Lawrence Berkeley National Laboratory

Recent Work

Title

Impacts of drought stress on COO ecosystem fluxes in an agricultural field: Measurements and modeling

Permalink

https://escholarship.org/uc/item/4zc9q7fx

Author

Berry, Joe A.

Publication Date

2002-11-26

Impacts of Drought Stress on $C^{18}OO$ Ecosystem Fluxes in an Agricultural Field: Measurements and Modeling

W.J. Riley, M.S. Torn, M.L. Fischer, C.J. Still, and J.A. Berry Department of Earth Sciences, Lawrence Berkeley National Laboratory, Berkeley, California

Environmental Energy Technology Division, Lawrence Berkeley National Laboratory, Berkeley,

California

Department of Geography, University of California, Santa Barbara Department of Plant Biology, Carnegie Institution of Washington, Stanford, California

Drought stress affects plant photosynthesis and transpiration, as well as soil respiration and evaporation. In a coupled plant and soil system, drought can strongly impact the exchange of ¹⁸O in CO₂ between the ecosystem and atmosphere. In this study we present diurnally resolved measurements of δ^{18} O values in ecosystem water pools in a sorghum field in the ARMCART SGP region (Oklahoma, USA). Over a 4-day period we measured continuous ecosystem CO_2 and H_2O fluxes using eddy correlation; soil moisture and temperature; $\delta^{18}O$ of soil water in 4 soil layers, leaves, and stems 4 times per day; and ¹⁸O in H₂O at 2 heights above the plant canopy. Ecosystem CO₂ fluxes reflect the impact of midday water stress. Measured soil water δ^{18} O values showed strong diurnal patterns reflecting soil-surface evaporation during the day and recharge from deeper soil layers at night. Diurnal soil water δ^{18} O values in the top soil layers varied by up to 6‰. The δ^{18} O values of stemwater also varied over the course of the day, but to a smaller extent. Leaf water δ^{18} O values increased by up to 10% over the day. To interpret these data and to estimate C¹⁸OO ecosystem fluxes we applied a mechanistic model, called ISOLSM, which simulates H₂¹⁸O and C¹⁸OO ecosystem stocks and fluxes between ecosystems and the atmosphere. ISOLSM includes modules to compute canopy vapor, leaf water, and vertically resolved soil water H₂¹⁸O content; leaf photosynthetic and retro-diffusive fluxes of C¹⁸OO; root and microbial production of CO₂; soil diffusive fluxes of CO₂ and C¹⁸OO and equilibration of CO₂ with ¹⁸O in soil water; and abiotic soil exchanges of C¹⁸OO. The model has been tested in a C₄ dominated tallgrass prairie site close to the field studied here. Drought stress strongly affected the variability of the ¹⁸O content of near-surface soil water. The low soil moisture levels impacted the soil-surface C¹⁸OO fluxes via interactions with the soil-gas diffusion coefficient, microbial and root CO₂ production, and the heavy near-surface soil water. Drought stress also impacted stomatal conductance, which in turn affected transpiration, the canopy air space vapor and vapor ¹⁸O content, and leaf C¹⁸OO exchange. Finally, we present a sensitivity analysis of the ecosystem C¹⁸OO exchange to the method used to quantify the impacts of plant water stress.