
UC Irvine
ICS Technical Reports

Title
Layout-driven allocation for high level synthesis

Permalink
https://escholarship.org/uc/item/4zc6k948

Authors
Wu, Allen C.H.
Gajski, Daniel D.

Publication Date
1991-04-09

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4zc6k948
https://escholarship.org
http://www.cdlib.org/

Notice: Tills Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Layout ... Driven Allocation
<for High Level Synthesi~_

Allen C-H. Wuc
Daniel D. Gajski

Technical Report #91-30
April 9, 1991

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-8059

Abstract

We propose a hypergraph model and a new algorithm for hardware allocation. The
use of a hypergraph model facilitates the identification of sharable resources and the
calculation of interconnect costs. Using the hyper graph model, the algorithm per­
forms interconnect optimization by taking into account interdependent relationships
between three allocation subtasks: register, operation, and interconnect allocations
simultaneously. Previous algorithms considered these three tasks serially. Another
novel contribution of our algorithm is the exploration of design space by trading off
storage units and interconnects. We also demonstrate that traditional cost functions
using the number of registers and the number of mux-inputs can not guarantee the
minimal area. To rectify the problem, we introduce a new layout area cost func­
tion and compare it to the traditional cost functions. Our experiments show that
our algorithm is superior to previously published algorithms under traditional cost
functions.

G 'l f
c_ :3
Y\6,91-::Sd

TABLE OF CONTENTS

1. Introduction 1

2. The allocation problem 2

2.1 Hypergraph formation 2

2.2 Layout-area cost function 7

2.3 Interchange optimization .. 8

. 2.3.1. liype.re.dge merging by node relocation ... 8

2.3.2 Hyperedge merging by node swapping 11

2.3.3 Interchange under global considerations ... 11

2.4 The overall algorithm 15

3. Results and Discussions 17

4. Conclusions 19

5. Acknowledgements 19

6. References 25

Page i

LIST OF FIGURES

Figure 1. Hypergraph formation: (a) Data flow graph and schedule, (b) Vari­

able assignments, (c) Hypergraph of (a), (d) Hypergraph after hyperedge

·. megering. 4

Figure 2. Hyperedge merging. 6

Figure 3. Hyperedge merging by node relocation (a) before, (b) after. 9

Figure 4. Group reloca.tion : :... 10

Figure 5. Node swapping. .. 12

· Figure. 6. The data transfer model. 13

Figure 7. Interchange based on FU-REG-FU data path. 14

Figure 8. Figure 8. The 17-step Elliptic Filter example: (a) Schedule, (b)

Structure, and (c) Variable and operation assignments. 20

Figure 9. The 19-step Elliptic Filter example: (a) Schedule, (b) Structure, and

(c) Variable and operation assignments. 21

Figure 10. The lauoyt of a 16-bit 21-step Elliptic Filter example.

Figure 11. The relationships between area costs and actual areas.

Page ii

22

23

LIST OF TABLES

Table 1. The area results of the Elliptic Filter example. 23

Table 2. Allocation results of the Elliptic Filter example. 24

Page iii

1. Introduction

The purpose of high-level synthesis is to transform a behavioral description into a

multistage register transfer design. Commonly, high-level synthesis consists of two phases: (i)

scheduling and (ii) allocation. In the scheduling phase, operations are scheduled and assigned

to the control steps to satisfy timing and resource constraints. In the allocation phase,

operations are assigned to functional units, variables are assigned to storage elements, and

required data transfers in each control step are assigned to interconnect units between

functional units and storage elements. In this paper, we focus on the allocation problem.

Typically, unit allocation is divided into three subtasks: (i) register allocation, (ii) operator

assignment, and (iii) connection allocation. In the register allocation phase, all variables are

bound to a set of registers. Variables with nonoverlapping lifetimes can share the same

register. In the operation assignment phase, operations are assigned to functional units such

that no more than one operation within the same control step is assigned to the same

functional unit. In the connection allocation phase, the communication paths (busses and

multiplexers) are chosen so that the functional units and registers are connected to perform the

required data transfers. The primary objective of unit allocation is to minimize the total

hard ware cost and to satisfy the design goal.

Most systems perform three allocation subtasks separately (2,3,4,5,7 ,8,9,10]. Since these

three subtasks are interdependent, the result of one subtask may prevent other subtasks from

finding an optimal solution. Hence, some other systems (1,13,15,16,17] perform functional

units, registers, and interconnect units simultaneously. Traditionally, the design quality is

evaluated using the number of registers and selector (mux) inputs. However, since the

relationships between the structural design and the physical design have not been established,

the traditional design quality measurement may not reflect the real physical design. The

Page 1

approach described in this paper is different from previous approaches in three ways. First, we

use a hypergraph model of design that facilitates the identification of sharable components and

the calculation of interconnect costs. Second, using the hypergraph model, we formulate

allocation as a partitioning problem. The partitioning problem is solved by using an

interchange optimization · technique which performs the three interdependent subtasks

simultaneously. Third, we use a new layout-based cost function (20] to predict the real

physical design. Moreover, this approach allows trading off storages and interconnections.

The remainer of this ·paper is organized as follows: Section 2 discusses the hypergraph

model, the interconnect minimization technique, and the allocation algorithm. Section 3

presents our experimental results. Finally, Section 4 summarizes our approach.

2. The allocation problem

The objective of allocation is to assign operations to functional units and to assign

variables to storage elements such that the storage and interconnect costs are minimized for a

given set of functional units and storage elements. In this section, we first describe the

hypergraph formation and the layout-area cost function. Then, we describe the hyperedge

merging technique for interconnect minimization. Finally, we present the complete allocation

algorithm.

2.1. Hypergraph formation

Let G=(V,E) denote a data flow graph (DFG), where V={vf li=Ln} is a set of operation

nodes, and E={e1m I j=l..n,m=l..n}, is a set of dependency edges. Z={zk I k=l..q} is a set of

variables in the DFG, where each variable corresponds to a set of edges as zk={e1m I

j = 1 .. n ,m= 1 .. n}.

Page 2

Let H=(V,E) denote a hypergraph, V= V;
0

UV:,egUVop in which there are three types of

hypernodes: (i) input/output, (ii) register, and (iii) operation. Y;
0
={vP I p=l..t} is a set of i/o

hypernodes which denote the input and output ports in the DFG. V:.eg={vg I g=l..r} denotes a

set of register hypernodes and v g={zk I k=l..q}. Each register hypernode denotes a register

which contains a set of variables. Vop={vc I c=l..s} denotes a set of operation hypernodes and

v c={vi I i=l..n}. Each operation hypernode denotes a single functional unit or a multi­

functional unit such as adder/subtracter, multiplier, shifter, or ALU. Each operation

hypernode contains a set of operation nodes in the DFG.

Let E={egc I {v g,v)E V'}, denote a set of hyperedges and w(egc) is the weight of egc· Each

hyperedge denotes the physical connection between two hypernodes which can be two

functional units, a functional unit and a register, or two registers. The weight of a hyperedge is

the number of dependency edges between two hypernodes, which also tan be viewed as the

number of variables (signals) communicating between two hypernodes. In addition, the

hyperedge direction is depended on the data flow between hypernodes. For example, a

hyperedge e
12

is connected from v
1

to v
2

so that e
12

is an outgoing hyperedge of v
1

while e12 is

an incoming hyperedge of v 2 • Since certain hypernode inputs are non-commutable, each

hyperedge uses a flag to indicate the input position of the connecting hypernode.

For example, three registers, one functional unit +, and one functional unit * are given to

perform data transfer for the data flow graph and its schedule shown in Figure 1(a). The

variable assignment is shown in Figure l(b). Operations multl and mult2 are assigrred ·to the

functional unit * and operations addl, add2, and add3 are assigned to the functional unit +.

Figure 1(c) shows an example of hypergraph formulation from the data flow graph shown in

Figure l(a). There is a set of input/output hypernodes V:
0
={vl'v

2
,v3 ,v9 ,v

10
}, and a set of three

register hypernodes V:.eg={v
4
,v

5
,v

6
} where v4 and u5 consist of three variables, and v 6 consists of

Page 3

Page 4

step

0

2

3

4

•

•47 i=(d,multl,Jeft)

e 47=2=(d,mu1t2,1ert)

R 1

add2 R2

add3 R3

(a)

(c)

(d)

a d h
0-1 1-3 3-4

b e 3~4 0-2 2-3

c f
0-2 2·3

variable
birth time • death time

(b)

e 58_ 1 =(b, add 1 ,rl ght)

e 58_2 z(b,add2, left)

e s8_3=(e,add3, I ert)

Figure 1. Hypergraph formation: (a) Data fl.ow graph and schedule,
(b) Variable assignments, (c) Hypergraph of (a), (d) Hypergraph after

hyperedge megering.

two variables: v 4={a,d,h}, v5={b,e,g}, and v6={c,f}. In addition, there are two operation

hypernodes Vop={v 7 ,v8} where v7={multl,mult2}, v8={addl,add2,add3}, type(v
7
)=multiplier, and

At the time of hypergraph formation, each dependency edge is mapped to a pair of

hyperedges. The process of hyperedge mapping from dependency edge consists ·of two parts: (i)

from source node to register and (ii) from register to destination node. For example, e
11

in

Figure l(a), is mapped to: (i) e14 from v1 to v 4 and (ii) e48 from v4 to v8 in Figure l(c).

After forming the hypergraph, the algorithm performs hyperedge merging to reduce

interconnect cost. Hyperedge merging is important because it contributes to interconnect

sharing and selector reduction, which will be described in the next section. Before merging,

each hyperedge is labeled as a right data input or a left data input as shown in Figure 2.

Hyperedge merging consists of two cases: (i) merging hyperedges on hypernodes with

commutable inputs and (ii) merging hyperedges on hypernodes with non-commutable inputs.

In both cases, two hyperedges can be merged if and only if: (i) they have same source and

destination hypernodes, and (ii) they are entering the same input of the hypernode.

Consider Figure 2(a). If e1(opl_right) and e
2
(op2_right) are connected from z3 and z4 of

the riode reg3 to right inputs of opl and op2 respectively, E\(opl_right) is mapped to el' and

~(opl_right) is mapped to e
2

• Since e
1

and e
2

are connected to the right input of FU, they can

be merged. In Figure 2(b), if the operation hypernode inputs are commutable, two hyperedges

e1(opl_right) and e
2
(op2_left) can be merged when they enter different inputs of the operation

nodes (e
1

enters the right input of opl and e2 enters left input of op2). Therefore, if the

operation hypernode inputs are commutable, the hyperedges e
1
(opl_left) and e

2
(op2_right) can

be commuted first and then merged in to one hyperedge. On the other hand, in Figure 2(c)

e1(opl_right) enters the right input of opl and t'.2(op2_left) enters the left input of op2. If the

Page 5

Page 6

I

' '

t t

~
~

(a)

reg1

FU t
Commute

and
Merge

(b)

(c)

Reg

(d)

Figure 2. Hyperedge merging.

operation hypernode inputs are not commutable, then these two hyperedges can not be

merged. Figure 2(d) shows that each register hypernode has only one input, the incoming

hyperedges from the same operation hypernode of a register hypernode can be merged.

By applying hyperedge merging to the example of Figure 1(c), two hyperedges

e4u =(d,multl,left) and e4u=(d,mult2,left) can be merged into e47 with w(e47)=2 as shown in

Figure l(d). Since operation hypernode v
8

is an adder with commutable inputs, three

hyperedges e58_1, e5u and· e58-3 cap. be merged into e58 with w(e58)=3.

2.2. Layout-area cost function

Using the hypergraph model, we first describe the interconnect cost for each hypernode in

term~ of the number of selectors and· the .number· of inputs of selectors. We use a single-level

interconnect model. . If a hypernode has more than one incoming hyperedge on one of its input

ports, then this input port needs a selector to select one input from several sources. This

selector can be implemented with a mux or a bus with tri-state devices. For example, the left

input port of FU in Figure 2(b) has two incoming hyperedges from two registers regl and reg3.

Thus, a two-input selector is needed for this input port. On the other hand, if an input port

has only one incoming hyperedge, then a selector is not needed. Such a hyperedge is call.ed the

minimal-cost hyperedge. For example, the right input port of FU in Figure 2(b) has a minimal

cost incoming hyperedge from reg2 so that this input port does not need a selector.

Furthermore, when an input port needs a selector, the number of inputs of this selector is equal

. to the number of incoming hyperedges on this input port.

To take into account the physical design effects, the area cost function is based on a bit­

sliced stack architecture [11,18,19], which uses abutment to connect different bit slices, and

over-the-cell routing for connecting different units inside one bit slice. The stack grows

horizontally when the bit-width increases, and grows vertically when the number of units

Page 7

increases. Using this layout architecture, the total area cost is the sum of four parts [20]: (1).

Functional unit area, (2). Register area, (3). Interconnect unit area, and (4). Wiring area. We

use the transistor counts as a function of the area consumptions. The transistor counts of the

functional units and registers can be estimated by examing the component library [18]. The

number of transistors in a selector is proportional to the number of inputs of the selector which

also can be obtained from the component library. We use the sliced layout architecture [11]

which has 13 over-the-cell routing. tracks for each bit~slice. If the required routing tracks are

less than 13 then the wiring area is not needed. The overall area cost is calculated as follows:

n m p

Atotal = c1 (~trs(FUk) + ~trs(Regj) + ~trs(Seli)) + Awire

trs(FUk) is the number of transistors ill functional unit k;
trs(Reg.) is the number of transistors in register j;
trs(Seij is the number of transistorn in selector i;
c1 is the transistor area coefficient (area/per transistor) which correlates to the layout
technology and the layout system;
A . is the wiring area. wire

2.3. Interchange optimization

In the interchange optimization phase, the algorithm minimizes the interconnect cost by

merging hyperedges. In the following sections, we first describe two possible ways to merge the

hyperedges by interchanging variables and operations: (i) relocation and (ii) swapping. Then,

we discuss the interchange technique under a global consideration.

2.3.1. Hyperedge n:ierging by node relocation

The first possible way for hyperedge merging is to relocate variables among register

hypernodes or operations among operation hypernodes. A variable zk can be relocated from a

source register hypernode v to a destination register hypernode v d t if and only if reg_source reg_ es

vreg_dest is free during the life time of zk. An operation vi can be relocated from a source

Page 8

v2
e13 ...-.------

selector

V3

{a)

v1 Qv2 v1 w
e123

V3 V3

{b)

Figure 3. Hyperedge ~rging by node relocation (a) before, (b) after.

opera ti on hypernode v op_source to a destination hypernode v op_dest if and only if: (i) v op_dest can

performs the same functions as vi' and (ii) there does not exist an operation vf in v op_de.st such

that vj is assigned to the same control step as v/s. We term the above conditions relocation

preconditions. The node relocation can be performed if and only if the relocation preconditions

are satisfied that is called a feasible relocation.

For a hypernode, the interconnect cost of this hypernode can be reduced by merging its

incoming hyperedges. For example, consider the register hypernode v
3

in Figure 3. v
3

has two

incoming hyperedges e13 and e23 from v
1

and v2 respectively. Since v 3 has to select one input

Page 9

v
2

v
2

v
2

Page 10

v
1

v
3

v
1

(a)

I
1---......
I merge

6
(b)

e I le
13(1) I split I 13(2)

~~d~
(c)

Figure 4. Group relocation.

from two sources v1 and v
2

, a 2-input selector is required for v
3

(Figure 3(a)). If node b of v
2

can be moved to v1 then e13 and e
23

can be merged into e
123

(Figure 3(b)). As a result, v
3

does

not need a selector for its input. The hyperedge merging in this case results in interconnect

reduction.

The node relocation also allows group relocation, which relocates more than one node

simultaneously. For example, in Figure 4(a), e13 can be merged with e
14

by relocating a group

of nodes v3 and v4 from v
3

to v
4

(Figure 4(b)), or splitting and relocating to different

hypernodes as shown in Figure 4(c).

2.3.2. Hyperedge IIErging by node swapping

The second possible way for the hyperedge merging is ·to swap the variables bBtween

register hypernodes or to swap the operations between operation hypernodes. Node swapping

can be viewed as a two-way node relocation problem. IN the node relocation, the node

relocation is performed as relocating nodes from the same source hypernode to one or more

destination hypernodes if there exists a feasible relocation. On the other hand, node swapping

is performed when a one-way feasible relocation from a source hypernode to a destination

hypernode can not be found; but a feasible relocation can be created by rearranging the nodes

in the destination hypernode. For example, in Figure 5(a), assuming v2 and v3 are the

operation hypernodes, e
12

and e
13

can be merged by relocating v5 from v3 to v2• If v3 in v2 is

assigned to the same control step as v
5
's, then v5 can not be relocated from v3 to v2• However,

e
12

and e
13

can be merged by swapping v
3

and v5 as shown in Figure 5(b).

2.3.3. Interchange under global considerations

In general, a data path can be viewed as follows: a functional unit fetches data from a set

of storage elements via a set of interconnect units, performs the data computations, then stores

Page 11

from other
node

(a)

(b)

Figure 5. Node swapping.

the data back to the storage elements via a set of interconnect units as shown in Figure 6(a).

Thus, a data path forms a closed loop relationship among the storages, functional units, and

interconnect units. Because of this closed loop relationship, reducing the interconnect cost for

a register or a functional unit by rearranging the variables or operations might increase the

interconnect cost for other functional units or registers so that the total interconnect cost is

unchanged or even increased.

To take into account the interdependent relationships between operation and register

assignments, our interchange algorithm evaluates the node rearrangements by cutting the data

Page 12

interconnect
unit

storage
unit

Interconnect
unit

(a) (b) (c)

Figure 6. The data transfer model.

path loop into two basic forms: (i) register-functional unit-register (Figure 6(c)) and (ii)

functional unit-register-functional unit (Figure 6(b)). In case (i), when the algorithm tries to

reduce the interconnect cost of a functional unit node by rearranging the operations, the

algorithm will take into account the register interconnect cost which will be affected by the

node rearrangement. In case (ii), when the algorithm tries to reduce the interconnect cost of a

register node by rearranging the variables, the algorithm will take in to account the functional

unit interconnect cost, which also will be affected by the node rearrangement.

Page 13

Based on this global consideration, the algorithm tries to rearrange variables in the

registers and operations in the functional units from a global scope so that the hyperedges can

be merged, which results in selector inputs reductions. An example is shown in Figure 7(a).

e
36

and e
46

can be merged by relocating variable z
2

from v
3

to v
4

so that the number of selector

inputs of v
6

is reduced by 1. However, after relocating z
2

from v
3

to v
4

, e
13

has to be split into

two hyperedges e13 and ew as shown in Figure 7(b), so that the number of selector inputs of v
4

is increased by 1. Thus, the total number of selector inputs are unchanged. However, if there

FU V5

(a) (b)

FU V5

(c)

Figure 7. Interchange based on FU-REG-FU data path.

Page 14

is a feasible relocation of moving v
2

from v1 to v2 , and this node relocation will not increase the

overall selector inputs, then the algorithm finds a solution to achieve overall interconnect

reduction. As a result, the algorithm relocates z
2

and v
2

to v
4

and v
2

respectively so that the

overall interconnect cost is reduced (Figure 7(c)).

2.4. The overall algorithm

We assume that allocation is performed after scheduling with the available functional

units and control time steps given. The algorithm consists of three phases: (i) initial register

and operation assignments, (ii) hypergraph formation, and (iii) interchange optimization.

In the first phase, the algorithm determines the life time for all vari_ables and sorts them in

descending mder according to their life. -spaTI:.· The algorithm then determines the lower bound

of required registers by using a left edge algorithm (6). Starting with the minimal number of

required registers, the algorithm assigns operations to the given functional units randomly such

that no more than one operation within the same control step will be assigned to the same

functional unit. In the second phase, the algorithm transforms the data flow graph into a

hypergraph.

In the final phase, the algorithm minimizes the interconnect cost by interchanging the

operations and the variables. The algorithm minimizes the incoming hyperedges of register

hypernodes by relocating variables between register hypernodes. In addition, the algorithm

minimizes the incoming hyperedges of operation hypernodes by relocating operations between

operation hypernodes. A hypernode that has more than one incoming hyperedges is called a

feasibly mergeable hypernode, and the incoming hyperedges of this hypernode are called

feasibly mergeable hyperedges. For a feasibly mergeable hyperedge, the algorithm locates a set

of variables or operations associated with this hyperedge, rearranges the nodes, and evaluates

the area cost using the cost function described in the previous section. If a lesser area cost is

Page 15

obtained, then a feasible merging solution has been found. The algorithm performs the

allocation iteratively by incrementing the number of registers to trade-off the register and

interconnect costs. For each allocation iteration, the algorithm runs repeatedly until no more

improvement can be found.

Algorithm I Hardware Allocation
Let

reg_connt denote a given arbitrary number;
P={eh I h= 1..w} denote a set of feasible merging hyperedges;
Z={zk I k = L.q} denote a set of variables;
F denote a set of given functional units;
R={ra I a=l..b} denote a set of registers;
T denote a set of control steps for {vi Ii= 1..n} in the data flow graph;

Hardware_Allocation(G,F,Z, T,reg_connt){
/*determine the lower bound of required registers*/
R = left_edge_alg(Z);

}

while (reg_count > 0){
/*initial register and operation assignments*/
init_reg_op_assignment(G,T,F,R);
/*build hypergraph* /
H = build_hyv'rgraph(G,F,R);
/*interchange optimization*/
no_more_improve = FALSE;
while (no_more_improve = FALSE){

}

P = locateJeasible_merging_hyperedge(H);
a_gain_merging = FALSE;
for (h = 1 to w){

}

/*relocate nodes associated with hyperedge eh and evaluate the area cost*/
gain = relocate_node(eh);
if (gain = TRUE){

}

rearrange_node(H,eh);
a_gain_merging =TRUE;

if (a_gain_merging = FALSE)
no_more_improve = TRUE;

Output netlist and total area cost;
/*incrementing register for next allocation run*/

. reg_count = reg_count - 1;
if (reg_ count > 0)

R= RU {r};

Complexity analysis. Since the algorithm performs registers and selectors trade offs in several

Page 16

runs (outer while loop), we consider only one allocation run which consists of three parts:

(1) Using the left edge algorithm, it takes 0(rnlogm) time to sort variables, and it takes 0(m)
time to assign variables, where m is the number of variables in the data flow graph.
Therefore, it takes O(rnlogm) to determine the lower bound of registers required for
performing data transfer.

(2) The initial variable assignment takes O(m) time. The initial operation assignment takes
O(n) time. In addition, it takes 0(2m+q) time to build the hypergraph, where n is the
number of operations, m is the number of edges in the data flow graph, and q is the
number of hypernodes.

(3) In the interchange optimization procedure, it takes O(pq) time to locate feasible merging
hyperedges, where pis the number of hyperedges. For each feasible merging hyperedge, it
takes O(r) time to locate a set of nodes, rearranging nodes takes O(rq) time, and area
estimation takes constant time, where r is· the average number of variables or operations
associated with the feasible merging hyperedge. Thus, each interchange optimization loop
takes O(prq) time. In our experience, the local optimal (no_more_improve) state can be
achieved by less than 20 iterations (interchange optimization while loop).

3. Results and Discussions

We ·have impleme.rited the previously · de_s.cribe~l · aigorithni using 'the· ·c programming

language on SUN4 workstations under the UNIX operating system. We have tested our

algorithm on the elliptic filter benchmark with different control steps (19-step with 2-adder and

1-piped multiplier, 21-steps with 2-adder and 1-multiplier, 19-steps with 2-adder and 2-

multiplier, and 17-steps with 3-adder and 2-piped-multiplier) collected from literatures [2,10,11]

in order to compare our results to previously published results. Due to the paper length

limitation, we only show the schedule, variable and operation assignment, and structure results

for one 17-step and one 19-step examples which are shown in Figures 8 and Figures 9

respectively. The layouts were generated by [12]. Figure 10 shows a 16-bit Elliptic Filter

example with 21-step and 10 registers.

We use the ~ingle-level multiplexer model described in Section 2.2. Moreover, we did not

apply multiplexer optimization procedures, such as multiplexer merging. Table 2 (a), (b), (c),

and (d) show the area results for 17-step, 19-step, 21-step, and 19-step with 2-adder and 1-

piped multiplier designs respectively. Since the areas of multipliers for each design are same,

Page 17

alg/system c-step #OP #Reg. #Mux #Reg. #Mux #Reg. #Mux
#Reg.

#Mux Time(s) im_s l/ps i/ps i!J!s

Ours 17 2*p,3+ 10 34 11 33 12 31 13 33 5.1

HAL 17 2*p,3+ 10 nla 11 n/a 12 31 13 n/a 120-480

CATREE 17 2*p,3+ 10 n/a 11 n/a 12 38 13 n/a n/a

REAL 17 2*p,3+ 10 50 11 n/a 12 n/a 13 n/a n/a

ELF 17 2*p,3+ 10 n/a 11 28 12 n/a 13 n/a n/a

ASYL 17 2*p,3+ 10 38 11 25 12 24 13 n/a nla

Ours 19 2*,2+ 10 30 11 28 12 28 13 29 1.1

HAL 19 2*,2+ 10 n/a 11 n/a 12 29 13 n/a 120-480

SAW 19 2*,2+ 10 n/a 11 n/a 12 32 13 n/a n/a

MIMOLA 19 2*,2+ 10 n/a 11 30 12 n/a 13 nla n/a

REAL 19 2*,2+ 10 39 11 n/a 12 nla 13 n/a n/a

ELF 19 2*,2+ 10 n/a 11 30 12 n/a 13 n/a n/a

ASYL 19 2*,2+ 10 33 11 31 12 28 13 n/a n/a

Ours 19 1*p,2+ 10 36 11 28 12 26 13 23 2.0

HAL 19 1*p,2+ 10 nla 11 n/a 12 26 13 n/a 120-480

REAL 19 1*p,2+ 10 35 11 n/a 12 n/a 13 n/a n/a

ELF 19 1*p,2+ 10 n/a 11 30 12 n/a 13 n/a n/a

ASYL 19 1*p,2+ 10 30 11 28 12 26 13 n/a n/a

Ours 21 1*,2+ 10 30 11 27 12 28 13 31 2.6

HAL 21 1*,2+ 10 n/a 11 n/a 12 31 13 n/a 120-480

SPLICER 21 1*,2+ 10 n/a 11 n/a 12 n/a 16 35 >50

V-\RYL-L YRA 21 1*,2+ 10 30 11 n/a 12 nla 13 n/a 0.65

ELF 21 1*,2+ 10 n/a 11 24 12 n/a 13 n/a n/a

ASYL 21 1*,2+ 10 22 11 21 12 n/a 13 n/a n/a

*:multiplier, *p: piped multiplier, +:adder.

Table 2. Allocation results of the Elliptic Filter example.

Page 24

6. References

[1] S. Devadas and A. R. Newton, "Algorithms for Hardware Allocation in Data Path
Synthesis," IEEE Trans. on Computer-Aided Design, vol. CAD-8, no. 7, pp. 768-781,
1989.

[2] E. Dirkes Lagnese and D. E. Thomas, "Architectural Partitioning for System Level
Design," Proc. 26th DAG, pp. 62-67, 1989.

[3] B. S. Haroun and M. I. Elmasry, "Architectural Synthesis for DSP Silicon Compiler,"
IEEE Trans. on Computer-Aided Design, vol. 8, no. 4, pp.431-447, April 1989.

[4] Huang, C.Y., Chen, Y.S. et. al., "Data Path Allocation Based on Bipartite Weighted
Matching", Proc. 27th DAG, pp. 499-504, June 1990.

[5] B. Pangrle, and D. G_ajski, "Design Tools for Intelligent Silicon Compilation", IEEE
Trans. on Computer-Aide.d Design, vol. CAD~6 no. 6, Nov. 1987.

[<?] F. J. Kurdahi and A. C. Parker, "REAL: A Program for REgister ALlocation," Proc.
24th DAG, pp. 210-215, 1987.

[7] A. C. Parker, J. Pizarro and M. Mlinar, "MAHA: A Program for Datapath Synthesis,"
Proc. 23rd DAG, pp. 461-466, 1986.

[8] P. G. Paulin, J. P. Knight and E. F. Girczyc, "HAL: A Multi-Paradigm Approach to.
Automatic Data Path Synthesis," Proc. 23rd DAG, pp. 263-270, 1986.

[9] P. G. Paulin,· ~md J. Knight, "Force~Directed· Scheduling for llie Behavforal Synthesis
of ASICs", IEEE Trans. on Computer-Aided Design, vol. CAD-8 no. 6, June 1989.

[10) C. J. Tseng and D. P. Siewiorek, "Automated Synthesis of Data Path in Digital
Systems," IEEE Trans. on Computer-Aided Design, vol. CAD-5, no.3, pp. 379-395,
1986.

[11] Lawrence L. Larmore, D. D. Gajski, and Allen C-H Wu, "Layout Placement for Sliced
Architecture," IEEE Trans. on Computer-Aided Design, to appear.

[12] Allen C-H Wu, G. D. Chen, and D. D. Gajski, "Silicon Compilation from Register­
transfer Schematics," Proc. ISCAS, 1990.

[13) M. Balakrishnan and P. Marwedel, "Integrated Scheduling and Binding: A Synthesis
Approach for Design Space Exploration," Proc. 26th DAG, pp.68-74, 1989.

[14] T. A. Ly, W. L. Elwood, and E. F. Girczyc, "A Generalized Interconnect Model for
Data Path Synthesis," Proc. 27th DAG, pp.168-173, 1990.

[15] A. Mignotte and G. Saucier, "A Generalized Model for Resource Assignment," Fifth
International Workshop on High-Level Synthesis, pp.37-43, 1991.

[16] K. Kucukcahar and A. C. Parker, "Data Path Tradeoffs Using MABEL," 4th
International Workshop on High-Level Synthesis," 1990.

[17] C. Hitchcock and D. Thomas, "A Method of Automatic Data Path Synthesis," Proc.
20th DAG, pp.484-489, 1983!.

[18] "Data Path Library," VLSI Technology, INC., 1988.
[19] R. Jamier and A. Jeraya, "APPLON: A Datapath Compiler," Proc. ICCD, 1985.
[20] Allen C-H Wu, Viraphol Chaiyakul and D. D. Gajski, "Layout Models for High-Level

Synthesis," Tech. Rpt. #91-31, ICS Dept., UC Irvine, 1991.
[21] C. H. Gebotys and M. I. Elmasry, "VLSI Design Synthesis with Testability," Proc. 25th

DAG, pp.16-21, 1988.

Page 25

...I L

~Ill Ill Ill I II Ill 111111 I Ill I Ill I I Ill I Ill II 11111 I I Ill Ill I Ill II~
3 1970 00882 4366

