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ON A FEJÉR-RIESZ FACTORIZATION

OF GENERALIZED TRIGONOMETRIC POLYNOMIALS

TRYPHON T. GEORGIOU AND ANDERS LINDQUIST

Dedicated to Tyrone Duncan on his 80th birthday

ABSTRACT. Function theory on the unit disc proved key to a range of problems in statis-
tics, probability theory, signal processing literature, and applications, and in this, a special
place is occupied by trigonometric functions and the Fejér-Riesz theorem that non-negative
trigonometric polynomials can be expressed as the modulus of a polynomial of the same
degree evaluated on the unit circle. In the present note we consider a natural general-
ization of non-negative trigonometric polynomials that are matrix-valued with specified
non-trivial poles (i.e., other than at the origin or at infinity). We are interested in the corre-
sponding spectral factors and, specifically, we show that the factorization of trigonometric
polynomials can be carried out in complete analogy with the Fejér-Riesz theorem. The
affinity of the factorization with the Fejér-Riesz theorem and the contrast to classical spec-
tral factorization lies in the fact that the spectral factors have degree smaller than what
standard construction in factorization theory would suggest. We provide two juxtaposed
proofs of this fundamental theorem, albeit for the case of strict positivity, one that relies on
analytic interpolation theory and another that utilizes classical factorization theory based
on the Yacubovich-Popov-Kalman (YPK) positive-real lemma.

1. INTRODUCTION

The classical Fejér-Riesz theorem states [9, Section 1.12] that any nonnegative trigono-
metric polynomial in z,

p(eiθ) = Λ0 + 2

n−1∑

k=1

ak cos(kθ) + bk sin(kθ)

=:

n−1∑

k=−(n−1)

cke
ikθ
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for Λ0 ∈ R and Λ0 > 0, and ck = ak + ibk ∈ C, k ∈ {1, 2, . . . ,k− 1}, i.e., one such that

p(eiθ) > 0, for all θ ∈ [−π,π],

can be written as the square of the modulus of a polynomial

g(z) = g0 + g1z+ . . . + gn−1z
n−1

in z of equal degree, where z is on the unit circle, z = eiθ. The roots of g(z) in the Fejér-Riesz
factorization can be selected outside the unit disc [9, Section 1.12].

Our aim in this work is derive a natural generalization of the Fejér-Riesz factorization
that applies to matrix-valued para-conjugate Hermitian rational functions as stated below.
The statement is provided for positive generalized trigonometric polynomials while the
more general case will be dealt with in future work.

Theorem 1.1. Generalized Fejér-Riesz theorem: Let Λ be a Hermitian matrix in C
n×n,

(A,B) ∈ C
n×n ×C

n×m a reachable pair of matrices with B having rank m, and the spectrum of
A in the open unit disc, and let

(1) G(z) := (I − zA)−1B.

If

(2) p(z) = G(z)∗ΛG(z)

is positive definite for all z = eiθ with θ ∈ [0, 2π], then there exists a factorization

(3) p(z) = G(z)∗C∗

︸ ︷︷ ︸
V(z)∗

ΩCG(z)
︸ ︷︷ ︸
V(z)

,

for a unique pair (C,Ω), with C ∈ R
m×n and Ω ∈ S

m×m
+ satisfying

i) CB = I,

ii) Ω is a positive definite matrix,

iii) the polynomial det(V(z)), with V(z) := CG(z), has no root in the closed unit disc.

Thus, in the case of the Fejér-Riesz theorem, p(z) is of the form (2) with

Λ =

















Λ0 Λ1 . . . . . . Λn−1

Λ−1 Λ0 Λ1 Λn−2

... Λ−1 Λ0
. . .

...
...

. . .
. . . Λ1

Λn−1 . . . . . . Λ−1 Λ0

















,

having a Toeplitz structure and Λk = ck

n−k
∈ C for k ∈ {1, . . . ,n− 1}, while A = [Aij] is an

n × n companion matrix (Aij = 1 when j − i = 1 and zero otherwise), B = [1, 0, . . . , 0]′,
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and G(z) =
[

1, z, . . . , zn−1
]′

. Throughout ′ denotes “transposition”, and ∗ denotes

“complex conjugation and transposition” as well as “para-conjugation”1, i.e., G(z)∗ := G∗(z−1)

and, later on, the adjoint of linear operators. The statement of the Fejér-Riesz theorem

asserts that g(z) (which corresponds to
√
ΩV(z) in Theorem 1.1) satisfies

p(eiθ) = |g(eiθ)|2

in agreement with (3). Moreover, since the roots of the polynomial g(z) are in the comple-
ment of the unit disc, both g(z) as well as its inverse are analytic in the closed unit disc, in
agreement with Theorem 1.1.

In the matrix-valued setting of Theorem 1.1, the “zeros” of V(z), that consist of the
spectrum of V(z)−1, can be taken to be on the complement of the unit disc as stated.

Remark 1.1. At first glance it appears that Theorem 1.1 follows from standard factor-
ization theory for non-negative matrix-valued functions on the unit circle, based on the
positive real lemma, see, e.g., [13, Section 6], or [14]. However, upon closer examination,
standard spectral factorization results suggest that

G(z)∗ΛG(z) = (D+ zHG(z))∗(D + zHG(z))

where D + zHG(z) = D + zH(I− zA)−1B is a canonical spectral factor of degree n. Thus,
the main point of Theorem 1.1, and the link to the Fejér-Riesz factorization, rests on the
fact that there exists a matrix L such that the canonical spetral factor is

D+ zH(I − zA)−1B = L(I − zA)−1B

and hence, D = LB and H = LA. In the rest of the paper we will assert and derive these
identities in two different ways.

2. MOTIVATION AND NOTATION

Our interest in the type of generalized trigonometric polynomials that are introduced
and studied below, stems from the moment problem that seeks to characterize admissible
state covariances of linear dynamical systems. Specifically, consider the linear, discrete-
time dynamical system

xk+1 = Axk + Buk(4)

where xk ∈ C
n and uk ∈ C

m are stationary (possibly, complex-valued) Gaussian pro-
cesses, A,B is a reachable pair of matrices and the spectrum of A is contained in the open
unit disc. Thus, the corresponding matrix-valued kernel in (1), G(z) = (I − zA)−1B, is
analytic in the closed unit disc.

1The notation G∗(z−1) indicates transposition and conjugation taking place on the coefficients of G(z),
while z is replaced by z−1. Thereby, G(z)∗ |z=eiθ= G(eiθ)∗.
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If µuu(e
iθ) (θ ∈ [−π,π]) denotes the matrix-valued spectral measure of the (station-

ary) input process uk, then the state covariance is

R = E{xkx
′

k}

=

∫

[0,2π]

G(eiθ)dµuu(θ)G(eiθ)∗.(5)

The algebraic structure of stationary state covariances [5, 6] is dictated by the fact that
R ∈ range(Γ), with the map

Γ : dµ(θ) 7→ R =

∫

[0,2π]

G(eiθ)dµ(θ)G(eiθ)∗(6)

acting on Hermitian-valued measures on [0, 2π]; it turns out that

range(Γ) = {R ∈ C
n×n | R−ARA∗ = BX+ X∗B∗, for some X ∈ C

m×n}.(7)

In the converse direction, for any R ∈ range(Γ) ∩ S
n×n
+ , with S

n×n
+ the cone of Hermitian

n×n non-negative matrices, there exists a non-negative measure dµuu(θ) so that (5) holds
[5, 6].

In the special case when R > 0, a spectral measure that satisfies (5) can be selected to
be in the form (see [7])

(8) dµ(θ) = (G(eiθ)∗ΛG(eiθ))−1dθ.

This particular solution occupies a unique place amongst all solutions to (5), as it maxi-
mizes the entropy functional

∫

[0,2π]

log(det(µ̇(θ)))dθ,

with µ̇ denoting the almost everywhere defined derivative of µ. The matrix Λ that appears
in the moment problem described above show up as a Lagrange multiplier, see e.g., [8].
The generalized trigonometric polynomial

G(z)∗ΛG(z)

for z = eiθ, which appears as the denominator in (8) is the object of study at the present.
The adjoint map of Γ is

Γ∗ : Λ 7→ G(z)∗ΛG(z),

and therefore, Λ may always be taken to belong to range(Γ) = (null(Γ∗))⊥.

We note that the moment problem (5) lies in the center of a rather rich and timely
development in spectral analysis of vector-valued time series, e.g., see [10, 3, 4, 11, 16, 1,
12, 15] and the references therein.
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3. GEOMETRY AND FACTORIZATION OF NON-NEGATIVE TRIGONOMETRIC POLYNOMIALS

We continue with a key lemma of independent interest on the geometric structure of
the dual to a positive cone that is specified by algebraic constraints. The lemma implies
(Corollary 3.1) the existence of factorizations for matrix-valued non-negative generalized
trigonometric polynomials, i.e., of the form G(z)∗ΛG(z), for matrices Λ that may not nec-
essarily be non-negative definite.

3.1. Duality and linear structure. Let C to be a self-dual non-negative cone, i.e., this is a
subset of an inner product space S that which is closed under addition and multiplication
by non-negative scalars, and satisfies

C = Cdual.

Throughout Cdual denotes the dual cone which is defined by

Cdual := {Q ∈ S | 〈Q,P〉 > 0, ∀P ∈ C}.

Consider now a linear subspace S ⊂ S, and let ΠS denote the orthogonal projection onto
S. It is of interest to consider a subset of C whose elements are specified to satisfy linear
constraints. Specifically, we consider S ∩ C which is in itself a non-negative cone and its
dual, in S, is

(S ∩ C)dual = {Q ∈ S | 〈Q,P〉 > 0, ∀P ∈ S ∩ C}.

The following holds.

Lemma 3.1. (S ∩ C)dual = ΠSC.

Proof. First note that ΠSC ⊆ (S ∩ C)dual. To see this take a Λ = ΠSP ∈ ΠSC, with P ∈ C,
and for an arbitrary Q ∈ C ∩ S, observe that since ΠSQ = Q,

〈Λ,Q〉 = 〈ΠSP,Q〉 = 〈P,Q〉 > 0.

Thus, Λ ∈ (S ∩ C)dual. This proves this first claim.

In order to establish the reverse inclusion, (S ∩ C)dual ⊆ ΠSC, we prove instead the
equivalent containment S ∩ C ⊇ (ΠSC)

dual. To this end, consider an arbitrary element
Q ∈ (ΠSC)

dual. It is readily seen that besides Q ∈ S,

〈Q,ΠSP〉 > 0

for all P ∈ C. But ΠSQ = Q and therefore, 〈Q,P〉 > 0 for all P ∈ C. Since C is self dual,
Q ∈ C, which completes the proof. �
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3.2. Factorization of non-negative matrix polynomials. Our usage of the lemma will rest
on specializing to the case where

C = S+,

the space of non-negative n × n Hermitian matrices (throughout S denotes Hermitian
matrices), while the subspace

S = {R ∈ C
n×n | R−ARA∗ = BX+ X∗B∗, for some X ∈ C

m×n},

which is precisely the range of Γ , d‘d in Section 2. In this case, the adjoint operator to Γ is

Γ∗ : Λ ∈ S → G(z)∗ΛG(z),

and the orthogonal complement of its null space is of course rangel(Γ) = S. The following
result readily follows.

Proposition 3.1. Consider a generalized trigonometric polynomial G(z)∗ΛG(z), for some Λ ∈
S := range(Γ). The following are equivalent:

i) G(e−iθ)∗ΛG(eiθ) > 0 for all θ ∈ [−π,π].

ii) there exists an M ∈ S⊥ such that Λ+M > 0.

Proof. If ii) holds, since G(e−iθ)∗MG(eiθ) = 0 identically, then clearly

G(e−iθ)∗ΛG(eiθ) = G(e−iθ)∗(Λ +M)G(eiθ) > 0.

If i) holds, then by taking C = S+ and S as above and applying Lemma 3.1, ii) follows. �

Corollary 3.1. Consider a generalized trigonometric polynomial G(z)∗ΛG(z) such that

G(e−iθ)∗ΛG(eiθ) > 0, for all θ ∈ [−π,π].

There is an L = L∗ ∈ C
n×n such that

(9) p(z) = G(z)∗L∗LG(z).

While the above theory implies the existence of factorizations, we note however that
it provides no immediate information on the zero-structure of LG(z).

4. 1ST PROOF OF THEOREM 1.1

We begin by observing that since G(z)∗ΛG(z) > 0 is rational and non-singular every-
where on the unit circle, then (G(eiθ)∗ΛG(eiθ))−1 > 0 and integrable on the unit circle.
Thus, taking

(10) dµ(θ) = (G(eiθ)∗ΛG(eiθ))−1dθ,
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we compute

(11) R =

∫

[0,2π]

G(eiθ)dµ(θ)G(eiθ)∗,

which is Hermitian and positive definite. We proceed to utilize some of the results in [6]
on solutions to the matricial moment problem (11).

The minimizer

C = argminX{trace (XRX
∗) | XB = I,X ∈ C

m×n},

is obtained explicitely in the form

C = (B∗R−1B)−1B∗R−1.

Now set

Ω̄ = CRC∗

= (B∗R−1B)−1, and

V(z) = CG(z).

Then,
V(z)−1 = I− zCA(I− z(A − BCA))−1B,

and has no poles on the closed unit disc due to the fact that the state matrix (A − BCA)

satisfies the Lyapunov equation

R = BΩ̄B∗ + (A − BCA)R(A − BCA)∗.

It is shown in [6, Theorem 1] and [7, Theorem 1], that the unique maximizer of the
strictly concave entropy functional

∫π

−π

log det (µ̇(θ)) dθ,

subject to the moment constraint (11), is of the form (10), i.e.,

dµ(θ) = (G(eiθ)∗QG(eiθ))−1dθ,

where the parameter Q arises as the Lagrange multiplier for the constraint. Thus, it must
be that Q = Λ+M, M ∈ null(Γ∗))⊥. Moreover, it is shown that this unique maximizer is

dµ(θ) =
(

V(eiθ)−1Ω̄(V(eiθ)−1)∗
)

dθ

=
(

(CG(eiθ))∗Ω̄−1CG(eiθ)
)−1

dθ.

Hence, we recover the form claimed in Theorem 1.1, namely, that

G(eiθ))∗ΛG(eiθ) = G(eiθ))∗QG(eiθ)

= G(z)∗C∗

︸ ︷︷ ︸
V(z)∗

ΩCG(z)
︸ ︷︷ ︸
V(z)
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for Q = C∗ΩC and Ω = Ω̄−1. Conditions i) and iii) hold. Uniqueness in ii) follows since,
by [6, Theorem 1], the maximizer of the entropy functional is of the required form. 2

5. 2ND PROOF OF THEOREM 1.1

By Proposition 3.1 there is an L ∈ C
n×n such that

(12) p(z) = G(z)∗L∗LG(z) = W(z)W(z)∗,

where W(z) := G(z)∗L∗ is given by

W(z) = zB∗(zI−A∗)−1L∗ = B∗(zI −A∗ +A∗)(zI−A∗)−1L∗

= B∗A∗(zI−A∗)−1L∗ + B∗L∗,(13)

which is an m × n stable spectral factor of p(z). Since thus p(z) is para-Hermitian, it is a
spectral density, so there is additive decomposition

(14) p(z) = F(z) + F(z)∗,

where F(z) is an m×m positive real function with the structure

(15) F(z) = 1
2
Λ0 + B∗A∗(zI−A∗)−1B̄,

where (A∗, B̄) is a reachable pair [13, p. 199]. In fact, by the Positive Real Lemma [13,
Theorem 6.7.4], F(z) is positive real if and only if there is a symmetric n × n matrix P,
which will be positive definite, such that

(16) M(P) :=

[

P −A∗PA B̄−A∗PAB

B̄∗ − B∗A∗PA Λ0 − BA∗PAB

]

> 0,

in terms of which

(17) p(z) =
[

B∗A∗(zI−A∗)−1 I
]

M(P)

[

(z−1I−A)−1AB

I

]

.

In view of (16) there is a rank factorization

(18) M(P) =

[

K∗

D∗

]

[

K D
]

yielding via (17) the spectral factor

(19) W(z) = B∗A∗(zI−A∗)−1K∗ +D∗.

There is one such spectral factor for each P satisfying (16) [13, Section 6.7.1].

Now, for the proof of Theorem 1.1, we need the m×m outer spectral factor

(20) W−(z) = B∗A∗(zI−A∗)−1K∗

− +D∗

−,
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which corresponds to P = P− having the property that P− 6 P for all P satisfying (16). The
positive definite matrix P− is the stabilizing solution of of the Algebraic Riccati Equation

(21) P = A∗PA + (B̄∗ − B∗A∗P)(Λ0 − B∗A∗PAB)−1(B̄∗ − B∗A∗P)∗,

which can be obtained as the limit

(22) P− = lim
k→∞

Pk

of the sequence obtained from the matrix Riccati equation

(23) Pk+1 = A∗PkA + (B̄∗ − B∗A∗Pk)(Λ0 − B∗A∗PkAB)−1(B̄∗ − B∗A∗Pk)
∗, P0 = 0

[13, p. 470]. The stable spectral factor (20) is outer and has all its zeros in the open unit
disc.

Let us first consider the special case when the matrix A is nonsingular. Then G(0) = B

and G∗(0) = 0, so p(0) = 0. Hence W−(0) = 0 as well, so it follows from (20) that

(24) D− = K−B.

Then reversing the calculation leading to (13) implies that

(25) W−(z) = zB∗(zI−A∗)−1K∗

−.

Moreover,

M(P) =

[

I

B∗

]

K∗

−K−

[

I B
]

,

which yields in turn

P− = A∗P−A+ K∗

−K−(26a)

B̄∗ = B∗A∗P−A+ B∗K∗

−K− = B∗P−(26b)

Λ0 = B∗A∗P−AB+ B∗K∗

−K−B = B∗PB = B̄∗B.(26c)

Then introduce matrices C ∈ R
m×n and Ω ∈ R

m×m such that

C∗ΩC = K∗

−K− and CB = I.

Then B∗K∗
−K−B = B∗C∗ΩCB = Ω, so, by (26a) and (26c),

(27) Ω = Λ0 − B∗A∗P−AB,

which is the unique Ω in the theorem, and

(28) C∗ΩC = P− −A∗P−A.

Clearly C is uniquely defined. Consequently, since W−(z) = G(z)∗K∗
−, it follows from (25)

that

(29) CG(z) = C(I− zA)−1B,

which has all its zeros in the complement of the unit disc, since W−(z) is outer.
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Next, consider the general case when A might be singular. Then it folllows from (20)
and (13) that

(30a) W−(z) = zB∗(zI−A∗)−1K∗

− + Ψ,

where

(30b) Ψ = D− − B∗K∗

−,

which, via (18), is a continuous function of P−. Now, for ε > 0, consider the positive real
function

(31) Fε(z) =
1
2
Λ0 + B∗(A + εI)∗(zI− (A + εI)∗)−1B̄,

which, by the procedure above for nonsingular A, corresponds to the spectral factor

(32) Wε(z) = zB∗(zI −A∗)−1K∗

ε + Ψε,

with Pε the stabilizing solution of the corresponding algebraic Riccati equation. From [2]

we have2 that Pε is continuous in ε, and hence so is also Ψε. However, since A + εI is
nonsingular, Ψε = 0 for ε > 0, and hence the limit Ψ0 is zero as well, yielding (25).
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