UC Berkeley Energy Use in Buildings Enabling Technologies

Title

Resonance Tuning for Vibration Energy Scavenging

Permalink

https://escholarship.org/uc/item/4zc6k178

Author Leland, Eli S.

Publication Date 2005

Resonance Tuning for Vibration Energy Scavenging

Compressive Axial Preload Expands the Usable Range of Piezoelectric Generators

Conventional designs work best at a single frequency...

Vibration Source	Frequency of Peak (Hz)	Peak Acceleration (m/s ²)
Clothes dryer	121	3.5
Door frame just after door closes	125	3
Small microwave oven	121	2.25
HVAC vents in office building	60	0.2 - 1.5
Wooden deck with people walking	385	1.3
External windows (size 2ft. x 3ft.) near a busy street	100	0.7
Notebook computer while CD is being read	75	0.6
Washing machine	109	0.5
Second story of wood frame office building	100	0.2
Refrigerator	240	0.1
Haas 3-axis milling machine in operation	83	10-30
Fused deposition modeling machine in operation	200	2.5

Vision

To develop vibration energy scavenging devices that can be adjusted to generate useful amounts of power from a variety of vibration sources with differing peak frequencies.

By contrast, most vibration energy scavenging devices can only operate effectively using vibrations that precisely match a device's resonance frequency.

The development of variable-frequency energy scavenging technology is vital to designing a suitable power source for wireless sensor networks and other applications.

Research

Questions

- Can the resonance frequency of a piezoelectric vibration energy scavenger be altered using compressive axial preload?
- How much power is generated by a piezoelectric energy scavenger whose resonance frequency has been thus altered?
- How can a resistive load be used to optimize such a generator's power output?

Methods

- A custom-fabricated steel vise was used to apply compressive preload to a simplysupported piezoelectric bimorph
- Resonance frequency for each level of preload was determined by using a variable-frequency vibration generator
- Optimal power output was determined by varying load resistance

Findings

- Compressive axial preload can reduce resonance frequency up to 30%
- 50-90% of initial power available at frequencies 20% below nominal (no preload) resonance, compared with 2-5% initial power from non-tunable generator

Preload and Power Output

Demand Response Enabling Technology Development UC Berkeley | CBE | BMI | CEC Eli S. Leland 2111 Etcheverry Hall eli@me.berkelev.edu

