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Abstract

The Adolescent Brain Cognitive Development (ABCD) Study is the largest single-cohort 

prospective longitudinal study of neurodevelopment and children’s health in the United States. 

A cohort of n= 11,880 children aged 9–10 years (and their parents/guardians) were recruited 

across 22 sites and are being followed with in-person visits on an annual basis for at least 10 

years. The study approximates the US population on several key sociodemographic variables, 

including sex, race, ethnicity, household income, and parental education. Data collected include 

assessments of health, mental health, substance use, culture and environment and neurocognition, 

as well as geocoded exposures, structural and functional magnetic resonance imaging (MRI), and 

whole-genome genotyping. Here, we describe the ABCD Study aims and design, as well as issues 

surrounding estimation of meaningful associations using its data, including population inferences, 

hypothesis testing, power and precision, control of covariates, interpretation of associations, and 

recommended best practices for reproducible research, analytical procedures and reporting of 

results.

Keywords

Adolescent Brain Cognitive Development Study; Population Neuroscience; Genetics; Hypothesis 
Testing; Reproducibility; Covariate Adjustments; Effect Sizes

1.0 Introduction

The Adolescent Brain Cognitive DevelopmentSM (ABCD) Study is the largest single-cohort 

long-term longitudinal study of neurodevelopment and child and adolescent health in the 

United States. The study was conceived and initiated by the United States’ National 

Institutes of Health (NIH), with funding beginning on September 30, 2015. The ABCD 

Study® collects observational data to characterize US population trait distributions and to 

assess how biological, psychological, and environmental factors (including interpersonal, 

institutional, cultural, and physical environments) can relate to how individuals live and 

develop in today’s society. From the outset, the NIH and ABCD scientific investigators were 

motivated to develop a baseline sample that reflected the sociodemographic variation present 

in the US population of 9–10 year-old children, and to follow them longitudinally through 

adolescence and into early adulthood.

Dick et al. Page 2

Neuroimage. Author manuscript; available in PMC 2022 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The ABCD Study was designed to address some of the most important public health 

questions facing today’s children and adolescents1. These questions include identifying 

factors leading to the initiation and consumption patterns of psychoactive substances, 

substance-related problems, and substance use disorders as well as their subsequent impact 

on the brain, neurocognition, health, and mental health over the course of adolescence 

and into early adulthood. More broadly, a large epidemiologically informed longitudinal 

study beginning in childhood and continuing on through early adulthood will provide a 

wealth of unique data on normative development, as well as environmental and biological 

factors associated with variation in developmental trajectories. This broader perspective 

has led to the involvement of multiple NIH Institutes that are stakeholders in the 

range of health outcomes targeted in the ABCD design. (Information regarding funding 

agencies, recruitment sites, investigators, and project organization can be obtained at https://

abcdstudy.org).

Population representativeness, or more precisely, absence of uncorrected selection bias in 

the subject pool, is important in achieving external validity, i.e., the ability to generalize 

specific results of the study to US society at large. As described below, the ABCD Study 

attempted to match the diverse US population of 9–10 year-old children on key demographic 

characteristics. However, even with a largely representative sample, failure to account for 

key confounders can affect internal validity, i.e., the degree to which observed associations 

accurately reflect the effects of underlying causal mechanisms. Moreover, it is crucial that 

the study collects a rich array of variables that may act as moderators or mediators, including 

biological and environmental variables, in order to aid in identifying potentially causal 

pathways of interest, to quantify individualized risk for (or resilience to) poor outcomes, and 

to inform public policy decisions. External and internal validity also depend on assessing 

the impact of random and systematic measurement error, implementing analytical methods 

that incorporate relevant aspects of study design, and emphasizing robust and replicable 

estimation of associations.

The ABCD Study primary aims are given in the Supplementary Materials (SM) Section S.1. 

We describe the study design and outline analytic strategies to address the primary study 

aims, including worked examples, with emphasis on approaches that incorporate relevant 

aspects of study design (Section 2: Study Design; Section 3: Population Weighting). We 

emphasize the impact of sample size on the precision of association estimates and thoughtful 

control of covariates in the context of the large-scale population neuroscience data produced 

by the ABCD Study (Section 4: Hypothesis Testing and Power; Section 5: Effect Sizes; 

Section 6: Control and Confounding Variables), and we briefly outline state-of-the-field 

recommendations for promoting reproducible science (Section SM.5) and best practices for 

statistical analyses and reporting of results using the ABCD Study data (Section SM.6). For 

readability, more technical subject matter is also largely left to SM sections.

2.0 Study Design

The ABCD Study is a prospective longitudinal cohort study of US children born between 

2006–2008. A total cohort of n = 11880 children aged 9–10 years at baseline (and their 

parents/guardians) was recruited from 22 sites (with one site no longer active) and are 
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being followed for at least ten years. Eligible children were recruited from the household 

populations in defined catchment areas for each of the study sites during the roughly 

two-year period beginning September 2016 and ending in October 2018.

2.1 Recruitment

Within study sites, consenting parents and assenting children were primarily recruited 

through a probability sample of public and private schools augmented to a smaller extent 

by special recruitment through summer camp programs and community volunteers. ABCD 

employed a probability sampling strategy to identify schools within the catchment areas as 

the primary method for contacting and recruiting eligible children and their parents. This 

method has been used in other large national studies (e.g., Monitoring the Future2; the 

Add Health Study3; the National Comorbidity Replication-Adolescent Supplement4; and the 

National Education Longitudinal Studies5). Twins at four “twin-hub” sites were recruited 

from birth registries (see6,7 for participant recruitment details). A minority of participants 

were recruited through non-school-based community outreach and word-of-mouth referrals.

2.2 Inclusion Criteria

Across recruitment sites, inclusion criteria consisted of being in the required age range and 

able to provide informed consent (parents) and assent (child). Exclusions were minimal 

and were limited to lack of English language proficiency in the children, the presence of 

severe sensory, intellectual, medical or neurological issues that would impact the validity of 

collected data or the child’s ability to comply with the protocol, and contraindications to 

MRI scanning6. Parents must be fluent in either English or Spanish.

2.3 Measures

Measures collected in the ABCD Study include a neurocognitive battery8,9, mental and 

physical health assessments10, measures of culture and environment11, biospecimens12, 

structural and functional brain imaging13,14, geolocation-based environmental exposure 

data, wearables and mobile technology15, and whole genome genotyping16. Many of these 

measures are collected at in-person annual visits, with brain imaging collected at baseline 

and at every other year going forward. A limited number of assessments are collected in 

semi-annual telephone interviews between in-person visits. Data are publicly released on 

an annual basis through the NIMH Data Archive (NDA, https://nda.nih.gov/abcd). Figure 1 

graphically displays the measures that have been collected as part of the ABCD NDA 3.0. 

Release. Figure 2 depicts the planned data collection and release schedule over the initial 10 

years of the study.

2.4 Sociodemographics

ABCD sample baseline demographics (from NDA Release 2.0.1, which contains data from 

n = 11879 subjects) are presented in Table 1, along with a comparison to the corresponding 

statistics from the American Community Survey (ACS). The ACS is a large probability 

sample survey of US households conducted annually by the US Bureau of Census and 

provides a benchmark for selected demographic and socio-economic characteristics of US 

children aged 9–10 years. The 2011–2015 ACS Public Use Microsample (PUMS) file 
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provides data on over 8,000,000 sample US households. Included in this five-year national 

sample of households are 376,370 individual observations for children aged 9–10 and their 

households.

With some minor differences, the unweighted distributions for the ABCD baseline sample 

closely match the ACS-based national estimates for demographic characteristics including 

age, sex, and household size. The general concordance of the samples can be attributed in 

large part to three factors: 1) the inherent demographic diversity across the ABCD study 

sites; 2) stratification (by race/ethnicity) in the probability sampling of schools within sites; 

and 3) demographic controls employed in the recruitment by site teams. Likewise, the 

unweighted percentages of ABCD children for the most prevalent race/ethnicity categories 

are an approximate match to the ACS estimates for US children age 9 and 10. Collectively, 

children of Asian, American Indian/Alaska Native (AIAN) and Native Hawaiian/Pacific 

Islander (NHPI) ancestry are under-represented in the unweighted ABCD data (3.2%) 

compared with ACS national estimates (5.9%). This outcome, which primarily affects 

ABCD’s sample of Asian children, may be due in part to differences in how the parent/

caregiver of the child reports multiple race/ethnicity ancestry in ABCD and the ACS.

3.0 Population Inferences

The ABCD recruitment effort worked very hard to maintain similarity of the ABCD sample 

and the US population with respect to sex and race/ethnicity of the children in the study. The 

predominantly probability sampling methodology for recruiting children within each study 

site was intended to randomize over confounding factors that were not explicitly controlled 

(or subsequently reflected in the population weighting). Nevertheless, school consent and 

parental consent were strong forces that certainly may have altered the effectiveness of the 

randomization over these uncontrolled confounders.

3.1 Population Weighting

The purpose of population weighting is to control for specific sources of selection bias and 

restore unbiasedness to descriptive and analytical estimates of the population characteristics 

and relationships17. Briefly, construction of the population weights required identification of 

a key set of demographic and socio-economic variables for the children and their households 

that are measured in both the ABCD Study and in the ACS household interviews. For the 

ABCD eligible children, the common variables include 1) age; 2) sex; and 3) race/ethnicity. 

For the child’s household, additional variables include: 4) family income; 5) family type 

(married parents, single parent); 6) household size 7) parents’ work force status (family 

type by parent employment status); 8) Census Region. A multiple logistic regression model 

using these variables was then fit to the concatenated ACS and ABCD data to predict 

study membership. The construction of the population weights for the ABCD Study is 

described in detail in Heeringa and Berglund (2020)18. R scripts for computing the ABCD 

population weights and for applying them in analyses are available at https://github.com/

ABCD-STUDY/abcd_acs_raked_propensity. The population weights are available in the 

NDA data releases 2.0.1 and 3.0.
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3.2 Recommendations

Heeringa and Berglund (2020)18 present regression analyses with and without using the 

population weights. Although it is important not to over-generalize from a small set of 

comparisons to all possible analyses of the ABCD data, the results described therein lead 

to recommendations for researchers who are analyzing the ABCD baseline data. First, 

unweighted analysis may result in biased estimates of descriptive population statistics. The 

potential for bias in unweighted estimates from the ABCD data is strongest when the 

variable of interest is highly correlated with socio-economic variables including family 

income, family type and parental work force participation. Second, for regression models 

of the ABCD baseline data, an unweighted analysis using mixed-effects models (e.g., site, 

family, individual) is the preferred choice. Presently, there is no empirical evidence from 

comparative analyses that methods for multi-level weighting19 will improve the accuracy or 

precision of the model fit, although additional research on this topic is ongoing.

3.3 Example: Application to Baseline Brain Volumes

As a demonstration of the implications of the weighting strategy employed in the ABCD 

Study, weighted and unweighted means and standard errors for ABCD baseline brain 

morphometry - volumes of cortical Desikan parcels20 - are presented in Table 2. Missing 

observations were first imputed using the R package mice21 before applying weights to the 

completed sample. Differences between unweighted and weighted means are quite small in 

the baseline sample in this case. As longitudinal MRI data become available in ABCD 

(starting with the second post-baseline annual follow-up visit), population-valid mean 

trajectories of brain-related outcomes will also be computable using a similar population 

weighting scheme, also allowing for characterization of variation of trajectories from the 

population mean.

4.0 Hypothesis Testing and Power

Developing an operational approach to evaluate the meaningfulness of research findings 

has been a subject of consistent debate throughout the history of statistics22. Even with the 

continued efforts to synthesize systems of statistical inference23, the resolution of this issue 

is unlikely to occur any time soon. Most neuroscientists continue to work within the context 

of the classical frequentist null-hypothesis significance testing (NHST) paradigm24,25, 

although non-frequentist approaches (e.g. Bayesian, machine learning prediction26,27) are 

increasingly common and may be more appropriate for large datasets like the ABCD Study.

Despite growing enthusiasm for these alternatives, p-values continue to be important data 

points in the presentation of results in the behavioral and neurosciences. The NHST p-value 

“…is the probability under a specified statistical model that a statistical summary of the 

data…would be equal to or more extreme than its observed value”28. The utility of NHST 

and the arbitrariness of the 0. 05 significance threshold has been debated extensively28–30. 

While we will not relitigate these issues here, we will attempt to address how best to present 

statistical evidence that leverages the ABCD Study’s large sample size (affecting statistical 

power), population sampling frame, and rich longitudinal assessment protocol to enable 

meaningful and valid insights into child and adolescent neurodevelopment.
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4.1 Power

Statistical power in the NHST framework is defined as the probability of rejecting a false 

null hypothesis. Power is determined by three factors: 1) the significance level α; 2) the 

magnitude of the population parameter; and 3) the accuracy (precision and bias) of the 

model estimates. Increasing power while maintaining a specified Type I error rate depends 

largely on obtaining more precise association parameter estimates from improved study 

designs, more efficient statistical methods, and, importantly, increasing sample size31–33.

The ABCD Study has a large sample compared to typical neurodevelopmental studies, so 

much so that one might expect even very small associations to be statistically significant. 

In our experience, not all associations in the ABCD Study are guaranteed to have small p-

values. For example, a recent study attempting to replicate the often-cited bilingual executive 

function advantage failed to find evidence for the advantage in the first data release (NDA 

1.0) of the ABCD Study (n = 4524)34.

Nevertheless, even very small associations are well-powered in the ABCD Study. Figure 3 

displays power curves as a function of sample size for different values of absolute Pearson 

correlations |r|. The dashed line in Figure 3 indicates the full ABCD baseline sample size of 

n = 11880. As can be seen, Pearson correlations |r|=0.04 and above have power > 0. 99 at α 
= 0. 05. Simply rejecting a null hypothesis without reporting on other aspects of the study 

design and statistical analyses (including discussion of plausible alternative explanatory 

models and threats to validity), as well as the observed magnitude of associations, is 

uninformative, perhaps particularly so in the context of very well-powered studies35.

5.0 Effect Sizes

Because p-values may be less informative in the context of very well-powered studies like 

ABCD, effect sizes become important data points in determining the importance of the 

findings. Effect sizes quantify relationships between two or more variables, e.g., correlation 

coefficients, proportion of variance explained (R2), Cohen’s d, relative risk, number needed 

to treat, and so forth36,37, with one variable often thought of as independent (exposure) 

and the other dependent (outcome)31. Effect sizes are independent of sample size, e.g., 

t-tests and p-values are not effect sizes; however, the precision of effect size estimators 

depend on sample size as described earlier. Consensus best practice recommendations are 

that effect size point estimates be accompanied by intervals to illustrate the precision of 

the estimate and the consequent range of plausible values indicated by the data28. Table 3 

presents a number of commonly used effect size metrics39,40. We wish to avoid being overly 

prescriptive for which of these effect sizes to employ in ABCD applications, as researchers 

should think carefully about the intended use of their analyses and pick an effect size metric 

that addresses their particular research question.

5.1 Small Effects

As much as the choice of which effect size statistic to report is driven by context, the 

interpretation of the practical utility of the observed effect size is even more so. While small 
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p-values do not imply that reported effects are inherently substantive, “small” effect sizes 

might have practical or even clinical significance in the right context37.

As described in SM Section S.2, known problems of publication bias and incentives for 

researchers to find significant associations32,41 combined with the predominantly small 

sample sizes of most prior neurodevelopmental studies lead us to expect that true brain-

behavior effect sizes are smaller than have been described in the past42,43. Indeed, Ioannidis 

(2005)44 has argued that most claimed research findings in the scientific literature are 

actually false. Although details of the concerns are disputed45, some analyses of existing 

literature provide support for the possibility46. It is possible, then, that many published 

neurodevelopmental associations represent severely inflated effect sizes32,47 and may be 

severely attenuated in investigations of ABCD data.

It is also possible that actual (causal) associations found in nature are in reality small for 

many outcomes. There is already strong evidence for this possibility: Myer and colleagues 

(2001)48 reviewed 125 meta-analyses in psychology and psychiatry and found that most 

relationships between clinically important variables are in the r=0.15 to 0.3 range, with 

many clinically important effects even smaller. Miller et al. (2016)49 analyzed associations 

between multimodal imaging and health-related outcomes in the UKBiobank data. Even the 

most significant of these explained only around 1% of the variance in the outcomes.

5.2 Pre-Registration

While not of course completely immune to these problems (especially in subgroup and/or 

high-dimensional analyses), because its large sample size reduces random fluctuations in 

effect size estimates that occur within small n studies, the ABCD Study is much more 

resistant than is typical. However, with the large number of reseachers analyzing the data, 

high-dimensional space of covariates and outcomes and an essentially infinite number 

of possible modeling strategies, p-hacking and exploitation of random chance remains a 

possible source of irreproducible results. Pre-registration may mitigate exposure to some 

of these sources of irreproducibility. Indeed, a recent meta-analysis50 found that effects 

from publications without pre-registration (median r = 0. 36) skewed larger than effects 

from publications with pre-registration (median r = 0. 16), suggesting that pre-registration 

is a practical step toward reporting research results that reflect the actual effects under 

investigation.

For ABCD Study data, we recommend that researchers consider hypothesis pre-registration 

(e.g., using the Open Science Foundation framework: https://osf.io/prereg/) and using a 

registered reports option for publishing results51. A template for hypothesis pre-registration 

for the ABCD Study data can be found in the NDA-hosted ABCD Data Exploration 

and Analysis Portal (ABCD DEAP, https://deap.nimhda.org/index.php), which is freely 

accessible to all users with a valid NDA ABCD user ID and password. Over 200 peer-

review journals now offer registered reports as a publication format; two of these (Cerebral 
Cortex and Developmental Cognitive Neuroscience) have created registered reports options 

specifically geared for publishing results from the ABCD Study. Recommended best 

practices for promoting reproducible science are given in Section SM.5 and for statistical 

analyses and reporting of results using the ABCD Study data in Section SM.6. In the next 
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section, we provide a brief example to illustrate the issues we have just discussed as they 

relate to ABCD.

5.3 Example: Effect Size Estimates

In examining the ABCD data, we advocate for a focus on effect sizes over p-values, but 

this is not as simple as it appears, and researchers often require some guidance on how to 

choose and interpret effect sizes. Here, we illustrate how the choice of effect size, and the 

interpretation of its substantive effect, must be made in the context of the research question. 

For example, Cohen’s d and related metrics (see Table 3) assess the magnitude of mean 

differences between two conditions or groups. But what is not often appreciated is that 

Cohen’s d is insensitive to the proportion of subjects in each group52. Conversely, base-rate-

sensitive effect size metrics take into account the difficulty of differentiating phenomena in 

rare events. If the goal is to assess the impact of an exposure on a population, it is arguable 

that researchers should opt for an effect size metric that takes the sample base rate into 

account. For example, the point-biserial correlation rbs
52 (Table 3) is a similar metric that, 

unlike d, is sensitive to variation in sample base rates.

To illustrate this, we used Cohen’s d and point-biserial rbs to estimate the effect size of 

a dichotomous “exposure” index: very obese (here defined as a body mass index (BMI) 

≥30) and a continuous brain “outcome”: restriction spectrum imaging component (N0), a 

measure sometimes related to cellularity, in the Nucleus Accumbens (NAcc). Recent work 

has highlighted a potential role of neuroinflammation in the NAcc in animal models of 

diet-induced obesity53. We included baseline data from subjects without missing BMI and 

NAcc N0 data, also excluding 5 subjects with NAcc N0 values < 0 (leaving n = 10659 

subjects, of which 184 subjects had BMI ≥30, or 1. 7%). As can be seen in Figure 4 

(upper panels), NAcc N0 values are heavy tailed. We thus use a bootstrap hypothesis testing 

procedure to obtain quantiles of d and rbs
54. To account for nesting of subjects within 

families, at each iteration of the bootstrap one member of each family was first selected 

at random, and these subjects (along with all singletons) were sampled with replacement 

10000 times. Figure 4 (lower panels) presents the bootstrap p-value plots for different null 

hypotheses31. The bootstrap median d = 0. 801 (95% CI: [0. 588, 0. 907]) and median rbs = 

0. 106 [0. 081, 0. 127]. Thus, while in terms of d the effect might be considered “large”, rbs 

corresponds to a variance explained of roughly 1% and hence would be considered “small” 

by many researchers.

So, what effect size should the researcher report, and which should be emphasized in 

the interpretation? Our general guidance would be to carefully consider the answer in the 

context of the research question. Perhaps both could be reported, but if the public health 

impact of an intervention is considered the rbs might be more strongly focused on in the 

discussion of results.

Finally, caution is warranted in interpreting these results as “effect sizes,” as the causal 

relationship could be from obesity to NAcc N0, from NAcc N0 to obesity, bidirectional, 

or even non-existent (i.e., due to confounding). We do not adjust for potential confounding 

factors or their proxies in this example. In light of this, it would be more appropriate to 
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call d and rbs as computed here “association sizes”. We examine the question of direction of 

causality using the twin data55 in SM Section S.3.

6.0 Control of Confounding Variables

An important challenge to the internal validity of effect estimates from the ABCD Study 

(and from any observational study) is the likely presence of confounding variables for 

observed associations. Necessary but not sufficient conditions for a variable to confound an 

observed association between an independent variable (IV) and a dependent variable (DV) 

are that the factor is associated with both the exposure and the outcome in the population, 

but not causally affected by either56 (if a variable is causally downstream of the IV or the 

DV or both, it may be a collider or a mediator31). Conditioning on confounders (or their 

proxies) in regression analyses will tend to reduce bias in effect size estimates, whereas 

conditioning on colliders or mediators (or their proxies) will tend to increase bias. To make 

matters more difficult, assessed variables can be proxies for both confounding factors and 

mediators or colliders simultaneously, in which case it is not clear whether conditioning 

will improve or worsen bias in effect size estimates. We thus recommend that investigators 

using ABCD data think carefully about challenges to estimating effects of exposures and 

perform sensitivity analyses that examine the impact of including/excluding covariates on 

associations. In the next sections we discuss these topics more thoroughly in the context of 

conditioning on covariates in regression models.

6.1 Covariate Adjustment

Although the inclusion of covariates in statistical models is a widespread practice, 

determining which covariates to include is necessarily complex and presents an analytical 

conundrum. The advantages and disadvantages of covariate inclusion in statistical models 

has been widely debated57,58 and reviewed elsewhere59–61, so we focus our discussion on 

the practical implications of covariate adjustment in the ABCD Study.

Datasets with a rich set of demographic and other variables lend themselves to the inclusion 

of any number of covariates. In many respects, this can be seen as a strength of the ABCD 

Study, but this can also complicate the interpretation of findings when research groups adopt 

different strategies for what covariates to include in their models. For instance, a recent 

comprehensive review of neuroimaging studies62 found that the number of covariates used 

in models ranged from 0 to 14, with 37 different sets of covariates across the 68 models 

reviewed. This review showed that brain-behavior associations varied substantially as a 

function of which covariates were included in models: some sets of covariates influenced 

observed associations only a little, whereas others resulted in dramatically different patterns 

of results compared to models with no covariates. Which variables are appropriately 

included as confounders in any given analysis depends on the research question, highlighting 

the need for thoughtful use of covariates.

Covariates are often used in an attempt to yield more “accurate,” or “purified”61 estimates of 

the relationships among the IVs and DV, thereby revealing their “true” associations59 (i.e., to 

eliminate the impact of confounding on observed associations31). Under this assumption, 

the inclusion of covariates implicitly assumes that they are somehow influencing the 
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variables of interest, either contaminating the relationship between the IV and DV or the 

measurement of the variables of interest. Thus, not controlling for covariates presumably 

distorts observed associations among the IVs and DV57,61. Note that we use “somehow” 

to emphasize frequent researcher agnosticism regarding the specific role of the covariates 

included in the model. Because statistical control carries with it major assumptions about 

the relationships among the observed variables and latent constructs, some of which are 

generally unspecified and others of which are potentially unknowable, conclusions drawn 

from models that mis-specify the role of the covariate will be incorrect.

When covariates are thought to influence the observed variables of interest but not the 

latent construct, this is thought of as measurement contamination (Figure 5A). Measurement 

contamination ostensibly occurs when a covariate influences the observed variables (x 

and y in Figure 5A). Importantly, a major assumption surrounding the presumption of 

measurement contamination is that the covariate does not affect the underlying constructs 

(X and Y in Figure 5A), only their measures. Removing the influence of covariates by 

controlling for them presumes that absent such control, the association between the IVs and 

DV is artefactual.

There are also a number of ways in which covariates are thought to influence the latent 

constructs and not just the measurement of them (see Meehl (1971)57 for a thorough 

discussion). Two such models are spuriousness (Figure 5B) and mediation (Figure 5C). 

Under a spuriousness (confounding) model, the IV (X) and DV (Y) are not directly causally 

associated but are both caused by the covariate. Therefore, any observed association between 

the IV and DV is spurious given that it is caused by the covariate. Under a mediation model, 

the IV (X) and DV (Y) are statistically associated only through the covariate. Spuriousness 

and mediation models are generally statistically indistinguishable (though temporal ordering 

can sometimes assist in appropriate intepretations), and under both models, controlling 

for the covariate results in a reduced association between the IV and DV. In either case, 

including covariates can effectively remove effects of interest from the model. At best, this 

practice obscures rather than purifies relationships among our variables of interest. At worst, 

this practice can render incorrect interpretations of the true effect. Rather than suggesting 

that covariates should be avoided altogether, we view them as having an important role in 

testing competing hypotheses.

Thorough treatments of covariate use in statistical modeling are given by others59–61. In the 

next section we review steps in reasoning about which covariates to include and how to think 

about resulting associations.

6.1.1 Covariate Adjustment: Researcher Considerations

What is the role of the covariate? What is the theoretical model? Could the exclusion 
and inclusion of the covariate inform the theoretical model?: Addressing these questions 

through the practice of simply explicitly specifying the role of the covariate in the model, 

and even more specifically its hypothesized role in the IV-DV associations, helps avoid 

including covariates in the model when doing so is poorly justified. Moreover, it encourages 

thoughtful hypothesis testing. Ideally, explicit justification of the inclusion of each covariate 

in the model should be included in the reporting of our results. Better yet, as opposed to 
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treating control variables as nuisance variables, a more ideal model would include covariates 

in hypotheses60. We also encourage considering the extent to which the exclusion and 

inclusion of the covariate could inform the theoretical model. In an explanatory framework, 

all covariates should be specified a priori. In a predictive framework, one can conduct nested 

cross-validations and model comparisons to find the most robust model with procedurally-

selected covariates.

How do my models differ with and without covariates?: We recommend running 

models with and without covariates and comparing their results. This practice encourages 

researchers to better consider the effect of covariates on observed associations. At the same 

time, engaging in multiple testing can increase Type I error rates. Regarding our suggestion, 

we encourage a shift away from comparing models on the basis of p-values and instead 

encourage researchers to compare effect sizes of the predictor of interest in models with 

and without the covariates. Confidence intervals are critical to compare across models, as 

the range of plausible effects is more important than the point differences in effect size 

estimates. The focus on effect sizes as opposed to statistical significance is important given 

that including many covariates in the statistical model reduces degrees of freedom, in turn 

increasing standard errors and decreasing statistical power for any given IV. Covariates may 

be correlated with one another as well, reducing precision and producing large differences in 

p-values when some variables are included or omitted from a model.

If the effect sizes do not differ as a function of the inclusion of the covariate (e.g., their 

confidence intervals substantially overlap), one might consider dropping it from the model, 

but noting this information somewhere in the text. Becker (2005)63 offers more suggestions 

regarding what to do when results from models with and without covariates differ (see also 

Becker et al. (2016)60). Additionally, should one choose to adopt models with covariates 

included, we recommend placing analyses from models without covariates in an appendix 

or in the supplemental materials; such a practice will aid in comparison of results across 

studies, particularly across studies with different sets of covariates in the models.

Causal effects from observational data: It is worth formalizing this discussion for 

situations when there is interest in estimating causal effects: the comparison of potential 

outcomes, e.g., comparing outcomes for children in ABCD as if all of their parents had 

alcohol problems, vs. none of their parents having alcohol problems. Two methods that 

are particularly relevant for estimating causal effects in cohort studies such as ABCD 

are instrumental variables analyses and propensity score methods. Instrumental variables 

analyses rely on finding some “instrument” that is plausibly randomly assigned (conditional 

on covariates), affects the exposure of interest, and is not directly related to outcomes64,65.

Here we will focus, though, on propensity score methods as a fairly general purpose tool for 

estimating causal effects. In general, interpreting a difference in outcomes between exposure 

groups as a causal effect requires two things: 1) “overlap” (individuals in the two exposure 

groups are similar to one another on the confounders), and 2) “unconfounded treatment 

assignment”; that there are no unobserved differences between exposure groups once the 

groups are equated on the observed characteristics. Propensity score methods66 can help 

assess whether overlap exists, and equate the exposure groups using matching, weighting, 
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or subclassification. Covariates should thus be selected in order to satisfy unconfounded 

treatment assignment, and as noted above, factors that are “post-treatment” (and thus 

potentially mediators) should not be included. A benefit of the ABCD Study design is that 

longitudinal data is available, to measure confounders before exposure and exposure before 

outcomes, and the large set of potential confounders observed and available to be adjusted 

for. Sensitivity analyses also exist to assess robustness of effect estimates to a potential 

unobserved confounder (e.g.,67).

In SM Section S.4, we give a worked example of a sensitivity analysis for the potential 

impact of omitting unmeasured confounders using ABCD data on breastfeeding and 

neurocognition. Finally, methods should be used that account for the probability sample 

nature of the ABCD cohort, in order to ensure effects are being estimated for the population 

of interest69,70.

6.1.2 Example: Covariate Adjustment—Here, we provide a worked example 

focusing on the associations between parental history of alcohol problems and child 

psychopathology, an important substantive question that has received attention in the 

literature71. The ABCD Study contains a rich assessment of family history of psychiatric 

problems (e.g., alcohol problems, drug problems, trouble with the law, depression, 

nerves, visions, suicide) and child psychopathology, including child- and parent-reported 

dimensional and diagnostic assessments. We examined the relation between parental history 

of alcohol problems (four levels: neither parent with alcohol problems, father only, mother 

only, both parents) and child externalizing assessed with the parent-reported Child Behavior 

Checklist (CBCL). Based on the earlier-described considerations, we delineated several 

tiers of covariates to include in the models in sequence (or in a stepwise fashion). The 

first tier included “essential” covariates that the researcher views as required to include in 

the models, the second tier included “non-essential” covariates, and the third tier included 

“substantive” covariates that can inform the robustness of the model, or more generally 

inform the theoretical model.

Our first tier includes age, sex at birth, and a composite of maternal alcohol consumption 

while pregnant. The inclusion of this latter covariate is deemed as essential to rule out the 

possibility that any associations between parental history of alcohol problems and child 

psychopathology was not due to prenatal alcohol exposure. In this context, maternal alcohol 

consumption was considered a construct confound. The second-tier covariates included 

race/ethnicity, household income, parental education, and parental marital status. In the 

context of this research question, these covariates might be deemed “non-essential” for three 

reasons. First, the researcher may not have any clear hypotheses surrounding the role of 

these covariates in the IV-DV associations. Second, the researcher may not think that there 

are important group differences in the second-tier covariates that are worth exploring and 

reporting. Third, the researcher might expect that some of the “non-essential” covariates 

may be causally related to the IVs and DV or may share common causes with them (e.g., 

they may be proxies for both confounders and mediators or colliders simultaneously). We 

did not have specific hypotheses regarding race/ethnicity differences in these associations, 

but exploratory analyses may be informative. At the same time, race/ethnicity may be 
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strongly associated with other covariates (e.g., socioecomomic status, adversity), and so 

researchers must take care when interpreting the impact of its inclusion in the model.

Other “non-essential” covariates (e.g., household income, parental education, and parental 

marital status) may be either causally related to the IVs or DV or may share a common 

cause. For instance, parental externalizing – which likely overlaps with parental history 

of alcohol problems – are associated with both increased likelihood of divorce and child 

externalizing, but the two are not causally related72,73. Thus, demographics may, at least in 

part, proxy our variables of interest. Moreover, parental history of alcohol problems may 

proxy the broader construct of externalizing psychopathology. Controlling for indicators 

that share a common cause with our IVs and DVs partials out an important, etiologically 

relevant part of the phenotype, which can obscure true IV-DV associations. Based on 

this information, one might decide to report models with and without these covariates 

and consider the extent to which differences in these sets of models inform a particular 

theoretical model.

There was a significant linear association between parental history of alcohol problems 

with tier 1 covariates included, and there is no major difference between the models 

with and without tier 2 covariates (Figure 6A). Because we deemed tier 2 covariates as 

“nonessential,” we elected to move forward only with tier 1 covariates.

Finally, a third tier of covariates may be used to test the robustness of the associations 

between parental history of alcohol problems and child psychopathology. Here, we see 

that other forms of parental history of psychiatric problems, particularly externalizing 

(i.e., parental history of drugs, trouble with the law) display similar, if not more robust 

associations, with CBCL Externalizing (Figure 6B). Including other forms of parental 

externalizing (e.g., drug use, trouble with the law), may inform the extent to which the 

associations between parental history of alcohol problems and child psychopathology are 

more general to parental history of other externalizing74). Indeed, the associations between 

parental history of alcohol problems and CBCL Externalizing became attenuated when 

parental history of drug problems and trouble with the law were included in the model 

(Figure 6C), which suggests that the associations are general with respect to parental history 

of externalizing. In one further robustness check, we see that including parental history 

of internalizing problems (e.g., nerves, depression) slightly attenuates the associations 

between parental history of alcohol problems and CBCL Externalizing, though the effects of 

covarying parental history of externalizing were stronger (Figure 6C).

Altogether, we learned from the tier 3 covariates that the associations between parental 

history of alcohol problems and CBCL Externalizing may be more general to history 

of externalizing, or even psychiatric problems more generally. These covariates were not 

treated as covariates per se, but as variables whose inclusion and exclusion informed the 

theoretical model.

In sum, we hope it is clear that determining which covariates should be included in our 

statistical models is complex and requires considerable thought. We caution against the 

over-inclusion of covariates in statistical models, and against the assumption that including 

Dick et al. Page 14

Neuroimage. Author manuscript; available in PMC 2022 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



covariates purifies the associations among our variables of interest; instead their inclusion 

can obscure rather than purify such associations75.

7.0 Summary and Conclusions

The sample size of the ABCD Study is large enough to reliably detect and estimate small 

effect size relationships among a multiplicity of genetic and environmental factors, potential 

biological mechanisms, and behavioral and health-related trajectories across the course of 

adolescence. Thus, the ABCD Study will be a crucial resource for avoiding Type I errors 

(false positive findings) when discovering novel relationships, as well as failures to replicate 

that result from the replication sample being too small to have sufficient power. Moreover, 

ABCD will allow for stronger interpretation of non-significant results as they will not be 

due to low power for all but the tiniest of effect sizes, or researchers may opt to take 

advantage of the high power to assess the absence of differences using other statistical 

procedures like equivalency tests76. Other studies in the field suffer from false positives 

that do not replicate, and overestimation of effect sizes in general, which typically arise 

from a research environment consisting of many small studies, p-hacking, and publication 

bias towards positive findings77. ABCD will therefore help directly address the replication 

problems afflicting much of current neuroscience research32, and which would be bolstered 

by pre-registration steps that we outline above for ABCD data.

ABCD may also help researchers to address questions of “practical significance” for effects 

that may be small by traditional standards (e.g., explaining 1% of variation or less), but may 

be statistically significant due to the large sample size of the ABCD Study. As we noted, we 

expect that ABCD report will predominantly report small effect sizes, simply reflecting the 

fact that many, if not most, real-world relationships are in fact small. But in this scenario, it 

would be a mistake to dismiss all small effect size relationships. Indeed, an ostensibly small 

effect size might still be of clinical or public health interest37 despite appearing “small” by 

traditional standards78,79. The effect may also be small due to imprecise measurement even 

if the underlying relationships are far from weak. Finally, even if the “noise-free” effects 

of individual factors are small, they may cumulatively explain a sizeable proportion of the 

variation in neurodevelopmental trajectories a scenario which has recently played out in 

genome-wide association studies (GWAS) of complex traits80.

At the same time, it is important to interpret these effects in the context of potentially 

confounding covariates, and like the interpretation of the effects themselves, the choice of 

inclusion of covariates must be principled. Misspecification can lead to serious threats to 

internal validity of the conclusions. For both effects of primary interest and covariates, that 

the focus remains on effect sizes, rather than binary “yes or no” assessments of whether data 

support or reject a particular hypothesis. For example, for the goal of obtaining personally 

relevant modifiable predictors of substance abuse or other clinical outcomes, prediction 

accuracy of 75% would correspond to a very-large effect size of around 1.4, accounting for 

about 30% of the variance. (However, for modifications of variables targeted at a population 

level or for policy interventions, a smaller effect size might still be important.) Thus, binary 

judgements on whether associations are “significant” can be fraught with error and give 

rise to misleading headlines81. Worse, Type I or Type II errors (declaring an effect to be 
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significant when it is not real, or absent when it is, respectively) can mislead the field for 

long periods. Such results could delay the much needed progress in reducing the human and 

financial costs of mental health and other disorders. Thus, the careful consideration of the 

statistical and methodological factors we have outlined should be considered essential for 

the investigation of this prominent public dataset.

In summary, the ABCD Study is collecting longitudinal data on a rich variety of genetic 

and environmental data, biological samples, markers of brain development, substance 

use, and mental and physical health, enabling the construction of realistically complex 

etiological models incorporating factors from many domains simultaneously. While 

establishing reproducible relationships between pairs (or small collections of measures) 

in a limited set of domains will still be important, it will be crucial to develop more 

complex models from these building blocks to explain enough variation in outcomes to 

reach a more complete understanding or to obtain clinically-useful individual predictions. 

Multidimensional statistical models must then incorporate knowledge from a diverse array 

of domains (e.g., genetics and epigenetics, environmental factors, policy environment, 

ecological momentary assessment, school-based assessments, and so forth) with brain 

imaging and other biologically-based measures, behavior, psychopathology, and physical 

health, and do this in a longitudinal context. The sample size, population nature, duration 

of study, and, importantly, the richness of data collected in ABCD will be important for 

attaining this goal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: ABCD Study Assessments for NDA 2.0.1 Release Data
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Figure 2: ABCD Data Collection and NDA Release Schedule
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Figure 3: Power vs. Sample Size for Pearson |r|
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Figure 4: Association Between Obesity and Nucleus Accumbens RSI N0
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Figure 5: Models for Measurement Contamination, Spuriousness, and Mediation
Note. This figure is adapted from Spector and Brannick (2011). Lowercase letters refer 

to observed indicators (in boxes), whereas uppercase letters refer to latent indicators 

(constructs, in circles).
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Figure 6: The association between parental history of alcohol problems and CBCL Externalizing
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Table 1:

ABCD Baseline and ACS 2011–2015 Demographic Characteristics

Characteristic Category ABCD n=11,879 ACS 2011–2015

% N %

Population Total 100 8,211,605 100

Age 9 52.3 4,074,807 49.6

10 47.7 4,136,798 50.4

Sex Male 52.2 4,205,925 51.2

Female 47.8 4,005,860 48.8

Race/Ethnicity NH White 52.2 4,305,552 52.4

NH Black 15.1 1,101,297 13.4

Hispanic 20.4 1,973,827 24.0

Asian, AIAN, NHPI 3.2 487,673 5.9

Multiple 9.2 343,256 4.2

Family Income <$25k 16.1 1,762,415 21.5

$25k–$49k 15.1 1,784,747 21.7

$50k–$74k 14.0 1,397,641 17.0

$75k–$99k 14.1 1,023,127 12.5

$100k–$199k 29.5 1,685,036 20.5

$200k + 11.2 558,639 6.8

Family Type Married Parents 73.4 5,426,131 66.1

Other Family Type 26.6 2,785,474 33.9

Parent Employment Married, 2 in LF 50.2 3,353,572 40.8

Married, 1 in LF 21.9 1,949,288 23.7

Married, 0 in LF 1.3 156,807 1.9

Single, in LF 21.1 2,174,365 26.5

Single, Not in LF 5.4 577,573 7.0

Region Northeast 16.9 1,336,183 16.3

Midwest 20.4 1,775,723 21.6

South 28.3 3,117,158 38.0

West 34.4 1,982,541 24.1

Household Size 2 to 3 17.3 1,522,216 18.5

4 33.5 2,751,942 33.5

5 24.9 2,085,666 25.4

6 14.0 1,025,285 12.5

7+ 10.3 826,496 10.1

LF=labor force
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Table 2:

Unweighted and Weighted Means of Desikan Cortical Volumes

Mean SE Weighted Mean SE

bankssts 3238.48 473.95 3227.70 472.83

caudalanteriorcingulate 2571.23 476.91 2559.34 478.06

caudalmiddlefrontal 8326.70 1408.47 8277.25 1398.77

cuneus 3645.25 582.41 3626.44 582.07

entorhinal 1843.15 339.44 1835.95 339.10

fusiform 12050.11 1552.79 12009.48 1558.06

inferiorparietal 18387.31 2432.67 18325.23 2428.86

inferiortemporal 13182.85 1879.13 13133.08 1870.21

isthmuscingulate 3252.16 534.48 3239.51 538.27

lateraloccipital 13334.05 1870.71 13283.90 1848.41

lateralorbitofrontal 9295.28 1036.65 9258.68 1035.60

lingual 8031.18 1132.35 7998.54 1132.13

medialorbitofrontal 5976.38 731.09 5954.65 725.41

middletemporal 14275.50 1796.11 14230.8 1786.83

parahippocampal 2586.48 378.94 2576.70 378.86

paracentral 4674.33 672.68 4660.61 674.30

parsopercularis 5701.08 849.03 5683.61 846.91

parsorbitalis 3097.73 371.12 3084.29 371.66

parstriangularis 5178.54 733.71 5159.42 732.41

pericalcarine 2505.86 425.52 2489.51 424.71

postcentral 11822.49 1599.97 11788.14 1593.43

posteriorcingulate 4196.07 603.72 4181.46 606.51

precentral 15990.94 1796.68 15929.85 1791.05

precuneus 12865.56 1618.69 12819.36 1616.69

rostralanteriorcingulate 2963.47 479.55 2949.78 479.97

rostralmiddlefrontal 21292.13 2684.14 21165.50 2669.35

superiorfrontal 28758.00 3204.70 28616.28 3197.22

superiorparietal 17020.90 2172.80 16961.33 2161.06

superiortemporal 14575.38 1645.94 14519.78 1652.24

supramarginal 13827.92 1891.34 13772.95 1894.80

frontalpole 1153.78 185.07 1150.68 186.20

temporalpole 2478.08 309.09 2472.20 308.04

transversetemporal 1339.14 216.87 1333.57 217.62

insula 7586.56 857.66 7556.20 856.70

total 297024.05 28733.94 295831.76 28686.91
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Table 3:

Measures of Effect Size Relevant for ABCD

Measures of Strength of Association

r, rpb, r2, R, R2, ϕ, η, η2

Cohen’s f2

Cramér’s V

Fisher’s Z

Measures of Strength of Association Relevant for Multiple Regression

Standardized regression slope or path coefficient β

Semi-partial correlation ry(x,z)

Measures of Effect Size

Cohen’s d, f, g, h, q, w

Glass’ g′

Hedges’ g

Other Measures

Odds ratio (ω2)

Relative risk
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