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Abstract

The Accelerating Universe, the Landscape, and the Swampland
by
Chien-I Chiang
Doctor of Philosophy in Physics
University of California, Berkeley

Professor Hitoshi Murayama, Chair

The accelerating expansion of the universe is a portal for us to understand the physics
at the very fundamental level. It’s a phenomena that is apparently IR but intrinsically
UV. In this dissertation we investigate various aspects of the accelerating universe in the
context of the string landscape and swampland. In the first part of the dissertation, we
investigate if the observed small and nearly scale-invariant primordial cosmic perturbation is
typical in the landscape of vacua after imposing anthropic selections on them. We propose a
scenario that combines new-inflation-type models with the landscape, in which our universe
had been trapped at a meta-stable vacuum and underwent a precedent inflation. We argue
that the initial inflaton field value is typically non-zero because of the quantum fluctuation
created during the precedent inflation. Imposing anthropic constraint on the initial condition,
together with certain distributions of inflation model parameters that are physically well-
motivated, makes the observed small and nearly scale-invariant spectrum typical. In a latter
part of the dissertation, we discuss the quintessence model building in supergravity, in light
of the recently proposed de Sitter swampland conjecture. Particularly, the conjecture claims
that the scalar potential V' in any consistent theory of quantum gravity should satisfy the
constraint |[VV| > ¢V where ¢ is a positive number of order one. If true, positive cosmological
constant (even metastable one) cannot be obtained in string theory and dark energy needs
to be described by an evolving scalar field, i.e. quintessence, within supergravity. We
demonstrate that by imposing a shift symmetry on the Kahler potential, one can embed any
quintessence models into supergravity while avoiding the fifth force constraint and protecting
the flatness of the quintessence potential from supersymmetry breaking, which are the two
main obstacles when constructing quintessence models in supergravity. In addition, the
small energy scale of quintessence is technically natural in this setup. In the last part of
the dissertation, we discuss the phenomenological implications of swampland conjectures on
both inflation and dark energy, using the fact that the conjectures are universal throughout
the whole field space. We show that the refined de Sitter conjecture, along with multi-field
inflation, opens up the opportunity for observations to determine if the dark energy equation
of state deviates from that of a cosmological constant.
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Chapter 1

Introduction

The main theme of this dissertation is about the accelerating expansion of the universe.
In 1998, through supernovae observations, it was discovered that our universe is currently
expanding at an increasing rate [196, 201]. Because gravitational interaction dominates the
dynamics at the large scale and ordinary matter only attracts each other gravitationally,
such accelerating expansion cries for new physics. The exotic matter or field that drives
the accelerating expansion is often called dark energy. Despite more than two decades of
active research, it is fair to say that we still do not fully understand the nature of dark
energy. Particularly, even though adding a positive cosmological constant to Einstein’s
equation can help fitting the data, its minuscule value compared to the naive expectation
from quantum theory, an 120 orders of magnitude difference, still remains an open challenge
for physicists. On the other hand, mainly motivated by the difficulties of constructing de
Sitter spacetime solution in string theory with fully controllable calculations, recently the
de Sitter swampland conjecture has been proposed. Such conjecture forbids cosmological
constant as an explanation for the current accelerating expanding universe, and a slow-
rolling canonical scalar field minimally coupled to gravity, dubbed quintessence, may be the
most economical alternative. Half of this dissertation will be devoted to the discussion of
quintessence model-building in supergravity, the low energy effective field theory of string
theory, and the phenomenological implications of de Sitter swampland conjecture.

In addition to the current accelerating expansion, observational evidences also support
the idea that the universe underwent a much rapid accelerating expansion in the primordial
era, called inflation. The inflationary paradigm not only explain the horizon and flatness
problems,; 7.e. why two regions in the universe that seemingly do not have causal contact
can have similar temperature and why the current universe is spatially flat, it also elegantly
explains the approximately scale-invariant power spectrum of the primordial perturbation
seen in the cosmic microwave background. But similar to dark energy, even though we
have very successful phenomenological models for inflation, its physical nature is yet to be
understood. In addition, we will argue that so far there are no completely satisfactory
explanation for the values of the observed primordial scalar perturbation amplitude and
spectral index. In many models, the observed perturbation amplitude is used to fix other
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model parameters, instead of being a prediction of the model. On the other hand, even
though inflation generically predicts an approximately scale-invariant spectrum, to reach
the observed value of scalar perturbation spectral index, one either needs to go to a realm
where the effective field theory may not be controllable, or resort to fine-tuning. In Chapter
we will show that by incorporating anthropic principle with conventional model-building,
these issues can be largely ameliorated.

In this chapter, we will first give a review of accelerating expanding spacetime and the
generation of primordial perturbation from inflation. This paves the road toward our work
in Chapter 2] In the second part of the introduction we will give a brief review on swampland
conjectures, which are proposed criteria that determine if a low energy effective field theory
can be UV completed into a consistent theory of quantum gravity. Different swampland
conjectures are often interwoven with one another and can have strong phenomenological
implications on model-buildings which we will explore in Chapter [3] and [4l

1.1 Accelerating Expanding Universe

One of the main pillars of modern cosmology is the homogeneity and isotropy of the
universe at the very large scale. This means that at such scale the background spacetime
can be described by the Friedmann-Robertson-Walker metric of the form

ds® = —dt* + a®(t)dz’. (1.1)

where t is the physical time coordinate and x are the spatial comoving coordinates. The
expansion of the universe is described by the evolution of the scale factor a(t). For the matter
contents, at the large scale they can be approximated as a perfect fluid, characterized by
their energy density p and isotropic pressure P, with energy-momentum tensor 7}, of the
form

T = (p+ P)UU, + Pgpu. (1.2)

where U* is the 4-velocity of the fluid and U* = (1,0,0,0) in the comoving frame. With the
above form of spacetime ansatz and energy-momentum tensor, one can obtain the Friedmann
equations that determine the evolution of the background spacetime,

_ 8rG

a 4nG
5 = _T (p+3P) (1.4)

where H = a/a is the Hubble parameter and G is the Newton’s constant. In many cosmo-
logically interesting models, the equation of state P(p) can be parametrized by the equation
of state parameter w defined as

w=—. (1.5)
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From Eq. one can see that an accelerating expansion requires an equation of state
parameter w < —1/3, which is quite abnormal. For example, if one has a tank of exotic
gas with a negative equation of state parameter, the gas will heat up if its volume expands,
unlike ordinary gas which would cool down.

As bizarre as it is, there is actually a simple way to achieve negative w. In particular,
one can add a cosmological constant A to the Einstein Hilbert action,

- 1 1 4
Sgn + Sy = 167TG/V gR R d*x+/ gA, (16)

where the cosmological constant term yields an energy-momentum tensor that is proportional

to the metric g, itself
2 0S5y A
T, =— ~ = — G- (1.7)
V—gogt 811G
This means the pressure of cosmological constant is equal to its energy density but with
opposite sign,

Py = —pa, (1.8)

i.e. w = —1 for a cosmological constant, which satisfies the criteria w < —1/3 to drive an
accelerating expansion.

Another possible way to drive an accelerating expansion is to consider a canonical scalar
field with a flat enough potential. Namely, consider the action of a scalar field ¢

Sp = /d“x\/—_g [—%(%05’”90 — V(w)} : (1.9)

which gives a energy-momentum tensor

1
T, = 0,00, + {—ﬁaugoa*%p — V((p)} G- (1.10)

Assuming the scalar field is spatially uniform ¢ = ¢(), this yields an equation of state
parameter

P3¢ =Vl(p)
w=— = 1.2—,
p 32+ V()
where the dot on ¢ denotes derivative with respect to time. We see that if the potential is
flat enough such that the field is rolling slowly, i.e. $? < V, then w ~ —1. In addition, cos-
mological constant can be thought of as a spatially homogeneous constant potential energy.
If the scalar field is settled at a minima such that ¢ = 0, then the constant potential energy
yields an equation of state parameter w = —1.

One natural contribution to the cosmological constant is the vacuum energy. Naively,
the vacuum energy originates from the quantum mechanical ground states. For a quantum
harmonic oscillator, the ground state has an energy fuw/2. A quantum field can be decom-
posed into infinitely many momentum modes each acts like a quantum harmonic oscillator.

(1.11)
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The vacuum energy is then the sum of the ground state energy of these momentum modes
which is apparently infinite if one includes modes with infinitely large momentum. However,
given an effective field theory, it is only valid up to a cutoff scale. For a theory involv-
ing gravity, the natural cutoff scale is the Planck scale, given by the reduced Planck mass
Mp, = 1/V/87G ~ 10™® GeV. By simple dimensional analysis, the vacuum energy density is
then, in natural unit, expected to be pyae ~ M2,.

On the other hand, even though a cosmological constant can phenomenologically explain
the current accelerating expansion of the universe, its observed value, in terms of energy
density, is about py ~ 107129M%,. The 120 orders of magnitude difference between py,. and
pa remains one of the biggest mystery and challenge for physicists. The challenge actually
has two folds. First off, the vacuum energy py.. is only one kind of contribution to py. There
might be other contributions, such as the classical potential energy of a scalar field. However,
the fact that py.. itself already exceeds p, means that there might be some other negative
contributions that result in a large cancellation, or the naive picture is just completely
wrong. For the first scenario, one may invoke supersymmetry, where every bosonic field
has a fermionic superparter and vice versa. While bosonic fields contribute positive vacuum
energy, fermionic fields contribute negative ones and if supersymmetry is unbroken the two
kinds of contribution will exactly cancel. However, this is only true for global supersymmetry.
In theories involve gravity, supersymmetry needs to be gauged and one requires supergravity.
In supergravity, at the classical level, the vacuum energy density is actually negative when
supersymmetry is unbroken. This problem may be resolved by uplifting the negative vacuum
energy with supersymmetry breaking. Yet, even if one manages to make py,. ~ 0, we still
face the second challenge where p, is not exactly 0 but a minuscule value comparing to any
other scale in physics. In sum, the challenge has two aspects. The first is to make pya. ~ 0;
the second is to explain why py ~ 10712°M2, which seems to require extreme fine-tuning.
Both of these problems are extremely challenging and it is very likely that a satisfactory
answer will not be found until we have a full-fledged quantum theory of gravity and fully
understand the nature of spacetime and vacuum.

Instead of adopting cosmological constant to explain the accelerating expansion, as
we mentioned above, another economical alternative is to consider a scalar field @ called
quintessence that is minimally coupled to gravity. In such setting, the problem is then
phrased as why pyac ~ 0 and why pg, the energy density of the quintessence, is about
10712902, Later when we discuss quintessence model building in supergravity, we do not
attempt to tackle this challenging problem fully. Since the nature of py,. most likely requires
a full treatment of quantum gravity, our working philosophy is to assume that py,. = 0 a pri-
ori and the energy density of dark energy is provided by the quintessence field. We argue that
in models with shift symmetry, the smallness of quintessence energy density is technically
natural. Namely, when its value is exactly zero, the shift symmetry is fully restored.
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1.2 Inflation and the Primordial Perturbation

In this section we give a brief review on inflation and the primordial perturbation gen-
erated by inflaton. Our treatment follows two excellent lecture notes by Baumann [37] and
Senatore [205)].

When we look into the sky, the temperature of the cosmic microwave background (CMB)
is strikingly uniform. The fact the universe is so big such that different parts of the universe
did not have causal contact in the past makes us wonder why the current universe and the
temperature of the CMB can be such uniform. It turns out that if the universe underwent
a much rapid accelerating expansion in the primordial era, called inflation, we not only can
explain the homogeneity of the universe, we can even further explain the tiny inhomogeneity,
0T /T ~ 107° in terms of CMB temperature, present in the universe.

Comoving Scale
(log k')

Horizon Horizon
Exit Re-entry matter

/ \ dominant
\ ']

{ Inflation’

“1 | last scattering (CMB) ) ln a

Figure 1.1: Evolution of comoving horizon and the horizon exit/re-entry of a comoving mode.

The essence of the inflationary paradigm can be encapsulated in Figure [1.1] If we start
from present and go back with time, the comoving mode corresponding to the current cos-
mological scale was outside the comoving horizon, which means two parts of the universe
that are presently separated by a distance of cosmological scale did not have causal contact
in the past. Because during both matter and radiation dominant era the comoving horizon
shrinks if we go back in time, there is no way for the comoving mode to be in casual con-
tact before and the homogeneity of the CMB temperature cannot be explained. The key
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of the inflationary paradigm is to have a phase of accelerating expansion during which the
comoving horizon expands if we go back in time, and therefore the comoving mode can be
inside the comoving horizon in the far past. In other words, if we start from the far past and
go forward in time, the comoving mode of the present cosmological scale was far inside the
horizon at the beginning, which explains the homogeneity of current universe. In addition,
the comoving modes of the inflaton underwent quantum fluctuations until the mode exited
the horizon and froze. The frozen fluctuation thawed when the comoving mode re-enter the
horizon and served as the “initial condition” for late-time fluctuation which later on formed
into structures we see today. Because the fluctuation was originally frozen, different modes
of the same wavelength started to oscillate in the same phase after horizon re-entry. Without
this, one cannot obtain the clear peaks and troughs seen in the CMB spectrum [98]. In below
we will derive the amplitude of the primordial inflaton fluctuation and its spectral index,
whose observed values are one of the main focus of this dissertation.

Over the decades, various inflationary models have been proposed. But the main feature
of the inflationary paradigm can be described by a single inflaton field ¢ with a flat potential.
The flatness of the potential is characterized by two potential slow-roll parameters

M2 V/ M2 V//
ey = L2 (—) , ny = —L—. (1.12)

2 V V

where the primes denote derivative with respect to the inflaton ¢. The action of the inflaton
is obtained by minimally coupling it to gravity,

5= [ atov=g ng 60,6 —V(6)|. (1.13)

As we mentioned in the previous section, when a scalar field such as inflaton slowly rolls
down its potential, its potential energy can drive accelerating expansion. Particularly, if
¢* <V, the Friedmann equation can be written as

,» oV
~ M

(1.14)

The time-variation of the Hubble scale during inflation is then parametrized by the slow-roll
parameter, '
H

— ﬁ >~ ey, (115)

where we have used the inflaton equation of motion
¢+3H+V' =0 (1.16)

and assuming ¢ is much smaller than the other two terms, i.e. 3H¢ ~ —V". Therefore, for
flat enough potential, i.e. small slow-roll parameter €y, the Hubble scale during inflation is
nearly constant,

H = constant. (1.17)
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With H = a/a, this implies that, at the zeroth order, the spacetime scale factor expands
exponentially
a o e, (1.18)

If the potential is exactly constant, then the Hubble scale is exactly constant, which yields
the de Sitter spacetime solution. For inflation, the accelerating expansion must ends and so
the potential must has a shallow slope. The background solution of inflationary spacetime
is therefore quasi-de Sitter.

The zeroth order solution of the inflaton is only time-dependent, but its fluctuation has
spatial dependence. Particularly, we have the form

o(t,x) = o(t) + 0o(t, z), (1.19)

where ¢ denotes the zeroth order background value, and d¢ denotes the fluctuation. Because
inflaton field value determines the value of the potential, and hence the value of the Hubble
scale, the inflaton acts like the clock that determines at what stage the inflation is. The
fluctuation d¢(t,x) can then be thought of as the fluctuation of the clock value — at some
points in space the clock runs ahead of the background value ¢(¢) while at some points it lags
behind. It is actually this time-delay (and advance) that yields the leading contribution to
the scalar curvature perturbation (, instead of the perturbation due to the energy density.
Indeed, from the perturbed Einstein’s equation, one can estimate the contribution of the
energy density perturbation as

5p V'ep 5o
) SV VAL

(1.20)

which is suppressed by the slow-roll parameter €,. On the other hand, the scalar perturbation
originated from time-delay is

H_ 1 8
gé(b— VZEVMPZ.

Due to this, we can proceed our calculation by considering the inflaton fluctuation around
the background spacetime solution without worrying about the backreaction of d¢ on the
spacetime, at least at the leading orderH

Before considering the quantum fluctuation around the quasi-de Sitter background, it is
useful to consider a scalar field on the flat spacetime,

1 &k (1. . 1
5= [ (cgore) = [ [ s (sfeds—yetocos) o

! Another way to interpret this is to consider the general metric perturbation constructed from 3-scalars,

(N%:H&: (1.21)

ds® = —(1 4 2®)dt* + 2a0; Bdz'dt + a* [(1 — 2¥)6;; + 20;0; E] dz'da’

and work in the spatially-flat gauge, ¥ = E = 0. In this gauge, the gauge invariant curvature perturbation
—(=V+ %(5(;5 is then determined by d¢ only.
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where w? = k|2, and the Fourier mode ¢y, is defined by

o(t, &) = / %qbg(t)eig'f. (1.23)

We see that each k-mode is essentially a harmonic oscillator. Promoting ¢; to an operator,
expanding it in terms of creation and annihilation operators,

1 ) )
_ —iw 1 iw
¢E‘¢Tm<“'€€ ralge’ ) (1.24)

and using the commutation relation |ag, aTE] = (27)36®)(k — k') we obtain the amplitude
1 — —
(0 ézez, [0) = 5—(2m)* 0 (k + k7). (1.25)
Wk

Coming back to inflation, expanding the inflaton action Eq. ((1.13)) to the second order in
perturbation, one obtain the action for the inflaton fluctuation around the quasi-de Sitter
spacetime

Sis= [ dtov=g (—%@(6@6%6@ - V"<¢>5¢2) o (1.26)

The mass term of the fluctuation has the order of V” = nyV/M?2, ~ 3nH?, which is sup-
pressed by the slow-roll parameter 7y,. The spatial derivative term in the kinetic term, after
going to the Fourier space, has the form %’;—;(5@—5)2. We are interested in the value of the
amplitude when the Fourier modes cross the horizon, i.e. when k ~ aH. Hence, the spatial
gradient term yields a mass of the order of H? for the Fourier modes and the mass term
V"(6¢)?, which is suppressed by the slow-roll parameter, can be neglected. In terms of
Fourier modes, the action can then be expressed as

i [t [ 5t 0) | 5600)053) — 3 5 00p)60_ (1.27)

Comparing this with the canonically normalized field in flat spacetime Eq. (1.22)), one ob-
serves that we can directly apply the result previously obtained in Eq. (1.25) and use the

correspondence
2

a3/25¢E =00; can  and — = wi (1.28)
: a
to obtain the amplitude for d¢y,
1 1 1 -,
(065 0051) = —5 (0fcandDprcan) = 35 ia) (2m)*0 P (k + k). (1.29)

Evaluating the amplitude at horizon crossing k£ = aH, we then obtain
H2

= 2_1@(2”)35(3)(12 + k. (1.30)

(003 003,)
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Recall the curvature perturbation ( is related to inflaton fluctuation d¢ by Eq. (1.21)), the
amplitude of the curvature perturbation is then

2

2P+ k) = (20)20P (k + kA (k), 1.31
4M§4k3ev<> ( ) = (2m) 0™ ( )A(k) (1.31)

(ICHES

where the power spectrum of the curvature perturbation is given as

Ark) = ———. 1.32
c(k) =7 M ey (1.32)
The dimensionless power spectrum F is defined as
k3 - H? Vv
Pr=—A/Hk) = ~ . 1.33
¢ on? (k) 8m2M2,ey 24w M3 ey (1.33)

We see that the dimensionless power spectrum Eq. is scale-invariant. Physically this
is because the Hubble scale remains nearly constant and hence different scales have the same
history — they all started deep inside the horizon and exited the horizon 1/H as the universe
expands. However, we know that the Hubble scale does vary over time as the potential of
the inflaton is not exactly flat and the scale invariance of the power spectrum should only be
an approximation. The spectral index n, is defined by parametrizing the scale-dependence

of the power spectrum as
k 1—ns
p.=P9 (= : 1.34
¢ ¢ (k*) ( )

Where k, is a reference scale, or the pivot scale, and PC(O) is the amplitude of this scale. From
the above parametrization, we see that if ng, = 1 the amplitude is exactly scale invariant.

An equivalent definition of ng is
dln P, ¢

=1 ) 1.
n + Tk (1.35)
With the definition of slow-roll parameter €y, one can write
dIn P, dp (3V' 2"
= — ) 1.
dInk dlnk( V % (1.36)
Since we evaluate the amplitude at the horizon crossing, we have k = aH, and
1 H H
dink=dlna+dnH = Hdt+ —dH = <T+—) do. (1.37)
H b H
Using 3H¢ ~ —V"' and 3M2,H? =V,
dInk % 1V Vv
nE_ - (1—ep). (1.38)

= — + - = —
do M2V T2V T MRV
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Substitute this back into Eq. (1.36)), and expand to first order in slow-roll parameters, we
obtain
ng = 1+ 277V - 66V. (139)

This matches our expectation. Namely, if Hubble scale H is exactly constant during inflation,
the spectrum is exactly scale-invariant. However, we expect the shallow slope of the potential
to break scale invariance, and hence n, should be able to be expanded by slow-roll parameters.

From CMB observations, the observed value of perturbation amplitude and spectral index
are PC(O) = (2.10170:051) x 107 and n, = 0.965 #+ 0.004 |13]. The question, then, naturally
arises — can we predict these observed values from dynamical models. Unfortunately, even
though various inflationary models have been constructed, we still don’t have a completely
satisfactory answer to this question. Specifically, in many models the observed perturbation
amplitude Fr is often used to fix other model parametersE] instead of being a prediction
from the models. On the other hand, even though inflationary paradigm generically predict
a nearly scale invariant spectrum, one might expect a larger deviation from ng = 1, say
ng = 0.7 ~ 0.8. The observed value n, ~ 0.96 seems to require a certain amount of fine-
tuning. Namely, why should 7y and €y be at the order of 1 percent? This is particularly true
for small field inflation models, where inflaton field displacement is much smaller than M,,.
In these models, one needs to fine-tune the potential to achieve the observed spectral index.
On the other hand, for large field inflation models, where field displacement large exceeds
Mp, the spectral index is associated with the number of efolds of inflation. For instance, for

chaotic inflation with potential V (¢) = u*"P@P, the spectral index is given by n, = 1 — (22;\??.

If we require about 60 e-folds to solve the horizon problem, then 1 — n, ~ 1072, However,
it is not clear if the effective field theories describing large field inflation are theoretically
consistent when the field displacement is larger than Planck scale.

In sum, so far we do not have a scenario that can simultaneously explain the observed
value of perturbation amplitude and spectral index. In Chapter [2] we will discuss a new
inflation scenario that naturally builds on the notion of string landscape. We will see that
by combining the idea of dynamical model building with anthropic principle, we can make
a big step toward this goal.

1.3 Swampland Conjectures

The full quantum theory of gravity has been one of the holy grail in physics research
which, despite decades of research, still remains elusive. Nonetheless, even if we do not
have a full-fledged theory, along the way we have learned some generic properties that we
believe quantum gravity should possess. This set of properties are sometimes referred as
swampland conjectures. The reason behind this nomenclature is that in string theory, which
is believed to be a promising candidate as a theory of quantum gravity, one has a space
of consistent low energy effective field theories derived from string theory which are called

)

2Since the amplitude is nearly scale-invariant, we simply write PC(O as Pc.
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the landscape. On the other hand, we have another set of effective field theories (EFTs),
dubbed the swampland, that are seemingly consistent at the low energy but cannot be UV
completed into the consistent theory of quantum gravity. Swampland conjectures are then
the proposed criteria that determines the boundary of these two sets of low energy EFTs.

Swampland
Conjectures

Swampland ‘,

The set of consistent effective field theories

Figure 1.2: Swampland conjectures form the boundary between the swampland and the
landscape.

Some well-known swampland conjectures include the weak gravity conjecture, swamp-
land distance conjecture, no continuous global symmetry conjecture, etc. One might think
that these conjectures are just some various speculations. However, different swampland
conjectures are often interwoven with each other and form an intricate web, which we will
discuss below. The connections among different conjectures make the swampland program
an exciting and intriguing subject, and their phenomenological implications are worth inves-
tigation. Below we will give a very light review on some of these conjectures, which mainly
follows the excellent review by Eran Palti [192].

The No Continuous Global Symmetry

One of the oldest folklore of quantum gravity is that it does not permit continuous global
symmetry [30} 31]. This conjecture can be motivated by many arguments. Here we give an
example using black holes. Recall that Hawking radiation can be thought of as a result of
particle-antiparticle pair production near the event horizon where one of the particles falls
into the black hole while its partner escapes. Given a continuous symmetry, there is an
associated charge. Suppose we have a black hole that carries a net positive charge ) > 0. If
the symmetry is global, then there is no associated gauge field that couples to the charges
and mediates force. Hence. for pair productions near the horizon, particles and antiparticles
have equal chances to escape from the black hole. As a result, the charge of the black hole is
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conserved under Hawking radiation process if the continuous symmetry is global. The story
is different if the symmetry is a gauge symmetry, which entails gauge fields that can mediate
forces between charges. Due to the gauge field, for a black hole that carries a positive charge,
it will repel the particle (assuming to carry a positive charge) while attract the antiparticle
(assuming to carry a negative charge). As a result, particle and antiparticle have different
chance to escape from the black hole and the black hole losses charges. This is summarized

in Figure

Global Symmetry Gauge Symmetry
® @{ell;

e
e .

Black Hole attracted

Q>0

Black Hole

Q>0

BH charge BH losses
No gauge field d conserved Gauge field d charges
Figure 1.3: Global/gauge symmetry and charge conservation.

The fact that the associated charge is conserved during the Hawking radiation process
if the continuous symmetry is global leads to contradictions. In particular, suppose the
black hole can completely evaporate due to Hawking radiation, then the charge it carries is
also gone, contradicting with the fact that charge should be conserved when the continuous
symmetry is global. On the other hand, if the black hole cannot totally evaporate but ends
up with a remnant of mass, say, Mp,, then one can prepare an infinite amount of black holes
with different charge @); and after Hawking radiation we obtain infinitely numbers of black
hole with the same mass M, but different charge @);. However, by no-hair theorem, one
cannot distinguish these black holes from outside. In other words, a black hole of mass M,
can have infinitely many possible microstates, leading to the violation of entropy bound. We
see that in either case, whether the black hole can evaporate completely or not, continuous
global symmetry leads to contradictions.

The Swampland Distance Conjecture

Swampland distance conjecture [187] concerns about the moduli fields, i.e. scalar fields
with no potential. Consider a theory with moduli space M parametrized by the expectation
value of some fields ¢;. The conjecture states that when one moves from a point P € M to
@ such that the distance d(P, Q) between them approaches infinity, there exists an infinite
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tower of states, with associate mass scales, such that
M(Q) ~ M(P)e~@dPQ), (1.40)

where « is some positive constant. In other words, we have an infinite tower of states that
becomes exponentially light when one has a large excursion in the moduli space. Later on
this conjecture has been refined such that the constant « is explicitly connected to Mp,, and
it was proposed that the conjecture also applies to scaler fields with a potential |41, |158].
Although this conjecture definitely needs to be tested in a quantum gravity theory such as
string theory, it can be well-motivated by Kaluza-Klein compactification in general relativity.
Particularly, consider a D = d + 1 dimensional spacetime with the dth spatial dimension
being compactified,
X~ X441, (1.41)

One can parametrized the D-dimensional metric in the following form,
ds? = GyndXMdXY = e*?g,,dX"dX" + e*?(dX )2 (1.42)

where the p, v indices are for the uncompactified dimensions. Note that the size of the
compactified direction is determined by ¢,

1
27R = / VGagdX = el g (1.43)
0

With this parametrization, the Einstein-Hilbert action in the higher dimension the reduce
to lower dimensional theory which has gravity plus a moduli field ¢,

/ dP X/ -GRP) = / d'X\/—g {Rd - %(8@2} . (1.44)

Suppose we have another massless scalar field ¥(X™) in this compactified theory, we can
expand it in terms of Kaluza-Klein (KK) mode 1, (X*),

(XM= Y (X)X (1.45)

n=—oo

The equation of motion of the KK modes is then

(3 (s2n)

We see that the KK modes form an infinite tower of states with KK mass given by

M? = (%)2 (#) ” . (1.47)

Yn = 0. (1.46)
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Since R = ¢#?/(27), we see that if the moduli field ¢ — +o00, we have an infinite tower of
KK modes that becomes exponentially light.

Note that in the above field theory example, we only have light states when ¢ goes to
~+o00 but not when ¢ — —oo. However, when one consider closed string theory, in addition
to usual KK modes, we also have winding modes that corresponds to the string winding
around the compactified dimension multiple times. For the winding modes, the larger the
compactified dimension, the longer the string is stretched, and hence the effective mass is
larger. Particularly, we now have modes labeled by n, the KK index, and w, the number of
times where the string winds around the compactified dimension. The mass square of these

states is given by
1 \72 /n\2 : (wR\’
2 _ a—2
M2, = (%R> () +@rR)s ( - ) , (1.48)

where o is related to the string tension 7" by T' = 1/(2wa/). We now see that if ¢ — —oo
so that the size of the compactified dimension shrinks, the winding modes, characterized
by the second term in the above equation, become exponentially light. So no matter which
direction ¢ goes, as long as it approaches infinite distance, either the KK modes, or the
winding modes become exponentially light. In this string theory example, one can notice
the close relation between the distance conjecture and the well-known T-duality, namely the
theory is the same under the duality transformation

Vo
=

R +—

(1.49)

This gains our confidence on the conjecture.

The Weak Gravity Conjecture

The weak gravity conjecture (WGC) was proposed about a decade ago [27] and has been
a topic of active research for the past few years. Intuitively, the conjecture essentially states
that the gravity is the weakest force. The conjecture actually has multiple closely related
versions. For instance, one version of WGC states that a theory with U(1) gauge symmetry
must contain a charged particle with mass m and charge ¢ such that

m < \/§ngPé' (1.50)

where g is the gauge coupling. Another version of WGC states that the cutoff scale A of the
EFT is bounded by the gauge coupling g

A < gM,,. (1.51)

Note that WGC is closely related to the no continuous global symmetry conjecture. Par-
ticularly, when g — 0, the gauge symmetry becomes global and there is no energy regime
where the EFT is valid according to the WGC.
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There are several ways to motivate the WGC. But to make connection with the distance
conjecture, let us consider the KK compactification again, but this time with a little bit
different parametrization for the higher dimensional metric,

ds® = €204, dX"dX" + €2 (X + A,dX")" . (1.52)

After dimensional reduction we have
1 1
/ dPz/—GRWP) = / d'X /=g [R(d) -3 (8¢)* — 1e—2<d—1>0<¢’F,MW , (1.53)

where we can see that in the lower dimensional theory, A, becomes the gauge field with a
gauge coupling determined by the moduli field ¢,

g = e2@-Das (1.54)

We see that when ¢ — oo, the gauge coupling goes to zero, which implies the breakdown of
the EFT from WGC. We see that WGC is indeed closely related to the distance conjecture.

The de Sitter Swampland Conjecture

Ever since the discovery of current accelerating expansion, constructing de Sitter solution
in string theory has become an important topic for string theorists. On the other hand, as
inflation opens the window to probe physics at very high energy regime, it is also tempting
to construct inflationary models in string theory. For a review for these topics, see [38]. The
attempts to construct de Sitter solutions in string theory [58; (111} [146] have lead to the
notion of the string landscape. The landscape consists of an enormous number of vacua,
each described by different low-energy EFTs of different fields and parameters.

Constructing de Sitter/inflationary solution is string theory is a rather difficult task.
Part of the reason is that in supergravity, which is the low energy EFT of string theory, the
vacuum of the scalar fields is generically negative. In order to lift up the vacuum, one requires
supersymmetry breaking, which often involves non-perturbative effects whose calculations
are not fully controllable. In addition, compactification of the extra dimensions entails many
moduli fields, just like the KK compactification we previously discussed. There are not
so many known mechanisms to achieve moduli stabilization and so far there is still no de
Sitter solution in string theory that is technically exact without making certain assumptions,
even though in some well-known constructions the assumptions are reasonable. For a recent
discussion on the obstruction of constructing de Sitter solution in string theory, see [87].

In light of this, one may adopt the view that perhaps there is no de Sitter solution in string
theory. Recently, a quantitative version of this statement, dubbed the de Sitter swampland
conjecture, was proposed [185], which states that the scalar potential of a low-energy limit
of quantum gravity must satisfy

Mp|VV|>cV, cm~0O(1)>0 (1.55)
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where V denotes the gradient with respect to the field space, and the norm of the gradient
is defined by the metric on field space. Certainly, the validity of this conjecture is under
heated debate, and its relation with other swampland conjectures is still unclear. Since
the intricate web formed by different conjectures is one of the main reason that makes the
whole swampland program attractive, it’s important to find such connection. One possible
connection [130] with the distance conjecture is that when the field goes to large value, the
mass of an infinite tower of states becomes exponentially light. One can then think that the
potential of the scalar field, which is limited by the cutoff scale A or the mass of the lightest
heavy particle, has the asymptotic behavior V ~ e~®¢ when |¢p| — oo. In this region, the
dS conjecture is then satisfied if the constant « is of order one. However, this argument
only applies to the asymptotic region and local minimum that violates the dS conjecture
is still possible when |¢| is not large. Certainly, there is still a lot of research need to be
done in order to establish a more concrete connection between the dS conjecture and other
swampland conjectures.

That being said, if dS swampland conjecture holds true, it has dramatic phenomeno-
logical consequence. An immediate phenomenological implication of the dS conjecture is
that the potential does not allow a local minimum of positive potential energy. In other
words, a positive cosmological constant is forbidden by the conjecture. As an alternative,
the current accelerating expansion can be explained by a canonical scalar field, dubbed
quintessence, rolling down the non-zero slope of the potential. Whether one can construct
quintessence models in string theory, or at least in supergravity, then becomes an important
non-trivial test of the dS swampland conjecture. The second part of this dissertation will
focus on quintessence model building in supergravity, and the phenomenological implications
of swampland conjectures on inflation and dark energy.
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Chapter 2

New Inflation and Typicality of the
Observed Cosmic Perturbation

This chapter is based on the work with Keisuke Harigaya [69]. I would like to thank
Keisuke for his guidance and collaboration throughout this project and beyond.

2.1 Introduction

Inflationary paradigm not only solves the horizon and flatness problem [118] (see also |154]),
but also elegantly explains the nearly scale-invariant and Gaussian cosmic perturbation im-
printed in the cosmic microwave background (CMB) and the large scale structure of the
universe 180} 128, 210} 120, 33|, given that inflation is driven by a scalar field with a very
flat potential |165} [20] (see also [209]). However, despite the phenomenological success of the
generic paradigm, the underlying physical origin of cosmic inflation is still an open problem.

We investigate the inflation paradigm in the view point of the string landscape (see [211]
for a review). The string theory predicts that there are numerous vacua, and each vacuum
yields an effective field theory with a different set of fields and parameters. An example
leading to various cosmological constants is given in [58]. The landscape of vacua supports
the notion of the anthropic principle. The parameters of the nature which we observe is not
necessarily explained by the dynamics of the theory, but may be chosen so that the human
civilization can exist. There would be multiple vacua on which we can live. We can calculate
the distribution function of the parameters sampled from those habitable vacua weighted
by the number of observers in the vacua. The parameter we observed would be around the
most plausible one (the principle of mediocrity [220]). This notion succeeded in predicting
a rough value of the cosmological constant |224].

In the landscape the expected inflationary dynamics is the following [103} [119]. The uni-
verse would be initially inhomogeneous, with length/energy scales set by the fundamental
scale. A scalar field resides in a meta-stable vacuum and the potential energy eventually dom-
inates the universe, driving a precedent inflation which erases the inhomogeneity. The scalar
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field tunnels toward the vacuum with a small potential energy, and the universe becomes
open and curvature dominated |79} |114]. For habitability, inflation with a sufficient number
of e-foldings must occur afterward, since otherwise the galaxy formation is prevented [167,
221]. Then the flatness of the inflaton potential is not necessarily the one to be explained by
the property of the theory, but may be as a result of the anthropic selection. Still, we should
ask if the small, P: ~ 107%, and nearly scale-invariant, ngs ~ 0.96, cosmic perturbation [13]
is a plausible one. We investigate this question by considering the inflationary dynamics as
well as the post-inflationary evolution of the universe.

Anthropic arguments from the post-inflationary evolution alone do not seem strong
enough to enforce the amplitude of primordial perturbation power spectrum P, ~ 1077
A larger energy density from cosmological constant p, requires a larger primordial perturba-
tion so that structure can be formed in our universe. In particular, the density contrast at
the time of matter-dark energy equality needs to be larger than a certain threshold to allow
structure formation [224 |173} 35|

op op a 4] Q0 v 0
(D™ G G2 G).(G5) - (),
P/ M-DE eq P/ rM eq AR-M eq P/ QE\O) P/ min
Here the subscripts R-M eq, M-DE eq, and % denote the time of radiation-matter equality,
matter-dark energy equality, and the time of horizon re-entrance respectively. We approxi-
mated the density contrast dp/p at the time of radiation-matter equality by that at horizon
re-entrance because the density contrast only evolves logarithmically during radiation dom-

inant era. With (dp/p)? ~ P, this means that for a given P, the maximum energy density
the cosmological constant can have is then[]

max 3/2
PR o P2, (2.2)

Assuming the energy density of the cosmological constant follows a uniform probability
distribution

max

p
/ o, (2.3)
0

this translates to a contribution to the probability distribution of P of the form Pg’ /? Wwhich
biases toward large .

A universe with a very large P, may be anthropically disfavored by the property of the
galaxy [214} 215]. If (dp/p) is too large, the galaxy would be too dense such that the time
scale of orbital disruption and close encounter with nearby planets is too short. Although it
is not clear what kind of encounter kills the earth-like planet, and the corresponding bound
on dp/p is uncertain, we adopt the bound of (dp/p) < O(10~%) [214, 215]. Although the

!There are other criteria proposed for the anthropic conditions for the dark energy density (see, e.g., [36,
57]), which can lead to different powers than 3/2. In this dissertation we consider the original criterion
in [224) [173].
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typical value of dp/p is Pcl/2, even if P. > O(107®), it is still possible that we live in a part of
the universe with a small energy contrast. Assuming the probability distribution to populate
at the region with a density contrast § = dp/p in a universe with a primordial perturbation
amplitude F; is Gaussian, the probability to be in the habitable region i{]

QPC ~

[ [

In Figure we schematically summarize the probability distribution Ppest(F;) of hav-
ing a universe with primordial perturbation amplitude P, based on the anthropic consid-
eration of post-inflationary evolution we discussed. We see that by just considering the
post-inflationary evolution, the observed value P; ~ 1079 already require a fine-tuning of
about a few percent. In addition, to obtain the full probability of having a P, one also
needs to consider the probability stemming from inflation dynamics. Particularly, the net
probability distribution is of the form

P (2.4)

Pnet = 7Dpost,]Dinf- (25)

In doing so, as most of the realistic measures suggest |166, 55, |93} 56, |184} [108], we do not
weight the increase of the volume due to inflation. If the inflation scale V' is simply given by
a mass parameter, it is biased toward the fundamental scale. Then P = ﬁ is also biased
toward larger values. For example, in Sec.2.4 we consider a generic small field inflation model
with Z, symmetry and find that the probability from anthropic consideration on inflation
alone strongly bias toward large Pr with P¢(Fr) o PCl % In this type of model the small
primordial perturbation is highly implausible. An inflation model with P, not biased toward
large values is required.

A spectral index close to unity is apparently challenging. The spectral index n; is given

byt
v’ 1V’
n8:1+277—66,7757,ez§(v> . (2.6)

Having a spectral index ng ~ 0.96 requires n ~ 0.02 < 1. In order to explain the nearly-
scale-invariant spectrum, we essentially need to solve the n-problem [190, (137, 113, [84} 83].
It is not obvious if the requirement of the large enough number of e-foldings can ensure such
small 1 parameter.

Ref. [213] investigates the distributions of P, and ng, assuming that the inflaton potential
obeys a Gaussian distribution, and find that the observed values are highly implausible unless
the inflaton field value is as large as the Planck scale. Ref. |[174] investigates the inflection

2The property of the galaxy may depend on P.. For example, for larger P, the formation of proto-
galaxies occurs earlier, which will change the initial metallicity of the galaxy. We do not consider this effect
in this dissertation.

3In this chapter we will dropped the subscript and denote potential slow-roll parameters as € and 7.
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Figure 2.1: The schematic summary of the probability distribution P,es(F;) of having a
primordial perturbation amplitude P from anthropic consideration of post-inflationary evo-
lution.

point inflation also assuming the Gaussian distribution. In this set up the number of the e-
folding tends to be larger for a small and positive n parameter. After imposing the anthropic
requirement, the spectrum tends to be blue, but the probability of n, < 0.97 is found to be
about 0.2, which is reasonably high. However, the distribution of P is not discussed.

In this chapter we investigate the distributions of F; and n, for a new inflation model
where the inflaton is trapped around the origin during the precedent inflation by a Hubble
induced mass. Although the field value of the inflaton is homogeneous inside the horizon
because of the damping during the precedent inflation, quantum fluctuation of long-wave
length modes is produced, which effectively works as a homogeneous but non-zero initial
condition of inflation, unless the Hubble induced mass is much larger than the Hubble scale
to suppress the quantum fluctuation. We show that this probabilistic nature of inflaton
initial condition is an important key to understand n, close to unity. We focus on a super-
symmetric model. As we will see, the smallness of P is then also explained, as some of the
parameter of the theory can be biased toward small values or logarithmically distributed
in supersymmetric theories. Our results are summarized in Figure [2.9] where we show the
probability distribution PrPyet(F;, k) of P and k ~ —n), taking into account of both infla-
tionary and post-inflationary dynamics. In the contour plot we can see that the probability
distribution is biased toward smaller k£ value and hence the n-problem is solved. In addition,
with an anthropic bound on the density contrast dp/p < O(107), the observed universe
with Pr ~ 107 and ng ~ 0.965, which is marked by the blue star in Figure , is actually
a typical one.

This chapter is organized as follows. In the next section we first elaborate on the ne-
cessity of including the probability distribution of inflaton initial condition in generic new
inflation models. We then consider a supersymmetric model and parametrize the probabil-
ity distributions of the couplings. We find that, for a certain distribution of the couplings
of the model, the observed small (P; ~ 107?) and scale-invariant (ns; ~ 0.96) curvature
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perturbation is probabilistically favorable. In Sec.2.4 we show our study on the general new-
inflation-type model with Z5 symmetry, where observed spectral index ng is probabilistically
favored but the smallness of primordial perturbation cannot be explained. We then discuss
and summarize the results of this chapter in Sec2.5]

2.2 New Inflation in the Landscape after Quantum
Tunneling

In this section we consider new-inflation-type models in the landscape. We assume that
the last inflation which explains the flatness of the universe and the observed cosmic per-
turbation is a new-inflation-type model with an inflaton ¢. In the theory with multiple
vacua, it is expected that a singlet scalar field y stays at its metastable vacuum and drives
a precedent inflationary expansion, leading to a homogeneous universe. After the quantum
tunneling of the singlet scalar field, the universe becomes an infinite open curvature dom-
inated Friedmann-Robertson-Walker (FRW) universe while the scalar field rolls down to a
local minimum with a small potential energy. The universe is eventually dominated by the
potential energy of the inflaton (Figure . One may naively expect that a coupling be-
tween the y field and the inflaton (leading to so-called the Hubble induced mass) can trap the
inflaton to the origin and the initial inflaton field value ¢; is automatically small enough to
initiate the last inflation. This is generically not true. As we will see, after the tunneling the
Hubble induced mass of the inflaton is not effective. Therefore the inflaton fluctuation mode
that just exited the horizon before quantum tunneling may survive. Although the inflaton
field value is homogeneous inside the horizon, the field value must be fine-tuned for the last
inflation to occur and last long enough. We investigate the impact of this observation by
computing the distribution function of the curvature perturbation P and the spectral index
ns (equivalently the n parameter) after requiring enough number of e-folds N'** during the
last inflation. We find that P as well as 7 may be biased toward small values, explaining
the observed very small (P; ~ 107?) and scale-invariant (n, ~ 0.96) curvature perturbation.

Hubble Induced Mass and the Initial Condition after Tunneling

Let us follow the dynamics of the singlet scaler field y and the inflaton ¢ before the
inflation starts. The mass of the inflaton in general depends on the energy density of the
universe. Its evolution is summarised in Figure [2.3]

When the singlet field is at its metastable vacuum xp.e, the potential energy V, of the
singlet field dominates and the universe is in a precedent inflationary expansion. In the
meanwhile, the inflaton acquires a Hubble induced mass and can be driven toward ¢ = 0.
For example, in supergravity when the potential energy is dominated by the potential of the
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V(¢) after x-tunneling V(X)
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Figure 2.2: Schematic figure of the proposed scenario.

moduli field V,, the potential includes
V
> gzl (2.7)
where M, is the cutoff scale. We expect that V, ~ M2, and hence the Hubble induced mass

of the inflaton, my(x), during the precedent inflation is as large as M,. The similar is true
for non-supersymmetric theories. We expect a coupling of the form

)¢”, (2.8)

200 X

MG

where f is some function, leading to the Hubble induced mass of O(M,). The Hubble scale

Hyye is on the other hand of O(M?2/Mp,) < M,. If the Hubble induced mass is positive, the
inflaton is driven toward ¢ = 0.

After the quantum tunneling of the singlet field y (denoted as ay in Figure , the
universe is dominated by the curvature energy density pyx and the singlet field y is fixed by
the Hubble friction. Because the Hubble induced mass mi is proportional to p,, we have

5 S H 2 = pg/3M?2, right after the tunneling. Note that the curvature energy density
alone does not give a Hubble induced mass termﬁ As the universe expands, py decreases
and when it becomes smaller than m2M?2, ~ M2M?2,, the singlet field x starts to roll down
to the global minimum and oscﬂlates)ﬁ At this point the mass of the inflaton is as large as
the Hubble scale. However, since the energy density of the singlet field decreases as a=3, the
mass of the inflaton my ~ p)l/ 2 /Mp, does not exceed the Hubble scale of the expansion and

4The coupling |¢|>R , where R is the Rich scalar, gives a Hubble induced term through a potential energy
of the universe.

When pg is larger than M2M?2,, the inverse of the size of the horizon exceeds the cut off scale M, and
the validity of the effective field theory is questionable. The discussion here is applicable even if pg after

the tunneling is as small as M2M?2,.
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» lna

Figure 2.3: The evolution of inflaton’s Hubble induced mass.

hence the inflaton can be regarded as massless after the tunneling. When px drops below
the inflaton potential energy H2; ~ ps/M?2,, the inflation begins.

Let us discuss the evolution of the fluctuation of the inflaton based on the above obser-
vation. Expanding the field into comoving momentum modes ¢ = [ (gjr’)“g ¢re* . the modes
fluctuate with decreasing amplitude as the spacetime expands. During the precedent infla-
tion era, after a mode exit the comoving horizon, k = aH,., the amplitude is continually
damped because of the Hubble induced mass and eventually vanishes in the superhorizon
limit aH e > k. Hence, right after tunneling, the superhorizon mode that has the largest
amplitude is the one that exited the horizon right before tunneling. This mode has an

amplitude

H

pre
Mg (Xpre)

MY
~ Y: 52.

The horizon after the tunneling resides inside the horizon before the tunneling. The
comoving horizon 1/aH remains constant during curvature dominant era, and hence there
is no horizon entrance nor exit. Thus inflaton fluctuation modes inside the horizon continue
to be suppressed, while the long wavelength superhorizon modes are frozen as the inflaton is
essentially massless during the curvature dominant era. Those frozen modes effectively work
as the zero mode ¢; which obeys a Gaussian distribution with a zero mean and a variance
(8¢pre)?. @i is nothing but the initial condition of the new inflation.

In order to wipe out the curvature energy density and to have structures on the galaxy
scale, the inflation needs to last long enough with an anthropic bound N > N2 Tn [103],
it is found that in order to have typical galaxies being formed, the comoving Hubble scale
at the time of photon decoupling should satisfy

5¢pre = Hprepre (29)

Cde]q’dc
— > 30 2.10
o Hl : (2.10)
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where the subscript ¢ denotes the time right after the quantum tunnelingff] With some
manipulation we have

ageHge  aHy,  GenaHeng a;H; < 30, (2.11)

aentHent aendHend aiHi ath
Here a.,;H.,: denotes the coving Hubble scale of the horizon re-entrance of the CMB scale,
which is equal to that of horizon exit a,H,. @engHeng and a;H; are the comoving Hubble
scales at the end and beginning of the inflation respectively. Because the period between
the time right after quantum tunneling and the beginning of inflation is curvature dominant,
the comoving Hubble scale remains the same, i.e. (a;H;)/(a;H;)=1. We assume the Hubble
scale during the inflation is nearly constant, H; ~ H, ~ H,.,q. Also, the comoving Hubble
scale does not evolve much between the horizon re-entrance of the CMB scale and the
photon decoupling, so (ag.Hae)/(GentHent) ~ 1. Putting everything together, we then have
a constraint

NIt > N8 N 3.4 (2.12)

where N is the number of e-foldings between the end of the inflation and the horizon exits
of the CMB pivot scale.

For potentials of a new inflation type, the initial field value ¢; must be close to zero
to have long enough inflation. For a large enough M,, ¢y is larger than the required
initial field value and hence some tuning of the initial field value is required. As ¢; obeys
a Gaussian distribution, which is flat for small ¢;, the probability distribution of ¢; in the
region of interest is approximately uniform;

Py, dgi o< do;. (2.13)

The anthropic constraint N > N2 leads to the upper bound ¢; < @an, where gay is
the field value of the inflaton such that the number of e-foldings after the inflaton pass the
field value is N2

The fact that the initial condition ¢; has a probability distribution over a certain range
instead of having to start at ¢; ~ 0 plays an important role to solve the n-problem in new
inflation. Particularly, as now the inflaton tends to start from an initial condition away
from zero, the anthropic constraints N > N2" requires the potential around the origin to
be flatter. The n parameter is biased toward smaller values after the anthropic constraint
is imposed. On the contrary, for a small enough M, so that ¢; ~ 0 is forced, then the
inflation can easily last longer than N e-folds and the anthropic constraints on NV plays
no significant role. We will see this point quantitatively in the following.

A Supersymmetric New Inflation Model

In Sec.2.4 we will study a new inflation model with Z5 symmetry, assuming that the
parameters of the potential are uniformly distributed. We will find that the resultant P is

6The effect of spatial curvature on structure formation is also discussed in [34].
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strongly biased toward a large value, and the observed one is probabilistically disfavored.
Here we instead investigate a supersymmetric model where it is sensible that the parameters
of the model, including the scale of the inflation, obey distributions different from uniform
ones. We expect that for certain distributions of the parameters, F; is biased toward small
ones. In particular, we consider an R-symmetric single field new inflation model [159, |141],
126] with a discrete R-symmetry Z,y is present and the superpotential

g N+1
W =v?®d — —L Nt 2.14
v N+1 ) (2.14)

where @ is a chiral superfield while v and ¢ are constants. Here and hereafter, we work in
the unit where the reduced Planck scale is unity. The Kahler potential is

1
K=30'd+ Zk(qﬂ@f e (2.15)

where the ellipses denote higher order terms that are irrelevant to the inflationary dynamics.
From Eqs.(2.14) and (2.15)), the potential of the scalar component of ® which we call ¢ is
given by

Vip) =|v* — g™ > — kvl + - -

= v — k'l — (gv*e" + he) 4. (2.16)
In terms of the radial and angular components, ¢ = \%eie, the potential can be rewritten as
'R TR g 2,N
V =vV — 5]{?11 ¢ — 2N——2U ¢ COS(NQ). (217)
-

For simplicity we assume that the inflaton has an initial condition around § = 0 mod
27 /N (which are minima along the angular direction) and focus only on the radial direction.

In Sec.2.4 we study general new-inflation-type models with Z; symmetry. Here the result-
ing potential has the form of Eq. without the ¢,, perturbation term. Using Eqs.
and with a = v, b = kv, ¢, = gv?/2V=2/2 and ¢, = 0, we have

ng~1— 2k — 2ON(N — DES: (2.18)
, [92U4(N—3)k—2(N—1) + =2 v-2
_ , 2.19
¢ 2472 (1 4+ N f1)° (2:19)
where . 1
Iy = fN(kaA/;) == (2-20)

N ([1+ (N — 1)k] e(N=2kNe — 1)

and fr = fy(k,N7) in which N} is the number of e-folds between the horizon-exit of the
CMB scale and the end of inflation.
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Figure 2.4: The ngs — k plot for N =4,5,6,7 and 8, with V¥ = 52.

The spectral index ng, as given in Eq.(2.18)), is a function of the parameter k, and the
number of e-folds NV between the horizon exit of the CMB scale and the end of inflation.
Assuming instant reheating, this is determined by the inflation energy scale,

N*~62+1In <]\;Z> (2.21)

Using Eq. with &£ = 0.01 and the observed P; to get an estimate on v, we have N ~ 52.
Setting N = 52, we plot the spectral index n, as a function of k in Figure 2.4 One can see
that N = 4 and 5 are ruled out by the observation, while N = 6 fits the observation very
well in a certain region of k. Even if we relax the assumption of instant reheating, such that
N < 52, the maximum n4(k) of N = 6 case lies in the observational allowed region unless
the reheating temperature is very small. In below we will frequently use N = 6, i.e. the
model with discrete Z15 R-symmetry, as a reference point.

Probability Distribution of the Observables

A natural question now arises: what is the probability for £ to lie in the region that
yields observationally allowed n,? From Figure [2.4] we see that the observed ng requires k
to be of the order of 0.01, while in general k£ would be much larger. Note that the slow-roll
parameter 7 is related to k by n = —k. Therefore, making the observed spectral index
ns ~ 0.96 probabilistically favorable is equivalent to solving the n-problem, and this requires
a probability distribution that biases toward small k.

To investigate the probability distribution function of the observables, we need to first
make assumptions on the probability distribution of the Lagrangian parameters. As k is
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a coupling in the Kéhler potential, it would be natural that k obeys a uniform probability
distribution P(k)dk o< dk. The parameters v? and g are superpotential couplings and may
obey distributions different from uniform ones. Furthermore, those parameters are related
with the vacuum expectation value (vev) of the superpotential Wy = (W) ~ p2(1+1/N) g=1/N
which is related with the electroweak scale and the cosmological constant. Let us start
from the distribution of v?, ¢, the supersymmetry breaking scale ' and the p term of the

electroweak Higgs,
dv*o® x dgg? x dFF" x dup®. (2.22)

If a parameter is given by a dimensional transmutation, the index (p/,¢’,r, s) of the distri-
bution is —1, while it is 1 if the parameter is a complex parameter biased toward a large
value. The electroweak scale vdyy, is given by

Vew = I Mg — 1%, (2.23)

where M,.q is the mediation scale of the supersymmetry breaking. We assume that the
electroweak scale must be in a certain range close to the observed oneﬂ as is argued in [16,

123,
2 2 2
CUEW,0bs < VEw < ClUEW,ost (2.24)

where ¢ and ¢ are constants which we do not have to specify. The scanning over the u
parameter yields
/.

2 /02
VEW, 0bs <VEW <€ VEW,obs

F s—1
d:u:us = 'U]%}W,obs (M—d) X FS_l? (225)

where we have used F/Mpea = 1t >> Vpw obs as is suggested by the non-discovery of super-
symmetric particles so far. The cosmological constant is given by

pn = F? — 3WZM?Z,, (2.26)

where W, is the vev of the superpotential. A change of variables gives gives
/alFF’”rS1 oc Wits2dpy. (2.27)

Here we have used F? ~ 3WZM?2, > py. We omit the measure dp,, which leads to the
uniform distribution of the cosmological constant, in the following. Using the relation Wy ~
p?(I+/N) g=1/N “the distribution of v? and g are given by

1 1
do*v x dgg®, p=p' +(1+5)r+s=2), ¢=¢ = 5(r+s=2). (2.28)

For —1 <p',¢,r,s <1, a wide range of (p,q) can be obtained.

"This assumption is not crucial for our discussion. Without the anthropic constraint on the electroweak
scale, the distribution is given by Eq.(2.28) with s = 1.
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Figure 2.5: The function h(k) (left) and the contribution of ¢, to the probability distribu-
tion of k (right). We take N = 6 and N} = 52.

Putting everything together, the probability distribution of the parameters to start with
is
/ deé; dk dg dv? g% v*P. (2.29)

The distribution of the initial condition ¢; is uniform as discussed in Sec[2.2] If the anthropic
bound @,y is smaller than the amplitude of quantum fluctuation d¢,. given by Eq.,
then the integration of d¢; ranges from 0 to ¢un. On the other hand, if ¢any > 0@Ppre, the
integration of d¢; is capped by d¢pe and the anthropic constraint is no longer effective. In
other words, integrating out d¢; yields

/ dk dg dU2 gq /Ungbbounda ¢b0und = min[(banta 5¢pre]- (230)

Using Egs.(2.82), (2.87) and (2.19)), the field value ¢y is given by

1

o = VBRI £ [ (14 NJ T e R
1
_ ﬂg_ﬁfﬁntﬁkﬁhmpcm’ (2'31)

where we have defined Mo
2

h(k) = kN7 fL [247° (1 + N f7)?] (2.32)

for future convenience. It is instructive to understand the behavior of h(k) and the con-
tribution of @ant, if Gant < dPpre, to the final probability distribution of & which we plot in
Figure Most importantly, we can see that ¢.,; gives a bias toward small k£, which is
the key of solving the n-problem and making observed spectral index ng probabilistically
favorable.

Using the relation between v? and P, derived from Eq.7

V2= g N p s PEY (2.33)
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we can perform a change of variable to obtain the probability distribution in terms of cosmic
perturbation F;. For the parameter region where ¢an; < d¢pre, We have

/ dk dg dv? g7 v*P Pant (2.34)

(N —2) dP; aN-3)-p-2  (+1) 2@ ant s 1 e
B A (RN REIE P
(2.35)

where we have left the contribution from ¢,y to k- and P.-distribution in the square brackets
for future convenience. We now need to integrate out g to obtain the final probability
distribution. When ¢(N — 3) —p+ N — 5 # 0, the integration yields

— —3)— - 'max D (N-2)(p+1)
earTi el K o M W P S Y BCE D
g(N=3) —p+N — ¢

where the ellipses in the square brackets represent the contribution from ¢, as in Eq.(2.35]).
The lower cutoff of the integral g, is given by Eq.(2.33) with the natural requirement
v? < M2, i.e. the energy scale v should not be larger than the cut off scale. Particularly, we
have

min

N-—2
Gmin = hP, = M; N9 <« 1, (2.37)

On the other hand, ¢, is determined by the cutoff scale M,. After restoring M, and M,
to the superpotential, we have

1 g N 1 &
Wo-————t oV =8 pNF, 2.38
N+1MN~? N +1MN? (239

Assuming the dimensionless coupling ¢, is bounded by unity, the coupling g is bounded by

Mo\ V2
M, .

9 < Gmaz = ( (2.39)

Therefore, if (N —3)—p+ N —5 > 0, the g—integration merely gives a proportional constant
and does not affect the probability distribution of k and F,. We therefore have

Pint(k, Pr)dk dP; = PiPp.dk dP; = Py P Pp dk dinP; (2.40)
where Py,¢ is the probability distribution from inflationary dynamics with
(p+1) 60\ 5 1 et
Pr o hIFS) [ (1o f30) ¥ povsis)| (2.41)

(N=2)(p+1

) 1
PCPPc X PC 2N PCQ(N%’). (2.42)
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The quantity P;Pp, can be understood as the relative probability to obtain the curvature
perturbation of O(P). When ¢(N —3) —p+ N —5 = 0, Eq.(2.36) does not apply and
the integration over g yields a logarithmic contribution In(g,,,) instead. This logarithmic
contribution changes the probability distribution of £ and P only slightly, and we may use
Eqs. and as a good approximation.

If Gant > ddpre, then ¢uye plays no role and the integration of ¢; and g merely yields a
proportional constant which do not affect the probability distribution of the observables:

dP, (p+1) (N—2)(p+1)
/ dk dg dv? g7 v* Ppouna X /dk ?;hwtl?)) D, 2N (2.43)
Thus for ¢any > 0Ppre, We obtain
(p+1)
P o< hiN=3) (2.44)
(N=2)(p+1)
PcPp, o< B, X770 (2.45)

Note that in the parameter region ¢(N —3) — p+ N — 5 > 0, the probability distribution is
parametrized only by p but not by gq.

In the parameter region where ¢(N —3)—p+ N —5 < 0, the integration over g is dominated
by the lower cutoff contribution, where ¢ = gmin < 1. Recall that ¢gn o ¢~ /N3 and
hence for such a small g, ¢4, is much larger than Mp,. This means the inflaton field value
at the CMB scale will also be much larger than M,,, and therefore the assumption of small
field inflation breaks down.

In Figure [2.6/ we plot the distribution function using Egs.(2.41)), (2.42)), (2.44) and
in the parameter region ¢(N —3) —p+ N — 5 > 0 for both ¢ant < 0¢pre a0d Pant > Ppre.
Let us first look at the upper left panel of Figure 2.6, We see that P, is largely suppressed
for large k as long as p > —2. To understand how the parameter p alters the probability
distribution at large k, note that the functions fy and h behave as

fN - k_le_(N_z)k_/\[e (246)
b o kN2~ (N2, (2.47)

when k£ — 0o, and hence
Py o U Ay (2.48)

for large k. It is therefore clear that in order to solve the n-problem, one requires p > —2 so
that the distribution is suppressed for large k.

The behavior of Py, for negative p can be understood as follows. Recall that the primordial
perturbation is given as

1% vt
Py~ —~ WQb (2.49)

where ey, is the inflaton field value when the CMB scale exited the horizon. Therefore, for
a fixed P, smaller v? requires smaller k¢epy,. For a given e-folds AV, the field value ¢emy
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Figure 2.6: The probability distribution functions in the parameter region ¢(N — 3) —p +
N —52> 0 when ¢ant < 0¢pre (upper panel) and @any > d¢pre (lower panel), respectively. We
take N =6 and NV = 52.

is in fact related to the parameter k. For larger k, the potential is steeper and hence ¢y
has to be smaller to maintain the same number of e-folds. (This relation is explicitly shown
in Figure in the Sec.2.4.) The full k-dependence of the denominator k?¢? , (k) is thus

cmb

nontrivial, and is worked out in Eq.(2.82). It turns out that when k decreases, k?¢?2 (k)
increases. Therefore, for a given P, if v is biased toward small values as when p is negative,
then k is biased toward large values. This is why large k is favored when p is too negative,
where the bias toward small k& from ¢, is defeated.

So far we have only discussed the probability distribution in terms of £ but not the
observable n,. Since the spectral index ng is a function of k£ only, as given in Eq., the
probability distribution of k is sufficient to give the probabilistic information of n,. That
being said, the probability distribution of n, displays an important feature of R-symmetry
new inflation which we now discuss. To this end, we perform a change of variable from £ to

T,
/dkpk = /dns

ok

S| Palilne)) = / dn. P (2.50)
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Figure 2.7: The normalized probability distribution function for & (left) and n, (right). The
shaded areas corresponds to the parameter region where n, > 0.96.

As shown in Figure [2.4] the function ny(k) is not monotonic and has a maximum n** very
close to the observed value ng ~ 0.965. These two properties have important implications in
P,, we show in Figure 2.7] The first feature of P, is the jump due to non-monotonicity of
ns(k). The second, and probably more important, feature of P, is that n, will never reach
ns, = 1 and P, diverges at n'®* because the Jacobian factor ‘ng‘ diverges at n
the probability distribution of large k (n, < 1) is suppressed due to the probabilistic nature
of initial field value ¢;, in R-symmetry new inflation we not only can explain why ny is very
close to one, but can also predict an ng # 1 that is near the observed value ng ~ 0.965. For

N =52 and p = —1, the probability for 0.96 < n, < n™% is

max

mar - Once

mazx

nS
/ P, dng
0.96

S ~ (.48, (2.51)

/ P, dng

and the probability distribution diverges at n'** ~ 0.966. Note that p = —2 yields a similar
result.

Move on to the probability distribution of P, the upper right panel of Figure shows
that P is biased toward smaller values for a sufficiently negative p. This is simply because
P is proportional to the inflation scale, and hence a bias toward small v? results in a bias
toward small P.. For p = —2, the perturbation F; is biased toward small value strongly.
For p = —1, P is biased toward large values only mildly. The power of P Pp,, as shown in

Eq.(2.42)), is given by

P0.96<ns <nmazr —

p(N=-2)+(N-1) (p+2)(N-2) 1
2(N — 3) T 2(N-=3) 2 (2.52)

In order to solve the n-problem simultaneously, we need p > —2. The most negative power
we can get for the probability of P from inflationary dynamics is then —1/2.
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As we mentioned in the introduction, the anthropic consideration on the post-inflation
dynamics gives an additional bias on P Pp, that scales as Pg’ /2 for small P, and scales as

P{l/Q for large P where the turning point is at P ~ 1078, See Figure . Combining this
with the contribution from inflationary evolution, we see that the power of P;Pp, should be
smaller or equal to %, since otherwise P; ~ O(1) is much more favored than P; ~ 1079, This
requires

< —. 2.53
PS5 (2.53)
Recall that in order to solve the n-problem, one requires p > —2. Hence, to simultaneously
solve the n-problem and explain the smallness of perturbation power spectrum, we need

-2
N -2

—2<p< (2.54)
The probability to obtain the observed value P; ~ 2.1 x 1079 is maximized when p = —2:
With an anthropic bound on the density contrast dp/p < O(107%) from the property of
galaxies, the probability is O(10)%, which is reasonable.

To show the impact of the bias from ¢.,, in the lower panel of Figure [2.6] we show
the distribution functions without the ¢, contribution originated from the probabilistic
nature of the initial field value ¢;, which is the case when ¢an; > d¢pe. Comparing with the
upper panel, we see that this does not affect the distribution of P: much. However, for the
distribution of k, the probability for large k is suppressed only for p = 0 and 1. For p = —1,
without the additional suppression at large k from ¢, as illustrated in the right figure of
Figure [2.5 we have a uniform distribution in k& and hence it is more likely to find k& to be of
order 1, instead of order 0.01. Comparing both distributions in the lower panel of Figure [2.6|
it is clear that without scanning the initial condition ¢;, it is impossible to simultaneously
solve the n-problem and explain the smallness of F.

We summarize the discussion of the (p, q) parameter space for N = 6 in Figure The
gray-shaded region is where ¢(N —3) —p+ N —5 < 0 and the small field assumption breaks
down; the red region is where the probability distribution of F; biases toward large value
even though the parameter k£ tends to be small; the orange region is the opposite, where
the n-problem persists despite the smallness of the perturbation power spectrum can be
explained. In between the two regions we have parameter sets that can solve both problems.
Those values of (p,q) can be obtained by appropriate choice of (p', ¢, , s).

In claiming the existence of viable (p, ¢), we assume the contribution to the distribution of
P¢ from the post-inflationary dynamics shown in Figure 2.1} If the power of the distribution
at large P increases/decreases because of possible biases we have not considered, the white
region in Figure shrinks/expands. The white region exists as long as the power is smaller
than 1/2.

It is worth emphasizing again that the viable parameter sets, the white region in Figure
[2.8] exists because of the probabilistic nature of the inflaton initial field value ¢;. Without
this contribution, the window between the red and orange regions is closed. We examine
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Figure 2.8: Illustration of the result in (p,q) parameter space for N = 6. The white re-
gion represents the parameter space where both the n-problem and the smallness of cosmic
perturbation can be explained.

in which part of the parameter space is @an < 0¢pre and does the contribution of @ kick

in. Recall that the amplitude of the quantum fluctuation d¢y.e is proportional to M as
given in Eq.(2.9). On the other hand, ¢., also depends on M, through the superpotential
coupling g. The probability distribution then has the form

/ dkﬁdg dvz gq 7)217 ¢bound(k7PC7g; M*)

N -2 dP, d(N—3)—p-1 (1) N=2)@+D)
__\/%(N _)3) /dk ?CC dgg e h(Nt13) PC 2(N-3) Gbound (K, Pr, g5 M,). (2.55)

The parameter region of interest is ¢(N —3) —p+ N — 5 > 0. Therefore after integrating
out g, the integration is dominated by giae = (Mp,/M,)¥ =2, at which

qbbound(ka PQ M*) = min [¢ant(ka PCa gmaac)a 6¢pre} . (256)

Combining with the contribution from the anthropic constraint discussed in the introduction,

Poost (Pe) = min [(P/1078)%2 (P, /1078)71/2] | (2.57)
the net probability distribution PPpe(k, ) in the (k, P;) space that includes both infla-
tionary and post-inflationary dynamics is proportional to

(p+1) (N—2)(p+1)

h(v=3) PC 2(N=3) min [¢ant(k; PC? gmax)a 5¢pre} min [(PC/10_8>3/27 (PC/lo_S)_l/z] : (258)
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Figure 2.9: The contour plot of PZP“E}M for N =6, p = —2and M, = 1072M,,
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(M. = 107*M,,) on the left (right). To the right of the blue dashed line, ¢an < d¢pre and
hence the anthropic constraints ¢; < ¢., contributes to the probability distribution. The
blue star marks the point (kops, P*)

The distribution P;Ppe; normalized with respect to PCPnet|k .. pobs for N =6, p=—2 and
00s» C

M, = 1072M,, is given in the left panel of Figure , where ks ~ 0.0134 and Pgbs ~
2.2 x 107 are the observed value for the parameter k and the cosmic perturbation P
respectively and (kops, Pé’bs) is marked by the blue star. To the right of the blue dashed
line, @ant < ddpre and the anthropic constraints ¢,,; plays an important role to solve the n-
problem. The observed point (kgps, Pgbs) lies deep inside the region and hence the proposed
scenario can indeed explain the nearly scale invariant small cosmic perturbation. Note that
the cusps at P; ~ 107 originate from the turning point of Ppest (), while the cusps at the
blue dashed line are due to min [(bant(k;, P, 9maz), 5¢pre] . The distribution for M, = 10~'M,,

is given in the right panel, where the blue dashed line is absent because ¢y o M2 s always
larger than ¢..

2.3 Fine-tuning in General New Inflation

In this section we study fine-tuning problems in general new-inflation-type models. The
only symmetry we impose here is Z; symmetry, where the most generic potential is of the

form )
V(g) = My, [Vo+ D ca (Aj ) ] . (2.59)
n=1 P
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Hereafter we will work in the Planck unit where the reduced Planck mass M, is set to unity.
We study how much fine-tuning is required to yield the observed perturbation amplitude and
spectrum. We assume that the probability distributions for the dimensionless coefficients Vj
and |c,,|’s are uniform between zero and one, and vanish outside this interval. Certainly, not
all possible values of ¢,, allow inflation, as slow-roll conditions

7\ 2 00 n—1\ 2
€ — 1 (K) ~ 1 (an 21 ¢y, ¢ 1) 7 (2.60)

2\V 2 Vo

n=1
Vv Vo ’
are violated if coefficients are too large. The primes in the above equations denote derivative
with respect to ¢. The parameter region in the {cs,cy,cg, ... }-space where inflation can
occur and generate the observed power spectrum is bounded by some c}** for each c,,. As
we will see below, cy**’s are determined by the energy scale parameter V. As we assume the
probability distribution is uniform, the probability to have the inflation to occur around the
energy scale V) is

Pant o0 Cg;?x o0
P x / dgbi/dVO H (/ dczn> X Vo@Pant Hc;“:". (2.62)
0 0

n=1 n=1

Vol 2n(2n = ey, 07

n (2.61)

Note that we have simplified the problem by assuming ¢y*’s are independent on each other
and a more detailed treatment will result in a probability slightly smaller than Eq..
Nevertheless, the main takeaway we can learn from such analysis will not be affected as
we will explain below. Also note that we have included the probability distribution of the
inflaton initial field value as advocated in Sec[2.2] and impose the anthropic constraint that
inflation needs to last for more than N2,

To find what ¢ is, we need to first know the field value ¢c,q when the inflation ends. This
is determined by the number of e-folds V¥ between horizon exit and the end of the inflation,
the inflation energy scale 1, and the perturbation power spectrum FP. In particular, one

has
_ _ E _ K _ d¢ ~ ¢end_¢cmb o Agb
N [ [ L [ty 2
A¢ Egbend - ¢cmb7 (263)

where we assumed the e parameter to be nearly constant over the period of inflation. Its
value can be determined by the perturbation power spectrum,
1 W
€= —.
24’/’(2 PC
For potentials of a new inflation type, we typically have A¢ >~ ¢enq. For example, for the
potential

(2.64)

1
V=a- 5b »* — cn ", (2.65)
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Figure 2.10: For new inflation, the inflationary expansion occur mostly on the hilltop where
¢ is close to the origin. The inflation ends at ¢.,q Where the potential violates the slow-roll
condition and ¢eng > demb-

for which the relation between ¢e,q and ¢cnp, is explicitly computed in Sec.2.4, the ratio
Pend/ Pemp depends only on the parameter k = b/a and is plotted in the right of Figure [2.10}
We see that the ratio grows for larger k£, which is not surprising as a larger k requires a
smaller ¢, to maintain the same e-folds of inflation. As A¢ = ¢eng — emp and Peng = Gemb,
we actually have A¢ ~ ¢onq and hance

L N W
Pena = Jﬁw\/;c : (2.66)

We define ¢ to be the value of c¢,, such that the c,,¢?" term alone in Eq.(2.60)) can violate

the € slow-roll condition, i.e.
1/ 2nc5, 2\
— | —== =1, 2.67
5 (2t (267)

which yields

1—

2n

Vi 2P0\ 2

¢ = NV . (2.68)
\/§n 127T2PC

Similarly, we define cj, such that the c,,¢?" term alone in Eq.(2.61]) can violate the 7 slow-roll
condition, which yields

no_ e . 2.
“ = on(2n — 1) (127r2PC (269)

€
2n?

We then define ¢ to be the minimum of ¢ , ¢, and one,

¢ = Min|[c§,,, ¢, 1]. (2.70)

2n 2n? 72n?
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Lastly, we estimate ¢,.,; originating from scanning over the initial inflaton field value.
From the total number of e-folds, we have

Nm’f:—/zmg/ Yo d¢:/ Yo d(b:/quﬁ
¢ V! > 2n cgp P21 S 2ncy @t 2ncg p*nt

(2.71)
where in the third equality we used ¢ to replace ¢, because when the potential terms are
relevant to the inflationary dynamics, their coefficients will be bounded by ¢5:** and ¢, < ¢5,,
when the energy scale V; is small. In the last equality, we approximated the summation by
the n-th term because all the relevant potential terms are comparable. After performing the

integral from ¢; to ¢..q, because the integral is dominated by the ¢; term, we obtain

om—1 [12r2P\'""
tot ¢ 2(1-n)
~Y B 2;72
/\/’e - 2(n 1) (A/;*Q‘ 70 ) ¢7, ? ( )

Pant X \/%. (2.73)

The probability P o Vy@ant Hzozl ci* is a function of V, and F;. We plot the unnor-
malized probability function in the left panel of Figure for three different P:’s. One
can see that the probability is strongly biased toward large perturbation. In addition, there
are several kinks along each curves. To understand these kinks more, it is illustrative to
plot the first few ¢g™’s. In the right panel of Figure 2.1 we see that the coefficients for
higher dimensional operators, those with n > 3, have ¢J* = 1 for small V4. This is because
Gona X v/ Vo as shown in Eq. and hence for small V{, the higher-dimensional opera-
tors are Planck-suppressed and irrelevant to inflationary dynamics. This is also the reason
why assuming c)**’s are independent on each other does not change the qualitative result.
Only the lower dimensional coefficients can affect the higher ones but not vice versa. As we
increase the inflation energy scale, the field displacement becomes larger and hence higher-
dimensional operators become relevant and their required coefficients start to decrease from
one. This translates to the kinks shown in the left panel of Figure 2.11] For instance, in
Figure we see that, for P; = 1072, Vj ~ 107'7 indicated by the orange dashed line is
precisely the scale where the octet term starts to be relevant and require fine-tuning. Also
note that, regardless of the value of P, the amount of fine-tuning is minimal when the octet
operator just became relevant.

We compute the probability to obtain a cosmic perturbation Pr. As we have observed,
the probability P peaks at the point when the octet becomes relevant, i.e. when ¢ = 1. This
gives us the energy scale V" where the fine-tuning is minimal,

3
1 N2\ C?
max — € . 2 4
Yo 2v/14 (127r2P<) (2.74)

which gives
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Figure 2.11: Left: The probability P for different primordial perturbation amplitude F.
Right: The values of ¢, ¢, ¢ ¢ and ¢™* as a function of Vj with P = 107%. Notice

that ¢ starts to decrease from 1 at Vj ~ 107!, where P reaches maximum.

When we integrate out V; the integration is dominated by the region around Vj™"**, we
therefore have

19
P o< V" ey e e o Pg4 ) (2.75)

This can be understood as P: obeying the distribution
15
P(F)dP; < P dF. (2.76)

The probability is strongly biased toward large FPr. Unless there exists a strong anthropic
bound disfavoring P, larger than the observed one, it is unlikely that general new inflation
with Z5 symmetry results in our observed universe. Our analysis is also applicable to the
case with U(1) symmetry because the radial direction is essentially Z, symmetric, while the
angular direction is flat and does not affect the inflationary dynamics at the background
level.

For completeness, we continue our further analysis of general new inflation with Zs sym-
metry in the next section. In particular, assuming that the perturbation amplitude P is
fixed to the observed value for some reason, we investigate the probability distribution of
spectral index n,. We will find that it is probabilistically favored to have a spectral index
ns ~ 0.96, which is quite remarkable.

2.4 New Inflation and the Most Probable Spectral
Index

In Sec2.3] we found that when considering inflation with Z, symmetry, we need to fine-
tune terms at least up to the octet order,

V = Vi + c¢* + ey + cod® + co0°. (2.77)
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Nevertheless, for simplicity we will consider potential of the form
1 2 n m
V=a- §b¢ — Cp@" — e (2.78)

where the ¢, term dominates over the ¢, term and the latter is treated perturbatively.
Namely, we consider the case where ¢, is sufficiently small and ¢,,¢" < ¢,¢". We can then
extract the physics of the complete octet model, Eq.(2.77)), by extrapolation. In Eq.(2.78)
we make quadratic term explicitly negative as we now consider cases where the inflaton rolls
down from ¢ = 0.

The number of e-folds N, which the inflation would last before it ends and the corre-
sponding field value ¢, has the relation

PN \%
¢end av/a¢

PN a
~ / d¢
_b(b - ncn(bnil - mcm(bmil

end

DN m—1
= a/ |: 1 n—I1 - m¢ n—1 Cm:| d¢
é bo + ne, ¢ bop + nc, ¢

end L o o
1 )km( o + n) _%[F(%d) — Fén)] em (2.79)

(n—2 k¢ + fap

end

Ne =

dg

where we defined k£ = b/a and

m ¢m72 n—m m—2 n+m—4 Nncp  p_9 ak
= Fi (1 ; ;=" o n—2 ("
F(o) 9 ak {(m—2>2 1(’n—2’ n—2 ak¢ )+ak+ncn¢"_2}

(2.80)
Here 5 F} is the hypergeometric function and ¢.,4 is the field value where the inflation ends,
determined by the slow-roll condition. In particular, the inflation ends when the n-parameter
reaches -1, which yields

a

n—2 .
end —

=T (2.81)

Solving Eq. 1) for ¢u. (N:) perturbatively in ¢, that is, with ¢, (N.) = ,(\9) + ¢,(v16),

one has )
n—2 m—2

a —V——s m—-n
v L—kfn(k)} ,oand oW =docn a3 gom(k) (2.82)

where
1 1
Jolh) = A+ = ] e R = 1) (2.83)
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The spectral index ny and perturbation power spectrum P when inflation can last another
N, of e-folds before it ends is then given by

ns = 1+ 2n — Ge
=1 -2k —2n(n — Dkf, — 3am2c, " 2k (1+nf,)? fi?

m—2

e m_o m=2
+ {2@"2071 n—2 [m(l — m)k’"i*;fnn72 - n(n - 1)(” - Q)kfn gn,m:|

—n42 —-T

_2 m—2 m=2
—6a "2 ¢y ”*2kmfﬁ“2(1 + nfn) (77lkT”22.]tTLn2 + kgn,m + n(n - 1)kfn gn,m) }Cm7

(2.85)
1V
T uUn? ¢
-n mon D=2
itin [ o 25 (T bt Do )
1272 (1 +nf,) (1+nfn)
(2.86)

By taking the inverse of Eq. 1} perturbatively in ¢,,, one obtain ¢, = 0 4 Cm ) with
n— —-n n=2
O = (1273 K (L nf,)" PP (2.87)

and

—_n m—n m=2
2a n—2 (mk: n—2 fnn_2 + 9n,m + TL(TL - 1)fn gn,m)
0) n—2

1)_n_2 ( n—m+2

(2.88)
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With Eq.(2.85)), (2.87) and ([2.88]), the relation between the spectral index n, and the param-
eter k is plotted in Figure [2.12 for various set of (n,m). We set the parameter a = 107,
the number of e-folds N, = 55, and the perturbation power spectrum to the observed value,
P: =22 x107Y. The parameter ¢,, is bounded by the requirement that the perturbation
holds, i.e. ¢, @™ < cpd™. AS Geng > @, the bound of ¢, is therefore

Ca ™ (n>m),
lem| < (2.89)
cnpo (n <m).

We first look at the case with quartic and sextic terms, shown on the left of Figure [2.12]
Note that the quartic-dominant case is excluded by observation. One generic feature that
appears for all (n,m) is that when n < m, a positive perturbation (c,, > 0) leads to a
spectral index closer to scale-invariance, i.e. ny = 1, while a negative perturbation (c,, < 0)
makes ng deviate away from 1. This might be counterintuitive as the potential

1
V=a—3b¢" —cud" —cud™, (2.90)

is flatter when ¢,,, < 0 and we would have expected a spectral index closer to 1. However, a
flatter potential also means the inflaton moves slower before it reaches ¢.,q, and hence the
field value can be closer to ¢enq (but farther away from zero) while giving the same number
of e-foldings as shown in the left of Figure[2.13] As the field is farther away from zero where
the potential is the flattest, the spectral index can deviate from -1. The two effects, flatter
potential and larger ¢, , compete with each other and the latter wins when n < m. On the
other hand, for n > m the effect of flatter potential dominates and a negative perturbation
(¢m < 0) leads to spectral index closer to 1. The fact that the two cases, n > m and n < m,
behave oppositely and the region of positive perturbation lies between two unperturbed
curves makes us confident that one can extrapolate our perturbative treatment to the case
where the ¢, term and ¢, term comparable — it simply lies between the two perturbative
regions where one dominates the other, as shown in the right in Figure [2.13

In Figure[2.12|we see that sextic dominant models, n = 6, with either quartic perturbation
(m = 4) or octet perturbation (m = 8), fit the observation quite well when £ < 0.018. We
discuss the chance for k to lie in this region. We will focus on the following analysis without
perturbation,

1
V=a-3b ¢* — 9" (2.91)
as additional perturbation c,,¢™ does not change the end result significantly. We assume the

parameter in the Lagrangian a, b and ¢, has uniform probability distribution and also take
the probabilistic nature of the initial condition into account. Using the definition b = ak,

Eq.(2.82)) and Eq.(2.87), one has

@ant n—
/ d; / dadbdc, = / dadP;dk (127%) "7 a2 BT k"2 f, (140 )", (2.92)
0
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Figure 2.12: The ns; — k plot for different set of (n,m). The dashed lines corresponds to
the boundary of positive perturbation, ¢,, > 0, while the dotted ones represents negative
perturbation, ¢,, < 0. The grey region shows the current observational value.

where we need to integrate over a to obtain the probability distribution of k for a given P.
For n = 6 and 8, the integration over a is divergent with an upper bound a,,,, that is around
10~!7 where only terms below the octec order require fine-tuning. The exact upper bound
Gmae 18 correlated with the upper bound for ¢,, but most importantly a,,., is independent
on k and hence the integration over a does not give an additional k-dependence. In sum, for
the cases of interest, the probability distribution of £ is

Podk = k" 2f, (1 +n f,)" " dk, (2.93)

where f, (k) is defined in Eq.(2.83]), and the plot for n = 6 is given in Figure [2.14 The
shaded area corresponds to the interval Z of k that yields spectral index n, > 0.96. The
probability for k to lie in this region for n = 6 is

Sy P dk

[P di (294)

Pns>0.96 =

and the distribution P, peaks at & ~ 0.016, which yields a spectral index of ny = 0.963.
Overall it is quite remarkable that once one matches the observed perturbation power spec-
trum P, there is about a few ten chance to achieve the observed spectral index without
much further fine-tuning in general new inflation with Z; symmetry. But as we discussed
in Sec[2.3] the observed P; can be obtained without significant fine-tuning only if there is a
strong anthropic bound on F; right at the observed value which seems to be unlikely.
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Figure 2.13: (Left) The ¢ — k plot for (n,m) = (4,6). One can see that for the same k, ¢
is larger when ¢,, < 0. (Right) Even though our treatment is perturbative, the case where
c, " and c,,¢™ are comparable should continuously connect the two perturbative regions.
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Figure 2.14: The normalized probability distribution of k for n = 6. The shaded area
corresponds to the interval of k that yields spectral index ngs > 0.96.

2.5 Discussion

In this work we have investigated the typicality of the small and nearly scale-invariant
perturbation in the landscape. Anthropic consideration of the cosmological constant yields
a probability of P that biases toward large perturbation, until the anthropic constraint due
to the density of the galaxy kicks in. In order for the observed small P ~ 10~ to be typical,
the inflationary evolution has to give a bias toward small F;. Closeness of the spectral index
to the unity should be also explained.

We consider the following scenario that naturally fits into the landscape scenario: The
inflaton is coupled to a singlet scalar field that was initially trapped in a metastable vacuum
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and drove a precedent inflation. After the quantum tunneling of the singlet field, the universe
became an open FRW universe dominated by the curvature energy density while the singlet
field rolled down to a stable vacuum with negligible energy density. After a sufficient period
of cosmic expansion, when the curvature energy density dropped below the potential energy
of the inflaton, the inflation which explains the flatness of the universe and the cosmic
perturbation occurred.

In this scenario, the inflaton field value is homogeneous inside the horizon because of
the trapping during the precedent inflation. However, after the quantum tunneling the
universe is curvature dominated and the trapping is no longer effective. As a result quantum
fluctuation of long wavelength modes produced during the precedent inflation survive, which
leads to a probabilistic nature of the initial field value of the inflaton. As the inflaton tends
to start from the an initial condition away from the origin, the anthropic lower bound on
the total number of e-folding during inflation favors the inflaton potential flatter around the
origin, namely a smaller n parameter.

We investigated a supersymmetric new inflation model in detail. We find that for certain
distributions of the parameters, the probability to obtain P; ~ 1072 is O(10)%, while the
observed ng is favored. We emphasize that both the model-building and the anthropic
selection from the landscape play important roles in explaining the observed properties of
the cosmic perturbation, P and n, — 1. From the model-building side, the distribution
function of the model parameters, which is not uniform owing to the supersymmetry and
the R symmetry, yields the distribution of P not biased toward large values. From the
landscape side, the requirement of large enough number of e-foldings and the probabilistic
nature of the initial inflaton field value set by the precedent inflation dynamics favor small
n parameter, thereby explaining the observed n.

The result is encouraging for the project on understanding the universe by the anthropic
principle in the landscape. Further study is required toward this goal. For instance, in
this work we assume the contribution to the distribution of P from the post-inflationary
dynamics shown in Figure 2.1 As we comment in Sec. [2.2] our result holds qualitatively as
long as the power of the distribution at large P, is smaller than 1/2. It will be important
to investigate the distribution at large Pr more carefully, taking into account the effect of
e.g. the behavior of proto-galaxies.
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Chapter 3

Quintessence Model Building in
Supergravity

This chapter is based on the work with Hitoshi Murayama [71]. I would like to thank
Hitoshi for his guidance, encouragement, and collaboration throughout finishing this project.

3.1 Introduction

Ever since its discovery [196, 201], the current accelerating expansion of the universe has
been one of the major puzzles of modern physics and its cause is often dubbed dark energy
as its very nature is still a mystery. The simplest solution may be adding a pure cosmo-
logical constant to the Einstein-Hilbert action and indeed the ACDM model has described
our universe quite well [13]. Nevertheless, the physical origin of cosmological constant has
remained obscured and the naive theoretical expectation is about 120 orders of magnitude
larger than the observed value [225]. To explain the value of cosmological constant, one may
appeal to anthropic arguments [224] [107], whose recent resurgence stems from the string
theory landscape [90, 58, [111, [146| [211]. To date, cosmological constant problem remains
one of the most challenging problem in fundamental physics.

Cosmological constant problem aside, over the years many alternatives have been pro-
posed to account for the accelerating expansion. Among various proposals, there is a class
of models where the dark energy is attributed to a canonical scalar field named quintessence
[200], 227, [229]. For a review see [217]. Some early models of this kind posses tracker behav-
ior where the evolution of the field at late time is insensitive to initial conditions and hence
make them rather attractive. Yet, as the observations have significantly improved for the
past decades, now such models are under strong pressure from the observational constraints
[168]. But regardless the initial condition problem and/or cosmic coincidence problem (why
the energy density of matter and dark energy are comparable at present time) can be solved
or not, one basic question we wish to know is whether dark energy is purely a constant or
if it is dynamical and evolves over time. Thanks to the advancement in many cosmological
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observations like eBOSS, SuMIRe (HSC and PFS on Subaru), DESI, Euclid, WFIRST and
many others in the near future, we will have better sensitivity to see if the equation of state
parameter w of dark energy has any deviation from —1, which is the case if dark energy
is not a pure cosmological constant. From this perspective, quintessence models are phe-
nomenological tools that help us describe dark energy if it is dynamical with w > —1 and
very often the vacuum energy contribution is assumed to be zero due to other mechanism.
Certainly, regardless dark energy is a pure cosmological constant or not, one still needs to
answer if vacuum energy contributes to dark energy and if so, how large it should be. Yet,
these are ambitious problems and very likely a full theory of quantum gravity is required
to completely solve the cosmological constant problem. On the other hand, recently a con-
straint on scalar field potential from quantum gravity was proposed in [185] which suggests
that the de Sitter vacuum may belongs to the “swampland”, where models cannot be UV
completed with consistent theory of quantum gravity. Whether this dS swampland conjec-
ture holds true has raised a lot of discussions [42, [176} 43, [206} 178, |87, 182, |144} 150, |102,
47, 148, 127, 148, (197, [149, 8, |77, 92, |202} [22, 24, 81}, |19, [152} |145]. Meanwhile, its various
phenomenological implications are also worth investigation |73, [133] (132, (172, [181} |157} |169),
46, [175] 180, 94, 95| 1155} [105, |10}, [15]. In particular, the conjecture gives another motivation
to reexamine quintessence model-building. For discussions of embedding quintessence into
string theory, see |72, |134} 156, 194, (117, |74].

Obviously, the string theory requires supersymmetry and hence its low-energy limit must
be studied within the supergravity (SUGRA). Therefore, quintessence models must be formu-
lated within SUGRA. For example, in 18] [151] a class of models were constructed by utilizing
a nilpotent superfield. Also see [62, 82, |63, 61, |64] for some earlier works of constructing
quintessence models in SUGRA. One particular point we would like to emphasize and is the
focus of this paper is that when building quintessence model in supergravity, it is necessary
to consider the effect of supersymmetry (SUSY) breaking on the quintessence sector because
even if one successfully constructs a quintessence model alone, the SUSY breaking effect will
spoil the flatness of the potential. In particular, the mass scale of quintessence is at the order
of current Hubble parameter Hy ~ 10733 eV. On the other hand, quite often quintessence
will acquire a mass that has the same order as the gravitino mass ms/, which, for example, is
about TeV in gravity mediation models, way much larger then the mass scale of quintessence.
Even with low scale SUSY breaking, like vector mediation 138, [139] where mg/,, ~ O(1)
eV, the hierarchy between Hy and myg/, is still huge. This steepens the quintessence poten-
tial, yielding the field settles at the minimum in early time and one cannot distinguish it
from a pure cosmological constant. Such minimum is also inconsistent with the swampland
conjecture.

To be more concrete, let us consider a simple model where the hidden and quintessence
sector are separated in the Kahler potential with the canonical form,

K=222+QQ, (3.1)

where z and @) are the chiral superfields of the hidden and quintessence sector respectively.
This is a natural assumption in the sense that one would expect the interaction between
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the hidden and quintessence sector is as minimal as possible so there should be no cross
terms in the Kahler potential. Similarly, we assume the two sectors are separated in the
superpotential as well,

W =Wy(z) + W1(Q). (3.2)

Given the Kéhler potential and superpotential, the F-term scalar potential then reads
2 ij *
Vi = "/Mee | DLW K D;W* — M2 —|W?, (3.3)
where 7 and j sum over the two sectors and

oW W 8K
DW = Zo + T 90 (3.4)

Here M, is the reduced Planck mass Mp, = 1/v/87G. Among various terms in the potential,
there is a quadratic term of quintessence that couples to the superpotential of the hidden
sector,

|[Wol? |W0|
v o g = B g 35
As the gravitino mass ms), is related to the superpotentlal by ([Wol?) ~ m3, My, we see
that
V 5 i ulQP (36)

Due to the large hierarchy between the gravitino mass scale and the current Hubble scale,
such term will make quintessence roll down to the minimum and stick at there at a very early
time, regardless how flat the potential is in the quintessence sector alone. Observationally,
quintessence then acts like a non-dynamical cosmological constant.

If we wish to construct a quintessence model that can be observationally distinguishable
from a pure cosmological constant, for example having a time-varying equation of state in
the present epoch, then one needs to prevent the quintessence sector from acquiring such
gravitino mass. One known method is to impose shift symmetry to the quintessence sector
[64]. We will review this in Sec., emphasizing that one can incorporate quintessence
with all kinds of potential into supergravity using shift symmetry while remain radiatively
stable. In addition, the energy scale of the quintessence field is connected with the gravitino
mass, opening the possibility to relate electroweak scale with dark energy in supergravity.
As a particular example, we will show that hidden supersymmetric QCD [26] can naturally
generate the observed quintessence energy scale and be embedded into SUGRA. The cosmic
coincidence problem is also ameliorated in such scenario. After reviewing the case with shift
symmetry, in Sec[3.3] we will show our attempt to construct a quintessence model where the
quintessence and hidden sector are sequestered, inspired by the brane-world scenario [199].
In such sequestered scenario, quintessence is protected from the SUSY breaking at least at
the tree level, and it is possible to construct quintessence models of the small field type
where the quintessence was frozen by Hubble damping for most of the time and only thawed



CHAPTER 3. QUINTESSENCE MODEL BUILDING IN SUPERGRAVITY 49

recently. Yet, the constraint from the fifth force remains strong in this case and quintessence
field value is limited in a tiny range, rendering it challenging to observationally distinguish
such model from cosmological constant. However, in the phenomenological allowed range,
exactly because of the small field displacement, the quantum correction beyond the tree level
is well suppressed and the model is consistent from the effective field theoretic point of view.
On the other hand, in the case with shift symmetry, the fifth force constraint is avoided.

3.2 SUGRA Quintessence with Shift Symmetry

We first review the construction of quintessence model in SUGRA where a shift symme-
try is imposed on the imaginary part of the quintessence sector. Particularly, the Kahler
potential has the form

K=z224hQ+Q. (3.7)

where h is an arbitrary function of @) + @Q* with nonvanishing second derivative, and we
assume h starts at quadratic order in its argument. We also make the two sectors separated
in the superpotential,

W =Wy(z) + Wi(Q). (3.8)
The F-term potential then has the form
= [low, 1 o1 jowy, 1 203
M2 0 * 1 / 2
pu— —_— h -
Vi = eMpe {‘ 5, + TP (Wo +W1)| + 90 + I (Wo + Wh) MEZWHW”

(3.9)
where the prime on h denotes the derivative with respect to its argument. Below we will
denote the real and imaginary part of the quintessence sector as r and ¢ respectively,

Q=r+1q. (3.10)

The field r is the scalar partner of the quintessence field and may be called squintessence,
as analogous to sinflaton in supergravity inflation model. Note that because of the large
hierarchy between the SUSY breaking scale and the energy scale of dark energy, the dynamics
of SUSY breaking will not be affected by the quintessence sector. To be more precise, we
consider the superpotential of the quintessence sector of the form

Wi(Q) = A*Wy (J\?p,) (3.11)

where A is the energy scale of quintessence and W is a holomorphic function of @ /M,,. Note
that the shift symmetry is broken by the superpotential which is inevitable as superpotential
has to be holomorphic. This gives quantum corrections to the Kahler potential that breaks
shift symmetry. However, radiative stability is controlled by the smallness of A. We can
also consider superpotentials that involve more parameters, as long as these parameters are
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smaller than A. For simplicity and minimality, we consider superpotentials of the form of
Eq.. The coupling between the hidden sector and W; will not affect the dynamics of
hidden sector because of the smallness of A. The only interaction between the hidden and
quintessence sector that does not involve W;(Q) has the form

h? ~m3 = (3.12)
3/2 ht :

As h only depends on the real part r and the gravitino mass ms/, is much greater than
the dark energy energy scale, if we assume h starts at quadratic order in its argument and
hence A’ does not have a constant piece, then this term sets the vacuum expectation value
(vev) of r such that (r) = (k') = 0. On the other hand, the interaction terms between the
hidden sector and quintessence sector that involve W; are suppressed by A. Hence, when
determining the vev of the hidden sector, it is sufficient to only consider the terms depending
on z only,

Vausy = eX/MEe {‘8W0

0z

2
1 oW oW, 1 w3 ,
* _ v * - _ .
T (z g Vot 0)+M§[|Z| [Wol Mgé| Vol

(3.13)

Assuming (z) and (W) are real, the potential of the quintessence sector then has the form

G [ (W) | b2 1 oW, (2] .
Vauin = ¢ "t {M—éh_+ 2z, \\* 70z ) T gz, Vo3 (W0 | (W W)

1 W oW, Ow; Wo W2 .
s (50 + ) * g
oW,

2+ ‘<Z>‘2+ih_l2_i |W|2
0Q M, wME, MZ) U

1 K [OW, oW
— - 14
M, ( 0 "1 g Wl) } (814

Despite many terms shown in the equation above, it can be largely simplified. In the first
line, the first term is exactly Eq. which has a energy scale much larger than the other
terms as (Wy) ~ mgjoM2,. This term sets the vev of 7 such that (k') = 0, and hence the
second line can be dropped. For the terms in the third line, they are all at the order of
O(W2), which has an energy scale of AS/M2,, where A is defined in Eq.(3.11). As we wish
the potential to be at the order of current dark energy scale, and the leading term is the
second term in the first line, we have

(F)A°

Pe

.

2 1/3
~ M2H; = A~ M,, (—0> : (3.15)

3
a2 )

where +/(F) is the SUSY breaking scale. Note that there is a large hierarchy between A
and Mp,. Because of this large hierarchy, the third line in Eq.(3.14) is largely suppressed.
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Particularly, in the case of gravity mediation [68, |32, |140, [121], we have mg/; ~ TeV,
(F) ~ 10%(GeV)? such that A ~ 107%°M,, and the third line in Eq.(3.14) has a energy scale
of 10721902, which is 90 orders of magnitude smaller than the leading term. For anomaly
mediation [199, [112], the gravitino mass and SUSY breaking scale is even higher, with
msja ~ 100TeV and (F) ~ 10**(GeV)? On the other hand, for low scale SUSY breaking
models with gauge mediation [97, [183, 21|, it typically requires \/(F) = O(10%) TeV and
ms/s 2 keV to explain the observed Higgs mass of 125 GeV. Yet, this is in tension with the
cosmological bound mgs, < 4.7 eV from CMB lensing and cosmic shear [189]. To satisfy
this constraint, one may consider vector mediation [138,|139] where /(F') ~ O(10) TeV and
mss ~ O(1) eV, which leads to A ~ 1073 M.

In conclusion, we can drop terms in the third line of Eq. for all mediation scenar-
ios and the potential of the quintessence sector has the following simple form when shift
symmetry is imposed on the Kéhler potential of the quintessence sector,

O | oW, (2%
2 0 *
VQuin = ¢ Mpe M}%Z (<Z 92 > + Mg[ WO -3 <W0>) (Wl + Wl ) . (316)

For example, suppose the hidden sector have a superpotential of Polonyi type,
Wo = uMp,(z + B). (3.17)

where p is a parameter of mass dimension one. Requiring the hidden sector contribute zero
vacuum energy Vsusy ((2)) = 0, one finds

(2) = (V3—=1)M,, and B =(2—V3)M,,. (3.18)

The gravitino mass is given by
Mgjs = e V3. (3.19)

Assuming the quintessence sector has the canonical Kahler potential with shift symmetry,

h=2(Q+Q)", (3.20)

DN | —

the potential of the quintessence then has a very simple form
VQuin = — 362_\/§m3/2(W1 + Wf) (321)

Note that because the scalar partner r is already stabilized by Eq. with zero vev
(ry = 0, the superpotential in the above equation is no longer holomorphic. This means for
any quintessence model with a potential Vquinguin, one can embed it into supergravity by
making the real part of the superpotential proportional to the potential. Shift symmetry
in the superpotential is not necessary. In addition, the energy density of the dark energy
is related to SUSY breaking by ppg ~ ms3/»A®. This opens up the possibility to construct
supergravity quintessence models that relate the electroweak scale to the scale of dark energy.
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For example, in the case of vector mediation where ms,, ~ O(1) eV, the scale A ~ 10731 M,
can be obtained by A ~ (H)? /M,,, where (H) is the Higgs vev (H) ~ 246 GeV.

Note that the shift symmetry of the Kahler potential will be inevitably broken by su-
perpotential, as superpotentials are holomorphic. We can estimate the effect of this shift
symmetry breaking by considering the quantum correction to the Kéahler potential from
superpotential coupling. In particular, considering the leading order correction, the cubic
interaction term in the superpotential Wy D (A%/M32,)Q? yields a loop correction to the
Kahler potential K. of the form

Koe. ™~ T62 218

Q. (3.22)

Even though such correction breaks the shift symmetry in the Kahler potential, because of
the small coupling in the superpotential, i.e. the large hierarchy between A and M,,, this
does not spoil the flatness of the quintessence potential. Indeed, as the scalar potential has
the form e%/ MI%Z[- -+ ] as shown in Eq., the shift asymmetric correction Eq. leads
to a mass term

V>

1 A% Vouin oo o [ AS 9
G Il ~ i (e ) 2P (3.23)
where the mass (A3/M32,) Hy is much smaller than the current Hubble scale Hy and is therefore
harmless. One may also worry the coupling to the SUSY breaking sector like Eq. which
yields ,
Wol? AS H? AS

v o Hiioont ~ ot (5 ) 108~ 3 (38) (5 ) e 320
where we have used mgA® ~ HZMZ, as given in Eq.(3.15). We see that this contribution
is even smaller than that in Eq.(3.23) with an additional suppression Hg/M?2,. Overall we
see that even though the shift symmetry of the Kahler potential will be radiatively broken
by the superpotential, the effect is negligible and the potential Eq. is protected from
quantum corrections due to the smallness of A.

On the other hand, the smallness of A is technically natural in the t’'Hooft sense, as the
shift symmetry of the quintessence sector is restored when A — 0. Note that this does not
solve the cosmological constant problem. Like many other quintessence models, we assume
the vacuum energy density (nearly) vanishes by some other mechanism, instead of tackling
the cosmological constant problem directly. However, technical naturalness means that once
the assumption of vanishing vacuum energy density is made, an extra fine-tuning of the
quintessence energy scale parameter A is not required.

Note that so far we have assumed, for simplicity, that h starts at quadratic order in
its argument and hence h' does not have a constant piece. One can actually relax this
assumption, and then the second line of Eq. will also contribute to the quintessence
potential, which now has the form

Vauin = Mz’ oo Wi+ Wy) 4+ ca W) + W) (3.25)
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where ¢; and ¢y are order one coefficients determined by the details of the SUSY breaking
sector and the prime on W, denotes derivative with respect to its argument.

With this simple approach in hand, let us discuss the realization of some quintessence
potentials in this framework. For instance, the negative exponential potential

VQuin = % e_)\ﬁm (326)

discussed in |15} 200, 227] can be embedded in SUGRA with the superpotential

W = A3 e (3.27)

and shift symmetric Kéahler potential in the quintessence sector, using the general recipe
Eq.. Note that the above superpotential does not posses shift symmetry, which is
an example that although the construction requires a shift symmetric Kéhler potential, the
superpotential need not be so. Current observational constraint from dark energy equation
of state parameter requires A < 0.6 [15]. Also see [132, 133 19]. As the swampland con-
jecture poses an upper bound on the parameter A\ while observational constraints yields a
lower bound, future observational data can play an important role in testing the swampland
conjecture.

Since in this construction the Kahler potential already possesses a shift symmetry in
the quintessence field, it is natural, although not necessary, to consider models where the
superpotential is also shift symmetric in ¢, which is the case in axion-like models. An example
where the superpotential of the quintessence sector possesses shift symmetry and the right
energy scale can naturally arise [26| [122], based on the observation that the energy scale of
dark energy is related to the electroweak scale Mgy, and Planck scale by

s My

~—_— 3.28
DE MPZ ( )

In particular, assume SUSY is broken at the TeV scale by an order parameter chiral superfield
(S) = 0*M?%,;, and there is a hidden supersymmetric QCD (SQCD) sector ¥ with SU(N,)
gauge group and Ny flavors that couples to SUSY breaking sector and the observable sector
only through Planck-suppressed interactions. Once the SUSY is broken, the hidden sector
quarks acquire a mass through the operator

S*
d*e U 3.29
/ MPZ ( )

and hence the masses of the hidden quarks are of the order of my ~ M]?JW /Mp,. Similarly,
the hidden gluino acquires a mass of the order of m,/g* ~ My, /Mp, through the operator

M2
5 WW* = —EW AN (3.30)

d’6
Mp, My,
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Assuming the gluino mass is somewhat smaller than the others and 3N, — Ny < Ny, then

the strongly coupled scale of the hidden SQCD is about the same as the hidden quark mass,
M2

A~ my ~ M’?W, (3.31)

Pe

because the sector becomes strongly coupled quickly after the hidden quarks decoupled. With
the gluino condensation, the axion ) associated with the SQCD then has a superpotential

872Q

Waxion - Age_ NeMpe (332>

Plugging this back to Eq.(3.21) and an appropriate tuning of the cosmological constant
contribution yield the usual cosine-type potential

() ()]

with the decay constant f, = éyr—g]\/[ pe- With large enough N,., we may have super-Planckian
decay constant. But note that for axion quintessence model, a super-Planckian decay con-
stant is not strictly required to pass the cosmological test [101]. This is because quintessence
models do not require accelerating expansion as long as that of inflation, and hence even if
the decay constant is sub-Planckian, sufficient e-folds of expansion can still be achieved if
the quintessence starts from near the top of the cosine potential.

The above paradigm is intriguing as it naturally connects the dark energy energy scale
with the other two important physical scales, Mgy and M,,, and the cosmic coincidence
problem can also be explained [26]. In addition, as the quintessence sector is essentially the
hidden SQCD axion, we have the shift symmetry to protect quintessence from acquiring large
gravitino mass when we embed it into SUGRA. Yet, one should notice that such paradigm
requires the SUSY breaking scale to be exactly at the TeV scale, which means the gravitino
mass is at the order of meV. An explicit construction of such kind of model is challenging
and yet to be done.

Lastly, it should be emphasized that even though in the above example the superpotential
Eq. is shift symmetric from U(1) R-symmetry, shift symmetric superpotential is not
necessary for general constructions. One only requires shift symmetries in Kahler potential.
It may be possible and interesting to construct models where the energy scale A does not arise
from mechanism that involves shift symmetry. Given that there is a simple framework to
realize any quintessence potential within supergravity, the low-energy limit of string theory,
the swampland conjecture passes the first non-trivial test.

3.3 Quintessence in Sequestered Supergravity

In this section we show another attempt of constructing quintessence model in super-
gravity. In particular, we consider the case where the hidden and quintessence sectors are
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sequestered [199], yielding a Kéhler potential of the form

K = —3M%n (1 - féj\ée) - g(f]\g*)> , (3.34)

where f and ¢ are real functions of z and @ respectively. This form of Kéhler potential
can be originated from higher dimensional theory where the two sectors live on two separate
3-branes. For the superpotential, we have the same form as before,

Like in the case of shift symmetry, we first work out potential of the hidden sector, which
will tell us how SUSY breaking affects quintessence. Working out the scalar potential, we

have
K2 oW, > 1 oWy 3 )
Vp = D {QQQ* Ko 92 + M2, <fz 9o W —i—c.c.) — M—géfzz*’Wd
(l9e* = 9.900-) |OWo |”
oW
VY gz | TOM)
(3.36)
where
/ g f fol9ql® | goq-If:I
K=1- — Ko=1— ——+ D =Kf..-900 .
Mz, 3MZ, ST aME R VPR TV
(3.37)

The subscripts of f and g denotes derivative with respect to the respective variables. Because
of the large hierarchy between the energy scale of dark energy and SUSY breaking scales,
terms proportional to Wi are negligible when considering the dynamics of SUSY breaking.
From Eq. we can see that if the condition

(l9o> — 9900+) =0 (3.38)

is satisfied and the square bracket in the first line vanishes when z lies at its minimum such
that the hidden sector contributes zero vacuum energy, then the quintessence sector will not
acquire a mass of SUSY breaking scale. The condition Eq.(3.38) means that ¢(Q, Q*) has

to be in the canonical form
9(Q, Q") = QQ". (3.39)

Indeed, if we expand g to higher orders in the form of

2 4
0Q.@) = 0P (14 a2 +arlZh ) (3.40)



CHAPTER 3. QUINTESSENCE MODEL BUILDING IN SUPERGRAVITY 56

where a;’s are dimensionless coefficients, then the first term of the second line in Eq.(3.36))
will then be

2 2
CIQR [ e,
BV TS V)

QI 1|oWel”
0z

IQI2 Q[ 2 12
—3 iz e | mhalal (3.41)

Unless |Q[*/M?2, < 1, we see that the quintessence sector acquires an effective quadratic term
at the order of gravitino mass squared. In general, g(Q,Q*) need not be in the canonical
form as Kahler potential would be renormalized when quantum effect is taken into account.
Even if the two sectors live on separate branes, gravity still mediates between the two and
quantum gravity effect generically spoils the tree level Kahler potential. Nonetheless, this
can be regarded as another manifestation of the cosmological constant problem in the sense
that quantum effect naively yields an energy scale much larger than the dark energy energy
scale. In fact, when we make the hidden sector contributes zero vacuum energy, it is also
controlled only at the tree level. As tackling quantum gravity effect fully remains challenging,
we choose to proceed with the assumption that the canonical form of g(@Q, Q*) is preserved
by some unknown mechanism.

Moving ahead, let us workout the potential of the hidden sector more explicitly. For the
superpotential we adopt the Polonyi type as we did in the shift symmetry case,

Wo = uMp,(z + ), (3.42)

where p is a mass dimension one parameter of the SUSY breaking scale. For the Kahler
potential, we consider the form \
2|

3MZ,
The quartic term is included because with the quadratic term alone the potential will not
be bounded from below. In fact, to make the potential bounded from below, A\ has to be
negative and we choose A = —1/4 for convenience. Demanding the hidden sector contributes
zero vacuum energy, one finds

= 2> + Agorsm (3.43)

3/2
8= % Mo, (3.44)

and the hidden sector field lies at the vev
6
(=) =13 (3 - \/S> M,,. (3.45)

With the hidden sector settles at its vev and taking ¢(@Q,Q*) = |Q?, the potential for
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the quintessence sector then reads

1 |fz|2 2
VQuin = 2{ <IC0fzz* + o |W1Q|
2 3M?2
@) (¢} - 3, .

<sz*> * *
t o (3mQ Wiy + . — QP Wigl* — 9w )
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= [(3f2Wo — W) (QWig — 3W1 +cc.)] ¢
3MP£

(3.46)

Note that the potential approaches infinity when @ — ++/3 (Ko) Mp, ~ 1.47M,,, and hence
the field displacement of the quintessence field is confined within this range, rendering large-
field type model impossible in the sequestering setup. Even though such singularity can
be apparently removed when we make the field redefinition so that the kinetic term in the
Lagrangian becomes canonical, the prefactor outside the curly brackets still dominates and
one can check that the slow-roll parameters are larger than unity in the large field region. In
fact, since part of the prefactor is originated from the e® prefactor of the scalar potential,
this is similar to the n-problem in inflationary model building in supergravity. We there-
fore focus on small-field type potential, where, for instance, the quintessence field rolls on a
plateau. These types of models are generally sensitive to initial conditions, unlike tracker-
type quintessence models where the field evolutions with wide range of initial conditions
converge to a common trajectory. Despite this shortcoming, our goal is to investigate the
possibility if quintessence models can be built in sequestered supergravity that lead to obser-
vational signature distinguishable from cosmological constant, hence we will bear with this
initial condition problem.

The first thing we would like to ensure is that the potential is bounded from below. In
Eq.(3.46)) the first and second line are at the order of O(W32/M2,), while the third line is at
the order of O(u*W,/M,,). Because of the SUSY breaking scale y, the third line generically
has a much larger energy scale and hence dominates the potential. However, the third line
of Eq. is not positive-definite and there is always a direction in the complex field space
where the potential approaches negative infinity when |Q| — /3 (Ko)Mp,. It seems that we
need multiple parameters in the superpotential with a large hierarchy among them to make
the potential bounded from below.

Consider a superpotential for the quintessence sector of the form

Wi(Q) —A3< E )n (3.47)
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which yields

B 1 <fzz*> AG |Q‘2 '
Vaun = Q_2)2{ s Y (Mﬁ)
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(3.48)

We see that the potential is positive-definite only when n = 3. Hence when we consider
superpotential of polynomial form, the highest order must be truncated at n = 3. Going
beyond cubic order will yield potential that is unbounded from below. We therefore consider

QN QN QY.
= 4
Wi(Q)=a (Mm +0b . +c . +d, (3.49)
which gives the potential of the form
1 12\ lal* |
VQuin = 2 {9 <]C0fzz* +
2 M2,/ M2, M2
(D) ((IC0> _ 3|§/2{\2 ) 3M5, pe Vi py
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(3.50)

Note that in order to make all the terms to have the same energy scale and describe dark
energy, we need & ~ 1070M3, and b ~ & ~ d ~ 107'M3,. There is a large hierarchy
between a and the other three parameters because of the coupling of the latter three with
the SUSY breaking scale u, where u?/Mp, ~ TeV. Also note that because of this large
hierarchy, we have neglected the cross terms in the potential like ab, bé, etc. Define the real
and imaginary part of Q/My,,

Q Q

r=Rep—,  s=Imo 3.51
Mp, M., (3.51)
and assume the parameters are real, the potential has the form
L P N PR
Vauin = p {9 <K0fzz* + 359 (r* + %)
r2+s2 3N 2 M2
<D> ((IC0> - 3]\}_123_[> P? Pe
* 7 92 7 9 - ~
+ 312, (3fereWo — LW5,) [bs —br®—2¢r— 3d] }

(3.52)

A3 n * n
2w so-o[(2) + (2)])

}
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Notice that the imaginary part has even power and global minimum at s = 0. Hence we can
assume the imaginary part lies at its minimum and focus on the potential for the real part
only.

Lastly, note that in supergravity the kinetic term of the scalar field is given by

LH@QW Q" (3.53)
[/Co— 2] }

2
3MPZ

Liin = —Kg+0,Q0"Q" = —

Because the imaginary part lies at the s = 0, from now on we will take () as real. The kinetic
term will be canonical after we make the field redefinition

) = V3M,, tanh™! {L} : 3.54

R Ve o7 50
In terms of the canonically normalized field, we arrive at the general potential of the
quintessence field in the setup of sequestered supergravity:

Vin = pon cosh? <\/§C]2\4P£> {a2 tanh? <\/§§4P£> — btanh? <\/§?ng> + ctanh (ﬁ?@) + d}
(3.55)

Here a, b, ¢, and d are dimensionless parameters where b > 0 to ensure the imaginary part
of the field lies at zero.

One possible scenario from this general form is a potential with long plateau on which
the quintessence field slow-rolls. To obtain such kind of potential requires some fine-tuning
of the parameters is required. In the left of Figure [3.1] we show an explicit example of such
kind.

VQuin/pDE

T T T
30 00 Planck-+BSH
Planck-+WL+BAO/RSD

a = 1.00022

b =2.0003

20 ¢ =0.000132615
d = 0.999983

w(z)

Inflection Point @ g = 0.60024
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Figure 3.1: (Left): Plot of the quintessence potential Eq. with the given parameters.
The potential has an inflection point at ¢ = 0.60024. The parameters are chosen in a way
such that at the global minimum has V' = 0, while the quintessence field contributes the right
amount of energy when it slow rolls on the plateau. (Right): The evolution of the equation
of state parameter w for the potential shown in the left panel with various initial conditions,
in comparison with the w(z) given in [11] which was reconstructed from observational data.
We see that, for instance, with the quintessence field starting at ¢; = 4.5, one can have a
interesting deviation from w = —1 that still satisfies current constraints.
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With a given potential of a long plateau, one also has to choose the initial condition
for the field. The evolution of the quintessence field at late time, say redshift z < 5, is
insensitive to the initial velocity of the field. This is because no matter how large the initial
velocity is, it would soon be damped away by the Hubble friction and remain frozen near at
its initial position until the matter and radiation energy density become low enough. After
the field started to roll, its equation of state parameter w would gradually increase from
w = —1. If the field started with an initial position ¢; on the steep slope, say ¢; = 5 for
the potential shown in Figure |3.1, w may increase too much and exceed the observational
bound. On the other hand, if the field started on the flat plateau, say ¢; = 1, w would not
deviate from w = —1 too much and act like a cosmological constant. The phenomenologically
most interesting case happens when the field has an initial position at the junction of the
flat plateau and the steep slope, say ¢; = 4.5. The time evolution of the equation of state
parameter with these three different initial conditions is shown on the right in Figure 3.1}

Although considering the quintessence and SUSY breaking sector alone can lead to in-
teresting observational signatures in the context of sequestered supergravity, things would
unfortunately change when we consider the coupling between the quintessence and mat-
ter. Specifically, the constraint from the fifth force would require the quintessence field to
have a nearly zero field value, resulting a equation of state parameter with little deviation
from w = —1 and hence cannot be observationally distinguishable from a pure cosmological
constant. To elaborate more on this, note that the fermion mass has the form

Myd =Y eK/2Mpy Vuds (3.56)

where y is the Yukawa coupling, m,, 4 are the mass of the u-type and d-type particles, and
Uy,q are the vev of u-type and d-type Higgs field H,, and H,;. With the Q-dependence in the
Kahler potential, we effectively have a coupling between the quintessence and the matter
sector, whose strength is determined by

o=, 2 (3.57)

9Q

This interaction is often dubbed “the fifth force”. In sequestered scenario, we have K =

—3M?2,In K, where K is defined in Eq.(3.37). Hence the strength of the fifth force is given

by
3 dQdink Q
oMraTag T V3tanh (@w) ' (3.58)

Observational constraints on « from radar time-delay effect give stringent bounds on the
strength of the fifth force. For instance, measurements made by Cassini spacecraft yield a
bound of a? < 107° [49]. By Eq.(3.58)), this translates to the bound on the quintessence field

(A? ) <1070, (3.59)

Pe
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Such a tiny small range means the the equation of state parameter w cannot be largely
deviated from —1. To see this, note that the current field velocity is related to the field
displacement by

O ~ AOH,. (3.60)

This is of course a rough approximation since the field doesn’t roll for the whole time of
the age of the universe. Yet the the difference should only be an order of one tenth. The
equation of state parameter w at late time can therefore be approximated as

oV ACH-BE L AQ

1

2

- = + . 3.61
R NI T o

Hence, combining with the fifth force constraint, the deviation of equation of state parameter
from -1 in sequestered supergravity is less than 10~°, making it challenging to be detected
in current and near future observations.

Recently, a swampland conjecture regarding the shape of the scalar potential in any
consistent theory of quantum gravity was put forward in [185], where the authors suggested
that the potential of the scalar fields ¢;’s should satisfy the criterion

M |VV| > ¢V, (3.62)

where VV'is the gradient with respect to the scalar fields ¢;’s, and ¢ is a number of order
O(1). Due the fifth force constraint, the field value of ) is confined to be closed to the origin
and hence the potential Eq.(3.55)) can be approximated as a linear potential of the form

Vauin = Por <1 +c @ ) . (3.63)

My,

With this simple form, one can solve the evolution of Q and the displacement AQ is given
by
AQ ~ ¢ M,,. (3.64)

This means that in order to satisfy the fifth force constraint Eq., we not only need to
have an initial condition Q? < 10-°M?2,, the slope of the potential also needs to satisfy ¢z <
107°. This will violate the swampland conjecture Eq. if the number ¢ in the conjecture
is of order one, and the sequestered scenario will be theoretically ruled out. Nonetheless, as
pointed out in [95], the swampland conjectures should be regarded parametrically and the
number ¢ does not have to be of order one. Indeed, using effective field theoretic arguments,
the authors in [95] argued that ¢ should be the order of m,/my,, where my is the mass of light
particle considered, and my, is the mass of the lightest heavy particle that one integrates out.
Therefore, if the hierarchy between m, and my is large enough, namely (m,/my)?* < 1077,

the sequestered scenario can still satisfy the swampland conjecture.
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3.4 Discussion

In this note we have discussed quintessence model building in supergravity. We stressed
that there are two main issues when trying to construct supergravity quintessence models
that are observationally distinguishable from a pure cosmological constant. Firstly, for any
realistic models, it is necessary to consider the effect of SUSY breaking which often gives
quintessence a mass at the scale of the gravitino mass, which is much larger than that
of the current Hubble scale. This renders the potential too steep such that quintessence
settles at the minimum in the very early time and acts like a pure cosmological constant.
One can avoid this problem by imposing shift symmetry on the Kahler potential of the
quintessence sector, and an advantage of this approach is that it is much easier to embed any
quintessence potential in this framework — the quintessence potential is simply proportional
to the real part of the superpotential. In addition, even though the shift symmetry is broken
by the superpotential, because of the hierarchy between the quintessence energy scale and
the Planck scale, such effect does not affect the quintessence dynamics. In addition, the
energy scale of the quintessence potential is related to the gravitino mass, and hence one
can consider models that relates electroweak physics and quintessence. As an example,
we considered the scenario where SUSY is broken at the TeV scale and there is a hidden
SQCD axion that plays the role of quintessence. In such scenario, the dark energy scale is
given by the electroweak scale and Planck scale, and the cosmic coincidence problem can be
ameliorated [26].

We also proposed another way to circumvent this issue, namely by sequestering the
SUSY breaking and quintessence sectors. This approach is based on the picture of a higher
dimensional theory where two sectors live on different 3-branes and only communicate with
each other through gravity. We showed that indeed quintessence does not acquire a gravitino
mass at least at the tree level. Once higher order terms kick in this generally no longer hold
and one needs to assume some mechanism in quantum gravity preserves the form of the
Kéhler potential as Eq.(3.40). However, for models with small field displacement, these
higher order terms are Planck suppressed and hence do not disturb the dynamics of the
quintessence field.

The second main issue one needs to consider is the observational constraints from various
gravitational tests like the fifth force constraint. In particular, the strongest source of the
coupling between quintessence and matter stems from the exponential factor in the fermionic
mass term Eq.. In most models, this gives a strong constraint on the quintessence field
range, and as shown in Eq., how much the equation of state parameter can devi-
ate from -1 is constrained by the quintessence field displacement. Therefore, in order to
build quintessence models that can be observationally distinguishable from pure cosmolog-
ical constant, it seems that one needs to ensure quintessence field does not appear in the
exponential factor. In the case with shift symmetry, because the Kahler potential Eq.
does not depend on the imaginary part of the quintessence superfield which plays the role
of the slow-roll quintessence field, the quintessence field does not appear in the exponential
factor and hence the observational constraint on matter-quintessence coupling, «, defined
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in Eq. can be satisfied even for large field displacement. In the sequestered scenario,
because the quintessence field still appear in the exponential factor, field displacement is
strictly limited by the fifth force constraint and it would be a challenging task to observa-
tionally distinguish such models from pure cosmological constant through equation of state
parameter.

To conclude, any generic quintessence potential can be realized in supergravity with
shift symmetric Kahler potential in the quintessence sector, which avoids quintessence from
obtaining a mass of the order of gravitino mass ms/, and evades fifth-force constraint. Given
this simple framework to realize quintessence potential in SUGRA, the low energy effective
theory of string theory, the swampland conjecture passes its first non-trivial test.



64

Chapter 4

What does Inflation say about Dark
Energy given the Swampland
Conjectures?

This chapter is based on the work with Jacob Leedom and Hitoshi Murayama [70]. I
would like to thank both of them for the collaboration of this project as well as many
stimulating discussions about the swampland program in general.

4.1 Introduction

The discovery of the accelerating expansion of the Universe [196, 201] was a huge surprise
to the community. Because gravity only pulls, it should put a brake on the expansion of
the Universe after the Big Bang and hence the expansion should decelerate. Acceleration
implies there is a substance in the Universe that pushes the expansion. It was dubbed dark
energy. The most discussed candidate for dark energy is the cosmological constant A, a finite
energy density of the vacuum, due to the simple way it can be implemented into cosmological
models based on general relativity. However, despite being consistent with data [13], the 120
orders of magnitude difference between the observed vacuum energy density (p &~ (meV)?)
and the naive theoretical expectation (p &~ M3,) still remains the most challenging problem
in modern physics [225].

Since dark energy and the cosmological constant problem inevitably involve quantum
gravity, string theory, as a theory of quantum gravity, should address these topics. The
attempts to construct de Sitter solutions (spacetime solutions to general relativity with a
positive A) in string theory [58, (111, [146] have lead to the notion of the string landscape. The
landscape consists of an enormous number of vacua, each described by different low-energy
effective field theories (EFTs) of different fields and parameters. String theory therefore
supports the anthropic argument [224], namely that the value of the observed dark energy
density is what it is because otherwise human civilization could not exist. If we really live
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in a (meta-)stable vacuum in the string landscape where a constant vacuum energy explains
dark energy, then there is no point in measuring the dark energy equation of state parameter
w = p/p, where p and p are the pressure and energy density of the dark energy, respectively.

String theory seems to lead to many possible low-energy EFTs, so conversely one can ask
what criteria a given low-energy EFT should satisfy in order to be contained in the string
landscape. For the last decade, several criteria of this kind, dubbed swampland conjectures,
have been proposed , . These can have important cosmological implications.
For instance, one of the relatively well-established conjectures is the distance swampland
conjecture [187] [191], |41}, [158] [219] [p3} [193, [170] [129} [76, [116] [131] [54] [162] which implies
that scalar fields in a low-energy EFT of a consistent theory of quantum gravity cannot have
field excursions much larger than the Planck scale since otherwise an infinite tower of states
becomes exponentially light and the validity of the EFT breaks down. In other words, one
has the constraint

Ap S aMp, a~~0(1). (4.1)

In the context of inflation, field excursions are related to the tensor-to-scalar ratio r by
the Lyth bound ,
A r
~ /=N 4.2
el (12)

where N is the number of e-folds of inflationary expansion. Clearly the distance conjecture,
Eq. , limits the possibility of measuring tensor modes and hence primordial B-modes in
the cosmic microwave background (CMB). Naively, with A" = 50, we find r < 0.003, which
is on the edge of observability for future experiments [9, [212].

The attempts to construct de Sitter solutions or inflationary models in string theory

[146, (147, [208| 226, 40, 203, 2, have sparked discussions on various
issues with such constructions, as well as no-go theorems [171}, 216 [135] [85], [176], (66, (67| [65,
28|, [207, [115, [110}, [44] [50, [43, [86, [160, [198, 01, [143, 142, 25, [178, [206, 23, 87]. Motivated

by the obstructions encountered in various attempts, the de Sitter swampland conjecture
was proposed [185], which states that the scalar potential of a low-energy limit of quantum
gravity must satisfy

Mo |VV| > eV, e~ O(1) >0 (4.3)

where V denotes the gradient with respect to the field space, and the norm of the gradient
is defined by the metric on field space. Whether the conjecture holds true is still an open
debate (150, 02, 7, [, 127} 48, 197, 9, §, 77, 924 202} 22, 4 51, 19} 152 145 (177 15,
. Yet, even before the debate is settled, it is interesting and important to investigate
both its consequences in cosmology and potential modifications or extensions 7 ,

172, 181}, [157, 169, |46, (175, 80, 94} 95} [155], [105, [10} 88, 222} [59, [125, (60, 96} [100] [164, 124
179, [28, 89, [223, [104] [130} [186} [106] [195] [p1, 204, [163]. The primary implication of

this condition is that the observed positive energy density of our Universe should correspond
to the potential of a rolling quintessence field rather than a positive A . The fact that
one can easily embed any quintessence model into supergravity , in a rather simple
fashion, despite the difficulty that supersymmetry breaking generically spoils the flatness of




CHAPTER 4. WHAT DOES INFLATION SAY ABOUT DARK ENERGY GIVEN THE
SWAMPLAND CONJECTURES? 66

the quintessence potential, is also encouraging. This raises the hope that w # —1 might be
detected.

The de Sitter conjecture forbids (meta-)stable vacua with positive energy density, so it is
not surprising that the inflationary paradigm has apparent conflicts with the conjecture and
one may call for a paradigm shift. Nonetheless, one can also adopt a conservative approach
and regard the conjecture as a parametric constraint where the inequality holds but the
number ¢ may not be strictly O(1) [95]. From this perspective, constraints on inflation can
then be used to constrain c.

However, if we follow this route, the optimism that one can observe w # —1 is greatly
diminished. To see this, recall that in single-field slow-roll inflation, the slow-roll parameters
of the potential are defined as

M2 V! 2 v
€y = - (—) , ny = M2 - (44)

2 V

where the primes denote derivatives with respect to the inflaton. The distance conjecture
limits the inflaton field excursion A¢ =~ /2ey N < O(1) and therefore the necessary number
of e-folds N & 50 forces ¢ < /26y < N1 ~ 0.02. On the other hand, the number ¢
in Eq. is meant to be universal in a given EFT. Therefore, the current accelerating
expansion must involve a quintessence field () whose potential Vi must satisfy

2(V4)? 2c?

> =A>133x107% 4.5
VP +672 612~ (4:5)

1+w=

Although this does not exclude observable quintessence, given the fact that so far almost
all observations are consistent with a cosmological constant, such a small lower bound on
possible deviation of w from —1 makes it questionable if it is worthwhile to push the sensi-
tivity of the observations further. We may never know whether the Universe is de Sitter or
quintessence.

However, the original de Sitter conjecture, Eq. , was so strong that even the Higgs
potential was in tension with it [94]. The conjecture was also in tension with the well-
understood supersymmetric AdS solutions [81]. Recently the refined de Sitter swampland
conjecture was proposed [105] [188], which states that the scalar potential of a low-energy
theory that can be consistently coupled to quantum gravity should satisfy either

Mo |VV|>cV,  e~O(1) >0, (4.6)
or

M?2,min(V,;V,;V) < =V, d~0(1) >0, (4.7)

where min(...) denotes the minimum eigenvalue of the Hessian V;V;V in an orthonormal
frame of the scalar field space. With this refinement, the aforementioned conflicts with the
Higgs potential and the SUSY AdS solutions are resolved. The refined conjecture also raises
new possibilities for inflation. In particular, one can evade the strict bound on ¢ arising from
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the distance conjecture by having the scalar potential satisfy the second condition Eq.
of the new conjecture during part (or all) of inflation. As such, one may regain the hope
that observable time-varying dark energy with w # —1 can be obtained. See also [14] for a
recent discussion on w in consideration of the refined dS conjecture.

4.2 Single-Field Slow-Roll Inflation Models

Due to the above tension between the de Sitter conjecture and the requirements of infla-
tion, we assume that the inflaton potential switches from one de Sitter condition to another
as the inflaton rolls, an idea also utilized in [104]. To be specific, we take the following
step-function approach to keep the discussion general and simple: we apply the first condi-
tion, Eq. , for the initial A e-folds and apply the second condition, Eq. , for the
remaining Ny = N;o; — N e-folds. In our analysis we set N;,; = 50. We assume ¢ and 7y
are approximately constant for each interval so that we have

269) > ¢ and 77‘(/2) < . (4.8)

Additionally, Eq. (4.1) requires that

V26PN + /2690, < o~ O(1). (4.9)

To maximize ¢, we assume eg) < 107 so that the contribution of the second era to Eq. (4.1]
is negligible. Combining Eq. (4.8) and Eq. (4.9)), we have

e — " ° (4.10)

We can also obtain a bound for ¢ from the spectral tilt ny, = 1 —2¢ —n, where the Hubble
slow-roll parameters are .
H €
—— = —. 4.11
H—2 9 HE ( )
For single-field inflation models, these are related to the slow-roll parameters of the potential
as ey = € and Ny = 2¢e — %n. Therefore, we can constrain 7, and hence the second parameter

of the refined de Sitter conjecture as

€ =

1
¢ <3 (1 —ny(k) — 669’) , (4.12)

where we are allowing for a k-dependent spectral tilt. Since we assume eg) is small, our

bounds simplify to

() < (1_+(k) /%) . (4.13)



CHAPTER 4. WHAT DOES INFLATION SAY ABOUT DARK ENERGY GIVEN THE
SWAMPLAND CONJECTURES? 68

Eq. (4.13) is valid until N7 = N, at which point the derivation on the bound of ¢’ above no
longer applies, and the only constraint one finds is that ¢ < a/N,. To proceed, we utilize
the Planck analysis based on TT, TE, EE, lowE, lensing and BAO [13], which gives

dn,/dInk = —0.0041 % 0.0067, (4.14)
n, = 0.9659 = 0.0040, (4.15)

at k, = 0.05Mpc—!. We add errors in quadrature, ignoring correlations, and use

2
(k) = 0.9659 — 0.00411n

*

L 2
+ \/ (0.0040)2 + (0.0067111 /?) . (4.16)

A smaller n, allows for larger ¢ in Eq. , so we take the 1o allowed lower end
in order to place our bounds. The weak correlation between ng and dns/dInk we see in
Fig. 26 of |13] actually works in our favor and ignoring correlation is therefore the more
conservative approach (i.e., gives a smaller allowed range) E| Using the simple relationship
N1 = In (k/agHy), where aq is the present scale factor and Hy is the present Hubble scale, we
can constrain the swampland parameters in single-field inflation as shown in Fig. 4.1 The
current CMB constraints on the spectral index and its running are limited to AV} < 10. This
range is denoted by the solid lines in Fig. 1.1} Beyond this there are no strong observational
constraints and we extend our analysis by extrapolating Eq. to N7 > 10 shown by the
dashed lines in Fig. 4.1} The unshaded regions indicate values of (¢, ¢) that satisfy the above
inequalities. The vertical asymptotes correspond to satisfying Eq. for the entirety of
the inflationary epoch, N7 = 0, so that c is left completely arbitrary but ¢ has a strict upper
bound that is much less than the O(1) expectation. The horizontal dotted lines correspond
to satisfying the first constraint Eq. for all of inflation, N3 = 0, which leaves ¢’ arbitrary
but severely limits ¢. The horizontal black dashed lines indicate the lowest values of ¢ that
yield the given A defined in Eq. as the lower bound on 1 4 w from the constraint
Eq. . Finally, the grey region excludes values of ¢ that may satisfy Eq., depending
on the value of «, but conflicts with the constraint 7 gpe < 0.064 [17], as r = 16¢ > 8¢*. The
grey excluded region has a left vertical boundary since the constraint applies only to & >
0.002 Mpc~t.

We also comment on the observability of the tensor mode r. The swampland distance
conjecture, Eq. , combined with the Lyth bound, Eq. , is normally believed to

!The Planck 2018 paper [13] also shows the analysis where they allow for the running of running
d*ns/dInk?. Unfortunately they do not show the correlation and we cannot use it for our purposes. In
fact, the extrapolation of ng(k) to small scales from the Planck data is most likely too restrictive, as the
allowed range for the primordial power P (k) blows up for k > 0.2 Mpc ™! (see Fig. 20 in [17]).
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disfavor observably large r, assuming a ~ 1. The best sensitivity anticipated in the future is
r ~ 1073 |9, 212]. There is a parameter region in Figure where r > ri, = 8¢ is close to
the current observational bound. Physically this is because, in our spirit of a step function
approximation, we can allow for a brief initial period, say Ny ~ 4, where the upper bound
on ¢ from the distance conjecture, ¢ < N ?/2 ~ 0.03, is relaxed. Thus it is possible to have
r large enough to saturate the observational bound at low ¢. This is encouraging, especially
for space-born CMB B-mode experiments such as LiteBIRD [212].

1k
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\ 1
L A=0.01 \\\\
N \\
C 0.1t \ \\\\ 01 min
o N\,
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- \\\
N 0.01
\\
— a=1
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0.01 0.1 1
cl

Figure 4.1: Bounds on swampland parameters for generic single-field inflation models at the 1o
level assuming the running of ns can be extended to Ny, = 50 e-folds. The unshaded region is the
allowed parameter space. The solid lines are for A7 < 10; the dashed lines are for 10 < A7 < 50,
and the horizontal dotted lines correspond to N7 = 50, i.e. the first constraint Eq. applies to
the whole inflationary period. The values of ¢ excluded by [17] are shaded in grey. We required the
distance conjecture with A¢ < aMp;, and display the minimum values for 1 + w > A with black
dashed lines. With the original de Sitter conjecture, ¢ had to be below the dotted horizontal lines
but there were no constraints on c'.

4.3 Multi-Field Slow-Roll Inflation Models

The constraints discussed above are due to the tight relations between ng, €y, ny, and r
in single-field slow-roll inflation models. It is natural to ask whether the constraints can be
relaxed in multi-field models. In our analysis below, we take the conservative assumption
that the swampland distance conjecture applies to the proper length of the trajectory, instead
of the geodesic distance between the starting and ending points in the field space.
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We discuss here a class of multi-field models where directions orthogonal to the slow-roll
direction are massive, M 2 H. The inflaton therefore rolls near the bottom of the valley,
which has “bends” in the multi-dimensional field space. The main difference here is that
the local angular velocities of the inflaton around the bends can modify the effective sound
speed ¢, of fluctuations. As a result, we have the modified relation [1306]

s M M?
127’]\/ = (CS_ — 1)ﬁ + 2? + 3(46 — 77)
M? 3 ? M?

Here, 1y is the minimum eigenvalue of the Hessian and M is the effective mass of the field
orthogonal to the slow-roll direction, and c¢; is given by

2
cl=1+ % : (4.18)
where (2 is the local angular velocity describing the bend of the inflaton trajectory in the
potential. Note that in the limit {2 — 0, the sound speed reduces to unity and 7y to the
expression of the single-field models. Allowing for a significant deviation of ¢4 from unity
relaxes the constraints on (¢, '), as shown in Fig. [4.2] where we set M = H. This allows
for larger values of ¢ and ¢ compared to the single-field case, which are preferred by the
swampland conjecture. Note that lowering the sound speed further will not achieve O(1)
values for ¢ because our scenario relies on having negative 7. As ¢ is reduced from unity,
1y initially becomes more negative and widens the allowed parameter space. Beyond some
critical value ¢; = 0.3, further reduction of ¢, makes 7y less negative, thereby narrowing the
allowed parameter space. For ¢y < 0.2, 9y becomes positive and our analysis no longer holds.
Empirically, we find that ¢; ~ 0.24 maximizes the allowed parameter region in the (¢, ¢)-
plane. The grey shaded regions again correspond to experimental constraints on r = 16ecs,
but their area is greatly reduced as ¢, decreases.
It is also interesting to note that we expect primordial equilateral and orthogonal non-
Gaussianities once ¢s # 1 in this class of models [136],

il — _(¢72 —1)(0.275 + 0.078¢2), (4.19)
rtho — (72 —1)(0.0159 — 0.0167¢2). (4.20)

Here we have ignored the third order parameter. The current observational constraint on
the sound speed is ¢s > 0.024 (see Eq. (89) of [12]), which is an order of magnitude below
the limit we can reach in our setup, as shown in Fig. [1.2] Future observations combining
CMB lensing, galaxy and 21cm surveys, Lyman « forest, etc. have the potential to improve
the constraint on fyr, by an order of magnitude or more [161].
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0.01E

Figure 4.2: Bounds on swampland parameters for generic multi-field inflation models. We took
a=1and M = H. ¢, is the sound speed for fluctuations, and the rest is the same as in Fig.
With the original de Sitter conjecture, Eq. , and single-field slow-roll models, ¢ had to be below
the red dot-dashed horizontal line.

4.4 Implications for Dark Energy

The de Sitter conjecture states that constants ¢ and ¢ are universal and should apply
to all sectors in a given EFT. Therefore, we can use inflationary physics to get a handle on
the values of ¢ and ¢’ and apply this knowledge to the quintessence potential V. When this
argument is applied to single-field inflation models with conjectures Eq. and Eq. ,
one deduces that there may be little hope in finding w # —1 due to the small lower bound
seen in Eq. (4.5). This depressing outlook is drastically changed in light of Egs. and
(4.7)), as Fig. illustrates. We see that the refined de Sitter conjecture has allowed for the
possibility of having A bounded from below such that it must be larger than a few per cent
and should be observable to experiments. Current and future experiments, such as DES
[1], HSC [2], DESI [3], PFS [4], LSST [5], Euclid [6], and WFIRST [7], are aiming for an
accuracy of about a percent in w. The cost for this is that ¢’ must be much lower than the
O(1) expectation of [105] [188] in the single-field case. This seems to indicate that single-field
inflation falls more in line with the modified de Sitter conjecture discussed in [181], where
the smallest Hessian eigenvalue needs only be negative when |VV| < V.

This state of affairs is altered by considering multi-field inflation models. Not only could
A be forced to be as large as several per cent, it is also possible to have both ¢ and ¢
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approximately O(1) as long as the sound speed is low enough, as seen in Fig. . In either
the single-field or multi-field scenario, a better theoretical understanding of the magnitude
of ¢ is essential to understand the consistency of the swampland conjectures and inflation.

4.5 Discussion

In this chapter, we studied the consequences of the latest swampland conjecture on
inflation and dark energy. The original de Sitter conjecture raised the hope that measuring
the dark energy equation of state w would be promising while simultaneously dashing that
hope since consistency with single-field inflation suggests that the deviation from w = —1
would likely be unobservable. As we have shown, this situation is much more encouraging
with the refined de Sitter conjecture. Not only could w # —1 be observable even with a
single-field inflationary scenario, but tensor modes could be as well. If one considers multi-
field inflationary scenarios, then the prospect for observing w # —1 is better and one gains
improved agreement with the swampland conjectures.
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