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Abstract 47 
The International Society of Cancer Metabolism (ISCaM) meeting on Cancer Metabolic 48 
Rewiring, held in Braga Portugal in October 2019, provided an outstanding forum for 49 
investigators to present current findings and views, and discuss ideas and future directions on 50 
fundamental biology as well as clinical translations. The first session on Cancer pH Dynamics 51 
was preceded by the opening keynote presentation from our group entitled Intracellular pH 52 
Regulation of Protein Dynamics: From Cancer to Stem Cell Behaviors. In this review we 53 
introduce a brief background on intracellular pH (pHi) dynamics, including how it is regulated as 54 
well as functional consequences, summarize key findings included in our presentation, and 55 
conclude with perspectives on how understanding the role of pHi dynamics in stem cells can be 56 
relevant for understanding how pHi dynamics enables cancer progression. 57 
 58 
Introduction 59 
Intracellular pH (pHi) was previously thought to be mostly constant for cellular homeostasis and 60 
possibly dysregulated in diseases. We now know, however, that pHi is dynamic in normal cells 61 
and clearly dysregulated in a number of diseases. In normal cells, pHi changes during cell cycle 62 
progression, increasing ~ 0.3-0.4 pH units at the end of S phase and if this increase is blocked, 63 
G2/M is delayed with increased inhibitory phosphorylation of Cdk1-Tyr15 and suppressed cyclin 64 
B1 expression (1-3). Additionally, pHi dynamics regulates cell-substrate adhesion remodeling 65 
and migration, with increased pHi enabling both behaviors (4-7). Emerging evidence also 66 
indicates a critical role for increased pHi in epithelial plasticity, including epithelial to 67 
mesenchymal transition (EMT) (8) and stem cell differentiation (9-12). Moreover, it is now well 68 
established that dysregulated pHi is seen with many diseases, most notably cancers, which often 69 
have a constitutively increased pHi (13-18), and neurodegenerative disorders, which are 70 
associated with a constitutively decreased pHi (19, 20). Our review focuses on dysregulated pHi 71 
dynamics in cancer; however, another feature of cancers is a dysregulated extracellular pH that is 72 
lower (~ 7.0) compared with normal tissues (~ 7.4).  73 

Although many factors contribute to pHi dynamics, the major regulators in most 74 
mammalian cells are plasma membrane ion exchangers, including the Na+-H+ exchanger NHE1, 75 
the Na+-HCO3- transporter NBC, and the Na+-dependent Cl--HCO3- transporter NDCBE, which 76 
are acid-extruders, and Cl--HCO3- exchangers of the anion exchanger (AE) family, which are 77 
acid loaders (21-23). The BioParadigms Solute Carrier tables33 are an excellent resource on the 78 
classification, expression, and transport characteristics of these ion exchangers. Additional 79 
plasma membrane ion transport proteins that contribute to pHi dynamics, albeit to less of an 80 
extent, include V-ATPases and monocarboxylate transporters of the MCT family. The broad 81 
range of ion transport proteins regulate pHi dynamics through changes in their expression and 82 
activity, the latter mostly mediated by posttranslational modifications as many are substrates of 83 
key signaling kinases, including for NHE1, p90rsk (24), Akt (25, 26), the Rho kinase ROCK 84 
(27), and the Ste20 kinase MAP4K4 (28), previously termed NIK. Experimentally, these 85 
exchangers can be pharmacologically or genetically targeted to understand how they contribute 86 
to pHi dynamics and how pHi dynamics regulates cell behaviors. 87 

We have a relatively strong understanding of how changes in pHi are generated and the 88 
effects of pHi changes on myriad cell functions. However, a mechanistic understanding of how 89 
pHi changes regulate cell behaviors remains understudied, particularly effects on signaling 90 
networks and protein functions. At the ISCaM meeting we presented our work on how changes 91 
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in pHi regulate protein dynamics to enable cancer and stem cell behaviors, which we summarize 92 
in this review. Key to pH-regulated protein structure and function is considering protonation and 93 
deprotonation as a protein posttranslational modification, analogous to posttranslational 94 
modification by phosphorylation, acetylation, and methylation as we previously described (29). 95 
However, studying protonation and deprotonation as a posttranslational modification is more 96 
difficult compared with other posttranslational modifications because it is not catalyzed by an 97 
enzyme and cannot be detected by mass spectrometry or antibodies. Furthermore, many 98 
endogenous “pH sensors” or proteins that are regulated by pH dynamics within the cellular range 99 
are coincidence (AND-gate) detectors with their structural conformations, activities, or binding 100 
affinities dependent on multiple posttranslational modifications, most commonly 101 
phosphorylation or dephosphorylation and protonation or deprotonation.   102 
 103 
Intracellular pH and cancer cell behaviors: From the protein view 104 
Most cancer cells have a higher pHi compared with untransformed cells, regardless of the 105 
mutational landscape or tissue origin. This higher pHi enables many cancer behaviors, including 106 
increased proliferation, directional migration, tumorigenesis, and most recently recognized, the 107 
oncogenic and tumor-suppressor functions of proteins with charge-changing mutations (Fig. 1). 108 
At the ISCaM meeting we presented our findings on pH sensors regulating cell migration and 109 
tumorigenesis as well as how pHi dynamics in cancer cells affect the functions of proteins with 110 
somatic mutations encoding arginine to histidine substitutions. 111 

Cell migration is confirmed to be regulated by pHi in many cell types and species (6, 30-112 
34). An increased pHi of ~ 0.3-0.4 units is seen in migrating cells and preventing the increased 113 
pHi inhibits migratory rate and directionality, and impairs cell polarity. Our presentation 114 
described several pH sensors we identified in atomistic detail that collectively regulate different 115 
aspects of migration. These include guanine nucleotide exchange factors for the low molecular 116 
weight GTPase Cdc42 involved in cell polarity (35), talin binding to actin filaments (36) and 117 
focal adhesion kinase (FAK) activity for cell-substrate adhesion dynamics (5) as well as cofilin 118 
for actin polymerization (37). The single histidine in cofilin, His133 (human), has an upshifted 119 
pKa to ~ 7.2 and must be neutral for increased cofilin activity (Fig. 1A). However, cofilin is a 120 
coincidence detector and full activity also requires dephosphorylation of Ser3 (Fig. 1A) by one 121 
of several phosphatases, which releases an autoinhibited interaction between phosphorylated 122 
serine and lysine 126 and 127 to allow binding to actin filaments. This AND-gate regulation 123 
enables signaling mechanisms to increase cofilin activity in time (with migratory cues) and space 124 
(at the leading edge of a migrating cell), and highlights that for many pH sensors a change in 125 
protonation state does not function as a binary switch.  126 

Tumorigenesis and dysplasia are enabled by increased pHi regulated by NHE1, NBCs 127 
and MCTs, including tumor cell proliferation, growth, and survival (38-40). Our presentation 128 
included two of our recent key findings on pHi and tumorigenesis. First, that increased pHi from 129 
~ 7.30 to ~ 7.65 in Drosophila eye epithelia by overexpressing Drosophila dnhe2, an ortholog of 130 
mammalian NHE1, is sufficient to induce dysplasia in the absence of an activated oncogene (41). 131 
Second, that -catenin, an adherens junction and Wnt pathway protein is a pH sensor, with pHi 132 
not regulating its activity but rather its stability, which decreases at pHi > 7.5 (42). Using a 133 
phenotype screen, we found that overexpressing -catenin suppresses dysplasia in Drosophila 134 
eye epithelia with constitutively increased pHi induced by overexpression of dnhe2. These data 135 
suggested a lower abundance of -catenin at higher pHi, which we confirmed in mammalian 136 
cells. We also resolved the pH sensing mechanism of His36 (human) in the N-terminus of -137 
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catenin, which when neutral (at higher pHi) increases binding affinity for the E3 ligase -TrCP1. 138 
However, like cofilin described above, -catenin is a coincidence detector requiring both a 139 
neutral His36 and phosphorylated flanking Ser33 and Ser37 for binding -TrCP1 (Fig. 1B). The 140 
role of phosphorylated serines in enabling proteasome-mediated degradation of -catenin has 141 
long been recognized (43). The importance of a neutral His36 for binding -TrCP1 is evident in 142 
the crystal structure of -TrCP1in complex with an N-terminal -catenin peptide (44) (PDB: 143 
1P22), which shows the proximity of -catenin-His36 and -TrCP1-Lys365 (Fig. 1B). This 144 
suggests that binding would be electrostatically unfavorable with a protonated His36 at lower 145 
pHi. Importantly, the DSxxHS motif is conserved in all species of -catenin and occurs in a 146 
number of other -TrCP1 target proteins (45), including the transmembrane protein polycystin 2, 147 
the tumor suppressor tensin 2, the centrosomal protein Cep97, the hedgehog pathway protein 148 
Gli3, and myosin-XVIIIa, suggesting these substrates may have similar pH sensitive binding to 149 
-TrCP1 and regulated protein stability. We also described that a cancer-associated somatic 150 
mutation, -catenin-H36R, is insensitive to pHi-regulated degradation and, when expressed in 151 
Drosophila eye epithelia, enhances Wnt pathway activity, causes tissue overgrowth growth, and 152 
induces ectopic tumors. With this mutation, -catenin stability could be retained at the higher 153 
pHi of a cancer cell and enable tumorigenesis. As described in the section below, this is an 154 
example of a charge-changing mutation that confers a loss of pH sensing.  155 
 Charge-changing somatic mutations can confer a change in pH sensing and enable cancer 156 
behaviors specifically at increased pHi. We recently showed that recurrent arginine to histidine 157 
mutations in p53 and EGFR can confer a gain in pH sensing to the mutant proteins. Arginine, 158 
with a pKa of 12, will be protonated regardless of pHi while histidine, with a pKa near neutral, 159 
can titrate with cellular changes in pHi. We found that a highly recurrent arginine to histidine 160 
mutation in the tumor suppressor p53 (p53-R273H) could confer pH-dependent DNA binding 161 
and transcription of p53 target genes, with decreased transcription at a higher pHi of 7.6 162 
compared with 7.2 (46). The crystal structure of wild-type p53 (47) (PDB: 4HJE) and mutant 163 
p53-R273H (48) (PDB: 4IBW) in complex with DNA suggests that wild-type Arg273 forms an 164 
electrostatic interaction with the negatively charged phosphate-backbone of DNA (Fig 1C). At 165 
the lower pHi of a non-transformed cell, His273 is likely protonated and retains some binding to 166 
the negatively-charged DNA but, at the higher pHi of a cancer cell, His273 is likely 167 
deprotonated, reducing DNA binding and expression of p53 target genes (Fig 1D). Importantly, 168 
lowering pHi in cancer cells expressing p53-R273H recovered p53 transcriptional activity and 169 
p53-dependent cell death in response to double-strand breaks (46). We also showed that a 170 
cancer-associated arginine to histidine substitution in the epidermal growth factor receptor 171 
(EGFR-R776H) that is recurrent in lung cancers confers pH sensing to the mutant protein. 172 
Increasing pHi from 7.2 to 7.6 increases activity of EGFR-R776H but not wild-type receptor, 173 
and increases cell proliferation and cellular transformation in cells expressing the mutant but not 174 
wild-type receptor (46). These results suggest that charge-changing mutations can confer a gain 175 
in pH-sensing not seen with the wild-type protein. This work also indicates that charge-changing 176 
somatic mutations can confer dynamic function to mutant proteins, specifically inactivating a 177 
tumor suppressor and specifically activating an oncogene at the increased pHi of cancer.  178 
 179 
Intracellular pH and epithelial plasticity: Focus on stem cell differentiation  180 
Recent findings indicate that pHi dynamics is a key regulator of epithelial plasticity, with 181 
increased pHi enabling EMT (8) and epithelial branching morphogenesis (49) as well as 182 
differentiation of melanocytes (50), embryonic and adult stem cells (9, 11), and mesenchymal 183 
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(12) and cardiomyocyte (10) stem cells. These findings raise questions on the role of pHi 184 
dynamics in morphogenesis and animal development, which remain largely unresolved. New 185 
genetically-encoded tools to measure pHi (51) and genetic and pharmacological approaches to 186 
selectively change pHi temporally and spatially will enable new studies necessary to resolve 187 
pHi-regulated developmental processes with promise for new approaches to correct impaired 188 
morphogenesis. 189 
 Toward a goal of resolving the role of pHi dynamics in cell fate decisions, at the ISCaM 190 
meeting we discussed our findings on pHi-regulated embryonic and adult stem cell 191 
differentiation. As we previously described (11), with differentiation of naïve clonal mouse 192 
embryonic stem cells (mESC) to primed epiblast-like cells there is an NHE1-dependent transient 193 
increase in pHi of ~ 0.3 units (Fig. 2A). Preventing this increase in pHi blocks differentiation, as 194 
indicated by sustained expression of the mESC markers Rex1, Stra8, and Nanog, and attenuated 195 
expression of the epiblast markers Brachyury, fibroblast growth factor 5, and Pax6. An increase 196 
in pHi is also necessary for differentiation of adult follicle stem cells in the Drosophila ovary to 197 
prefollicle cells and follicle cells (9, 11) (Fig. 2B), the later necessary for germ cell maturation. 198 
Consistent with germ cells requiring enrichment from differentiated follicle cells, preventing the 199 
increase in pHi along the follicle stem cell lineage impairs ovary morphology and adult 200 
oogenesis and substantially decreases fertility (9). These findings were obtained by genetically 201 
silencing Drosophila dnhe2, an acid extruder, or overexpressing a newly identified Drosophila 202 
ae2, an ortholog of the mammalian acid loader AE2.  203 
 There are several important questions to resolve on the role of pHi dynamics in stem cell 204 
differentiation. First is whether pHi is a conserved regulator of stem cell differentiation in 205 
different tissues, perhaps using established and well characterized models for intestinal epithelial 206 
(52) and skin epidermal (53) stem cell lineages. Second is how pHi dynamics regulates activity 207 
of pathways and functions of proteins with established roles in stem cell behaviors. One 208 
possibility is a role for pH sensing by -catenin (as described above) in Wnt signaling, because 209 
high Wnt pathway activity (54) at low pHi may retain self-renewal of stem cells and inhibit 210 
differentiation. Third is whether pHi-regulated stem cell differentiation can inform regenerative 211 
medicine approaches to correct or restore impaired cell and tissue functions.  212 
 213 
Integrating pHi dynamics in cancer and stem cells  214 
To consider how pHi dynamics in stem cells and cancer might be linked, we concluded our 215 
presentation by showing new data on pHi heterogeneity in spheroids of clonal human lung 216 
cancer cells (Fig. 2C). Using H1299 cells expressing the previously described (41) genetically 217 
encoded and ratiometric pH biosensor mCherry-pHluorin, we observe distinct intercellular 218 
differences in pHi when grown in 3D (Fig. 2C). Distinct pH heterogeneity (including 219 
intracellular and extracellular pH) is seen in cancer spheroids (55-58) and a mouse model of 220 
breast ductal carcinoma (59); however, whether this heterogeneity reflects differences in 221 
mutational signatures, cell identity, phenotypes, or epithelial or metabolic plasticity remains 222 
unresolved. For example, might cells with a lower pHi be stem-like tumor initiating cells? Could 223 
cells with a higher pHi have increased glycolysis to fuel rapid proliferation or be undergoing 224 
EMT for metastasis? The possibility that a lower pHi could enable tumor initiating cells raises 225 
caution on the idea of lowering pHi to limit cancer progression. Tumor heterogeneity, whether 226 
genetic, epigenetic, or phenotypic, is increasingly being recognized as a challenge for cancer 227 
therapies (60, 61), and improved understanding of the determinants and consequences of pHi 228 
heterogeneity could contribute to resolving these therapeutic challenges. 229 
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The field has taken a first important step in identifying a number of normal and 230 
pathological cell behaviors regulated by pHi dynamics. A second step in understanding how pHi 231 
regulates the signaling pathways mediating these behaviors is now emerging. A third step of 232 
improved mechanistic understanding is an important future direction to resolve design principles 233 
and functions of pH sensitive proteins mediating pHi-regulated cell behaviors. This third step is 234 
experimentally challenging and remains largely unexplored, but holds promise for identifying 235 
new therapeutic targets and informing the design of therapeutics for regenerative medicine and 236 
treating diseases with dysregulated pHi dynamics, including cancer.    237 
 238 
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 447 
 448 
Figure Legends 449 
 450 
Figure 1. The higher pHi of cancer cells enables many behaviors, including directional 451 
migration and tumorigenesis as well as the tumorigenic functions of proteins with charge-452 
changing arginine to histidine mutations. (A) Cell migration is in part dependent on increased 453 
activity of cofilin with increased pHi. Cofilin is a coincidence-regulated pH sensor that is 454 
activated by deprotonation of His133 (cyan) and dephosphorylation of Ser3 (magenta) for actin 455 
polymerization enabling cell migration. (B) Dysplasia is associated with increased pHi, which 456 
decreases -catenin stability. -catenin is a coincidence-regulated pH sensor with deprotonation 457 
of His36 (cyan) and phosphorylation of Ser33/37 by GSK3 enabling binding to the E3 ligase -458 
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TrCP1 for targeting to the proteasome for degradation. Crystal structure data show that -459 
catenin-His36 is in close proximity to -TrCP1-Lys365, which suggest that binding would be 460 
electrostatically unfavorable with a protonated His36 at lower pHi. (C) Charge changing somatic 461 
mutations can confer pH-regulated protein activity. Structure of wild-type p53 (top) and mutant 462 
p53-R273H (bottom) in complex DNA indicating an electrostatic interaction of Arg273 with the 463 
negatively charged phosphate-backbone of DNA that could be partially enabled by protonated, 464 
but not neutral, His273.  465 
 466 
Figure 2. (A) Schematic showing that clonal self-renewing mESC (Naïve), derived from the 467 
inner cell mass of the early blastocyst, have a lower pHi than differentiated primed epiblast-like 468 
stem cells (EpiSC), which are analogous to cells in the late epiblast stage. (B) Schematic of 469 
Drosophila germarium showing an increase in pHi from self-renewing follicle stem cell (Follicle 470 
SC) to differentiated prefollicle and follicle cell. (C) Image of lung cancer H1299 cells 471 
expressing the pHi biosensor mCherry-pHluorin and grown in Matrigel as 3D spheroids shows 472 
intracellular pHi heterogeneity that might reflect phenotypic heterogeneity, such as cells with a 473 
higher pHi undergoing EMT and cells with a lower pHi being self-renewing tumor initiating 474 
stem-like cells. 475 
 476 
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