mRNA counts while a large average burst size %B& implies 

transcriptional bursting (i.e., promoter switching between active and inactive promoter 

states). If m(t) denotes the mRNA population count at time t, then, the probability Pj(t) of 

having j mRNA molecules at time t evolves according to the following chemical master 

equation: 

dP0 (t)
dt

= !mP1(t)! kmP0 (t)

dPj (t)
dt

=
i=1

j

" kmPj!i (t)"i +!m ( j +1)Pj+1(t)! (!m j + km )Pj (t),     j # {1, 2,!}  
 (12) 
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where km is the frequency of transcription events and %m represents the mRNA 

degradation rate (Mcquarri, 1967). Fluctuations in mRNA counts are transmitted 

downstream to the protein level, which is assumed to be the only observable state of the 

system. As protein population counts are typically large, we can ignore Poisson noise 

arising from stochastic birth and death of individual protein molecules. Accordingly, 

protein dynamics are modeled deterministically as 

                           )()()( tptmk
dt
tdp

pp !"=                        (13)               

where kp is the mRNA translation rate, %p is the protein degradation rate and p(t) denotes 

the protein count at time t. Together, (12) and (13) constitute a stochastic hybrid gene-

expression model in which mRNA time-evolution is discrete and stochastic, while protein 

levels evolve continuously and deterministically. 

 

As in many studies, protein expression noise is quantified using the coefficient of 

variation squared, defined as CV2 = %2/%p&2, where %2 is the variance in protein level and 

%p& denotes the average protein abundance (Paulsson, 2004, 2005; Pedraza and Paulsson, 

2008). For the gene-expression model described above, the steady-state protein noise 

level is given by 

CV 2 =
!mkp

("m +" p ) p
=

kp
("m +" p ) p

+
(!m !1)kp
("m +" p ) p

  (14) 

where  

mp

mpkkBp
!!

=                              (15) 

denotes the steady-state mean protein abundance and  
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!m =
B2 + B
2 B

                           (16) 

represents the steady-state Fano factor (also known as “noise strength”) of the mRNA 

population count.   

 To understand our steady-state moment analysis of the stochastic gene-expression 

model, consider a gene expression model where each expression event creates a burst of 

B mRNA molecules, where B is an arbitrary random variable with Probability{B = i} = !i 

for i / {1, 2, 3, . . .}. The average number of mRNAs produced per expression event is 

then given by ! ! !! !!!!!! !!! . We denote by !! ! !! !!!!!! !!!!  the second order 

statistical moment of the burst size B. A special case of the model would be constitutive 

gene expression where mRNAs are made one at time and corresponds to B = 1 with 

probability one. Let m(t) denote the number of mRNA molecules at time t. We treat 

mRNA expression and degradation events as stochastic events with probabilities of 

occurring in an infinitesimal time interval (t, t + dt] given by 

 

Probability{m(t+dt)=m+i|m(t)=m}=km!idt, 0i)1 (17a) 

Probability{m(t + dt) = m * 1 | m(t) = m} = +mmdt, (17b) 

 

Respectively, where km is the rate of expression events and +m is the mRNA degradation 

rate. Based on the above formulation, the probability  

 

Pj(t) := Probability{m(t) = j}, j / {0,1,2,3,...} (18) 
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evolves according to the Chemical Master Equation given by Eq. 12. As the protein 

population count is typically large, the dynamics of protein levels is modeled 

deterministically through an ordinary differential equation (Eq. 13). 

 

 We next derive differential equations that describe the time evolution of the 

statistical moments of m(t) and p(t). For the above gene expression model we have 

 

!!! !!! !
!" ! !!! ! ! !!! ! !!!" ! ! !!! ! ! !!! !! ! !!! !

!" !!!
!" !!! ! !!!       (19) 

 

where &(m, p) is any continuously differentiable function and < . > denotes the expected 

value of the corresponding quantity. Taking &(m, p) = mipj in (19) for appropriate 

integers i and j, the time evolution of the first and second order statistical moments of the 

population count are given by 

 

! !
!" ! !! ! ! !! !    (20a) 

! !
!" ! !! ! ! !! !      (20b) 

! !!

!" ! !! !! ! !! ! ! !!! ! ! ! !!! !!    (20c) 

! !"
!" ! !! !! ! !! ! ! ! !! !" ! !! !"    (20d) 

! !!
!" ! !!! !" ! !!! !!    (20e) 
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Setting the left-hand-side of equation (20) to zero, and solving for the steady-state 

moments we obtain 

! ! !! !
!!

! ! ! !! !
!!

!  (21a) 

!! ! ! ! ! ! !! ! !
! !  (21b) 

!" ! ! ! ! ! !! ! !
! !

!!
!!!!!

 (21c) 

!! ! ! ! ! ! !
!

!! ! !
! !

!!
!!!!!

 (21d) 

 

where a bar denotes the steady-state value of the corresponding moment. 

 

 We quantify the steady-state protein noise level through the coefficient 

of variation squared defined as 

 

!"! !! ! !! ! ! !
! !   (22) 

 

From (22) we find that the steady-state protein noise level is given by 

!"! ! ! !!!!
! !!!!!

  (23) 

 

where 

 

!! !! ! !! ! ! !
! ! !! ! !

! !   (24) 
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is the steady-state Fano factor of the mRNA population count. Note that when gene 

expression noise arises from mRNA birth/death fluctuations (i.e., gene expression is 

constitutive and B = 1 with probability one), then 'm = 1 and the protein noise level 

reduces to 

 

!!
! !!!!!

  (25) 

 

In light of Eq. 24, the protein noise levels can be decomposed into two components: 

 

!"! ! ! !!
! !!!!!

! !!!!!!!!
! !!!!!

  (26) 

 

where the first component represents noise from mRNA birth/death fluctuations. The 

second component, which is non-zero only when 'm > 1, represents expression noise 

arising from stochastic promoter fluctuations between different transcriptional states 

(transcriptional bursting). 
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!
 

Figure 25. Stochastic hybrid model of gene-expression with two different sources of 
noise.  

Schematic illustrating the two sources of noise: (i) Poisson mRNA fluctuations arising 
from stochastic production and degradation of individual mRNA molecules, and (ii) 
promoter fluctuations arising from slow promoter transitions (red arrows) between “Gene 
OFF” and “Gene ON” states. As protein population counts are often very large, 
stochasticity in protein dynamics is neglected. Originally published as Figure 1 in Singh 
et al., Nature MSB, 2012.  Abhyudai Singh created and Brandon Razooky edited this 
figure.  
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Equation 14 represents the total intrinsic noise in gene-expression and can be 

decomposed into components representing expression variability originating from mRNA 

birth/death fluctuations and stochastic promoter switching. When &m = 1, then mRNA 

population counts have Poisson statistics, and protein noise levels primarily arise from 

mRNA birth/death fluctuations. In contrast, when &m = 10, then 90% of the protein noise 

is generated through promoter fluctuations and transcriptional bursting of mRNAs from 

the promoter. Finally, we point out that &m is directly related to the mean transcriptional 

burst size %B& for many promoters. Consider a two-state promoter model where the 

promoter stochastically transitions between an inactive (Goff) and active state (Gon). The 

promoter is represented by the following set of chemical reactions: 

!!""
!!" !!" ; !!"

!!"" !!"" 

!!"
!! !!" !!"#$ ; !"#$ !! ! 

 

where km is the rate of transcription from the active state and kon, koff are rate of transitions 

between the states. Let g(t) denote the state of the promoter, with g(t) = 1 and g(t) = 0 

denoting that the promoter is active or inactive, respectively. We recall from Eqs. 17-26 

that m(t) represents the mRNA population count at time t. Then, the time evolution of 

statistical moments are given by the following set of differential equations 

! !
!" ! !!!" ! !!"" ! !!"! ! ; ! !

!" ! !! ! ! !! !   (27a) 

! !!
!" ! !!!" ! !!"" ! !!"! ! ! ! !!"" ! !!"! !!   (27b) 

! !!

!" ! !!! ! ! !! ! ! !!! !" ! !!! !!    (27c) 
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! !"
!" ! !!! !! ! !!" ! ! !!!"" ! !!" ! !!! !"   (27d) 

Analysis of (27) shows that the steady-state mRNA Fano factor is given by 

!! !! ! !! ! ! !
! ! !! !!""!!

!!!""!!!"!!!!""!!!"!!!!
  (28) 

In the limit koff , - (i.e., the active state is unstable and the promoter spends most of the 

time in the inactive state) 

!! ! !! !!
!!""

  (29) 

where km/koff, is the mean transcriptional burst size, i.e., the average number of mRNA 

transcripts produced in one cycle of promoter activation and inactivation. 

 

In particular, analysis shows that for a two-state promoter model, where the ON state 

is unstable and the promoter spends most of the time in the OFF state, &m =1+"B#. Thus, 

&m is representative of the mean burst size for many promoters including HIV LTR, 

which have been shown to reside mostly in the OFF state (Singh et al, 2010; Raj et al, 

2006; Suter et al, 2011). We next explore methods to determine &m for a specific 

promoter or gene.  

 

Equations 14 & 15 show that increasing the frequency of transcription events, km, 

increases the steady-state mean protein abundance, but decreases the steady-state noise 

level such that the product pCV !2  remains fixed. Thus, intrinsic noise scales 

inversely with mean protein abundance, consistent with experimental observations in 

both prokaryotes and eukaryotes (Bar-Even et al., 2006a; Kepler and Elston, 2001b; 

Newman et al., 2006; Ozbudak et al., 2002; Simpson et al., 2004a; Thattai and van 
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Oudenaarden, 2001). One method to determine &m would be through the scaling of 2CV

versus p , as the scaling factor is proportional to it (Eq. 14). However, the scaling factor 

also depends on the mRNA translation rate kp and protein and mRNA half-lives, and thus, 

this method requires a priori knowledge of these parameters. Moreover, for this 2CV  

versus p  method, one needs to quantify protein abundances in absolute molecule 

counts rather than fluorescence intensities, as is typically the case. Thus, steady-state 

measurements of protein noise magnitude are insufficient to determine &m and, hence, 

insufficient to discriminate between the different components of intrinsic noise. Below, 

we predict analytically and demonstrate experimentally that &m can be inferred from 

transient changes of protein population mean and noise magnitude in response to 

transcriptional and translational perturbations to gene-expression. 

 

2b. Analytical results: Dynamics of protein noise magnitude in response to 

perturbations 

Small-molecule drugs provide a convenient method to perturb genetic circuits and realize 

transient changes in protein levels across different cell types. In this section, we 

theoretically analyze the effects of small-molecule drugs that specifically block 

transcription and translation. These drugs are routinely used to determine the stability of 

mRNAs and proteins (Hao and Baltimore, 2009; Yen et al., 2008; Zhou, 2004). Such 

experiments typically involve bulk assays that track transient changes in mean molecular 

abundances across a population of cells. Blocking mRNA production can be captured by 

setting the rate of expression events km = 0 at t = 0. Our goal now is to predict how 
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statistical moments change as a function of the time t since the transcriptional block 

occurred. With km = 0, the statistical moments evolve according to the Equations (20).  

Assuming that just prior to the transcriptional block the statistical moments had reached 

steady-state, we solve equation (20a) using the moments calculated in (21) as initial 

conditions. From (20a) it is straightforward to show that the mean mRNA and protein 

levels exponentially decay to zero as follows 

!!!! ! ! ! !!!!!!  (30a) 

! ! ! ! !!!!!!!!!!!!!!!

!!!!!
 (30b) 

Solving the remaining equations in (20) using Mathematica, we find that the protein 

noise level (as measured by the coefficient of variation squared) (20c) monotonically 

increases with time as 

!"!!!!
!"! ! ! !!! !!! !!! ! !!!!!"! ! !! ! !!!!! ! !!!! !

!!!! !   (31) 

where CV2 given by (23) is the protein noise level at t = 0 and the function f has the 

following asymptote 

!"#
!!!

!! !!! !!! !!! ! !
!!!!! !!!!! !!!!!!

!!!! !!!!!!
! !! ! !!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! ! !!!
  (32) 

 

For given protein and mRNA degradation rates, Figure 25 plots the function f((m, (p, 'm, 

t) as a function of time t for different 'm. 

 

Therefore, in response to a complete block of translation or transcription, the 

mean protein levels %p(t)& decay as,   
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respectively, where t represents the time since drug addition. Thus, both mRNA and 

protein half-life can be quantified by monitoring %p(t)& in response to blocks in 

transcription and translation. Next, we investigate how cell-to-cell variation in protein 

levels (coefficient of variation squared) changes in response to these small-molecule 

drugs and whether this change provides information about unknown system parameters, 

such as &m. 

 

We first consider a translational block to gene expression. Recall that, in this gene-

expression model, protein production and degradation are modeled as differential 

equations. A translational block would result in a deterministic exponential decay in 

protein levels in each individual cell, which would shift the distribution of protein level 

across the cell population to lower levels without changing its coefficient of variation. 

Thus, in case of a translational block, this model predicts that no additional information 

can be gained from the higher order statistical moments of p(t). 

 

We next consider a transcriptional block to gene expression by setting the 

frequency of transcriptional events km = 0 at time t = 0. Assuming the system was at 

steady state before the block, the protein-noise level (measured by the coefficient of 

variation squared, CV2(t)) changes as  
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                   CV
2 (t)

CV 2
= f (!m,! p,"m, t)                      (34) 

where 2CV  is the initial protein noise level given by (14), and function f (!m,! p,"m, t)  is a 

monotonically increasing function of t.  With transcription blocked, mRNA levels 

exponentially decay, leading to an increase in cell-to-cell variability, as would be 

expected from the inverse scaling of noise and mean levels. This increase in mRNA noise 

is transmitted to encoded proteins, causing CV2(t) to monotonically increase over time 

(Fig. 26). Interestingly, this analysis indicates that the rate of increase of CV2(t) is 

dependent on the source of intrinsic noise. This point is illustrated in Fig. 26, which 

plots the function f (!m,! p,"m, t)  for different values of &m, and hence different relative 

contributions of mRNA birth/death and promoter fluctuations to expression noise. More 

specifically, as we increase &m, the initial rise in the protein-noise level becomes more 

and more gradual. Intuitively, this occurs because, when expression noise results 

primarily from promoter fluctuations, then mRNA counts are sufficiently high, and 

mRNA degradation is essentially a deterministic process. Thus, when transcription is 

blocked, mRNAs degrade approximately deterministically across single cells, which 

reduce protein levels and generate a slow increase in CV2(t). On the other hand, when 

expression noise originates from mRNA birth/death fluctuations, then a transcriptional 

block results in stochastic degradation of mRNAs across the cells, which rapidly 

increases the protein noise levels (Fig. 26). In summary, the increase in protein cell-to-

cell variability after transcription is blocked is dependent on &m, and the dynamics of 

CV2(t) can discriminate between alternative sources of intrinsic stochasticity in gene 

expression.  
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!
Figure 26. Transient changes in gene-expression noise can discriminate between 
mRNA birth/death and promoter fluctuations.  

Predictions for changes in gene-expression noise after transcription is blocked when 
protein half-life ' 2 # mRNA half-life (%m ' 2%p, left) and protein half-life > 2 # mRNA 
half-life (%m > 2%p, right), for different contributions of promoter fluctuations to gene-
expression noise. If variability in protein levels mainly results from stochastic birth and 
death of individual mRNA molecules then CV2(t) is predicted to change much more 
rapidly than when protein variability results from promoter fluctuations. The y-axis is 
normalized by the CV2(t) at t =0. These simulations were preformed assuming a 2.5-hour 
protein half-life with a 3-hour (left) and 1-hour (right) mRNA half-life. Originally 
published as Figure 2 in Singh et al., Nature MSB, 2012.  Abhyudai Singh and Brandon 
Razooky created this figure. 
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To test how predictions in Fig. 26 change if protein synthesis and decay is modeled 

stochastically. Let the probability that a protein molecule is created or degraded in the 

next infinitesimal time interval (t, t + dt] be given by 

 

Probability{p(t + dt) = p + 1| p(t) = p, m(t) = m} = kpm (35a) 

Probability{p(t + dt) = p * 1 | p(t) = p, m(t) = m} = +ppdt, (35b) 

 

where kp is the mRNA translation rate and (p is the protein degradation rate. The above 

equation together with Eq. (17) define a stochastic gene-expression model where both 

mRNA and protein levels evolve through stochastic jumps. For this model the moment 

dynamics is given by 

! !
!" ! !! ! ! !! ! ,  ! !

!" ! !! ! ! !! !     (36a) 

! !!

!" ! !! !! ! !! ! ! !!! ! ! ! !!! !!    (36b) 

! !"
!" ! !! !! ! !! ! ! ! !! !" ! !! !"    (36c) 

! !!
!" ! !! ! ! !! ! ! !!! !" ! !!! !!    (36d) 

which yields the following steady-state statistical moments of the population count 

! ! !! !
!!

! ! ! !! !
!!

!  (37a) 

!! ! ! ! ! ! !! ! !
! !  (37b) 

!" ! ! ! ! ! !! ! !
! !

!!
!!!!!

 (37c) 

!! ! ! ! ! ! ! ! !
!

!! ! !
! !

!!
!!!!!

 (37d) 
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where a bar denotes the steady-state value of the corresponding moment. 

 

 From (37) the steady-state protein noise level is given by 

  

!"! ! ! !! !
!!!!

! !!!!!
  (38) 

 

note that this noise level is similar to (23), except for the 1/<p> term which represents 

Poissonian noise arising from probabilistic birth and death of individual protein 

molecules. Transient changes in protein noise levels (CV2(t)) are obtained by setting km = 

0 at t = 0 and solving (36) using (37) as initial conditions. Fig. 27 plots protein noise 

levels after a transcriptional block for different steady-state mean protein levels per cell. 

As can be seen from Fig. 27, as long as protein levels are larger than 50 copies per cell, 

CV2(t) is identical to noise levels obtained assuming deterministic protein dynamics (<p> 

= - line in Fig. 27).  Typically, as long as 

!"! ! !
!    (39) 

modeling protein dynamics using mass-action kinetics is a good approximation. The 

clones considered in this paper have noise levels in the range of CV2 % 0.5 * 1 and have 

on average over 10,000 copies of d2GFP protein molecules per cell (Singh et al. 

Biophysical Journal 2010). Thus we satisfy (39) by many orders of magnitude. 
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Figure 27. Predicted changes in protein expression noise after transcription is 
blocked for different mean protein copy number per cell. 

!   = - corresponds to deterministic protein birth-death dynamics. B is assumed to be 
geometrically distributed with a mean burst size of 10 transcripts and CV2 = 0.5. mRNA 
and protein half-lives are taken as 3 and 2.5 hours, respectively. Noise levels are 
baselined by their corresponding values at time t = 0. Originally published in 
supplemental information in Singh et al., Nature MSB, 2012.  Abhyudai Singh created 
this figure. 
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Therefore, the above predictions in Fig. 26 do not alter significantly if protein synthesis 

and decay is stochastically modeled.  

 

Eq. 34 shows that the rise in protein noise levels after a transcription block is 

dependent on &m, %m and %p. Assuming protein and mRNA degradation rates are known or 

have been determined from the kinetics of protein decay (Eq. 33), &m can be directly 

inferred from CV2(t). Since this procedure to quantify &m depends on examining relative 

changes in CV2(t), it will work irrespective of whether protein levels are quantified in 

terms of fluorescence intensity or molecular counts. However, if data on absolute protein 

molecular count are available, then the frequency of transcriptional events km and the 

mRNA translation rate kp can also be determined from the steady-state protein mean and 

noise level (Eqs. 14 & 15). Hence, by combining transient data on the statistical moments 

of p(t) (Eqs. 33 & 34) together with their steady-state values (Eqs. 14 & 15), one can 

infer all the parameters of the gene-expression model. 

 

One limitation of this method is that it may not be applicable in cases where the 

mRNA half-life is much shorter than the protein half-life. This limitation arises because 

when mRNA half-life is short, mRNA transcripts quickly decay to zero once 

transcription in blocked. With no available mRNA, protein decay will be dominated by 

protein degradation alone and will not contain any information about the underlying 

mRNA dynamics. For example, when %m is much larger than %p, then decay in mean 

protein levels is always given by p(t)=exp(-%pt), irrespective of whether transcription or 
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translation is blocked (Eq. 33), hence providing no information on the mRNA half-life. 

Thus, for this method to work, reporter systems need to be used where both mRNA and 

protein degradation reactions are first-order processes that occur with known comparable 

rates. Moreover, small-molecule drugs used for perturbing transcription/translation 

should not alter these decay rates. 

 

Importantly, the change in protein expression variability after a transcription block 

becomes insensitive to &m, when &m is large. For example, model predictions for &m equal 

to 1 and 10 are well separated in Fig. 26, but predictions for &m equal to 10 and 80 are 

close to each other. Thus, it may not be possible to get precise estimates of &m by this 

method, especially when &m is large (i.e., high levels of transcriptional bursting form the 

promoter). 

 

2c. Experimental Results: HIV-1 LTR gene-expression noise results primarily from 

transcriptional bursting     

In this section, we illustrate the experimental utility of this method by quantifying the 

relative contributions of mRNA birth/death and promoter fluctuations to HIV-1 

expression noise. Stochastic expression of viral proteins from the HIV-1 long terminal 

repeat (LTR) promoter critically influences the viral fate-decision between active 

replication and post-integration latency (a dormant state of the virus analogous to phage 

lysogeny) in single cells (Weinberger et al., 2005; Weinberger et al., 2008a; Weinberger 

and Shenk, 2007). Thus, this is an important system to identify the source of intrinsic 

noise in gene-expression. 
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      To discriminate between the different sources of intrinsic noise using the dynamics of 

protein noise magnitude, it is essential to use a reporter system in which the mRNA half-

life is not very short, compared to the protein half-life. Towards that end, we used flow 

cytometry measurements of a destabilized version of GFP (d2GFP) that exhibits a 2.5-

hour half-life. Previous measurements quantified a 3-hour half-life for the d2GFP mRNA 

(Raj et al., 2006), so %m ( %p for d2GFP, making it an ideal reporter system for this study. 

To quantify HIV-1 LTR expression noise, we use our previously described library of 

isoclonal populations (Singh et al., 2010a), where each isoclonal population carries a 

single copy of a minimal vector encoding HIV-1 LTR driving d2GFP, integrated at 

unique location in the human genome. To focus on intrinsic noise and remove extrinsic 

contributions to noise measurements, gating of flow cytometry data was performed as 

described (Newman et al., 2006; Singh et al., 2010a). To filter extrinsic noise, a two-color 

fluorescent reporter system (Elowitz et al., 2002) was implemented where each cell 

contains a single integrated copy of the LTR driving d2GFP and a second copy of the 

LTR driving mCherry at a different integration site. These populations were gated around 

the forward (FSC) and side (SSC) scatter medians show little correlation between the 

GFP and Cherry signal (Fig. 28). This result shows that appropriate gating of cells 

removed most of the extrinsic noise.  After filtering of extrinsic noise, isoclonal 

populations exhibit an inverse scaling of steady-state noise level ( 2CV ) with mean 

protein abundance (Singh et al., 2010a), as predicted by the model (Eq. 14). This inverse 

scaling of 2CV versus p  is consistent with both mRNA birth/death and promoter 
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fluctuations (Eq. 14), and as mentioned above steady-state protein noise levels are 

insufficient to discriminate between the different sources of intrinsic noise.  
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Figure 28. Scatter plot of single-cell intensities taken from flow-cytometry data for 
an isoclonal cell population shows little correlation between the GFP and Cherry 
signal.  

Populations were obtained by drawing a small gate around the forward (FSC) and side 
(SSC) scatter medians. Originally published in supplemental information in Singh et al., 
Nature MSB, 2012.  Brandon Razooky created this figure.   

 

  

 

To discriminate between mRNA birth/death and promoter fluctuations, we analyzed 

dynamic changes in HIV-1 LTR expression noise after perturbation with two 

transcriptional inhibitors, actinomycin D, a small-molecule drug that rapidly and 
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efficiently blocks transcription by preventing RNA polymerase II (RNAp II) elongation 

(Sobell, 1985), and Flavorpiridol, a small-molecule drug that blocks transcription by 

inhibiting the interaction of P-TEFb with RNAp II (Chao and Price, 2001). Introducing 

either transcriptional inhibitor to any of the isoclonal populations resulted in a decrease in 

d2GFP fluorescence intensity levels that was consistent with the reported 2.5-hour 

d2GFP protein and 3-hour d2GFP mRNA half-lives (Fig. 29). The fact that the decay in 

d2GFP fluorescence after actinomycin D treatment is consistent with the reported 3-hour 

mRNA half-life (Raj et al., 2006) suggests that the dynamics of the reporter decay are not 

affected by the presence of the drug. The data also show that d2GFP fluorescence decays, 

in the presence of cycloheximide, at ~3.5hrs both in the presence and absence of 

actinomycin D (Fig. 30). 
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Figure 29. Transient changes in mean GFP levels after a transcriptional block. GFP 
levels are normalized by their corresponding value at t = 0.  

Clone F32 was treated with Actinomycin D at 10 µg/mL and mean expression levels 
were measure for 22 hours after drug addition (square data points). Black line represents 
the best fit of (40) to data, and it asymptotically approaches a value of % 10%. The 
protein and mRNA half-lives are assumed to be 2.5 and 3 hours, respectively. Originally 
published in supplemental information in Singh et al., Nature MSB, 2012.  Abhyudai 
Singh created this figure. 
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Figure 30. GFP decays at the same rate after translation is blocked using 
Cycloheximide, both in the presence and absence of Actinomycin D. 

To investigate the effects of Actinomycin D on d2GFP half-life, clone F32 was treated 
with Actinomycin D plus Cycloheximide or just Cycloheximide. Cells were collected at 
regular intervals after drug addition and the GFP expression was measured by flow 
cytometry. The kinetics of GFP decay is same both in the presence and absence of 
Actinomycin D. Originally published in supplemental information of Singh et al., Nature 
MSB, 2012. Roy Dar and Brandon Razooky created this figure.  
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     In response to both transcriptional inhibitors, the cell-to-cell variability in fluorescence 

intensity levels across all the isoclonal populations (CV2(t)) gradually increases over time 

(Fig. 31). Fitting the data to model predictions shows that this increase in CV2(t) is 

inconsistent, for all clones, with a model where intercellular variability in protein levels 

originates only from mRNA birth/death fluctuations (Fig. 31). Instead, the data indicate 

that promoter fluctuations act as the dominant source of gene-expression noise in the 

HIV-1 LTR promoter with a mRNA Fano factor (&m) of at least 10 across four different 

integration sites.  Direct measurements of mRNA population statistics by mRNA smFISH 

also show high levels of transcriptional bursting from the HIV-1 LTR (&m(80; Fig. 32) 

and provide an independent experimental verification of the proposed method. 
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Figure 31. Transcriptional bursting is a significant source of variability in HIV-1 
LTR gene-expression across different integration sites.  

Time courses of CV2(t) of GFP expression, as measured by flow cytometry, for four 
isoclonal Jurkat T lymphocyte populations (F32, G95, LL44, and LL8) after perturbation 
with transcriptional blocking drugs actinomycin D (left column) or flavopiridol (right 
column). The transient increases in gene-expression noise after transcriptional blocking 
were consistent with a model in which HIV-1 LTR expression noise is primarily due to 
transcriptional bursting of mRNAs from the viral promoter (red lines; &m=15). In contrast, 
a model in which mRNA birth/death fluctuations act as the dominant source of gene-
expression noise (black dashed lines; &m=1), overestimates the observed transient 
increase in CV2(t) for all clones. All quantities are normalized by their corresponding 
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values of CV2(t) at t =0; error bars show 95% confidence interval for the CV2(t). 
Originally published in supplemental information in Singh et al., Nature MSB, 2012.   

 

!
 

Figure 32. Histogram of mRNA populations counts across an isoclonal cell 
population determined using mRNA FISH.  

mRNA FISH was performed on clone F32 and mRNA population counts were measured 
in a total of 192 cells. Clone F32 has on average 100 d2GFP mRNA transcripts per cell. 
The steady-state Fano factor, 'm, defined as  
 

!! !! !! ! ! !

!  

 
was calculated from the histogram using bootstrapping. We obtain .m % 80 with a 95% 
confidence interval of (65, 95). This value of .m is high but reasonable compared to 
published values. For example, Raj et al., 2006 reports mRNA Fano factors of over 100. 
It is important to point out that unlike flow cytometry data, where we remove extrinsic 
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noise by appropriate gating, mRNA FISH data has both intrinsic and extrinsic noise. 
Thus this 

Inset: Example fluorescent image of DAPI stained nuclei (blue) and fluorescently labeled 
mRNA (red dots). Originally published in supplemental information in Singh et al., 
Nature MSB, 2012.   

 

3. Conclusions 

 

     In summary, we present a simple method to discriminate between mRNA birth/death 

and promoter fluctuations by measuring the dynamics of protein-expression noise in 

response to perturbations. This perturbation approach is complementary to other methods, 

such as mRNA smFISH, as it only requires data at the protein level and can work at high 

mRNA-expression levels. With the large libraries of GFP-tagged proteins and reporters 

already exist for many systems, it may be possible to quantify the extent of 

transcriptional bursting across the genome without having to design individual mRNA 

smFISH probes for each gene. 

 

     One potential shortcoming of this approach is that changes in expression noise in 

response to perturbations can be sensitive to extrinsic noise in the system. For example, 

in the absence of extrinsic noise, different intrinsic-noise mechanisms predict very 

distinct changes in CV2(t) in response to perturbations (Fig. 2). However, a constitutive 

promoter with high levels of extrinsic noise in the transcription rate and a promoter with 

transcriptional bursting can have similar changes in CV2(t) after transcription is blocked. 

Thus, the presence of extrinsic noise hampers the ability to discriminate the different 

sources of intrinsic noise. These results emphasize that, to discriminate mRNA 
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birth/death and promoter fluctuations, extrinsic noise in gene expression must be filtered 

out by appropriate gating of cells or use of two-color reporter systems (as done in this 

paper; see Appendix H). 

   

Recent theoretical observations suggest that, during cell division, stochastic 

partitioning of molecules results in the cell-to-cell variability observed in clonal 

populations (Huh and Paulsson, 2011). However, the present study focuses on transient 

changes in noise within a clonal population instead of steady-state measurements. The 

12-hour duration of our experiments is also much shorter than the ~30-hour doubling 

time of Jurkat cells, therefore minimizing effects that may be due to stochastic 

partitioning during the course of the experiment. Most importantly, the perturbations 

performed in the present study utilize small molecules, actinomycin D and flavopiridol, 

that induce cell-cycle arrest (Kuerbitz et al., 1992; Nelson and Kastan, 1994) and 

flavopiridol (Schrump et al., 1998; Shapiro et al., 1999), therefore circumventing any 

added stochastic effects arising from partitioning.   

 

Measuring transient changes in reporter expression noise in response to a 

transcriptional block showed that transcriptional bursting of mRNAs from the HIV-1 

LTR is a significant source of noise in viral gene-expression. It is now well established 

that the HIV-1 LTR exhibits a block in transcriptional elongation: after transcriptional 

initiation from the LTR, RNAp II is poorly processive and stalls 50–70 nucleotides after 

initiation proximal to a nucleosome referred to as nuc-1 (Jordan et al., 2003; Kao et al., 

1987). One attractive model is that the stochastic recruitment of elongation and chromatin 
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remodeling factors can enhance elongation processivity and remodel nuc-1, respectively, 

resulting in a stochastic burst of multiple stalled mRNAs (Singh et al., 2010a). Such 

transcriptional bursting can be an important regulatory mechanism to generate high cell-

to-cell variability in the levels of expressed viral proteins for HIV-1 decision-making 

between active replication and latency in single cells. These results add to an increasing 

body of work (Austin et al., 2006; Cox et al., 2008a; Dunlop et al., 2008; Munsky et al., 

2009; Sanchez et al., 2011; Warmflash and Dinner, 2008; Wong et al., 2011) showing 

that fluctuations in protein levels carry important information, and that measuring 

statistical properties of these fluctuations can be an important tool for characterizing the 

regulatory mechanisms of genetic circuits.  
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Chapter 7: Transcriptional bursting is the predominant mode of 

transcription for HIV throughout the genome 

!
Chapter 7 was published in Dar, R.D., Razooky, B.S., Singh, A., Trimeloni, T.V., 

McCollum, J.M., Cox, C.D., Simpson, M.L., and Weinberger, L.S. (2012). 

Transcriptional burst frequency and burst size are equally modulated across the human 

genome. Proc Natl Acad Sci U S A 109, 17454-17459. The article can be found on 

Pubmed; http://www.ncbi.nlm.nih.gov/pubmed/23064634 

1. Introduction 

The predominant mode of gene expression in prokaryotes and eukaryotes is unclear.  The 

classical view of gene expression as a constitutive, Poisson-like accumulation of gene 

products (Fig. 33A) is supported by a comprehensive large-scale study in bacteria, 

demonstrating that >400 genes appear to follow constitutive (or Poisson-like) gene 

expression (Taniguchi et al., 2010).  Constitutive expression has also been reported for 

subsets of human genes (Yunger et al., 2010).  Conversely, several elegant studies 

showed that specific promoters in bacteria and yeast express gene products in an episodic 

process (Fig. 33B), characterized by pulsatile bursts in transcription (Bar-Even et al., 

2006b; Blake et al., 2003; Cai et al., 2006; Golding et al., 2005; Newman et al., 2006; 

Pedraza and Paulsson, 2008; So et al., 2011).  Is episodic bursting the predominant mode 

of gene expression across a genome or just a highlighted exception? If bursting is 

predominant, does it depend on genomic location?  
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Figure 33. Fluctuations in gene expression to differentiate between alternate models 
of transcription across the genome.  

(A and B) Schematics of the constitutive, Poisson-expression model and the episodic, 
bursty gene-expression model, together with three expression trajectories from 
hypothetical genomic loci. Sites that exhibit constitutive (i.e., Poisson) expression exhibit 
small and relatively fast fluctuations in gene products over time. Alternatively, loci that 
exhibit episodic expression bursts generate large, slow fluctuations in gene expression. 
(C) The principle of noise space. The three-dimensional noise space consists of noise 
magnitude, noise autocorrelation, and mean expression level. Small, fast fluctuations 
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have a small noise magnitude and short autocorrelation times and thus cluster (after 
normalization) at the origin of the noise magnitude-autocorrelation plane (gray region, 
Lower Left). Large, slow (i.e., bursty) fluctuations have expanded noise magnitude and 
extended autocorrelation times (red ovals). The three-dimensional space can be 
decomposed into two additional two-dimensional projections of noise magnitude and 
noise autocorrelation versus mean expression level (Lower Center and Lower Right). For 
episodic-bursty expression, a trajectory’s noise-space coordinates are invariably shifted 
away from the constitutive model into the burst model space depending on changes to 
their transcriptional parameters. Originally published as Figure 1 in Dar et al., PNAS, 
2012. Roy Dar created this figure.  
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To globally determine if constitutive “Poisson-like” expression or episodic “bursty” 

expression dominates throughout the human genome, we capitalize on a recently 

proposed theoretical framework (Cox et al., 2008b) for extracting the details of gene 

regulation from the time-resolved structure of fluctuations (i.e., “noise”) in gene 

expression.  This analysis quantifies time-lapse expression trajectories to obtain three 

orthogonal measures of expression: the average expression level, the magnitude of 

expression fluctuations (as measured by the coefficient of variation squared, CV2), and 

the autocorrelation time of expression fluctuations (as measured by the noise 

autocorrelation time at half of its initial value, )1/2, (Austin et al., 2006; Weinberger et al., 

2008b) (Fig. 33C).  While this 3-D “noise space” is impractical to analyze directly, 

different two-dimensional projections of noise space allow the quantification of rate 

parameters in gene-regulatory models and provide a convenient method to differentiate 

between underlying gene-expression mechanisms, such as constitutive versus bursty 

transcription (Fig. 33C).  For example, transcriptional bursting increases both noise 

magnitude and noise autocorrelation time (i.e., points in the CV2-versus-)1/2 plane shift to 

the upper-right quadrant relative to a constitutive expression model) (Fig. 33C, bottom 

left). Conversely, translational bursting shifts noise magnitude, but not the 

autocorrelation time (Cox et al., 2008b; Simpson et al., 2004b).  

Importantly, analysis of the )1/2 axis is critical to fully parameterize “two-state” 

transcriptional bursting models (Fig. 33C), which always include at least three unknown 

parameters: the rate of transition to a transcriptionally active state (kon), the rate of 

transitioning to a transcriptionally inactive state (koff), and the rate of transcription once in 
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the active state (km) (Kepler and Elston, 2001a; Simpson et al., 2004b).  Analyses of a 

single 2-D plane (e.g., CV2 versus expression level) cannot fully determine these three 

rate parameters. Conversely, analyses of CV2 versus expression level and )1/2 versus 

expression level allow the determination of these three parameters, and analysis of CV2-

versus-)1/2 facilitates direct comparisons of data containing widely varying expression 

levels, since it removes the reciprocal dependence of noise magnitude on expression level 

(Cox et al., 2008b). 

The ability to accurately quantify these transcriptional rate parameters is essential for 

answering basic questions about the mechanisms that regulate transcription.  Previous 

studies elegantly applied flow cytometry (Bar-Even et al., 2006b; Newman et al., 2006) 

and time-lapse microscopy (Cohen et al., 2008; Sigal et al., 2006; Taniguchi et al., 2010) 

to analyze gene-expression noise in large subsets of genes; however, a tedious 

experimental bottleneck of sub-cloning and expansion of isogenic populations necessarily 

limits the throughput of these noise-analysis approaches.  Here, we circumvent this sub-

cloning requirement to globally apply the analytical framework of noise space across the 

human genome and quantify these transcriptional rate parameters.  The analysis addresses 

two specific questions regarding transcriptional regulation in human cells. (i) Does 

constitutive (Poisson-like) expression or episodic (bursty) expression dominate 

throughout the human genome? (ii) Does genomic location influence either mode of 

expression?  For example, if bursting is operant, does genomic location influence burst 

size or burst frequency, and which is predominantly influenced?  Recent studies (Singh et 

al., 2010b; Skupsky et al., 2010; Suter et al., 2011a) have tackled these questions for 

specific genes, but no clear and broad consensus has yet emerged.  
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2. Results 

2a. Measuring noise and correlation time using single-cell time-lapse microscopy  

To globally apply the analytical framework of noise space to screen for constitutive 

versus bursty expression across the human genome, we capitalized on the semi-random 

pattern of integration exhibited by the HIV-1 lentivirus, where the majority of 

integrations (~69%) occur within transcriptionally active regions (Mitchell et al., 2004; 

Schroder et al., 2002). Jurkat T lymphocytes were infected with HIV-based lentiviral 

vectors encoding a short-lived, two-hour half-life, version of green fluorescent protein 

(referred to as d2GFP), to generate a library of cells in which the vector is integrated at a 

distinct genomic position in each individual cell (i.e., a ‘polyclonal’ library) (Fig. 34A).  

To focus on measuring the intrinsic fluctuation dynamics of the genomic region 

surrounding the vector-integration site, we utilized a vector encoding the HIV-1 long 

terminal repeat (LTR) promoter, which is relatively weak and heavily influenced by the 

expression dynamics of the local chromatin environment (Jordan et al., 2001).   

 

2b. Distinguishing between different sources of noise.  

Initially, the analytical framework for distinguishing bursty expression was applied to 

five isoclonal populations: each population was grown from a single parent cell, and all 

daughter cells, therefore, share the same LTR genomic integration site (Fig. 34A-D).  

Cell fluorescence was then imaged for 18 h, and the resulting fluorescence intensity 
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trajectories were used to construct a three-dimensional noise space with three axes: noise 

magnitude as measured by the coefficient of variation squared (CV2), noise 

autocorrelation represented by the half-autocorrelation time ()1/2), and mean expression 

level (Fig. 34B-C).  Analysis of these trajectories in the noise space allows comparison 

between isoclonal populations by extraction and identification of global expression 

characteristics, including differentiation between isoclones that exhibit constitutive 

transcription versus episodic bursts of transcription (Fig. 34D).  To generate the baseline 

origin for noise-space analysis of single-cell data, we used a library of isoclonal 

populations (Singh et al., 2010b), each containing a single integration site, and identified 

isoclones that were the “most Poissonian” in their expression fluctuation profiles (Fig. 

35).  Two isoclonal populations exhibiting the fastest fluctuation autocorrelation decays 

(i.e., shortest autocorrelation times) were selected as the most-Poissonian and used to 

establish an origin of the CV2-versus-)1/2 noise map (Fig. 34D, clones 1 and 2).   
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Figure 34. Extracting transcriptional parameters from the noise space. In individual 
isoclones, burst dynamics vary with genomic location.  

(A) Cells are infected with a lentiviral vector expressing a 2-h half-life GFP reporter 
(d2GFP) at a low multiplicity of infection (moi) to ensure a single semirandom 
integration in each cell. Individual single cells are isolated, grown (creating isoclone 
populations), and imaged by time-lapse fluorescence microscopy. (B and C) Single-cells 
are tracked for 12–18 h, and an individual cell’s mean expression level, variance (/2), and 
autocorrelation time (01⁄2) are extracted from the time trace (e.g., the green circle 
represents a single cell’s noise space coordinate). A constitutive model of gene 
expression that displays abundance dependence (bold red arrows from black model lines) 
was used to normalize each cell’s noise magnitude (CV2) and autocorrelation (01⁄2). The 
normalized noise magnitudes and autocorrelations are plotted in a &logCV2 , &log01⁄2 
noise map (Left). (D) Consistent shifts to the Upper Right quadrant in &logCV2 , &log01⁄2 
space observed for three LTR isoclones (clones 3, 4, and 5), are indicative of 
transcriptional bursting relative to the least bursty isoclones (clones 1 and 2). Bursting 
dynamics varies between different clones as evidenced by shifts in both noise 
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autocorrelation and magnitude. The isoclonal signature is taken from 18 h trajectories of 
400 cells. Originally published as Figure 2 in Dar et al., PNAS, 2012. Roy Dar created 
this figure. Brandon Razooky collected the data for this figure.  

!
!
!

!
Figure 35. Least bursty isoclones to determine the bias vector.  

HF-CV2 vs. average fluorescence level for clones C32 (58 cells) and D36 (87 cells). 
From these measurements the CV2 component of the bias vector (green line) was found 
as 0.6/<fl>. Originally published in supplemental information in Dar et al., PNAS, 2012. 
Roy Dar created this figure. Brandon Razooky collected the data for this figure.  
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Figure 36. HF-processing focuses on intrinsic noise and filters out extrinsic noise. 

Using the described intrinsic/extrinsic noise simulation, we can estimate how much noise 
magnitude is filtered out or emphasized with the 12-hHF-noise processing. For a large 
range of extrinsic noise contribution, intrinsic noise contribution is enhanced ~1.1-2.3 
times of the total noise, while extrinsic noise is de-emphasized (filtered) down (e.g. 55% 
extrinsic of total noise filters down to ~15% of total noise, 40% of total to 5% of total, 
and so on). Originally published in supplemental information in Dar et al., PNAS, 2012. 
Roy Dar created this figure. 
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Importantly, non-transcriptional phenomena that affect noise behavior (e.g., 

protein and mRNA lifetimes, GFP maturation, extrinsic noise) were already embedded in 

the noise of these isoclonal populations, specifically the “most Poissonian” reference 

clones, thereby precluding the possibility that noise-map shifts were due to these non-

transcriptional phenomena.  In addition, the high-frequency noise-processing technique 

used minimizes extrinsic noise effects (Fig. 36 and (Weinberger et al., 2008b)).  Since it 

is likely that these two isoclones were somewhat bursty in their expression (Fig. 37), 

comparisons to these isoclones represented a highly conservative assay for bursty 

expression.  Nevertheless, the results showed that even in a small panel of five clones, 

there were marked changes in both noise magnitude and autocorrelation time of ~1.5-fold 

in normalized space (Fig. 34D).  Clones #4 and #5 had significant changes in 

autocorrelation time with smaller differences in noise magnitude.  These differences in 

noise magnitude were validated against conventional flow cytometry measurements (Fig. 

38).  The agreement between data from the 12–18 h microscopy experiments and flow 

cytometry demonstrates that this CV2-versus-)1/2 analysis has the fidelity to differentiate 

transcriptional dynamics between different isoclones.  Importantly, when only noise 

magnitude of the isoclones is analyzed (noise magnitude is the only noise measure that 

can be obtained from flow cytometry or mRNA FISH) the clones are predicted to only 

have different burst frequencies.  However, the differences in autocorrelation time and 

noise magnitude suggest that both the burst frequency and the burst size vary between the 

isoclonal populations (Fig. 34D).  
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Figure 37. Isoclones with lowest correlation time to determine correlation bias 
vector.  
 
The distribution of HF-T50s measured for clone C32 80% and D36 (purple). The bias 
vector value of HF-T50 was selected as 1.92 hours. The blue line shows the simulated 
HF-T50 distribution for constitutive expression and HF-T50 = 1.92 h, which is seen to fit 
well with the lower mode of the C32 and D36 HF-T50 distribution. The higher HF-T50 
peaks in the isoclone distribution (purple) are indicative of some transcriptional bursting 
in these clones. Originally published in supplemental information in Dar et al., PNAS 
2012. Roy Dar created this figure.  Brandon Razooky collected the data for this figure.  
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Figure 38. Benchmarking and validation of microscopy noise measurements with 
conventional flow cytometry.  

Top: microscopy noise maps for four isoclones from 18-h microscopy experiments. 
Bottom: Comparison of CV2 from microscopy (blue) to flow cytometry for the same 
clones (red). Inset: comparison of microscopy to flow cytometry CV’s show 
measurements are consistent with one another to within a constant. High- frequency 
processing decreases noise magnitude from flow values consistently by ~0.25 for 18 h 
imaging durations. Originally published in supplemental information in Dar et al., PNAS, 
2012. Roy Dar created this figure. Brandon Razooky collected the data for this figure.  

 

2c. Measuring noise in thousands of integrations sites in a single experiment.  

We next extended the analysis to image polyclonal populations—consisting of 

thousands of integration sites (Fig. 39A)—to globally apply the analytical framework of 

noise space to screen for constitutive versus bursty expression across the human genome.  

We analyzed more than 8,000 distinct genomic loci with three different promoters 
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integrated throughout the genome by imaging cells for 12–18 h (Fig. 3B).  To control for 

LTR-specific or vector-specific artifacts, we also tested self-inactivating lentiviral vectors 

that encode promoters for either human elongation factor 1! (EF1A) or human ubiquitin 

C (UBC) that in turn drive d2GFP.  UBC and EF1A are essential cellular housekeeping 

genes: UBC promotes the ubiquitinization cascade by marking proteins for proteosomal 

degradation, and EF1A promotes the GTP-dependent binding of an aminoacyl-tRNA to 

ribosomes. UBC and EF1A are among the most abundant proteins in eukaryotic cells, 

and their promoters exhibit robust high-level expression across integration sites in 

different cell types (Kim et al., 1990; Ramezani et al., 2000).  The constitutive expression 

origin of the CV2-versus-)1/2 noise map previously determined for the most-Poissonian 

isoclones (Fig. 2D, and SI text) was compared to the 8,000 loci.  Virtually all examined 

genomic loci exhibit noise-map shifts to the upper right (Fig. 3B), indicating significant 

bursting in gene expression at virtually all genomic loci for the LTR and the strong 

human promoters.  Similar widespread bursting was also observed for all three promoters 

in the THP-1 human monocyte cell line (Fig. S2).  Both synchronized and 

unsynchronized cells exhibit similar shifts in noise space (Fig. S3), indicating that 

transcriptional bursts appear to be common throughout the cell cycle, as reported (Harper 

et al., 2011). 

The UBC and EF1A promoters showed markedly lower CV2s than the LTR promoter 

(Fig. 3B and Fig. S4), which was consistent with our previous study (Singh et al., 2010b) 

showing that the LTR promoter displays relatively higher levels of noise than other 

eukaryotic promoters in yeast (Bar-Even et al., 2006b; Newman et al., 2006).  This shift 

in noise magnitude is consistent with the well-known transcriptional elongation “stall” 
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that characterizes LTR expression (Kao et al., 1987).  This stall results in delayed 

switching to the transcriptional “ON” state in a two-state transcription model (Singh et al., 

2010b) and predicts that noise frequency (not only noise magnitude) (Sakane et al., 2011) 

is modulated in different genomic or chromatin environments. In agreement with this 

prediction, the distribution of points in the LTR noise map indicates significant 

differences in kinetics from the UBC and EF1A noise maps, and an alternate 

representation with centroids of the noise-map distribution (with error bars) can be used 

to conveniently visualize these differences (Fig. 40) (Austin et al., 2006). 

!
Figure 39. Episodic-bursty expression dominates across the human genome.  

(A) To create the polyclonal population, cells are infected with a lentiviral vector 
expressing d2GFP so that each cell represents a unique clone harboring a single 
semirandom integration of reporter. (B) Resultant noise maps for over 8,000 individual 
cell trajectories for the HIV-1 LTR promoter, EF1A promoter, and UBC promoter. The 
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constitutive origin is derived from Fig. 34D (18 h). Originally published as Figure 3 in 
Dar et al., PNAS, 2012. Roy Dar created this figure.  Brandon Razooky collected the data 
for this figure.  
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Figure 40. The HIV-1 LTR exhibits a greater noise-magnitude shift compared to 
EF-1! and UBC promoters.  

(Left) Noise-map centroids for the polyclonal populations of LTR, EF-1! and UBC 
promoters determined from noise maps in Figure 3 of the main text. The LTR promoter 
has a higher noise magnitude and decreased correlation shift. The error bars show ± 1 
sigma uncertainty in the centroid positions as determined by the number of cells in the 
sample. Noise-map centroids are determined from the base-line in Figure 2D (Clones 1 
and 2), (Right) Flow cytometry verification showing distributions for EF1A-d2G (blue) 
and LTR-d2G (green). CVLTR > CVEF1A. The stronger EF1A promoter displays increased 
mean expression compared to the HIV-1 LTR. Originally published in supplemental 
information in Dar et al., PNAS, 2012. Brandon Razooky and Roy Dar created this 
figure. 

 

2d. Transcriptional bursting is the dominant mode of transcription throughout the 

human genome.  

Given conflicting reports on whether burst frequency varies with genomic location 

(Lo et al., 2012; Singh et al., 2010b; Skupsky et al., 2010; Suter et al., 2011a), we next 

determined if transcriptional burst size, burst frequency, or both changed across the 

genome (Fig. 41A). As mentioned above, transcriptional bursting can be quantified by a 

two-state model of transcription (Kepler and Elston, 2001a; Simpson et al., 2004b) in 
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which switching between the two states occurs at rates kon and koff, and transcription only 

occurs in the ‘on’ state with a rate km (Eqs. 1–3, Materials and Methods).  The burst size, 

or number of mRNAs generated per activity pulse, is typically defined as km/koff and, in 

the limit of koff >> kon, the burst frequency is defined as kon (Fig. 41A) (Singh et al., 

2010b).  To directly test if transcriptional burst frequency changes across genome 

location, we analyzed the polyclonal 3-D noise-space data to fit values for km, koff, and kon.  

Polyclonal trajectories are sub-clustered into groupings of ~60 cells, so that each sub-

cluster represents cells in a specific range of gene-expression levels (Fig. 42), and 

average noise autocorrelation is calculated for each sub-cluster by autocorrelation 

analysis (Weinberger et al., 2008b).  To validate this sub-clustering approach, we 

compared the CV2s from sub-clustered polyclonal trajectories to traditional flow 

cytometry data from isoclonal populations and found that the CV2 patterns from sub-

clustered data were coincident with isoclonal flow cytometry CV2 patterns (Fig. 43).  

Thus, sub-clustering produces data that directly parallel the conventional noise 

processing of flow cytometry measurements for isoclonal populations, where each 

polyclonal sub-cluster corresponds to an isoclonal population in terms of average 

expression level (Fig. 43).  Strikingly, the sub-cluster data demonstrate that 

autocorrelation time first increases with increasing expression and once an expression 

threshold is reached (gray line, Fig. 41B), autocorrelation time decreases as expression 

level increases (Fig. 41B).  This pattern of concavity is inconsistent with constant burst 

frequency (i.e., constant kon) across genomic locations and provides a direct measurement 

of kon and koff changes (independent of km (Cox et al., 2008b)) across genomic loci. 
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Conventional approaches to quantify transcriptional burst kinetics utilize the CV2-

versus-<GFP> plane of noise space (Bar-Even et al., 2006b; Newman et al., 2006), and 

the polyclonal data from Fig. 39 can also be analyzed on the CV2-versus-<GFP> plane of 

noise space.  This CV2-versus-<GFP> analysis showed a strong initial decrease in CV2 at 

low expression levels, then when an expression threshold is reached (gray line, Fig. 41C) 

the CV2 levels off at higher expression levels (Fig. 41C).  However, the CV2-versus-

<GFP> plane was insufficient to uniquely parameterize the two-state model; since burst 

size couples km and koff, it was only through the )1/2 measurement (which are not 

influenced by km) that the two parameters could be differentiated from one another. Note, 

that the gray line in Fig. 41B and Fig. 41C correspond to the same expression threshold. 

 

2e. Burst size and frequency are equally modulated.  

Fitting of the two-state model in the polyclonal 3-D noise map space showed a strong 

initial increase in burst frequency at low expression levels while burst size remained 

almost constant (Fig. 41D and 40E).  Upon reaching a threshold expression level (gray 

vertical line in Fig. 41D), a switch in burst dynamics occurred, and burst size increased, 

while burst frequency remained constant (Fig. 41D and 40E).  The fold change in 

transcriptional burst size and burst frequency values revealed that both vary equally 

across genomic loci (Figs. 40F and 42).  In addition, the measured burst-size range 

predicted an average mRNA level of 110 molecules per cell, which is consistent with 

Singh et al. (Singh et al., In Review, 2012), and with previous measurements (Raj et al., 

2006). The success of fitting the 3D noise space was reflected in the close agreement 

between a simulated autocorrelation curve and the experimental trend (Fig. 41B) with the 
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fit model parameters. This showed that our assumed two-state model is sufficient to 

describe the measured system.  Much like the LTR, UBC and EF1A displayed similar 

fold changes in burst size and frequency and exhibited a similar pattern of increasing 

burst frequency, followed by increasing burst size (Fig. 41G).  These data indicated that 

integration site influences burst kinetics, irrespective of promoter type (i.e. cis sequence). 

However, UBC and EF1A exhibit almost constant )1/2 at the highest expression levels 

indicating increases in only km at these levels (Fig. 44).  Interestingly, these two strong 

promoters individually span the range of burst frequencies recently reported for a variety 

of mammalian genes (Suter et al., 2011a) (Fig. 44), while the LTR functions at much 

lower burst frequencies (Fig. 41). 
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Figure 41. Transcriptional burst frequency and burst size vary equally across the 
genome and are strongly dependent on expression level.  

(A) Schematic of the two-state model of transcriptional bursting, where the promoter 
switches between ON and OFF states at rates kon and koff and transcribes at rate km in 
the ON state. Transcriptional dynamics are modulated through changes in burst size, 
burst frequency, or both. (B) Noise autocorrelation, noise magnitude (C), burst frequency 
(D), and burst size (E) versus abundance for polyclonal subclusters of 2,000 12-h Ld2G 
single-cell trajectories. Low and high abundance domains are separated by a solid gray 
threshold line, which indicates the changes in the trends of noise autocorrelation, noise 
magnitude, and hence burst size and burst frequency is observed. (F and G) As a function 
of <GFP>, fold changes in burst size and frequency are comparable, with an initial 
increase of frequency in all promoters investigated. Originally published as Figure 4 in 
Dar et al., PNAS, 2012. Roy Dar created this figure.  Brandon Razooky collected the data 
for this figure.  
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Figure 42. Sub-clustered GFP intensity trajectories of polyclonal populations. 

(Upper) LTR polyclonal cells separated into 11 clusters of 170 cells by their last intensity 
values. Sub-clusters decrease in intensity from the upper-left to lower-right panels. 
(Lower) 10 sub-clusters of Ef1A d2GFP poly clustered in the same way as the LTR 
polyclonal cells. The sub-clustering of the UBC populations is not shown. Originally 
published in supplemental information in Dar et al., PNAS, 2012. Roy Dar created this 
figure.  Brandon Razooky collected the data for this figure.  

 

!
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Figure 43. LTR isoclone yield similar noise and burst trends to polyclonal sub-
cluster processing when measured using traditional flow cytometry methods.  

35 Ld2G isoclones were measured for their fluorescence distributions by flow cytometry. 
The measurements of a range of LTR isoclones yielded noise and burst dynamic trends 
similar to the polyclonal microscopy data. The coefficient of variation squared and mean 
levels were used to quantify gene expression noise magnitude in the LTR isoclones, 
which generally land along a single burst model line inversely proportional to the 
fluorescence abundance.  Here, deviations from the trend are only observed at high 
abundances. At low abundances, the burst size remains constant, while the burst 
frequency increases (left of vertical gray line). At higher abundances, the BF hits an 
upper bound and plateaus, and abundance increases through increase in burst size. Upon 
TNF-alpha addition, shifts along the noise and burst trends identical to the polyclonal 
sub-clusters are observed. Originally published in supplemental information in Dar et al., 
PNAS, 2012. Roy Dar created this figure. Brandon Razooky collected the data for this 
figure.  
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Figure 44. Two housekeeping promoters display increasing episodic expression with 
increasing intensity levels.  

The 2-state model and burst size expressions predict burst size = 0 for constitutive for 
continuous gene expression.  BothUBC and EF1A have markedly less BS than the LTR.  
Interestingly, the burst frequency range for these strong promoters are consistent with the 
range of burst frequencies observed by Suter et al., and further emphasizes that each 
individually span the kinetic range with varying integration site. Originally published in 
supplemental information in Dar et al., PNAS, 2012. Roy Dar created this figure. 
Brandon Razooky collected the data for this figure.  

 

2f. Transcriptional activators alter bursting dynamics along the same burst trends.  

To test whether exogenous stimuli explore the same burst trends (Fig. 4), 

transcription was perturbed with transcriptional activators, including the cell-signaling 

molecule tumor necrosis factor * (TNF).  TNF enhances expression by stimulating 

recruitment of a p50-RelA heterodimer to nuclear factor "B (NF"B) binding sites 

(Vallabhapurapu and Karin, 2009), and the HIV-1 LTR encodes multiple NF"B binding 

sites and is potently activated by TNF (Jordan et al., 2001).  We previously reported in a 

few isoclonal populations that TNF only changes burst frequency of the LTR while 

conserving burst size (Singh et al., 2010b), and were interested to see how widespread 

this phenomena was across the genome. The )1/2-versus-<GFP> analysis of TNF 

stimulation showed a significant decrease in )1/2 with increasing expression level. )1/2 

decrease with increasing abundance was a direct indication of kinetic changes and 

demonstrated that increasing expression level cannot be explained solely by modulations 

of km (Cox et al., 2008b; Simpson et al., 2004b).   

Fitting of the 3-D noise map upon TNF induction demonstrated that both burst 

frequency and size significantly increase as expression levels increase with burst 

frequency increasing at low expression levels and burst size increasing at higher 
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expression levels (Fig. 45C-D).  Interestingly, there appeared to be a threshold in 

expression level, above which kon plateaus to values observed before adding TNF, and koff 

appeared to decrease.  The data and analysis agreed with results obtained from 

conventional flow cytometry measurements of 35 isoclonal populations (Fig. 43). Overall, 

these results suggested that TNF induces transcription from the LTR along the same burst 

trends (Fig. 45C-D), and the use of Trichostatin A (TSA), although acting through a 

different mechanism than TNF for induction (VanLint et al., 1996), corroborates this 

observation.  This observed decrease in koff with TNF induction, leading to extended 

duration of bursts, is consistent with the reported inhibition of p50-HDAC1 repressive-

complex formation at LTR NF"B sites by p50/RelA heterodimers (Hayden and Ghosh, 

2004b).  The successful formation of HDAC1 leads to weakened recruitment of RNA 

polymerase II, transcriptional initiation(Williams et al., 2006b), and increases in kon are 

expected by known recruitment of RNA polymerase to the LTR promoter by NF"B 

(Barboric et al., 2001; West et al., 2001). Fitted parameter estimates of LTR residency 

time in the presence of TNF were used to represent an average over the first 12 h of 

stimulation given the dynamic non-linear nature of the NF"B response (Hoffmann et al., 

2002; Williams et al., 2007a). Collectively, these results enable estimation of LTR 

residency time in the transcriptional ON and OFF states and show that TNF extends 

duration in the ON state up to eightfold (Fig. 45E).   
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Figure 45. Transcriptional burst size and frequency are altered by transcriptional 
activators.  

(A–D) TNF addition (filled red circles) shifts the measured integration sites to the higher 
abundance and burst dynamic domain along the nondrug curve (empty circles). Large 
autocorrelation shifts implicate changes in burst kinetics. (E) Estimated residence times 
in the active (ON) and inactive (OFF) states. Originally published as Figure 5 in Dar et 
al., PNAS, 2012. Roy Dar created this figure. Brandon Razooky collected the data for 
this figure.  
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3. Discussion 

The analysis of noise space presented here provides a high-throughput method to 

dynamically profile gene-regulatory mechanisms and the effects of perturbations on gene 

expression.  A significant methodological advantage of analyzing three dimensions of 

noise space is the ability to more accurately constrain two-state transcriptional burst 

models and the polyclonal nature of the approach enables ‘shotgun’ mapping of gene 

regulation dynamics on a genome-wide scale.   

The resulting genome-wide data demonstrate that constitutive transcription is rare 

across the human genome.  Instead, the overwhelming majority of human genomic loci 

appeared to stochastically fire in episodic bursts.  Analysis of noise space demonstrated 

that both transcriptional burst frequency and burst size vary in roughly equal degree 

across the human genome (Fig. 41D-G).  Intriguingly, there appeared to be a threshold 

expression level below which integrations modulate only transcriptional burst frequency 

and above which only burst size is modulated (Fig. 45B-G and 42-43).  This transition 

could result from recently reported refractory periods inherent to bursting kinetics (Suter 

et al., 2011a; Suter et al., 2011b).  Burst frequency can be increased at loci where 

transcriptional bursts are infrequent, but as frequency increases, the refractory period 

temporally precludes further increases in frequency.  Therefore, once this frequency 

ceiling is reached, the only way to increase expression is to extend the duration of each 

burst. 

As proposed (Cai et al., 2008), widespread episodic bursting may allow limited 

transcriptional resources within the cell to be efficiently allocated to achieve high-level 

transcription across large numbers of loci.  This efficient allocation of resources may be 
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the biological analog of ‘time-domain multiplexing’ approaches used to efficiently 

transmit data in signal processing applications.  

 

4. Materials and Methods 

4a. Lentiviral Vectors  

Lentiviral vectors were cloned as described (Weinberger et al., 2005) and used to infect 

51105 Jurkat cells at a multiplicity of infection < 0.1, resulting in 25,000–50,000 infected 

cells each with a unique integration site. Cells were then sorted by FACS and 

fluorescently imaged on glass-bottom dishes in RPMI 1640 with 10% fetal calf serum 

and 1% penicillin-streptomycin.  

4b. Imaging  

Imaging was performed in humidified conditions at 37°C and 5% CO2 for 12–24 h with a 

40X (1.2 NA) oil-immersion objective on an Olympus DSU microscope equipped with 

an automated linear-encoded X-Y stage, as described (Weinberger et al., 2008b; 

Weinberger and Shenk, 2007). Image processing and cell tracking were performed in 

Matlab with an in-house algorithm (Weinberger et al., 2008b) and a single 12 h 

experiment could generate up to 1000 trajectories for analysis.  

4c. Calculations 

For each trajectory, noise autocorrelation (01/2) and noise magnitude (CV2) were 

calculated using an established noise-processing algorithm (Austin et al., 2006; 

Weinberger et al., 2008b). A reported theory (Cox et al., 2008b; Simpson et al., 2004b) of 
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the two-state transcriptional bursting model yields analytical expressions for both the 

autocorrelation of the noise, 01/2, and the noise magnitude.  

Transcriptional burst dynamics are quantified by deriving analytical expressions for 

burst size (BS) and burst frequency (BF) with formulations from previous analyses 

(Kepler and Elston, 2001a; Simpson et al., 2004b; Singh et al., 2010b) and low promoter 

activity assumptions where koff>>kon, koff>>km, koff>>gp, and km>>( gm + gp): 
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where BS is the burst size, BF is the burst frequency, km is the transcription rate, kp is 

the translation rate, gm and gp are the mRNA and protein decay rates, respectively, <P> is 

the mean protein abundance, and b is the translational burst rate. <P>, or the mean 

number of GFP molecules in the measurements, is assumed to be directly proportional to 

<FL>, the mean fluorescence intensity. Equations 42 and 43 reveal that measurements of 

CV2 and <FL> are sufficient to quantify burst size and burst frequency within a constant, 

which is only dependent on the translation rate and decay rates of mRNA and protein. 

Assuming these remain constant, while varying integration site or promoter sequence, an 

abundance dependent burst size and frequency trend can be directly resolved. 
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Chapter 8: Microwell device for tracking HIV gene-expression 

kinetics in primary cells 

!
This chapter was published in Razooky, B.S., Gutierrez, E., Terry, V.H., Spina, C.A., 

Groisman, A., and Weinberger, L.S. (2012). Microwell devices with finger-like channels 

for long-term imaging of HIV-1 expression kinetics in primary human lymphocytes. Lab 

Chip 12, 4305-4312.  The article can be found on Pubmed; 

http://www.ncbi.nlm.nih.gov/pubmed/22976503 

!

1. Introduction 

Time-lapse microscopy is a powerful quantitative technique in modern biomedical 

science and is increasingly used to probe dynamic processes in individual cells(Locke 

and Elowitz, 2009). Time-lapse fluorescence microscopy has been critical to the study of 

stochastic cell-fate decisions by enabling single-cell analysis and mapping of the gene-

regulatory circuits that control bacterial sporulation(Eldar et al., 2009), bacteriophage-# 

lysis-vs.-lysogeny(Zeng et al., 2010), and development of antibiotic persistence(Balaban, 

2011).  

A similar cell-fate decision occurs in human immunodeficiency virus type 1 (HIV-1), 

the causative agent of AIDS, as the virus undergoes a stochastic transition between active 

replication and proviral latency (a long-lived viral dormancy state)(Han et al., 2007; 

Singh and Weinberger, 2009; Weinberger et al., 2005). In seroconverted patients, HIV-1 

establishes a small reservoir of these latently infected cells. This reservoir is considered 

the largest obstacle thwarting eradication of HIV-1 from infected patients since 
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interruption of highly active antiretroviral therapy (HAART) allows for viral rebound 

from these reservoirs. Hence, mapping the genetic circuitry regulating HIV-1 latency is 

crucial to developing new therapies(Richman et al., 2009). Time-lapse fluorescence 

microscopy led to progress in mapping the HIV-1 latency circuit, making it possible to 

quantify single-cell viral-expression kinetics in immortalized tissue culture cell lines, 

such as Jurkat cells(Razooky and Weinberger, 2011; Weinberger et al., 2008a; 

Weinberger and Shenk, 2007). However, a major remaining challenge is to map the 

latency circuitry within primary CD4+ T lymphocytes isolated from patients, as it is these 

cells that are the physiologically relevant target for HIV-1 replication and latency in 

vivo(Siliciano and Greene, 2011).  

Single-cell time-lapse assays require tracking of individual cells many hours or even 

days, and to achieve statistical significance, large numbers of cells must be tracked in 

parallel, necessitating some degree of cell immobilization. High experimental throughput 

is relatively straightforward to achieve with adherent cells, which move relatively slowly, 

when plated at the bottom of a cell culture dish. However, for non-adherent or weakly 

adherent cells, such as T lymphocytes, which can be displaced by uncontrolled flow of 

the culture medium caused by convection or motion of the microscope stage, time-lapse 

microscopy becomes significantly more difficult. Uncontrolled displacements of non-

adherent and weakly adherent cells can be prevented by using substrates with microwells 

(Faley et al., 2008; Gong et al., 2010; Guldevall et al., 2010; Han et al., 2010; 

Khademhosseini et al., 2004; Li et al., 2004; Love et al., 2006; Ogunniyi et al., 2009), 

microfluidic devices with semi-permeable barriers (weirs), which also enable time-

controlled exchange of the medium(Deutsch et al., 2006; Kobel et al., 2010; 
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Schiffenbauer et al., 2009; Yang et al., 2011), or adhesive coatings, which have been 

successfully applied to immobilize Jurkat T cells for up to 30 hours (Razooky and 

Weinberger, 2011; Weinberger et al., 2005; Weinberger et al., 2008a).  

However, long-term tracking of primary human CD4+ T lymphocytes presents a set 

of specific challenges. When resting, CD4+ T lymphocytes are non-adherent suspension 

cells. Nevertheless, to support HIV-1 infection, viral replication, and reactivation from 

latency, primary CD4+ T lymphocytes must be activated, which is typically achieved by 

stimulation with small molecules (e.g., cytokines or anti-CD3 receptor cross-linking)(Han 

et al., 2007). As a result of this activation, T lymphocytes become weakly adherent, 

spontaneously attaching to and detaching from the substrate, and gain a capacity to 

rapidly migrate along the substrate while attached(Ridley et al., 2003; Volkov et al., 

1998). Importantly, the adhesion molecules, which reliably immobilize cultured T 

lymphocytes, prove to be inadequate for activated primary T lymphocytes.  With all the 

adhesive coatings we tested (including collagen, fibronectin, and Cell-Tak™), primary 

human T lymphocytes could only be immobilized and attached to the substrate for 2 – 3 

hours at best (unpublished results). Furthermore, unlike strongly adherent cells, activated 

T lymphocytes do not form confluent monolayers and do not acquire easily 

distinguishable shapes, making their motion difficult to track over a two-dimensional 

region of a substrate. Time-lapse microscopy of HIV-1 gene-expression in infected 

lymphocytes was demonstrated before in regular cover glass-bottom dishes(Saez-Cirion 

et al., 2006). However, very few cells were tracked and the duration of tracking was only 

~8 hrs(Saez-Cirion et al., 2006), much shorter than the 40 hrs duration of the life cycle of 

HIV-1 in an infected cell(Weinberger et al., 2008a). 
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Several microwell and microfluidic techniques of cell confinement and 

immobilization have been applied to experiments on lymphocytes. Arrays of microwells 

engraved on the surface of polydimethylsiloxane (PDMS) elastomer and sealed by glass 

slides have been used to analyze molecules secreted by individual lymphocytes(Gong et 

al., 2010; Han et al., 2010; Love et al., 2006; Ogunniyi et al., 2009; Thorslund et al., 

2008). Arrays of sealed microwells have also enabled tracking of lymphocytes in short-

term experiments (up to several hours)(Guldevall et al., 2010; Lindstrom et al., 2009; 

Ozawa et al., 2009; Schiffenbauer et al., 2009; Tokimitsu et al., 2007; Yamamura et al., 

2005). However, a sealed microwell limits the access of cells to fresh medium, and a low 

cell density in a microwell, while postponing depletion of the medium, limits cell-cell 

interactions that are physiologically important for T lymphocytes. So, when tracking of T 

lymphocytes in sealed microwells was extended to 2 days, it resulted in considerable cell 

loss (Guldevall et al., 2010). Microfluidic devices have been used to capture and count 

human T lymphocytes on substrates with various coatings(Thorslund et al., 2008). A 

microfluidic device with bucket-like (weir) structures has been used for capture and 

imaging of non-adherent T cells by exposing them to a steady hydrodynamic drag(Di 

Carlo et al., 2006a; Di Carlo et al., 2006b; Faley et al., 2008). However, maintaining 

good viability of primary T cells required careful adjustment of the flow rate(Faley et al., 

2008; Kobel et al., 2010). At an optimal flow rate, the 24 hrs viability was ~68% (and 

much lower at two-times faster or slower flow)(Faley et al., 2008), whereas experiments 

on HIV-1 latency require time-lapse microscopy over intervals longer than the HIV-1 life 

cycle of 40 hrs. Furthermore, while in vivo lymphocytes are exposed to hydrodynamic 

stress when circulating in the blood plasma, they migrate to lymph nodes within 30 
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minutes(Chen et al., 2002; von Andrian and Mempel, 2003). Therefore, for multi-day 

time-lapse microscopy of primary T lymphocytes, a static environment may provide a 

better emulation of the in vivo conditions than continuous perfusion.  

To circumvent these technical problems, we developed, built, and tested 

microfabricated devices, which enable easy loading of primary T lymphocytes into arrays 

of narrow and shallow microchannels that are dead-ended (Fig. 46). These finger-shaped 

microchannels restrict spontaneous migration of lymphocytes to a nearly one-

dimensional region, greatly facilitating their tracking. A single device has either 4 or 9 

separate round wells accessible to a pipette for cell loading, making it possible to test 4 to 

9 different cell lines or medium conditions in parallel. The devices were tested with 

activated primary CD4+ T lymphocytes, resting primary CD4+ T lymphocytes, and THP-

1 monocyte-macrophage cells, which all maintained viability over multiple days. As a 

further test of the devices, we performed long-term time-lapse microscopy of T 

lymphocytes that were infected with HIV-1 derived lentiviruses and expressed green 

fluorescent protein (GFP). We were able to track the GFP expression of a large number 

of individual T lymphocytes for ~60 hours, 20 hours longer than the HIV-1 life cycle.  
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Figure 46. The microfabricated device.  

(A) Schematic of a PDMS chip with a 212 array of 3.3 mm in diameter, 3 mm deep 
round wells. At the bottom of each round well there is a 214 array of 1001200 µm 
rectangular openings in a 100 µm thick layer of PDMS, forming microwells. At the 
bottom of each microwell there are finger-like horizontal extensions, 25125 µm in cross-
section and ~100-200 µm in length, forming cell-imaging channels. (B). Photographs of 
PDMS chips with 313 and 212 arrays of round wells. The microwells are visible at the 
bottom of the round wells. (C) Brightfield image of resting primary CD4+ T lymphocytes 
loaded into a microwell and the adjacent finger-like channels. (D) Loading of cells into 
finger-like channels. First, cells are loaded into a round well and allowed to settle onto 
the bottoms of the microwells by gravity. Then the device is tilted by 45° with the finger-
like channels pointing downward, making cells slide into the finger-like channels. Third, 
the normal orientation of the device is restored and it is carefully placed on the 
microscope stage. Originally published as Figure 1 in Razooky et al., Lab on a Chip, 
2012. Brandon Razooky, Alex Groisman and Leor Weinberger created this Figure.  
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2. Experimental 

2a. Design and operation of the devices  

The finger-like microchannels, which are the structures that ultimately “collect” the T 

lymphocytes for long-term imaging, are 25125 mm in cross-section and ~100-200 mm 

long. Seven parallel finger-like microchannels form a cluster connected to a single 

microwell. Each microwell is 200 mm in width, 100 mm in length, and 100 mm in depth 

(Fig. 46A). The bottom of the microchannels and microwell is formed by a regular #1.5 

microscope cover glass, making cells in the microchannels accessible to high-resolution 

microscopy. The top of the microwell opens to the bottom of a round well, which is 3.3 

mm in diameter and ~6 mm deep. The total volume of a round well is ~50 mL, and 

medium can be readily loaded into it and aspirated from it with a micropipette. A single 

round well has an array of 8 rectangular microwells at the bottom, and the 

microfabricated chips have round wells in either 3x3 (Fig. 46B, left) or 2x2 (Fig. 46B, 

right) square arrays, with each well connected to a total of 56 finger-like microchannels 

at the bottom.  

The three-level hierarchal structure of the devices facilitates loading of T 

lymphocytes into the dead-ended finger-like channels, where the low ceiling and small 

width limit the motion of cells in the vertical and lateral directions, hindering their ability 

to crawl past each other (Fig. 46C). To load T lymphocytes in the finger-like channels, 

they are pipetted directly into a round well and allowed to settle by gravity, first reaching 

the bottom of the round well and then the bottoms of the microwells (Fig. 46D, left). At 

this point (usually after 10–15 minutes), cells at the bottom of the round well are removed 

by repeated aspiration and dispensing of the medium with a micropipette. Importantly, 
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the aspiration and dispensing do not agitate cells at the bottom of the microwells, since 

these cells are shielded from flow of the medium by the microwell walls(Carvalho et al., 

2011). Next, the device is tilted at 45° in the direction of the finger-like channels (so that 

they point downward) and cells are allowed to slide into the finger-like channels by 

gravity (Fig. 46D, middle). Because of the small width of the microwells (100 mm), the 

sliding of cells from the bottom of the microwell into the finger-like channels only takes 

several seconds.  The horizontal orientation of the device is then restored (Fig. 46D, 

right), leaving cells in the finger-like channels.  

The footprint of the finger-like channels is nearly the same as the footprint of the 

microwell, making it simple to estimate the concentration of cells in the suspension 

loaded into the well that would result in an appropriate number of cells in the finger-like 

channels. Because the depth of the round wells is much greater that the diameter of a T 

lymphocyte (6 mm vs. 12 µm), a dense monolayer of cells at the microwell bottoms can 

be created using a relatively low number of cells in the suspension (~12106 cells per mL). 

Therefore complications that might arise from creating an excessively concentrated 

cellular suspension by centrifugation are avoided. Furthermore, loading of cells into the 

finger-like channels is nearly as simple as loading of cells into the regular multi-well 

plates and much simpler that loading of cells into microfluidic devices. Only ~50,000 

cells (and ~50 3L of medium) are required to fill all finger-like channels within a single 

round well. 

The volume of a round well is ~1000 times greater than the cumulative volume of all 

microwells (and finger-like channels) connected to it. Therefore, a round well represents 

a large reservoir of fresh medium for cells in microwells and finger-like channels. 
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Furthermore, due to the small depths of the microwells and small lengths of the finger-

like channels, the molecular diffusion between a round well and finger-like channels 

leads to efficient equilibration of the medium content around cells with the medium in the 

round well. A characteristic time of the diffusion can be estimated as , where 

! ! !"# µm is the cumulative distance from the bottom of a round well to the end of a 

finger-like channel, and  is the coefficient of diffusion. For small molecules, with 

 cm2/s, the value of  is ~60 s, indicating that, while the density of cells in the 

finger-like channels and at the bottom of the microwells may be very high (which is 

usually the case), the medium around cells is likely to be nearly identical to the fresh 

medium in the well (which does not have any cells in it). Moreover, the short medium 

equilibration time by diffusion implies that if the medium in the round well is exchanged, 

cells in the finger-like channels are rapidly exposed to the new medium, even without any 

active flow through the microwells and finger-like channels(Carvalho et al., 2011). Close 

proximity of the round wells (and the finger-like channels connected to them) limits the 

motion of the microscope stage to <12 mm along one dimension even with the 9-well 

device, making it possible to use high-resolution oil-immersion objectives and facilitating 

rapid scanning and high repeatability of the positioning.  

2b. Fabrication and loading of the devices  

Each microfluidic device consists of a microfabricated PDMS chip and a #1.5 

microscope cover glass sealing the chip. The 4-well and 9-well PDMS chips have 

footprints of 14114 and 19119 mm, respectively. Each chip is assembled of two parts. 

The first part is 6 mm thick with 3.3 mm diameter through-holes in an either 212 or 313 

array; the second part is 100 µm thick and has 200 3m long grooves with 25125 3m 

)2/(2 DL=!

D

5105 !"=D !



! %+'!

cross-section engraved on its surface (forming the finger-like channels) and 100x200 3m 

through-holes (forming the microwells; Fig. 46A). The 6 mm thick parts are cast of 

PDMS (Sylgard 184 by Dow Corning) using a master mold machined with a solid printer. 

To cast the 100 µm thick parts, a lithographically fabricated master mold is produced by 

spin-coating a silicon wafer with a 25 µm layer of a UV-curable epoxy (SU8-2015 by 

MicroChem), exposing it to UV-light through a photomask, spin-coating the wafer with a 

second layer of SU8 to a total thickness of 100 µm, exposing it to UV-light through 

another photomask, and developing the wafer.  

The master mold is spin-coated with an ~100 µm thick layer of PDMS pre-polymer, 

so that the upper surfaces of the 100 µm relief features remain exposed (PDMS-

free)(Kartalov et al., 2006), and the PDMS is cured by baking in an 80 °C oven. The 6 

mm thick PDMS parts are bonded to the 100 µm thick PDMS layer on the mold by 

treating their surfaces with oxygen plasma. The 100 µm layer is cut around the perimeter 

of the 6 mm thick parts and the two-part monolith PDMS chips are separated from the 

mold.  Each chip is reversibly bonded to a #1.5 microscope cover glass by overnight 

baking in an 80 °C oven forming a complete microfabricated device.  

Before loading cells into a device, the microwells and finger-like channels are filled 

with a pH 7.5 PBS buffer. To this end, the device is treated with oxygen plasma to make 

its surface hydrophilic, the round wells are filled with the buffer using a micropipette, the 

device is placed into a plastic bottle with the buffer, and the bottle is pressurized to ~5 psi 

for 10 min. This procedure results in bubble-free filling of the finger-like channels, likely 

due to a combination of the buffer wicking into voids with hydrophilic walls and the 
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excessive pressure in the bottle pushing the residual bubbles from the microwells and 

finger-like channels into the bulk of the porous PDMS chip.  

2c. Microscopy setup, cells and reagents  

Experiments were performed on a Zeiss Axiovert inverted fluorescence microscope 

equipped with a Yokagawa spinning disc, 488nm laser excitation light source, a 

CoolSNAP HQ2 14-bit camera from Photometrics, a computer controlled motorized stage, 

and environmental enclosure, maintaining a temperature of 37°C and a humidified 

atmosphere with 5% CO2.  In time-lapse experiments, images were captured every 10 

minutes, using a 40x oil, 1.3NA objective, 300ms exposure time, 10% power on a 50mW 

488nm solid-state laser, and analyzed as previously described(Weinberger et al., 2008a).  

CD4+ T Lymphocytes were isolated from patient blood using a negative selection 

method as previously described(Terry et al., 2009). Before infection experiments, cells 

were activated from the resting state for 48hrs using Dynabeads® Human T-Activator 

conjugated with anti-CD3/CD28 antibodies from Invitrogen.  Primary CD4+ T 

lymphocytes were cultured in RPMI 1640 supplemented with 5% Human Serum AB 

from GIBCO and 1% penicillin-streptomycin and kept at 11106 cells/mL.   THP-1 

monocytes were cultured in RPMI 1640 with 10% fetal calf serum, 1% penicillin-

streptomycin, and 0.05mM 2-mercaptoethanol and cultured at 21105 - 81105 cells/mL.  

Cell viability was tested with Yo-Pro®-1 Iodide (Life TechnologiesTM) as 

previously described(Faley et al., 2008). After isolation from peripheral blood (see 

above), primary cells were either placed in standard culture dishes or within the 

microwell device. At 24 hrs and 48 hrs time-points, ~100,000 cells from culture dishes 

were placed on a glass bottom slide and stained with Yo-Pro®-1. Within 10 min after 
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Yo-Pro®-1 addition, 4 images of cells in randomly selected areas were taken under 

brightfield and fluorescence illumination (with a FITC filter set), using a 10x 0.3NA 

objective. The total number of cells was 1800 at the 24 hr and 760 at the 48 hr time point. 

The percentage of dead cells was calculated by dividing the number of stained cells, as 

detected under the fluorescence illumination, by the total number of cells counted in the 

brightfield images. To evaluate the percentage of dead cells in the microwell device, Yo-

Pro®-1 was applied to two different microwells at 24 and 48hrs and the numbers of dead 

cells and all cells were counted in finger-like channels connected to 4 different 

microwells at each time point. The total number of cells was 270 at the 24hrs and 609 at 

the 48 hr time point. All p-values were calculated using the Student’s two-tailed t-test.  

Four lentiviral constructs (LTR-GFP, LTR-GFP-Tat, HIV&Gag-GFP, and full-

length HIV&Env-GFP)(Razooky and Weinberger, 2011) were packaged in 293FT cells as 

previously described(Razooky and Weinberger, 2011).  Viral preps were clarified and 

ultra-centrifuged at 18,000rpm at 18°C for 1.5hrs, then re-suspended in 200 µL of 

medium together with primary CD4+ T Lymphocytes.  Infections were performed at a 

high multiplicity of infection (MOI) in a 96-well plate, and the suspension of cells and 

viruses was loaded into the microwell device. Activated primary cells cultured using 

standard techniques were infected with the LTR-GFP-Tat construct and GFP 

fluorescence of 10,000 live cells was measured at 48hrs post infection by flow cytometry 

on a FACSCaliburTM DxP8 instrument.  
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3. Results  

3a. Primary cells loaded into the finger portion of the device are limited in mobility. 

Loading of the microwell device normally resulted in ~25 cells in each finger-like 

channel and less than a monolayer of cells at the bottoms of rectangular wells (cf. Fig. 

46C and 46C). To test for possible depletion of nutrients and accumulation of metabolites 

in the finger-like channels due to the high density of cells, we performed time-dependent 

numerical simulations in COMSOL (Fig. 48). The simulations indicated that medium 

conditions in the finger-like channels were substantially more favorable as compared to a 

monolayer cell culture in a dish (or multi-well plate). Because of relatively small total 

number of cells in the finger-like channels and large volume of medium in the circular 

wells, the depletion of nutrients (both low-molecular (Fig. 48A and 47C) and 

macromolecular (Fig. 48B and 47D)) in the finger-like channels was less severe than in 

the dish. Whereas, according to the simulations, concentrations of metabolites secreted by 

cells (especially those with low diffusivity) considerably varied along the finger-like 

channels, the average metabolite concentrations were several times lower than in the 

monolayer culture in a dish (Fig. 48, compare 47A to 47C, and 47B to 47D). Moreover, 

the oxygen permeability of PDMS is >5 times higher than water(Polinkovsky et al., 

2009), so medium in the finger-like channels was expected to be better aerated than 

medium at the bottom of the dish. 

The simulations suggested that cell viability would be maintained in the device since 

there would be no depletion of nutrients and sufficient oxygenation. We then 

experimentally checked the viability of resting primary CD4+ T lymphocytes with Yo-

Pro®-1 cell death stain. Resting primary CD4+ T lymphocytes were either cultured using 
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standard techniques (Fig. 47A, blue columns) or placed within the finger-like channels of 

the device (Fig. 47A, red columns). After 24 and 48hrs in the device cells were just as 

healthy as cells cultured using standard techniques (Fig. 47A).  To test if individual cells 

could be tracked over extended periods of time, we performed fluorescence time-lapse 

microscopy of CD4+ T lymphocytes infected with an HIV-1 lentivirus expressing GFP. A 

minority (less than 30%) of cells initially infected within the finger-like channels crawled 

out (Fig. 47B) over the duration of the experiment. The cells that stayed in the finger-like 

channels of the device were readily tracked since the 2-dimensional movement is 

restricted in the finger-like channels (Fig. 47C, traces). In contrast, cells at the bottom of 

the microwells (Fig. 47C, right of dashed lines) freely moved in two dimensions, making 

them difficult to track over extended time intervals. The time of detection of fluorescence 

(indicating the onset of GFP expression) varied between cells (Fig. 47D), reflecting 

inherent variability in the timing of their infection. In agreement with previous reports in 

Jurkat cells(Weinberger and Shenk, 2007), the GFP expression of infected cells rapidly 

increased during the first 10–15 hours after the onset and then reached a plateau (Fig. 

47D). 
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Figure 47. Primary human CD4+ T lymphocytes in the microfabricated device 
maintain viability and can be reliably tracked.  
 
(A) Cells placed within the finger-like channels of the device or in standard culture dishes 
were stained with Yo-Pro®-1 Iodide cell death stain after 24 and 48 hours. In the device, 
4.66 ± 2.01 % of cells stained positive after 24 hours, a statistically insignificant 
difference from the 5.36 ± 1.91 % positively stained cells in culture (p = .632). There was 
also no statistically significant difference in the number of dead cells in the device, 9.32 ± 
2.45, or in culture, 7.55 ± 1.60, after 48 hours (p = .279). Both p-values were calculated 
using the Student’s two-tailed t-test. (B) The percent of infected cells that stayed within 
the finger-like channels of the device (69%, blue portion) compared to the number of 
infected cells that moved out of the finger-like channels (31%, red portion) over the 
duration of the 60-hour experiment. (C) Fluorescence micrograph of activated primary 
human CD4+ T lymphocytes infected with a GFP-expressing HIV-1 virus at 26 hours 
post infection. Dashed outlines mark the sidewalls of the finger-like channels and colored 
tracks represent migration trajectories of individual cells over the course of a 60-hour 
imaging experiment. Random migration of cells in the finger-like channels is largely one-
dimensional, making it possible to reliably track cells over the entire 60 hours of the 
time-lapse experiment. Cells at the bottom of the microwell (large area to the right of the 
dashed outlines) move about freely in two-dimensions and are difficult to track. (D) The 
intensity of fluorescence of GFP in a cell vs. time for the six infected cells tracked in 
panel B. The average fluorescence signal (black line) shows that cells start expressing 



! %+-!

GFP at approximately 10 hours after infection. Originally published as Figure 2 in 
Razooky et al., Lab on a Chip, 2012. 
 
 
 

 

Figure 48. Results of numerical simulations on the diffusion and consumption of 
nutrients by cell culture at the bottom of a dish and in the microfabricated device.  
 
The color-coded plots show nutrient distributions after 24 hrs of cell culture under a 5 
mm deep layer of medium with an initial nutrient concentration of 100%. The legends, 
with concentrations in percents, are shown to the right of the corresponding distributions. 
(A) and (B) are two-dimensional simulations of cell culture at the bottom of a dish (~0.6 
mm wide fragment is shown). Cell culture is represented by a 25 3m thick layer at the 
bottom of the computational domain with a uniform reaction rate of -0.0579%/sec, 
corresponding to consumption of 25% of the nutrient within 24 hrs. The coefficient of 
diffusion of the nutrient is D1 = 500 3m2/sec in (A) and D2 = 50 3m2/sec in (B). (C) and 
(D) are simulations of cell culture in the microfabricated device. A circular well of the 
device is represented by a 5 mm tall, 1.17 mm in diameter cylinder; a microwell is 
represented by a 100 3m tall, 160 3m in diameter cylinder; the finger-like channels are 
represented by a 100 3m tall, 75 3m in diameter cylinder. The three-dimensional 
configuration of the device is reduced to a two-dimensional axisymmetric computational 
domain, along the radial, r, and vertical, z, axes of the three-cylinder structure. Cells at 
the bottom of the microwell of the device are represented by a 25 3m thick layer with a 
uniform reaction rate of -0.0579%/sec at the bottom of the 160 3m diameter cylinder; 
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cells in the finger-like channels are represented by the same uniform reaction rate all over 
the 75 3m diameter cylinder, corresponding to 4 layers of cells with the same density as 
in (A) and (B). The coefficient of diffusion of the nutrient is 500 3m2/sec in (C) and 50 
3m2/sec in (D). Originally published in supplemental information in Razooky et al., Lab 
on a Chip, 2012. Alex Groisman created this Figure. 

 

3b. Numerical simulations of consumption and diffusion of nutrients in the microwell 

device 

To test for variations in medium conditions in the microfabricated device, we 

numerically simulated the diffusion of nutrients in the device and their consumption by 

cultured cells. The goal of the simulation was to compare the medium conditions around 

cells in a finger-like channel of the device to cells at the bottom of a regular culture dish. 

The thickness of the medium layer was set at 5 mm for both the device and the dish. For 

the purpose of comparison, we chose a dish with a monolayer cell culture at the bottom, 

with a density of 1 cell per 64 3m2 (818 3m), and set the nutrient consumption rate at 

such a level that the monolayer culture consumes 25% of the initial content of the 5 mm 

layer of the medium within 24 hours. The cell culture at the bottom of the dish was 

represented by a 25 3m thick layer (thicker than lymphocyte diameter to avoid 

unnecessarily high density of the simulation mesh) with a reaction (consumption) rate of 

-25%15mm/25 3m/24 hrs or -0.0579%/sec. The initial concentration in the dish was set 

at 100%. The distributions of concentrations in a section of the dish after 24 hrs for a 

small-molecule nutrient, with a diffusion coefficient D1 = 500 3m2/sec (similar to that of 

glucose), and a macromolecule (protein), with a diffusion coefficient D2 = 50 3m2/sec 

(similar to that of albumin), are shown in Fig. 48A and 47B. As expected, the 

concentrations averaged over the bulk of the dish are 75% for both the small molecule 

and protein, but both concentration profiles are non-uniform and non-linear. Moreover, 
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the slower diffusion of the protein makes its distribution substantially less uniform, with 

concentration around the cells culture being as little as 32%, whereas it is ~70% for the 

small molecule nutrient.  

The simulation of the lymphocyte culture in the microfabricated device was built to 

incorporate the three-dimensionality of the device architecture, comprising the finger-like 

channels, microwells, and circular wells, without making the simulation excessively 

complex or heavy. To this end, a rectangular microwell of the device (1001200 3m in the 

cross-section) was represented in the simulation by a cylindrical microwell, with the 

same cross-section area (160 3m in diameter) and the same depth of 100 3m. Because a 

single 3.3 mm in diameter circular well of the device has 8 microwells at the bottom, the 

circular well was represented in the simulation by a cylinder with 1/8 of the cross-section 

of the circular well (1.17 mm in diameter) and the same depth of 5 mm. Finally, all 

finger-like channels connected to the microwell, with an integral cross-section area of 

4375 3m2, were represented by a single cylindrical microwell, with the same cross-

section area, corresponding to a 75 3m diameter, and the depth of 100 3m, equal to the 

length of the finger-like channels. The resulting simulation geometry, consisting of three 

co-axial cylinders, has the same connectivity and features with the same cross-section 

areas and lengths as their counterparts in the device, but is substantially easier to analyze 

and more simple to simulate, because of its axial symmetry. To represent cells remaining 

at the bottom of the microwell of the device after the finger-like channels are loaded, the 

160 3m diameter microwell of the computational domain has a 25 3m tall layer at the 

bottom with a nutrient consumption (reaction) rate of -0.0579%/sec, the same as for the 

monolayer of cells at the bottom of the simulated dish. In our experiments, a typical 
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number of lymphocytes in a finger-like channel was ~25. Given the finger-like channel 

cross-section of 25125 3m and the 818 3m footprint of a lymphocyte in the simulation of 

a monolayer in a dish, this number of lymphocytes per finger-like channel is equivalent 

to 2.6 layers of lymphocytes at the bottom of a dish. For our simulation, we set a uniform 

reaction rate of -0.0579%/sec in the 100 3m deep 75 3m diameter microwell 

(representing the finger-like channel), corresponding to 4 layers of lymphocytes or 39 

lymphocytes per finger-like channel, that can be considered as a safe upper limit.  

The results of the simulation of diffusion and consumption of a small molecule (D1 = 

500 3m2/sec ) in the model of the microfabricated device (Fig. 48C) indicate substantially 

more favorable cell culture conditions than in the model of a dish with the cell monolayer 

(Fig. 48A). Specifically, after 24 hours of culture, the nutrient concentration around cells 

in the finger-like channel is ~97% (Fig. 48C), as compared to ~70% in the culture dish 

model (Fig. 48A). The variation of concentration along the finger-like channel is only 

~1.5%, suggesting nearly uniform concentration of small molecules. For a model protein 

(D2 = 50 3m2/sec), the concentration varies more appreciably, from 88% at the beginning 

of the model finger-like channel (top of the 75 3m diameter cylinder) to 82% at its end 

(bottom of the cylinder). Nevertheless, those variations are relatively minor, and the 

mean concentration (85%) still compares favorably with that in the monolayer culture in 

a dish (32%). The simulation can be corrected for partial blocking of a finger-like 

channel by cells in it, resulting in an effective reduction of the diffusion coefficient. 

Nevertheless, given that the total volume of 25 lymphocytes, ~6,400 3m2, is ~10 times 

smaller than the volume of a finger-like channel (62,500 3m2), the reduction of the 
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effective diffusion is expected to be ~10%, with only a minor effect on the profile of 

concentration in the finger-like channel.  

Overall, the effects of depletion of both small-molecule and macromolecule nutrients 

are expected to be substantially weaker for cells in the finger-like channels (at 39 cells 

per channel) than for a cell monolayer at the bottom of a dish. According to our 

simulations (not shown), average concentration of small-molecule nutrient around cells in 

the finger-like channel at their typical population level is similar to that in a culture in a 

dish at a density of 1 cell per 640 3m2, which is 1/10 of a monolayer. For 

macromolecules, the ratio is smaller, ~1/4, but still favorable for cells in the finger-like 

channels of the microwell device. The variation of concentration along the finger-like 

channel is negligible for small molecules and small for macromolecules. The variation 

would be larger for a more rapidly metabolized protein (or a lower initial absolute 

concentration), e.g. between 75 and 65% across a finger-like channel, if a monolayer 

culture in a dish reduces the concentration of the protein within 24 hrs by 50% (rather 

than 25%). However, such culture conditions would be somewhat extreme and not 

directly applicable to the lymphocyte cultures and the media used in our experiments.  

The distributions of nutrients in Fig. 48 can be used to estimate distributions of 

molecules secreted (rather than consumed) by cells. If, in an analogy to the above 

discussion, we assume that for cells in a dish the average concentration of secreted 

molecules reaches 25% of some threshold value in 24 hrs, distributions of secreted 

molecules can be obtained from the distributions in Fig. 48 by subtracting these latter 

distributions from 100%. For small-molecules (metabolites and small signaling 

molecules) secreted by cells, this fact implies that their concentration around cells always 
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remains low (~2.5% after 24 hrs vs. ~30% for the dish culture; Fig. 48C vs. 47A). For 

secreted macromolecules with a representative diffusion coefficient of 50 3m2/sec, the 

mean concentration around cells in a finger-like channel is still substantially lower than 

in a dish, ~15% vs ~68%, but the concentration varies along the finger-like channel by as 

much as a factor of 1.5 (from 18% to 12%). Variations of concentration in the finger-like 

channel would be even greater for secreted molecules or particles with lower diffusivity, 

such as HIV viruses, with high concentrations accumulating at the dead end. 

If the length of the finger-like channels is increased to 200 3m, while the number of 

cells in them remains unchanged, the variations of concentrations of small-molecule 

nutrients along the finger-like channels still remain small, 98% at the beginning vs. 

96.8% at the end of the finger-like channel after 24 hrs. Gradients of small-molecule 

metabolites become substantial, with an ~1.6-fold change from the beginning to the end, 

but their absolute concentrations are still very low, at 2.6% on average. Gradients of 

protein nutrients (D2 = 50 3m2/sec) are more significant, with ~88% concentration at the 

beginning and ~76.5 % at the end, but their average concentration still compares 

favorably to that in the dish culture (~30%). For macromolecules with the same 

diffusivity secreted by cells, the variation of concentration is stronger, from 12% at the 

entrance to 23.5% at the end, corresponding to an almost two-fold change. But again, the 

average concentration of macromolecular metabolites compares favorably to that in the 

dish culture (68%). Further increase of the finger-like channel length or the number of 

cells in them would lead to even stronger gradients of macromolecular compounds that 

can be detrimental for the functionality of the device. 
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3c. Expression kinetics for HIV are dependent on the regulatory elements.  

We next compared the expression profiles for diverse HIV-1-derived lentiviral 

vectors encoding successively fewer HIV-1 regulatory and structural components and all 

encoding GFP as a reporter. These minimal synthetic lentiviral vectors are important 

controls. The comparison of their behavior with the behavior of the full-length virus 

reduces complexity to tractable levels and facilitates logical mapping of viral gene-

regulation circuitry(Franz et al., 2011; Razooky and Weinberger, 2011; Weinberger et al., 

2008a; Weinberger and Shenk, 2007). Four previously described viral 

constructs(Razooky and Weinberger, 2011) were used to infect activated primary CD4+ T 

lymphocytes in a 9 well device. Each infection was performed in duplicate in adjacent 

wells. The single remaining well was retained as an uninfected control to check cell 

viability and autofluorescence over the course of the experiment (Fig. 49A). Cellular 

autofluorescence does not influence the GFP signal since autofluorescence is 30-fold 

lower than GFP fluorescence even for the very dimmest cell tracked (autofluorescence is 

100-fold lower than the average GFP fluorescence from LTR-GFP-Tat expressing cells). 

A total of 59 cells were tracked for 60 hours, with at least 10 cells tracked for each 

lentiviral infection. Consistent with the results of the previous experiment (Fig. 48), cells 

within the finger-like channels could be reliably tracked, whereas tracking of cells at the 

bottom of the microwells was difficult due to their rapid two-dimensional migration. 

Cells that were infected within the finger-like channels tended to remain inside the 

finger-like channels for the duration of the experiment. 

Cells infected with the LTR-GFP construct consistently exhibited the lowest 

fluorescence levels (i.e. expressed the lowest levels of GFP; Fig. 49B, top), which is 
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likely because this vector only encodes the relatively weak HIV-1 long-terminal repeat 

(LTR) promoter element and no other HIV-1 transactivating genes. Cells infected with 

the LTR-GFP-Tat had the strongest GFP expression (Fig. 49B, second from top), most 

likely due to the HIV-1 positive-feedback loop in which the transactivator of transcription 

(Tat) increases expression from the HIV-1 LTR(Razooky and Weinberger, 2011; Singh et 

al., 2010a; Weinberger et al., 2005; Weinberger et al., 2008a). When averaged over an 

interval from 40 to 50 hours post infection, in which the fluorescence was changing in 

time relatively slowly, the levels of fluorescence per cell for cells infected with LTR-GFP, 

LTR-GFP-Tat, HIV-&Gag-GFP, and full length HIV-&Env-GFP were, respectively, 542 

± 117, 1605 ± 532, 1062 ± 156, and 932 ± 207. These values indicated that the GFP 

expression from LTR-GFP was significantly lower than from the other three constructs, 

whereas the differences between LTR-GFP-Tat, HIV-&Gag-GFP, and full length HIV-

&Env-GFP were statistically insignificant.  The rate and level of GFP expression from the 

three lentiviruses that contain the Tat positive feedback loop (LTR-GFP-Tat, HIV-&Gag-

GFP, and full length HIV&Env-GFP) were significantly higher throughout the duration of 

the experiment (Fig. 49C), in agreement with previous measurements of these lentiviral 

vectors in the immortalized Jurkat T Lymphocyte cell line(Weinberger et al., 2008a; 

Weinberger and Shenk, 2007).  To compare the behavior and function of the cells in the 

microwell device with standard bulk cell culture, cells in standard bulk culture were 

infected with the LTR-GFP-Tat lentiviral vector and 48hrs after infection fluorescence 

was measured by flow cytometry (Fig. 49D). The increase in GFP expression over 48hrs 

in bulk culture is ~130 fold over background autofluorescence which is equivalent to the 



! %,+!

increase in GFP expression for cells residing in the microwell finger-like channels 48hrs 

post infection (Fig. 49D). 

 

 

Figure 49. Single-cell gene-expression kinetics measured for primary human CD4+ 
T lymphocytes infected with four different HIV-1 viral constructs in a single 
experiment.  

(A) Experimental setup for the infection of activated primary CD4+ T lymphocytes in a 
313–well chip. Four previously described HIV-1 lentiviral constructs (LTR-GFP, LTR-
GFP-Tat, HIV-&Gag-GFP, and full-length construct HIV-&Env-GFP(Razooky and 
Weinberger, 2011)) were used to infect activated primary human CD4+ T lymphocytes. 
CD4+ T lymphocytes infected with each of the four constructs were loaded into two 
nearby wells for time-lapse imaging. One well was left for uninfected control cells. (B) 
Single-cell GFP intensity (arbitrary units) time traces over a 60-hour period for the four 
lentiviral constructs. Fluorescence signal (reflecting the level of GFP expression) is 
shown for at least 10 individual cells for each construct. Different cells are represented by 
time traces of different colors. Mean fluorescence intensity per cell is shown as bold 
black line. (C) The average time-lapse trace for each construct with error bars 
representing the standard error of the mean. The LTR-GFP (red with red error bars) 
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average is significantly lower in rate and level of GFP expression than the LTR-GFP-Tat 
(orange with orange error bars), HIV-&Gag-GFP (green with green error bars), and full-
length HIV-&Env-GFP  (blue with blue error bars) average traces. (D) Activated 
lymphocytes were infected with the LTR-GFP-Tat virus and measurements were taken 
48hrs post infection by flow cytometry. There is no statistically significant difference in 
the fold change in mean fluorescence for cells 48hrs post infection as measured by flow 
cytometry, 131 ± 7, or by microscopy in the device, 127 ± 35 (p = .769 as calculated by 
Student’s two-tailed t-test). Error bars represent the standard error of the mean. Originally 
published as Figure 3 in Razooky et al., Lab on a Chip, 2012. Brandon Razooky and Leor 
Weinberger created this Figure. 

 

4. Discussion and Conclusions 

The results of our pilot experiments demonstrate the utility of the proposed microwell 

devices with finger-like imaging channels, microwells, and pipette-accessible wells.  

These devices have enabled tracking the fluorescence of a large number of individual 

primary human CD4+ T lymphocytes over a time interval significantly exceeding the 40 

hrs life-cycle of HIV-1, thus providing a substantial improvement upon what was 

previously shown in either culture dishes(Saez-Cirion et al., 2006) or continuously 

perfused microfluidic devices(Faley et al., 2008). The proposed devices combine an 

important benefit of multi-well plates, the ease of cell loading, with a benefit of 

microfluidic devices, the confinement of cells to microfabricated channels with a 

diameter comparable with that of the cells. CD4+ T lymphocytes within the finger-like 

channels have access to a large reservoir of fresh medium in the round wells, and are in 

physical contact with each other, thereby allowing them to maintain their viability for 

multiple days. In addition, the device allows rapid and simple media exchange without 

displacement of cells.  The results of the analysis of cell trajectories from the finger-like 

channels vs. bottoms of the microwells indicate that the confinement of activated T 

lymphocytes to a nearly one-dimensional region in a finger-like channel is sufficient for 
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reliable cell tracking. Moreover, the finger-like channels appear to provide a nearly 

optimal degree of cell confinement for long-term imaging, because more aggressive 

confinement and immobilization of T lymphocytes (e.g., by placing them in small closed 

wells or pushing them against a semi-permeable barrier) might create less physiological 

conditions or even compromise T lymphocyte viability.  

 

The proposed devices have the potential to enable quantitative studies of kinetics of HIV-

1 infection and reactivation from latency with single-cell resolution. The devices can be 

readily expanded to include a larger number of the round wells (each with microwells and 

finger-like channels at the bottom), making it possible to test a larger number of medium 

conditions and different cell lines in a single experiment.  The proposed devices can also 

be modified and adapted to experiments on other non-adherent cells such as other 

leukocytes, hematopoietic stem cells, or yeast.  

 

 
!  



! %-.!

Chapter 9: Robustness in HIV decision-making 

1. Introduction 

When cells or viruses react to perturbation, the architecture of the responding signal 

transduction pathway or gene circuit shape the dynamic behavior and subsequent 

phenotype of the organism (Ferrell, 2002; Teng et al., 2012).  One feature of many 

circuits controlling fate decisions is cooperative feedback (Ferrell, 2002), which marks a 

clear transition from one fate to another through concentration thresholds (Gardner et al., 

2000).  However, these fate-determining circuits are susceptible to stochastic fluctuations 

in gene-expression that dictate the overall state, for an organism such as lambda phage, 

stochastic fluctuations can influence if the phage enters a lytic or lysogenic state (Cagatay 

et al., 2009; McAdams and Arkin, 1997; Suel et al., 2006).  In contrast to bistable circuits, 

some fate-determining systems, such as those found in HIV, and synthetic systems, lack 

bistability and utilize stochastic fluctuations to transition between fates (To and Maheshri, 

2010; Weinberger et al., 2005).  Intuitively, circuits relying on stochastic transitioning 

between fates would not be robustly commit fate-decisions.  Here we test if circuits that 

stochastically transition between fates can robustly commit to one fate, and if so, how is 

robustness achieved. 

  

To test if stochastic fate-determining circuits can robustly commit to fate 

decisions, we use the HIV-1 active-versus-latent fate decision as a model system to test if 

a previously described positive feedback motif contains sources of robustness (Razooky 

and Weinberger, 2011; Weinberger et al., 2005).  Upon infection of a CD4+ T 

lymphocyte, HIV-1 can either actively express viral genes and create viral progeny that 
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destroy the host cell, or enter a quiescent state of silenced gene-expression termed 

proviral latency (Siliciano and Greene, 2011).  The decision between active replication 

and latency is dependent on the availability of the viral transactivator of transcription, Tat, 

and stochastic fluctuations in the levels of Tat drive this decision making process 

(Weinberger et al., 2005).  HIV Tat forms a positive feedback loop on the HIV long 

terminal repeat (LTR) promoter, and this positive feedback loop lacks cooperativity 

(Weinberger and Shenk, 2007).  To test for robustness in HIV decision-making, HIV 

positive feedback was manipulated and (i) HIV fate, (ii) gene-expression kinetics, and 

(iii) steady-state output are followed.    

2. Results 

2a. Tuning Tat feedback to test for robustness in kinetics.  

We first tune Tat availability by fusing Tat to a controllable proteolysis tag, FKBP, 

in a minimal circuit decision-making model.  FKBP degradation is reversibly inhibited by 

a small molecule, Shield-1 (Banaszynski et al., 2006), allowing Tat half-life and positive-

feedback strength to be rapidly tuned.  The resulting Tat-FKBP translational-fusion 

cassette is encoded in a lentiviral vector driven by the HIV-1 long terminal repeat 

promoter (LTR), which also drives expression of a destabilized two hour half-life 

enhanced green fluorescent protein (GFP) (Li et al., 1998).  In the LTR-GFP-IRES-Tat-

FKBP (LGITF) viral vector, Tat-FKBP is actively degraded in the absence of Shield-1 

leaving little Tat to activate the LTR promoter (Fig. 50A, left).  However, upon Shield-1 

addition, Tat-FKBP is stabilized, generating sufficient levels of Tat to feedback and 

transactivate the LTR (Fig. 50A, right).  We first created and sorted a polyclonal 
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population (i.e. each cell contains a different integration site of the LGIT construct) of 

Jurkat cells stably transduced with this lentiviral construct (Jordan et al., 2001).  The cells 

were then exposed to variable concentrations of Shield-1 in a fixed concentration of 

either tumor necrosis factor alpha (TNF-!) (Fig. 50B) or trichostatin A (TSA) (Fig. 50C) 

to stimulate the LTR transcription and activate Tat positive feedback.  These molecules, 

although known potent inducers of HIV transcription (Dar et al., 2012), act through 

distinct mechanisms (Hayden and Ghosh, 2004a; Van Lint et al., 1996).  Strikingly, we 

find that expression kinetics from the HIV LTR is insensitive to variable Tat levels (Fig. 

50B and C).   
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Figure 50. Modulation of Tat positive feedback does not alter gene-expression 
kinetics from the HIV LTR.   

(A) The LGITF circuit expresses a single mRNA species, which is translated to produce 
GFP and Tat-FKBP.  In the absence of Shield-1, Tat-FKBP rapidly decays, leading to 
weak positive feedback (left).  Upon Shield-1 addition, FKBP mediated Tat degradation 
is blocked, and more Tat becomes available to feedback onto the LTR (right).  (B) and 
(C) Single-cell trajectories of a polyclonal population of Jurkat cells stably transduced 
with LGITF stimulated with TNF-! (B) or TSA (C) in the presence of 0nM (red), 50nM 
(blue), 200nM (green), or 500nM (black) Shield-1.  Error bars represent the standard 
error of the mean for at least 300 cells per condition.   

!

2b. Model of HIV positive feedback predicts that it rapidly saturates.  

To understand this behavior we adopted a previous mathematical model 

describing Tat positive feedback (Razooky and Weinberger, 2011).  To simplify the 
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model we assume quasi-steady-state mRNA levels, and describe the LGITF circuit with 

two differential equations that describe Tat and GFP expression respectively: 

!
!" !"# ! !!!"# ! !!!"#

!!!!"#
! !!"# ! !"#    (44) 

!
!" !"# ! !!!"# ! !!!"#

!!!!"#
! !!"# ! !"#    (45) 

where !!"# is the basal rate of transcription and translation of Tat, ! represents positive 

feedback strength, !!  is the saturation constant of the system, !!"# is the per capita death 

rate of Tat (which can be tuned), !!"#   is the basal rate of transcription and translation of 

GFP, and  !!"# is the per capita death rate of GFP.  Using Equations 44 and 45, we 

explored possible parameter regimes that could recapitulate the result of altering Tat half-

life without affecting GFP expression kinetics (Fig. 51A).  Two possibilities surface to 

explain the data.  The first is that !! >>!!!(Fig. 51A, bottom curves), which suggests 

positive feedback does not greatly contribute to expression level or kinetics expression 

and so expression is mostly dependent on the basal rates of transcription and translation, 

i.e. !!"#  and !!"# (Fig. 51A, bottom curves).  This regime is not physiologically relevant 

since Tat positive feedback is well-described (Weinberger et al., 2005) and can affect 

expression from the LTR up to 1000-fold (Jordan et al., 2001; Weinberger et al., 2005).  

The second possibility is that !! << !"#, and the Michaelis-Menten positive feedback 

term rapidly saturates (Fig. 51A, top curves).  Under the assumption of KM being small 

the new equations become: 

!
!" !"# ! !!!"# ! ! ! !!"# ! !"#    (46) 

!
!" !"# ! !!!"# ! ! ! !!"# ! !"#    (47) 
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and GFP kinetics no longer depend on Tat concentration, much like the observation in 

Fig. 50.  To verify that Tat positive feedback operates in the saturated regime, we 

performed additional experiments where Tat concentration, instead of being attenuated 

(Fig. 50), was increased significantly using a Tet-ON, doxycycline inducible system (Fig. 

51B) (Gossen and Bujard, 1992).  Cell lines were produced where Tat could be 

exogenously supplied upon doxycycline addition.  The cell lines were then transduced 

with a lentiviral vector encoding the LTR driving expression of the fluorescent protein 

mCherry, an IRES, and Tat-FKBP protein fusion product.  Therefore, the positive 

feedback loop could be exogenously perturbed upon doxycycline addition (Fig. 51B).  

The cells were exposed to TNF-! and varying concentrations of doxycycline, and single-

cell time-lapse microscopy was performed to follow expression kinetics from the HIV 

LTR.  Strikingly, despite large boluses of Tat, activation kinetics from the HIV LTR 

could not be modulated (Fig. 51C).  These data agree with the previously described 

assumption of saturated Tat positive feedback and suggest that this saturated feedback 

motif provides robustness in HIV gene-expression kinetics.     
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Figure 51. Tat positive feedback rapidly saturates upon induction and exogenous 
Tat addition does not alter expression kinetics.   

(A) ODE simulations of expression kinetics from the LTR for various Tat half-lives.  The 
half-life of Tat was varied 5-fold (light blue to dark blue).  Simulations were performed 
in conditions ranging from readily saturable (! >>!!!), intermediate (! =!!!), and 
weak/non-existent (!! >>!!) positive feedback.  (B) The Tet-TD + LChITF circuit 
supplements LChITF positive feedback with exogenous Tat through doxycycline addition.  
LChITF is analogous to the LGITF circuit but GFP is replaced with mCherry fluorescent 
protein.  (C) The mean of single-cell trajectories of Tet-TD + LChITF cells stimulated 
with TNF-! in the presence of 0.5 (red), 5 (blue), 50 (green), or 500 (black) ng/mL 
doxycycline.  Error bar representations were left out for readability but are shown in the 
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corresponding supplemental figure XYZ.  At least 800 single-cell trajectories were 
collected for each condition. 

   

  

There are additional testable predictions that stem from the saturated feedback 

model.  The isoclines from the analytical solutions to Equations 44 and 45 suggest that 

under situations where !! is very small, GFP steady-state values, ! !"# !, would be 

insensitive to Tat half-life (Fig. 52A).  If we assume saturation, the analytical solution to 

Equation 47 simplifies to one that no longer depends on Tat concentration: 

! !"# !!! !!!"#!!!!"#
   (48) 

Additionally, the ratio of two GFP steady-state values for two different Tat half-lives 

should be equal to one: 

!!"#!!"#!!!
!!"#!!"#!!!

! !   (49) 

We tested this prediction in activated primary CD4+ T lymphocytes, which are the 

primary target cells for HIV infection.  In agreement with the model, we find that stead-

state GFP values did not change despite altered Tat half-lives (Fig. 52B).    

  

Another testable prediction of the model is that in saturating feedback conditions, 

the ratio of two steady-state Tat concentrations should be equal to the ratio in the change 

of Tat-half-lives.  Isoclines of Tat steady-state concentration show that in the regime 

where !! is very small, the changes in Tat steady-state are linearly-dependent on Tat 

half-life (Fig. 52C).  This becomes obvious when one solves for the analytical solution to 

Equation 46 for a given Tat half-life: 
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! !"#!!"#!!! !! !
!!"#!!
!!"#!!!

  (50) 

where ! !"#!!"#!!! ! is the steady state Tat concentration and !!"#!!! is the half-life of 

Tat for that given condition.  The ratio of two-steady-state Tat concentrations for two 

different half-lives is given by:  

!!"#!!"#!!!!
!!"#!!"#!!!!

! ! !!"#!!!!!"#!!!
    (51) 

!!"#!!! ! !" !
!!

     (52) 

where !! is the half-life, then: 

!!"#!!"#!!!!
!!"#!!"#!!!!

! ! !!!!   (53) 

To test this we transduced activated primary CD4+ lymphocytes with the LTR-Tat-

Dendra-FKBP construct in the presence or absence of Shield-1.  Previously, we 

quantified the change in Tat half-life with and without Shield-1 and found that we could 

modulate it ~3.3 fold (Fig. 11).  Strikingly, the shift in expression-level between the 

Shield-1 and no Shield-1 cells in primary lymphocytes was only altered 3.6 ± 0.4 fold, 

showing that HIV positive feedback is saturated in activated lymphocytes (Fig. 52D). 
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Figure 52. Tat positive feedback saturation leads to steady-state robustness in LTR 
output rendering LTR activity relatively insensitive to variable Tat concentrations.   

(A) Isocline plot of normalized GFP steady-state values for different Tat half-lives (!!"#) 
versus the ratio of !!!!.  Outside of the bounds between ~0.5 and 5 of !!!!, GFP 
steady-state values become relatively insensitive to Tat half-life changes.  The plot was 
normalized by taking the minimum GFP value in each column of Km/alpha, which 
corresponds to the smallest !!"#, to express everything in terms of fold-changes.  (B) 
Histogram of GFP fluorescence of activated primary CD4+ T lymphocytes infected with 
LGITF in the presence and absence of Shield-1.  GFP median fluorescence value was 
taken from the ON population (inset).  (C) Isocline plot of normalized Tat steady-state 
values for different Tat half-lives (!!"#) versus the ratio of !!!!.  Outside of the bounds 
between ~0.5 and 5 of !!!!, Tat steady-state values begin to scale linearly with Tat 
half-life changes.  The plot was normalized by taking the minimum Tat value in each 
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column of Km/alpha, which corresponds to the smallest !!"#, to express everything in 
terms of fold-changes.  (D) Histogram of Dendra fluorescence for activated primary 
CD4+ T lymphocytes infected with LTDF in the presence and absence of Shield-1.  Fold 
change in median Dendra fluorescence was quantified for the ON cells (inset). 

 

2c. Transcriptional activators do not change the concentration at which Tat saturates.   

Since altering Tat concentrations did not affect GFP steady-state output or 

expression kinetics (Fig. 50-51), we next wanted to test Tat dosing would affect 

expression levels from the LTR in the absence of positive feedback (Fig. 53A).  Recall 

from Equation 47 that HIV expression is comprised of a Michaelis-Menten induction 

term ( !!!"#!!!!"#
! and basal rate term (!).  To understand how cells transition between a state 

dominated by ! to a transactivated state dominated by !!!"#!!!!"#
, we developed cell lines 

where Tat transactivation was decoupled from basal LTR expression. Cell lines were 

stably transduced with Tat-Dendra-FKBP under the control of the Tet-ON promoter.  In 

the same cells a single copy of LTR-mCherry was also transduced (Fig. 53A) 

(Weinberger et al., 2005).  In the absence of doxycycline, expression is only dependent 

on !.  However, upon induction with doxycycline, Tat can transactivate the LTR and 

expression will be equivalent to Equation 47.  The cell lines were exposed to varying 

concentrations of doxycycline and Shield-1 in the absence or the same concentration of 

TNF-!—96 conditions total (Fig. 53B).  If Tat reaches saturating concentrations, then 

there should be no observed fluorescence shift in the Tat Induced State (TIS) (Fig. 53B, 

right side of right two histograms).  For very low Tat concentrations as observed by 

Dendra fluorescence (i.e. low doxycycline concentrations), expression in the TIS does 

indeed shift, suggesting that sub-saturating concentrations of Tat are achievable (Fig. 
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53C).  However, these shifts only mark a small regime in the doxycycline-response curve, 

and Tat rapidly saturates upon further induction (Fig. 53C).  These effects are further 

exaggerated in the presence of TNF-! (Fig. 53C).  Importantly, although the TIS ceases 

to increase in fluorescence despite increasing Tat inputs, the percentage of cells entering 

the TIS is correlated with increasing Tat concentration (Fig. 53D).  Strikingly, despite 

unimodal Tat inputs (Fig. 53B, top histograms), and no observable shift in the TIS (Fig. 

53C), cells continue to enter the TIS state for increasing Tat concentrations (Fig. 53D).  

These results are analogous to reports of converting graded inputs into a binary response 

(Becskei et al., 2001).  

 

 



! &.&!

!

Figure 53. Tat transactivation converts graded inputs into binary responses by 
saturating the HIV LTR.   

(A) Circuit design to exogenously supply Tat onto the HIV LTR.  In the absence of 
doxycycline, the Tet-ON promoter is silent and Tat-Dendra-FKBP is unable to 
transactivate the LTR (left).  Upon addition of doxycycline and Shield-1, expression from 
the HIV LTR can be controlled through tunable binding of the rTta transactivator and 
Tat-Dendra-FKBP expression (right).  (B) Example probability density plots of an 
isoclonal cell line expressing the construct from (A) in the absence or presence of TNF-!.  
Each histogram in the Dendra and Cherry probability density plots represents a different 
combination of doxycycline and Shield-1 (48 conditions total).  Expression from the HIV 
LTR is broken down into a ‘Basal LTR State’, BLS, and a high expressing state termed 
‘Tat Induced State’, TIS, where the gray line represents the boundary and is different for 
each clone and shifts upon TNF-! addition.  (C) Plots of the Cherry Fluorescence of TIS 
versus Dendra fluorescence for four isoclonal populations in the presence (green squares) 
or absence (blue triangles) of TNF-!.  (D) Plots of the percentage of cells in the TIS 
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versus Dendra fluorescence for the same four isoclonal populations in the presence (green 
squares) or absence (blue triangles) of TNF-!. 

3. Discussion 

While Tat is obligate for HIV replication (Huang et al., 1994), there is only 

minimal evidence for how Tat influences decision-making (Donahue et al., 2013; 

Donahue et al., 2012), expression kinetics, and steady-state behavior (Razooky and 

Weinberger, 2011).  Here, we have provided a comprehensive study of Tat feedback 

circuitry by manipulating Tat inputs and half-life.  Surprisingly, HIV positive feedback 

displays three unique properties: (i) robustness in expression kinetics, (ii) robustness in 

steady-state output, and (iii) conversion of graded inputs into a binary response.  The 

three behaviors occur as a result of Tat positive feedback saturation.  Intriguingly, many 

simple feedback circuits could acquire these hallmark characteristics if they operated in 

the saturation regime.  These properties could be ideal in synthetic systems, where a 

certain portion of the circuit would be required to have absolute concentration robustness 

(Shinar and Feinberg, 2010).     

  

These results call attention to the potential pitfalls of the HIV shock and kill 

approach.  Stimulation of latently infected cells can lead to activation of Tat positive 

feedback and robust transitioning of the virus from the latent to actively replicating fate, 

however, the stochastic nature of latent reactivation suggests that stimulating 100% of 

latently infected cells would be extremely difficult.  Even under conditions where Tat 

was supplied exogenously in the presence of potent transcriptional activators of the LTR, 

sub-100% activation was observed (Fig. 52).  Since purging 100% of the latent reservoir 

is necessary for successful treatment, more efficacious intervention mechanisms are 
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necessary.  Additionally, these data implicate that possible targeting of Tat positive 

feedback to inhibit HIV replication would alter viral dynamics, not by slowing the kinetic 

rates of viral progression, but by modulating the fraction of infections that enter the 

active or latent state.  

 

 

!
 

!
Figure 54.  HIV decision-making as an early stochastic and late robust process.  

 
A population of cells infected with HIV will have a higher proportion of active infections 
dependent on the availability of Tat. The ratio of latent-to-active infections will scale 
inversely with Tat availability.  However, gene-expression dynamics and the steady-state 
output from the HIV LTR will be the same irrespective of varying Tat concentrations.   
!  



! &.)!

Chapter 10: Discussion on HIV latency 

1. The HIV latency problem and potential solutions   

Due to the prevailing notion that cellular state controls HIV latency, current therapeutic 

strategies aimed towards eradication of latently infected populations focus on activating 

cellular state to purge the virus from the latent reservoir (Deeks, 2012).  The ‘Shock and 

Kill’ approach has shown moderate success with HDACi’s (Archin et al., 2012), but 

previous attempts with cytokines such as IL-2, IL-7, and TNF-!, and other cell-state 

modifiers proved less fruitful (Ruelas and Greene, 2013).  These purging strategies may 

prove more efficacious if mechanisms to reactivate the latent provirus were also directed 

towards viral mechanisms that would stabilize expression from the LTR.  Perhaps a 

combinatorial approach attacking both cell state and viral circuitry would improve the 

effectiveness of these purging strategies.  

 

2. Rethinking HIV latency as a two-stage mechanism 

Contrary to current dogma, viruses encoding for two different fluorophores—expression 

of one fluorophore tracks latent infections, while expression of both fluorophores 

indicates active replication of the virus—have shown that HIV can enter the latent state 

immediately after infection (Calvanese et al., 2013; Dahabieh et al., 2013).  Previous 

hypotheses suggested that latency occurs only as cells transition from the activated to 

resting state (Siliciano and Greene, 2011).  Does the establishment of latency and 

maintenance of the latent state occur through fundamentally distinct mechanisms?  While 

interruption of Tat positive feedback is sufficient for entrance into the latent state 
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(Weinberger et al., 2005), the cellular based hypothesis of restrictive chromatin, 

suppressive methylation, promoter occlusion, and limiting cellular resources most likely 

stabilize and maintain the latent state (Siliciano and Greene, 2011).  This two-pronged 

mechanism could describe the disparate results in the attributed mechanisms of latency 

establishment because observation of a latently infected population immediately after 

infection or later on may yield different results.  It would be of interest to follow a latent 

population from the first moment of entrance into the latent state through to longer time 

points to test if the most optimal reactivation strategy may in fact change over time.  For 

example, activators of cellular state could destabilize the host-cell factors that stabilize 

latency to reawaken latent provirus, while activators of viral circuitry could inhibit the 

immediate establishment of a latent population.     
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