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Determining informative priors for cognitive models

Michael D. Lee1 ·Wolf Vanpaemel2
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Abstract The development of cognitive models involves
the creative scientific formalization of assumptions, based
on theory, observation, and other relevant information. In
the Bayesian approach to implementing, testing, and using
cognitive models, assumptions can influence both the like-
lihood function of the model, usually corresponding to
assumptions about psychological processes, and the prior
distribution over model parameters, usually corresponding
to assumptions about the psychological variables that influ-
ence those processes. The specification of the prior is unique
to the Bayesian context, but often raises concerns that lead
to the use of vague or non-informative priors in cognitive
modeling. Sometimes the concerns stem from philosophi-
cal objections, but more often practical difficulties with how
priors should be determined are the stumbling block. We
survey several sources of information that can help to spec-
ify priors for cognitive models, discuss some of the methods
by which this information can be formalized in a prior dis-
tribution, and identify a number of benefits of including
informative priors in cognitive modeling. Our discussion
is based on three illustrative cognitive models, involving
memory retention, categorization, and decision making.
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Introduction

One way to think of cognitive modeling is as a natural
extension of data analysis. Both involve developing, testing,
and using formal models as accounts of brain and behav-
ioral data. The key difference is the interpretation of the
model likelihood and parameters. Data analysis typically
relies on a standard set of statistical models, especially Gen-
eralized Linear Models (GLMs) that form the foundations
of regression and the analysis of variance. In these mod-
els, parameters have generic interpretations, like locations
and scales. Cognitive models, in contrast, aim to afford
more substantive interpretations. It is natural to interpret the
parameters in cognitive models as psychological variables
like memory capacities, attention weights, or learning rates.

For both data-analytic and cognitive models, the likeli-
hood is the function that gives the probability of observed
data for a given set of parameter values. For data-analytic
models, these likelihoods typically follow from GLMs.
Cognitive models often use likelihoods designed to for-
malize assumptions about psychological processes, such as
the encoding of a stimulus in memory, or the termina-
tion of search in decision making. Even when a cognitive
model uses a likelihood function consistent with GLMs—
for example, modeling choice probabilities as weighted
linear combinations of stimulus attributes—it is natural to
interpret the likelihood as corresponding to cognitive pro-
cesses, because of the psychological interpretability of the
parameters.

Their more elaborate interpretation means that cognitive
models aim to formalize and use richer information and
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assumptions than data-analytic models do. In the standard
frequentist approach, assumptions can only be used to spec-
ify the likelihood, and, less commonly, the bounds of the
parameter space. The Bayesian approach offers the addi-
tional possibility of expressing assumptions in the prior dis-
tribution over the parameters. These prior distributions are
representations of the relative probability that a parameter—
or more generally, sets of parameters—have specific values,
and thus formalize what is known and unknown about
psychological variables.

Conceived in this way, priors are clearly an advantage of
the Bayesian approach. They provide a way of formalizing
available information and making theoretical assumptions,
enabling the evaluation of the assumptions by empirical evi-
dence, and applying what is learned to make more complete
model-based inferences and predictions. Priors are often,
however, maligned by those resistant to Bayesian methods
(e.g., Edwards, 1991; Trafimow, 2005). Even those who
advocate Bayesian methods in cognitive modeling some-
times regard the need to specify a prior as a cost that must
be borne to reap the benefits of complete and coherent infer-
ence. This lack of interest in the prior often results in what
Gill (2014) terms “Bayesians of convenience”, who use
priors they label vague, flat, non-committal, weakly infor-
mative, default, diffuse, or something else found nearby in
a thesaurus.

We believe failing to give sufficient attention to specify-
ing priors is unfortunate, and potentially limits what cogni-
tive modeling can achieve. Our view is that priors should be
informative, which means that they should capture the rel-
evant theoretical, logical, and empirical information about
the psychological variables they represent (Dienes, 2014;
Vanpaemel & Lee, 2012). Only when modelers genuinely
have no information about their parameters should infor-
mative priors be vague. In the usual and desirable situation
in which something is known about parameters, assuming
a vague prior loses useful information. The problem is put
most emphatically by Jeff Gill (personal communication,
August 2015):

“Prior information is all over the place in the social
sciences. I really don’t want to read a paper by authors
who didn’t know anything about their topic before
they started.”

Modelers do not strive to make likelihoods vague, but
aim to make them consistent with theory, empirical regular-
ities, and other relevant information. Since, in the Bayesian
approach, priors and likelihoods combine to form the pre-
dictive distribution over data that is the model, priors should
also aim to be informative. It seems ironic to make the effort
of developing a likelihood that is as informative as possi-
ble, only to dilute the predictions of the model by choosing
a prior of convenience that ignores relevant theory, data,

and logic. A worked example from psychophysics, showing
how the unthinking assumption of vague priors can undo
the theoretical content of a likelihood, is provided by (Lee,
in press, see especially Figures 9 and 11).

There are probably two reasons for the routine use of
vague priors, and the lack of effort in specifying informative
priors. One involves discomfort with the fact that the choice
of different informative priors will affect inference. These
sorts of concerns about subjectivity are easy to dismiss. One
reaction is to point out that it would be non-sensical if mod-
eling assumptions like priors did not affect inference. A
more constructive way to address the concern is to point
out that developing likelihoods is just as challenging as
developing priors, and inference is also sensitive to choices
about likelihoods. Proposing models is a creative scientific
act that, in a Bayesian approach, extends to include both
priors and likelihoods. The sort of attitudes and practices
modelers have in developing, justifying, and testing likeli-
hoods should naturally carry over to priors. Leamer (1983,
p.37) insightfully highlights that both the likelihood and
the prior are assumptions, and that a perceived difference
in their subjectivity simply reflects the frequency of their
use:

“The difference between a fact and an opinion for pur-
poses of decision making and inference is that when I
use opinions, I get uncomfortable. I am not too uncom-
fortable with the opinion that error terms are normally
distributed because most econometricians make use of
that assumption. This observation has deluded me into
thinking that the opinion that error terms are normal
may be a fact, when I know deep inside that normal
distributions are actually used only for convenience.
In contrast, I am quite uncomfortable using a prior
distribution, mostly I suspect because hardly anyone
uses them. If convenient prior distributions were used
as often as convenient sampling distributions, I sus-
pect that I could be as easily deluded into thinking that
prior distributions are facts as I have been into thinking
that sampling distributions are facts.”

The second probable reason for the reliance on vague
priors involves a lack of established methods for determin-
ing informative priors. Against this concern, the goal of this
paper is to discuss how informative priors can be developed
for cognitive models so that they are reasonable, useful, and
capture as much information as possible. We identify sev-
eral sources of information that can help to specify priors
for cognitive models, and then discuss some of the methods
by which this information can be incorporated into formal
priors within a model. Finally, we identify a number of
benefits arising from including informative priors in cog-
nitive models. We mostly rely on published examples of
the use of priors in cognitive modeling, but also point to
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under-used sources and methods that we believe provide
important future directions for the field.

Three illustrative cognitive models

To help make some general and abstract ideas clear, we draw
repeatedly upon three illustrative cognitive models, involv-
ing memory, categorization, and decision making. In this
section, we describe these models in some detail.

Exponential decay model of memory retention

A simple and standard model of memory retention assumes
that the probability of recalling an item decays exponen-
tially with time (Rubin and Wenzel, 1996). One way to
formalize this model is to assume that the probability of
recalling the ith item at time ti if it was last studied at time
τi , is pi = φ exp {−ψ (ti − τi)}. Figure 1 illustrates this
model, showing the study times for three items, and the
retention curves assumed by the model.

The φ parameter has the psychological interpretation
of the initial probability of recall, that is, φ = pi when
ti = τi , while the ψ parameter controls the rate at
which recall probabilities change over time. The param-
eter space is restricted to ψ > 0, so that the model
formalizes the assumption of decay (e.g., Wickens, 1998).
The usual assumption is that the τi time intervals are
known from the experimental design, based on explicit
study presentations, or that all τi = 0 corresponding to
the end of the study period. We consider a richer model
in which the τi rehearsal times are treated as parameters,
representing the last unobserved mental rehearsal of the
item. This extension is made possible by the flexibility of
Bayesian methods, and raises interesting questions about
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Fig. 1 An exponential decay model of memory retention. The x-axis
corresponds to time t , and the y-axis corresponds to the probability
p that an item will be recalled at a specified time. Retention curves
for three items are shown. Each curve starts at the time the item was
last rehearsed, corresponding to the parameters τ1, τ2, and τ3. The ini-
tial probability of recall at this time of last rehearsal is given by the
parameter φ. The rate of decrease in the probability of recall as time
progresses depends on a decay parameter ψ

determining appropriate priors for the τi latent rehearsal
parameters.

Generalized Context Model of categorization

The Generalized Context Model (GCM: Nosofsky, 1986)
is a seminal model of categorization. It assumes that cat-
egorization behavior is based on comparing the attention-
weighted similarity of a presented stimulus to known exem-
plars of the possible alternative categories. A visual repre-
sentation of the core assumptions of the model is provided
in Fig. 2. This figure shows, in an attention-weighted psy-
chological space, the generalization gradients of similarity
for a new stimulus “?” into two categories represented by
circle and square exemplars.

Formally, in the version of the GCM that we consider,
the ith stimulus is represented by the coordinate location
xi , so that the attention-weighted distance between the ith
and j th stimuli is dij = ∑

k ωk

∣
∣xik − xjk

∣
∣, where ωk is

the attention given to the kth dimension. Accordingly, a
dimension receiving more attention will be more influen-
tial in determining distances than the ones receiving less
attention. The similarity between these stimuli is then sij =
exp

(−λdij

)
, with λ controlling the generalization gradient

between stimuli. The similarity of the ith stimulus to cat-
egory A is the sum of the similarities to all the stimuli in
the category: siA = ∑

j∈A sij . Finally, the probability of a
category response placing the ith stimulus in category A is
piA = βAs

γ

iA/
∑

C βCs
γ

iC , where the index C is across all
possible categories, βC is a response bias to category C, and
γ controls the extent to which responding is deterministic
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Fig. 2 The Generalized Context Model of categorization. Eight stim-
uli are shown in an attention-weighted two-dimensional representa-
tion. Four stimuli in one category are represented by circles, and four
stimuli in an alternative category are represented by squares. More
attention is given to the first stimulus dimension than to the second
stimulus dimension, which “stretches” the space to emphasize dif-
ferences between the stimuli on the first dimension. Generalization
gradients from the stimulus to be categorized, marked by “?”, to the
known stimuli are shown by ellipses. These gradients produce mea-
sures of similarity between the stimuli, based on their distance in the
space, and the steepness of the generalization gradient. The total simi-
larity between the stimulus to be categorized and the known exemplars
determines, together with response determinism and category bias, the
categorization response probabilities



Psychon Bull Rev

or probabilistic, with higher values corresponding to more
determinism.

Wiener diffusion model of decision making

Sequential sampling models of decision making assume that
evidence is gathered from a stimulus over time until enough
has been gathered to make a choice (Luce, 1986). The
Weiner diffusion model (Ratcliff & McKoon, 2008) model
is a simple, but widely used, sequential sampling model for
two-choice decisions. It assumes evidence takes the form
of samples from a Gaussian distribution with mean ν. Total
evidence starts at θ and is summed until it reaches a lower
bound of zero or an upper bound of α. The decision made
corresponds to the boundary reached, and the response time
is proportional to the number of samples, with the inclusion
of an additive offset δ.

The decision model is shown Fig. 3. The stimulus pro-
vides evidence favoring decision A, because the mean ν

of the Gaussian characterizing the evidence is greater than
zero. The decision and response times are shown by the
histograms at each boundary. The shape of the histogram
represents the response time distribution for each type of
decision, and the area under each distribution represents
the probability of each decision. It is clear that decision A
is more likely, and both response time distributions have
a characteristic non-monotonic shape with a long-tailed
positive skew.

Response Time

Decision A

Decision B

Fig. 3 The Wiener diffusion model of decision making. A two-choice
decision about a stimulus is made by sampling repeatedly from an
evidence distribution for the stimulus, represented by a Gaussian dis-
tribution with mean ν. The samples are combined to form an evidence
path, and a number of illustrative sample paths are shown. These
paths start from an initial evidence value θ , and continue until they
reach an upper bound of α or a lower bound of 0. The decision
made corresponds to which boundary is reached. The response time
is proportional to the number of samples collected, plus a constant δ

representing the additional time needed to encode the stimuli and exe-
cute the response behavior. The decision and response time behavior
is shown by the histograms above and below the decision bound-
aries. The histogram at each boundary is proportional to the response
time distribution for that decision, and the area under each distribution
represents the overall probability of that decision

The ν parameter, usually called the drift rate, corresponds
to the informativeness of the stimulus. Larger absolute val-
ues of ν correspond to stimuli that provide stronger evidence
in favor of one or other of the decisions. Smaller abso-
lute values of ν correspond to less informative stimuli, with
ν = 0 representing a stimulus that provides no overall
information about which decision to make.

Figure 3 also shows a number of sample paths of evi-
dence accumulation. All of the paths begin at the starting
point θ , which is half-way between the boundaries at θ =
α/2. Other starting points would favor one or other deci-
sion. The starting point parameter θ can theoretically be
conceived as a bias in favor of one of the decisions. Such
a bias could arise, psychologically, from prior evidence in
favor of a decision, or as a way of incorporating utilities for
correct and incorrect decisions of each type.

The α parameter, usually called boundary separation,
corresponds to the caution used to make a decision, as
manipulated, for example, by speed or accuracy instruc-
tions. Larger values of α lead to slower and more accurate
decisions, while smaller values lead to faster but more
error-prone decisions.

Finally, the offset δ corresponds to the component of the
response time not accounted for by the sequential sampling
process, such as the time taken to encode the stimulus and
produce motor movements for a response. It is shown in
Fig. 3 as an offset at the beginning of the evidence sam-
pling process, but could also be conceived as having two
components, with an encoding part at the beginning, and a
responding part at the end.

Sources for determining informative priors

In this section, we identify several sources of informa-
tion that can be used in determining priors, and explain
how these relate to the meaningful parameters of the three
illustrative cognitive models.

Psychological and other scientific theory

The most important source of information for specifying
priors in cognitive models is psychological theory. In cogni-
tive modeling, likelihood functions largely reflect theoreti-
cal assumptions about cognitive processes. The exponential
decay memory retention model commits to the way in
which information is lost over time, assuming, in part, that
the rate of this loss is greatest immediately after infor-
mation is acquired. The categorization model commits to
assumptions of exemplar representation, selective attention,
and similarity comparisons in categorization. The decision
model commits to the sequential sampling of informa-
tion from a stimulus until a threshold level of evidence is
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reached. These assumptions are the cornerstones on which
the likelihood functions of the models are founded. Anal-
ogously, theoretical assumptions about psychological vari-
ables should be the cornerstones on which priors are deter-
mined (Vanpaemel, 2009; 2010). Ideally, psychological
theories should make assumptions about not just psycho-
logical processes, but also about the psychological variables
that control those processes, leading to theory-informed priors.

One possibility is that theoretical assumptions dictate
that some parameter values are impossible, consistent with
the non-Bayesian restriction of the parameter space. In the
memory retention model, the theoretical assumption that
the probability of recall decreases over time constrains the
memory retention parameter ψ > 0. In the categorization
model, the theoretical assumption that generalization gradi-
ents decrease as stimuli become less similar, constrains the
parameter λ ≥ 0 (Nosofsky, 1986; Shepard, 1987).

Other sorts of theorizing can provide more elaborate
information about possible combinations of values for a
set of parameters. Theories of attention, for example, often
assume it is a capacity-limited resource. In the categorization
model, this constraint is usually implemented as

∑
k ωk =

1, so that the values of the attention parameters collectively
meet a capacity bound. In effect, the theoretical assumption
still dictates that some parameter values are impossible, but
now the constraint applies jointly to a set of parameters.

As theories become more general and complete they can
provide richer information. Theory can provide information
beyond which values are possible, and indicate which values
are probable. The optimal-attention hypothesis (Nosofsky,
1986) assumes that people distribute their attention near
optimally in learning a category structure for a set of stimuli.
This assumption implies that values of the ωk parameters
that maximally separate the stimuli in each category from
each other are expected. For example, in Fig. 2, the stim-
uli in the two different categories vary more along the first
than the second dimension. The optimal-attention hypoth-
esis thus assumes that attention will be given to the first
dimension to a level ω1 somewhere near 1 that maximally
distinguishes the two categories.

The optimality principle underlying the optimal-attention
hypothesis could be extended to other cognitive models and
phenomena. The principle that the most likely values of a
parameter are those that maximize some aspect of behav-
ioral performance is a generally applicable one. Optimality
could be a fundamental source for setting priors in cogni-
tive process models, but is currently under-used. Embedding
the optimality principle within cognitive process mod-
els through priors would bring these models in closer
contact with the successful rational models of cognition,
where optimal behavior is a core theoretical assumption
(e.g., Anderson, 1992; Chater, Tenenbaum, & Yuille, 2006;
Tenenbaum, Kemp, Griffiths, & Goodman, 2011).

A different example of using theory to develop a prior
is provided by Rouder et al. (2007), who propose a mass-
at-chance model for performance in subliminal priming
tasks. Their theoretical expectations are that some people
will perform at chance, but others will use a threshold-
based detection process to perform above chance. Rouder
et al. (2007, see especially their Figure 3) consider different
theoretical possibilities about the distribution of detection
probabilities for people performing above chance. One pos-
sibility is that all detection probabilities are equally likely,
so that it is constrained between 1

2 and 1. Another possibility
is that they are only slightly above chance, so that, for exam-
ple, few people are expected to have a detection probability
higher than (say) 70 %. A third possibility is that people
who are not at chance all have perfect accuracy, so that
there are only two possible detection probabilities, 1

2 and
1. Rouder et al. (2007) consider only the first two options
to be reasonable, and express this theoretical assumption by
constraining a variance parameter to be smaller than 1. In
this way, Rouder et al. (2007) establish a direct link between
substantive theoretical assumptions about the nature of peo-
ple’s performance on the task and an exact range constraint
on a variance parameter.

In some modeling situations, the likelihood can carry lit-
tle theoretical content, and the theoretically most-relevant
information is about the parameters. One example is pro-
vided by Lee (2016), in a Bayesian implementation of
a model originally developed by Hilbig and Moshagen
(2014), for inferring which of a number of decision strate-
gies people used in a cue-based decision-making task. The
likelihood function is made up of simple binomial distribu-
tions, corresponding to how often an alternative is chosen
for the trials within each decision type. Because differ-
ent strategies predict different choice patterns, all of the
important theoretical content is reflected in constraints on
the choice parameters within the binomial distributions.
For example, the new strategy introduced by Hilbig and
Moshagen (2014) assumes an ordering for the probability
of choice of different types of questions, and this informa-
tion is represented by order constraints on the parameters
corresponding to these probabilities in a joint prior. A sim-
ilar earlier example in which the prior is theoretically more
important than the likelihood is provided by Myung et al.
(2005), who use order constraints on the parameters repre-
senting probabilities, to formalize several decision-making
axioms such as the monotonicity of joint receipt axiom and
the stochastic transitivity axiom.

Finally, we note that sciences other than psychology
can and should provide relevant theoretical information.
Physics, for example, provides the strong constraint—
unless the controversial assumption of the existence of
extra-sensory perception is made—that an item in a memory
task cannot be rehearsed before it has been presented. This
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means, in the memory model, that each τi rehearsal param-
eter is constrained not to come before the actual time ti the
item was first presented, so that τi ≥ ti . Another exam-
ple of the potential relevance of multiple other scientific
fields to determine priors is provided by the offset param-
eter δ in the decision model. Neurobiological and chemical
processes, such as the time taken for physical stimulus infor-
mation to transmit through the brain regions responsible for
low-level visual processing, should constrain the compo-
nent of this parameter that corresponds to the time needed
to encode stimuli. Physiological theories specifying, for
example, distributions of the speeds of sequences of motor
movements, should constrain the component of the param-
eter that corresponds to the time taken to produce an overt
response. Thus, a theoretically meaningful prior for δ in
the decision model could potentially be determined almost
entirely by theories from scientific fields outside cognitive
psychology.

Logic and invariances

The meaning of parameters can have logical implications
for their prior distribution. Logic can dictate, for example,
that some values of a parameter are impossible (Taagepera,
2007). Probabilities are logically constrained to be between
0 and 1, and variances and other scale parameters are con-
strained to be positive. In the memory, categorization, and
decision models, the probability parameters φ and θ are both
logically constrained to be between 0 and 1.

The nature of a modeling problem can also provide log-
ical constraints. The decision model has no meaning unless
the starting point θ is between 0 and the boundary α, and has
the same substantive interpretation under the transformation
(α, θ) → (−α, −θ) that “flips” the boundary and starting
point below zero. This invariance leads to the constraints
α, θ > 0 and 0 < θ < α to make the model meaningful.

In general, superficial changes to a modeling prob-
lem that leave the basic problem unchanged should not
affect inference, and priors must be consistent with this. In
our memory and decision models, for example, inferences
should not depend on whether time is measured in sec-
onds of milliseconds, and the way priors over (φ, ψ, τ) and
(α, θ, ν, δ) are determined should lead to the same results
regardless of the unit of measurement. This is a specific
example of the general principle of transformation invari-
ance, which requires that priors lead to the same result
under transformations of a problem that change its surface
form, but leave the fundamental problem itself unchanged
(Lee & Wagenmakers, 2005). In the time scale example,
the transformation is scalar multiplication of a measure-
ment scale. In general, the transformation can involve
much more elaborate and abstract manipulation of the in-
ference problem being posed, as in Jaynes’ (2003, Ch. 12)

discussion of a famous problem in statistics known as
Bertrand’s paradox. The problem involves the probability of
randomly thrown sticks intersecting a circle and is notori-
ous for having different reasonable priors lead to different
inferences. By considering logical rotation, translation, and
dilation invariances for the circle, inherent in the statement
of the problem, it is possible to determine an appropriate
and unique prior. Motivated by these sorts of examples, we
think that transformation invariance is a potentially impor-
tant principle for determining priors. It is difficult, however,
to find examples in cognitive modeling, and we believe
more effort should be devoted to exploring the possibilities
of this approach.

Previous data and modeling

Cognitive psychology has a long history as an empiri-
cal science, and has accumulated a wealth of behavioral
data. Empirical regularities for basic cognitive phenomena
are often well established. These regularities provide an
accessible and substantial source of information for con-
structing priors. For example, response time distributions
typically have a positive skew (e.g., Luce, 1986) and peo-
ple often probability match in categorization, which means
their probability of choosing each alternative is given by the
relative evidence for that alternative (Shanks et al., 2002).
This last observation is a good example of how empirical
regularities can help determine a prior, and is applicable to
the γ parameter in the categorization model. Different val-
ues of this parameter correspond to different assumptions
about how people convert evidence for response alternatives
into a single choice response. When γ = 1, decisions are
made by probability matching. As γ increases above one,
decision making becomes progressively more determinis-
tic in choosing the alternative with the most evidence. As
γ decreases below one, the evidence plays a lesser role in
guiding the choice until, when γ = 0, choices are made
at random. Thus, previous empirical findings that provide
evidence as to whether people respond deterministically,
probability match, and so on, can naturally provide useful
information for determining a data-informed prior over the
γ parameter (e.g., Lee, Abramyan, & Shankle, 2016).

Cognitive psychology is also a model-based science, and
so there are many reported applications of models to data.
These efforts provide inferences about parameters that can
inform the development of priors. For each of the mem-
ory, categorization, and decision models, there are many
published relevant applications to data, including inferred
parameter values (e.g., Nosofsky, 1991; Ratcliff & Smith,
2004; Rubin & Wenzel, 1996). The approach of relying
on previous parameter inferences to determine priors for
related models is becoming more frequent in cognitive
modeling. Some recent examples include Gu et al. (2016)
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in psychophysics, Gershman (2016) in reinforcement learn-
ing, Vincent (2016) in the context of temporal discounting,
Wiehler et al. (2015) for different clinical sub-populations
in the context of gambling, and Donkin et al. (2015) in the
context of a visual working memory model. In an interest-
ing application of the latter model, Kary et al. (2015) used
vague priors for key parameters, and used the data from the
first half of their participants to derive the posterior distri-
butions. These posteriors were subsequently used as a basis
for priors in the analysis of the data from the remaining half
of the participants.

Elicitation

There is a reasonably well-developed literature on meth-
ods designed to elicit priors from people (e.g., Albert
et al., 2012; Garthwaite, Kadane, & O’Hagan, 2005; Kadane
& Wolfson, 1998; O’Hagan et al., 2006). These methods
are used quite extensively in modeling in some empirical
sciences, but do not seem to be used routinely in cogni-
tive modeling. Elicitation methods are designed to collect
judgments from people—often with a focus on experts—
that allow inferences about a probability distribution over
unknown quantities. The most common general approach
involves asking for estimates of properties of the required
distribution. This can be as simple as asking for a minimum
and maximum possible value, or the bounds on (say) an
80 % credible interval for an observed quantity.

These elicitation methods can ask directly about latent
parameters of interest, or about predicted observable quanti-
ties implied by values of those parameters. Obviously, when
elicitation focuses on quantities related to the parameters,
rather than the parameters themselves, a model is needed to
relate people’s judgments to the desired probability distri-
butions. For example, in a signal detection theory setting,
it is possible to elicit distributions for discriminability and
bias parameters directly, or infer them from elicited hit and
false-alarm rates based on a standard model. The logical
end-point of asking about quantities implied by parameters
is to ask about idealized data (Winkler, 1967). This is a
potentially very useful approach, because often experts can
express their understanding most precisely and accurately in
terms of data. Kruschke (2013) provides a good example of
this approach for data-analytic models in psychology, and it
is clear it generalizes naturally to cognitive models.

Another approach to constructing elicitation-based pri-
ors used in applied settings require a series of judgments
between discrete options, from which a probability distri-
bution representing uncertainty can be derived (e.g., Welsh,
Begg, Bratvold, & Lee, 2004). Along these lines, one
potentially useful recent development is the elicitation pro-
cedure known as iterated learning (Kalish et al., 2007;
Lewandowsky et al., 2009). This clever procedure requires a

sequence of people to do a task, such as learning a category
structure, or the functional relationship between variables.
Each person’s task depends on the answers provided by
the previous person, in a way that successively amplifies
the assumed common prior information, or inductive bias,
people bring to the task. Applying this procedure to cate-
gorization, Canini et al. (2014) found that, when learning
categories, people have a strong bias for a linear cate-
gory boundary on a single dimension, provided that such a
dimension can be identified. Translating this observation to
the ωk parameters in the categorization model implies that,
in absence of any other information about category struc-
tures, these parameters are expected to be close to 0 or 1. It
is a worthwhile topic for future research to find ways of for-
mally translating this sort of information into a prior for a
cognitive model.

Methods for determining informative priors

The sources of information identified in the previous section
are only pre-cursors to the complete formalization of a prior
distribution. Knowing, for example, that some values of a
parameter are theoretically impossible does not determine
what distribution should be placed on the possible values.
In this section, we identify some methods for taking rele-
vant information, and using it to construct a formal prior
distribution.

Constraint satisfaction

If available information, whether by theoretical assumption,
out of logical necessity, or from some other source, con-
strains parameter values, these constraints can be used as
bounds. To determine the prior distribution within these
bounds, the maximum-entropy principle provides a pow-
erful and general approach (Jaynes, 2003, Ch. 11; Robert,
2007). Conceptually, the idea of maximum entropy is to
specify a prior distribution that satisfies the constraints, but
is otherwise as uninformative as possible. In other words,
the idea is for the prior to capture the available informa-
tion, but no more. Common applications of this approach in
cognitive modeling include setting uniform priors between
0 and 1 on probabilities, setting a form of inverse-gamma
prior on variances (see Gelman, 2006, for discussion),
and enforcing order constraints between parameters (e.g.,
Hoijtink, Klugkist, & Boelen, 2008; Lee, 2016).

A good example of applying the maximum-entropy prin-
ciple to order constraints involves the τi rehearsal param-
eters in the memory model, if they are subject to the
constraint that an item cannot be rehearsed before it has
been presented. Figure 4 shows the resultant joint prior on
(τ1, τ2, τ3) if the three study items are presented at times t1,
t2, and t3. Only rehearsal parameter combinations that are
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Fig. 4 A prior specified by constraint satisfaction for the memory
retention model. The three axes correspond to the last rehearsal times
of three studied items, represented by the model parameters τ1, τ2,
and τ3. The case considered involves these items having been first pre-
sented at known times t1, t2, and t3. The shaded region corresponds to
the set of all possible rehearsal times (τ1, τ2, τ3) that satisfy the logi-
cal constraint that an item can only be rehearsed after it is presented,
so that τ1 ≥ t1, τ2 ≥ t2, and τ3 ≥ t3. The uniform distribution of prior
probability within this constraint satisfaction region follows from the
maximum-entropy principle

in the shaded cube have prior density. The uniformity of the
prior in this region follows from the maximum-entropy prin-
ciple, which ensures that it satisfies the known constraints
about when the items could be rehearsed, but otherwise
carries as little information as possible.

More general applications of the maximum-entropy
principle are rare in the cognitive modeling literature.
Vanpaemel and Lee (2012) present an example that is con-
ceptually close, relating to setting the prior on the attention-
weight parameter ω in the categorization model. The prior is
assumed to be a beta distribution, and the optimal-attention
hypothesis is used to set the mode of the prior to the value
that best separates the stimuli from the different categories.
The optimal-attention hypothesis, however, is not precise
enough to determine an exact shape for the prior, but the pre-
cision of the beta distribution could have been determined
in a more principled way by maximum-entropy methods.
This would have improved on the heuristic approach actu-
ally used by Vanpaemel and Lee (2012) to set the precision.
We think maximum-entropy methods are under-used, and
that they are an approach cognitive modeling should adopt
and develop, especially given the availability of general
statistical results that relate known constraints to maximum-
entropy distributions (e.g., Lisman & Van Zuylen, 1972).

Prior prediction

By specifying a likelihood and a prior, it is possible
to calculate the prior predictive distribution, which is a

prediction about the relative probability of all possible data
sets, based solely on modeling assumptions. If informa-
tion is available about possible or plausible data patterns,
most likely based on previously established empirical reg-
ularities or on elicitation, then one approach is to develop
a prior distribution that leads to prior predictive distri-
butions consistent with this information. A very similar
approach is Parameter Space Partitioning (PSP: Pitt, Kim,
Navarro, & Myung, 2006), which divides the entire param-
eter space into mutually exclusive regions that correspond
to different qualitative data patterns a model can generate.
Priors can then be determined by favoring those regions
of the parameter space that generate data patterns consis-
tent with expectations, and down-weighting or excluding
regions corresponding to less plausible or implausible data
patterns.

A closely-related approach involves considering the pre-
dictions over psychologically meaningful components of a
model that are implied by priors over their parameters. If
information is available about the plausible form of these
parts of models, most likely based on theory, it makes
sense to define parameter priors that produce reasonable
prior distributions for them. Figure 5 shows an example of
this second approach using the decision model. Each com-
bination of the starting point θ and offset δ parameters,
which lie in the two-dimensional parameter space on the
left, corresponds to a single joint decision and response time
distribution for the two choices, shown on the right. Two
different joint prior distributions over the parameters are
considered. The first prior distribution, shown by circles in
parameter space, has a truncated Gaussian prior for θ with
a mean of 0.5 and a standard deviation of 0.1 in the valid
range 0 < θ < 1, and a truncated Gaussian prior for δ with
a mean of 0.2 and a standard deviation of 0.05 in the valid
range δ > 0. The second prior, shown by the crosses, simply
uses uniform priors on reasonable ranges for the parameters:
0 < θ < 1, and 0 < δ < 0.4.

The consequences of these different assumptions are
clear from the corresponding distributions shown in the
model space, which shows response time distributions gen-
erated by the decision models corresponding to both priors,
for the same assumptions about boundary separation and
the distribution of drift rates. The predictions of the deci-
sion model with the first prior distribution, shown by solid
lines, cover the sorts of possibilities that might be expected,
in terms of their qualitative position and shape. The pre-
dictions for the second prior distribution, shown by broken
lines, however, are much less reasonable. Many of the
predicted response time distributions start too soon, and
are too peaked. These weaknesses can be traced directly
to the vague priors allowing starting points too close to
the boundaries, and permitting very fast non-decision times.
This analysis suggests that the sorts of assumptions about
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Fig. 5 Developing a prior distribution using prior prediction for the
decision model. The left panel shows the joint parameter space for the
bias θ and offset δ parameters. The right panel shows the joint decision
and response time distributions generated by the model. Two specific
prior distributions are considered, represented by circles and crosses

in the parameter space, with corresponding solid and broken lines in
the model space. The prior represented by the circles makes stronger
assumptions about both bias and offset, and predicts a more reasonable
set of response time distribution than the vaguer prior represented by
the crosses

the starting point and offset made in forming the first prior
may be good ones for the decision model. In this way, the
relationship between prior distributions and psychologically
interpretable components of the model provides a natural
way to apply relevant knowledge in developing priors.

Using prior prediction to determine prior distributions
in cognitive modeling is a general and relatively easy
approach. Theorists often have clear expectations about
model components like retention functions, generalization
gradients, or the shapes of response time distributions, as
well as about the data patterns that will be observed in spe-
cific experiments, which can be examined in prior predictive
distributions. While it is currently hard to find cognitive
modeling examples of priors being developed by the exami-
nation of prior predictions (see Lee, 2015; Lee & Danileiko,
2014, for exceptions), we expect this state of affairs will
change quickly. One reason for this optimism is that prior
predictions are slowly starting to appear in the cognitive
modeling literature, with goals that are closely related to
setting priors. For example, Kary et al. (2015) and Turner
et al. (2013) examine the prior predictions of memory mod-
els, as a sanity check before application. In addition, prior
predictive distributions have been used for assessing model
complexity (Vanpaemel, 2009), for evaluating model fal-
sifiability, and for testing a model against empirical data
(Vanpaemel, submitted).

Hierarchical extension

An especially important method for developing priors in
cognitive modeling involves extending the cognitive model
itself. The basic idea is to extend the model so that pri-
ors on parameters are determined as the outcome of other

parts of an extended model. This involves incorporating
additional theoretical assumptions into the model, and is
naturally achieved by hierarchical or multi-level model
structures (Lee, 2011; Vanpaemel, 2011). None of the illus-
trative memory, categorization, or decision models, as we
presented them, have this property, which is representative
of the field as a whole. The parameters in these models rep-
resent psychological variables that initiate a data generating
process, and so priors must be placed explicitly on these
parameters. The key insight of the hierarchical approach
is that these psychological variables do not exist in isola-
tion in a complete cognitive system, but can be conceived
as the outcomes of other cognitive processes. Including
those other processes within a more complete model thus
naturally defines a prior for the original parameters.

An example of this approach is provided by Lee and
Vanpaemel (2008), who focus on the Varying Abstraction
Model (VAM: Vanpaemel & Storms, 2008). This model
expands the categorization model by allowing for different
sorts of category representations, ranging from an exem-
plar representation in which every stimulus in each category
is represented, to a prototype representation in which each
category is represented by a single summary point. Some
of these possibilities are shown in the 7 bottom panels in
Fig. 6, for a case in which there are two categories with
four stimuli each. The representation on the far left is the
exemplar representation, as assumed by the original cate-
gorization model, while the representation on the far right
is the prototype representation. The intermediate represen-
tations show different levels of abstraction, as the detail
of exemplar representation gives way to summary repre-
sentations of the categories. The inference about which
representation is used is controlled by a discrete parameter
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Fig. 6 A hierarchical approach to determining a prior distribution for
the representation index parameter ρ in an expanded version of the
categorization model. The top panel shows an assumed prior distribu-
tion over a parameter π that corresponds to the probability of merging
a pair of stimuli in an exemplar representation. The bottom panels
show a selection of 7 possible representations generated by this merg-
ing process, for a categorization problem with four stimuli in each of

two categories, distinguished as circles and squares. The full exem-
plar representation is shown on the left, the prototype representation
is shown on the right, and some of the representations with interme-
diate levels of abstraction are shown between. The bar graph in the
middle panel shows the prior probability on the representational index
parameter ρ implied by the merging process and the prior distribution
on π

ρ, which simply indexes the representations. In the exam-
ple in Fig. 6, ρ is a number between 1 and 7, and requires a
prior distribution that gives the prior probabilities to each of
these 7 possibilities.

Lee and Vanpaemel (2008) introduce a hierarchical
extension of the VAM that is shown by the remainder of
Fig. 6. A new cognitive process is included in the model,
which generates the different possible representations. This
process begins with the exemplar representation, but can
successively merge pairs of stimuli. At each stage, the prob-
ability of a merge is given by a new model parameter π . At
each stage in the merging process, two stimuli are merged
with probability π , otherwise the merging process stops and
the current representation is used. Thus, there is probability
1 − π that the full exemplar representation is used, prob-
ability π (1 − π) that a representation with a single merge
is used, and so on. Having formalized this merging process
as a model of representational abstraction, a prior over the
parameter π automatically corresponds to a prior over the
indexing parameter ρ. Figure 6 shows a Gaussian prior over
π with a mean near the merge probability 0.2, and the bar
graph shows the implied prior this places on ρ for the 7
different representations. Ideally, the sources and methods
discussed earlier should be used to set the top-level prior on
π , but its impact even with the current less formal approach
is clear. More prior mass is placed on the exemplar and
prototype representations, while allowing some prior proba-
bility for the intermediate representations. This prior on ρ is
non-obvious, and seems unlikely to be have been proposed
in the original non-hierarchical VAM. In the hierarchical
approach in Fig. 6, it arises through psychological theoriz-
ing about how different representations might be generated

by merging stimuli, and related prior assumptions about the
probability of each merge.

The hierarchical approach to determining priors is
broadly applicable, because it is a natural extension of
theory- and model-building. It is naturally also applied,
for example, in both the memory and decision models. In
the memory model, a theory of rehearsal should automat-
ically generate a prior for the τ parameters. For example,
one prominent idea is that rehearsal processes are simi-
lar to free recall processes themselves (e.g., Rundus, 1971;
Tan & Ward, 2008). Making this assumption, it should
be possible to make predictions about whether and when
presented items will be rehearsed—in the same way it is
possible to make predictions about observed recalled behav-
ior itself—and thus generate a prior for the latent rehearsal
τ parameters. In the decision model, the boundary separa-
tion parameter α could be modeled as coming from control
processes that respond to task demands, such as speed or
accuracy instructions, as well as the accuracy of previous
decisions. There are some cognitive models of these control
processes, involving, for example, theories of reinforce-
ment learning (Simen et al., 2006), or self-regulation (Lee
et al., 2015; Vickers, 1979), that could augment the decision
model to generate the decision bound, and thus effectively
place a prior on its possible values.

Benefits of informative priors

Capturing theoretical, logical, or empirical information in
priors offers significant benefits for cognitive modeling.
For example, the additional information priors provide can
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solve basic statistical issues, related to model identifiabil-
ity. These occur regularly in cognitive models that use latent
mixtures, which is sometimes done to model qualitative
or discrete individual differences. Latent-mixture models
involve a set of model components that mix to produce data,
and are notorious for being statistically unidentifiable, in the
sense that the likelihood of data is the same under permuta-
tion of the mixture components (Marin et al., 2011). The use
of priors that give each component a different meaning—
by, for example, asserting that one sub-group of people has
a higher value on a parameter than the other sub-group—
makes the model interpretable, and makes it easier to ana-
lyze (e.g., Bartlema, Lee, Wetzels, & Vanpaemel, 2014).

Theory-informed priors can address modeling problems
relating not only to statistical ambiguity, but also those relat-
ing to theoretical ambiguity. The starting point parameter
θ in the decision model provides a good example. It has
sensible psychological interpretations as a bias capturing
information about base-rate of correct decisions on previ-
ous trials, or as an adjustment capturing utility information
about payoffs for different sorts of correct or incorrect
decisions. In practice, these different psychological inter-
pretations will typically correspond to different priors on θ

and, in this sense, specifying a prior encourages a modeler
to disambiguate the model theoretically.

Informative priors often make a model simpler, by con-
straining and focusing its predictions. The γ parameter
in the categorization model provides an intriguing exam-
ple of this. Sometimes the γ parameter is not included in
the categorization model, on the grounds that its inclusion
increases the complexity of the model (Smith & Minda,
2002; see also Vanpaemel, 2016). It turns out, however,
that including γ with a prior that emphasizes the possi-
bility of near-deterministic responding, by giving signif-
icant prior probability to γ values much greater than 1,
can result in a simpler model. This is because the range
of predictions becomes more constrained as deterministic
responding is given higher prior probability. This exam-
ple shows that equating model complexity with counts
of parameters can be mis-leading, and that the omission
of a parameter does not necessarily represent theoretical
neutrality or agnosticism. The omission of the γ parame-
ter corresponds to a strong assumption that people always
probability match, which turns out to make the model flex-
ible and imprecise in its predictions. Thus, in this case, a
prior on the γ parameter that captures additional psycho-
logical theory, by allowing for both probability matching
and more deterministic responding, reduces the model’s
complexity.

Constraining predictions in this sort of way has the
important scientific benefit that it increases what Popper
(1959) terms the “empirischer Gehalt” or empirical content
of a model (see also Glöckner & Betsch, 2011; Vanpaemel

& Lee, 2012). Empirical content corresponds to the amount
of information a model conveys, and is directly related to
falsifiability and testability. As a model that makes sharper
predictions is more likely to rule out plausible outcomes,
it runs a higher risk of being falsified by empirical obser-
vation, and thus gains more support from confirmation of
its predictions (Lakatos, 1978; Roberts & Pashler 2000;
Vanpaemel, submitted).

Perhaps most importantly, using priors to place addi-
tional substantive content in a model makes the model a
better formalization of the theory on which it is based.
As noted by Vanpaemel and Lee (2012), the categorization
model is a good example of this. Most of the theoretical
assumptions on which the model is explicitly founded—
involving exemplar representation, selective attention, and
so on—are formalized in the likelihood of the model. The
theoretical assumption that is conspicuously absent is the
optimal-attention hypothesis. The difference is that most
of the assumptions are about psychological processes, and
so are naturally formalized in the likelihood function. The
optimal-attention assumption, however, relates to a psycho-
logical variable, and so is most naturally formalized in the
prior.

A similar story recently played out in the literature deal-
ing with sequential sampling models very much like the
decision model. In a critique of these sorts of decision
models, Jones and Dzhafarov (2014a) allowed the drift-
rate parameter ν to have little variability over trials. Smith
et al. (2014) argued that this allowance was contrary to
guiding theory, pointing out that it implied a deterministic
growth process, which conflicts with the diffusion process
assumptions on which the model is founded (Ratcliff &
Smith, 2004). Jones and Dzhafarov (2014b) rejoindered that
there is nothing in the standard model-fitting approach used
by Ratcliff and Smith (2004) and others that precludes infer-
ring parameters corresponding to the reduced deterministic
growth model. From a Bayesian perspective, the problem
is that theoretically available information about the vari-
ability of the distribution affecting the drift rate was not
formalized in the traditional non-Bayesian modeling set-
ting used by Ratcliff and Smith (2004). Because the theory
makes assumptions about the plausible values of a parame-
ter, rather than a process, it is naturally incorporated in the
prior, which requires a Bayesian approach.

Discussion

A cognitive model that provides only a likelihood is not
specific or complete enough to make detailed quantita-
tive predictions. The Bayesian requirement of specifying
the prior distribution over parameters produces models that
do make predictions, consistent with the basic goals of
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modeling in the empirical sciences (Feynman, 1994, Chap-
ter 7). We have argued that not giving sufficient attention
to the construction of a prior that reflects all the available
information corresponds to “leaving money on the table”
(Weiss, 2014).

Using priors for cognitive modeling, however, comes
with additional responsibilities. One consequence of using
priors for cognitive modeling is the need to conduct addi-
tional sensitivity analyses. As our survey of information
sources and methods makes clear, there is no automatic
procedure for determining a prior. A combination of cre-
ative theorizing, logical analysis, and knowledge of previous
data and modeling results is required. Different conclusions
can be reached using the same data for different choices
of priors, just as they would if different likelihoods were
used. This means a sensitivity analysis is appropriate when
the available information and methods do not allow the
complete determination of a prior distribution, and there
is consequently some subjectivity or arbitrariness in the
specification of the prior.

There is nothing inherent to the prior that makes it
uniquely subject to some degree of arbitrariness. It is often
the case that the likelihoods in models are defined with some
arbitrariness, and it is good practice to undertake sensitivity
analyses for likelihoods. Rubin and Wenzel (1996) con-
sider a large number of theoretically plausible likelihoods
for modeling memory retention, including many variants of
exponential, logarithmic, and hyperbolic curves. A number
of different forms of the GCM have been considered, includ-
ing especially different response rules for transforming cate-
gory similarity to choice probabilities (e.g., Nosofsky, 1986,
1992). Ratcliff (2013) reports a sensitivity analysis for some
theoretically unconstrained aspects of the likelihood of a
diffusion model of decision making. The same approach and
logic applies to the part of cognitive modeling that involves
choosing priors. Sensitivity analyses highlight whether and
where arbitrariness in model specification is important—
in the sense that it affects the inferences that address the
current research questions—and so guides where clarifying
theoretical development and empirical work is needed.

A standard concern in the application of Bayesian meth-
ods to cognitive modeling is that model selection measures
like Bayes factors are highly sensitive to priors, but param-
eter inference based on posterior distributions and their
summaries are far less sensitive. Part of the reason for the
greater sensitivity of the Bayes factor probably stems from
the fundamentally different inferential question it solves,
and its formalization in optimizing zero-one loss. But it is
also possible some of the perceived relative insensitivity of
parameter inference to priors stems from the use of vague
priors. It seems likely that informative priors will make
inferences more sensitive to their exact specification. As a
simple intuitive example, an informative prior that expresses

an order constraint will dramatically affect inference about
a parameter if the unconstrained inference has significant
density around the values where the constraint is placed. In
general, the heightened sensitivity of parameter inference to
priors that capture all of the available information makes
conceptual sense. These priors will generally make stronger
theoretical commitments and more precise predictions about
data, and Bayesian inferences will automatically represent
the compromise between the information in the prior and in
the data.

In this paper, we have identified sources of information
that can be used to develop informative priors for cognitive
models, have surveyed a set of methods that can be used
for this development, and have highlighted the benefits of
capturing the available information in the prior. The sources
and methods we have discussed are not routinely used in
cognitive modeling, and we certainly do not claim they are
complete, nor that they constitute a general capability for
all modeling challenges. In addition, the use of informative
priors in cognitive modeling is not yet extensive or mature
enough to provide a tutorial on best practice in the field.
We hope, however, to have provided a useful starting point
for determining informative priors, so that models can be
developed that provide a more complete account of human
cognition, are higher in empirical content, and make more
precise, testable, falsifiable, and useful predictions.
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