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Meta-analysis uncovers genome-wide significant variants for 
rapid kidney function decline

A full list of authors and affiliations appears at the end of the article.

Abstract

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with 

severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for 

rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-

wide association studies from the Chronic Kidney Diseases Genetics Consortium and United 

Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of 

eGFRcrea decline were used: 3 mL/min/1.73m2/year or more (“Rapid3”; encompassing 34,874 

cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/

1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline 

(“CKDi25”; encompassing 19,901 cases, 175,244 controls). Seven independent variants were 

identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with 

genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants 

among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for 

Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath 
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these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For 

the five genome-wide significant lead variants, we found supporting effects for annual change in 

blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high 

compared to those at low genetic risk (8–14 vs 0–5 adverse alleles) had a 1.20-fold increased risk 

of acute kidney injury (95% confidence interval 1.08–1.33). Thus, our identified loci for rapid 

kidney function decline may help prioritize therapeutic targets and identify mechanisms and 

individuals at risk for sustained deterioration of kidney function.

Graphcal Abstract

Keywords

Genome-wide association study; rapid eGFRcrea decline; end-stage kidney disease; acute kidney 
injury

Introduction

Rapid kidney function decline is an important risk factor for end-stage kidney disease 

(ESKD), cardiovascular events, and early mortality2,3. ESKD is a life-threatening condition 

with substantial individual and public health burden4–6 and a major endpoint in clinical 

nephrology trials. However, identifying and monitoring individuals at risk for ESKD is 

challenging. Two definitions of rapid decline in creatinine-based eGFR (eGFRcrea) are 

reported to increase ESKD risk 5- and 12-fold7,8, respectively, and thus recommended for 

clinical use: (i) rapid eGFRcrea decline of >5 mL/min/1.73m2/year and (ii) a ≥25% decline 

of eGFRcrea along with movement into a lower category of chronic kidney disease 8. Other 

surrogate endpoints of ESKD were implemented by interventional trials with follow-up 

duration of <5 years9,10, such as a doubling of creatinine levels (equivalent to a 57% 

eGFRcrea decline11) or an eGFRcrea decline of 30% or 40%.

Beside specific therapies in autoimmune driven glomerulopathies such as 

immunosuppressive agents12 or tolvaptan in polycystic kidney disease13, therapeutic options 

to slow down kidney function decline are largely limited to glycemic and blood pressure 
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control as well as lipid-lowering drugs. Prior to the recent advent of SGLT2-inhibitors in 

large clinical trials14, these therapies had shown only moderate, if any, effect on clinically 

relevant renal endpoints15. Selecting genetically supported drug targets was estimated to 

double success rate in drug discovery1, in particular when the causal gene was suggested by 

Mendelian diseases or from genome-wide associations driven by coding variants16. This 

motivates genome-wide association studies (GWAS) for the identification and 

characterization of genetic variants associated with rapid kidney function decline.

A recent GWAS combining data from >1,000,000 individuals identified 264 loci associated 

with eGFRcrea based on one creatinine measurement (“cross-sectional eGFRcrea”)17. 

However, little is known about whether these or additional genetic factors are associated 

with rapid kidney function decline (“longitudinal kidney function traits”). Given the 

substantial organizational and temporal requirements of longitudinal studies, sample sizes 

for these studies are still limited compared to cross-sectional studies. Our previous 

longitudinal GWAS based on 61,078 individuals and ~3 million genetic variants did not 

identify any locus for rapid eGFRcrea decline18. New studies with longitudinal eGFRcrea 

measurements and new genomic reference panels enabling a denser and more precise 

genetic variant imputation now allow for a more powerful investigation.

We thus performed a GWAS meta-analysis across 42 longitudinal studies, consisting of 41 

studies from the Chronic Kidney Disease Genetics (CKDGen) Consortium and UK Biobank, 

totaling >270.000 individuals with two eGFRcrea measurements across a time period of one 

to 15 years of follow-up. We implemented two definitions of rapid eGFRcrea decline that 

were feasible in population-based studies while preserving similarity to recommended 

surrogate clinical endpoints:

(1) “Rapid3” cases defined as eGFRcrea decline of >3 mL/min/1.73m2 per year compared to 

“no decline” (“Rapid3” controls, 1 to +1 mL/min/1.73m2 per year), (2) ”CKDi25” cases 

defined as ≥25% eGFRcrea decline during follow-up together with a movement from 

eGFRcrea≥60 mL/min/1.73m2 at baseline to eGFRcrea<60 mL/min/1.73m2 at follow-up 

compared to “CKDi25” controls defined as eGFRcrea≥60 mL/min/1.73m2 at baseline and 

follow-up (Figure 1).

RESULTS

Rapid eGFRcrea decline in 42 longitudinal studies

We collected phenotype summary statistics for Rapid3 and CKDi25 from 42 studies with 

genetic data and at least two measurements of creatinine (study-specific mean age of 

participants 33–68 years, study-specific median follow-up time 1–15 years; Methods, 

Supplementary Table 1A&B). Most studies were from European ancestry and population-

based (32 European ancestry based, 34 population-based).

Several interesting aspects emerged: (i) as expected for studies covering general populations 

as well as elderly and patient populations, study-specific median baseline eGFRcrea ranged 

from 46.4 to 115.0 mL/min/1.73m2 (overall median=87.3 mL/min/1.73m2); (ii) case 

proportions ranged from 11% to 72% for Rapid3 and from 3% to 52% for CKDi25 
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(median=30% or 11%, respectively); (iii) there was no association of study-specific median 

age of participants or median follow-up time with Rapid3 or CKDi25 (Supplementary 

Figure 1A&B); (iv) most CKDi25 cases were a subgroup of Rapid3 cases in three example 

studies with different lengths of follow-up (Supplementary Table 2).

Four new genome-wide significant loci for rapid eGFRcrea decline

In each of the 42 studies, the >8 million genetic variants imputed via 1000 Genomes19 or 

Haplotype Reference Consortium (HRC)20 reference panels were tested for association with 

Rapid3 and CKDi25 using logistic regression adjusting for age, sex, baseline eGFRcrea 

(Supplementary Table 3, Methods). We meta-analyzed study-specific summary statistics by 

outcome (34,874 cases, 107,090 controls for Rapid3; 19,901 cases, 175,244 controls for 

CKDi25; Methods).

In our genome-wide approach, we selected genome-wide significant loci (i.e. ≥1 variant with 

P-value<5×10−8 within ±500kB; “lead variant” as the variant with the smallest P-value); 

within each locus, we searched for independently associated signals by conditional analyses 

(Methods). By this, we identified five lead variants across four loci (P-values=5.94×10−9 to 

3.51×10−33, Figure 2, Table 1A): (i) the UMOD-PDILT locus was associated with Rapid3 

and CKDi25 and showed a 2nd independent signal for CKDi25 (rs77924615; P-

adjusted=2.98×10−10). For CKDi25, the independent odds ratios (OR) for the two UMOD-

PDILT lead variants (rs12922822, rs77924615) were 1.06 per adverse allele per variant in a 

model containing both variants. (ii) One variant in each of the WDR72 and PRKAG2 loci 

was identified for CKDi25. (iii) A variant near OR2S2 was associated with Rapid3.

For all variants and both outcomes, we observed no to moderate heterogeneity across studies 

(I2=0 to 43%). A sensitivity analysis restricted to European ancestry (31,101 cases, 102,485 

controls for Rapid3; 19,419 cases, 169,087 controls for CKDi25) identified the same loci 

with the same or highly correlated lead variants (r2>0.84, Supplementary Table 4A). We also 

conducted a meta-analysis restricting to individuals of African ancestry (2,356 cases and 

2,375 controls for Rapid3; 374 cases and 4,183 controls for CKDi25), but limited sample 

sizes prohibited an informative comparison with EUR results (Supplementary Table 4B, 

Supplementary Note 1).

Overall, we identified four loci associated at genome-wide significance for these binary 

rapid eGFRcrea decline traits.

Two additional loci for rapid eGFRcrea decline from a candidate-based search

Genetic variants with established association for cross-sectional eGFRcrea are candidates for 

association with rapid eGFRcrea decline. For our candidate-based approach, we selected the 

264 lead variants and the 2nd signal lead variant in the UMOD-PDILT locus reported 

previously for eGFRcrea17 and tested these for association with Rapid3 and CKDi25 

(judged at Bonferroni-corrected significance; 0.05/265=1.89×10−4). Among these, we found 

six variants in five loci significantly associated with Rapid3 and/or CKDi25 (Table 1B), 

yielding two variants that were associated with Rapid3 and/or CKDi25 independently from 

the five GWAS-identified variants, one each in LARP4B and GATM, were significantly 

associated with CKDi25 or Rapid3 (Supplementary Note 2, Supplementary Table 5, 
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Supplementary Figure 2). Overall, our genome-wide and candidate-based approaches 

yielded seven independent variants in six loci associated with at least one of the rapid 

eGFRcrea decline traits.

Statistical evidence for the OR2S2 locus

For the OR2S2 locus, the only two genome-wide significant variants identified for Rapid3 

were highly correlated and showed the largest odds ratio (OR) of all seven identified variants 

(rs141809766, rs56289282, r2=0.95; OR=1.22 and 1.21; P-value=5.94×10−9 and 2.11×10−8, 

respectively). Since these variants were not associated with cross-sectional eGFRcrea17 (P-

value=0.16 or 0.18, n=542,354) and of low frequency in the general population (minor allele 

frequency, MAF=0.02), we evaluated the statistical robustness of this association: (i) the 

majority of studies showed consistent risk for rs141809766 (Supplementary Figure 3A); (ii) 

a leave-one-out sensitivity analysis showed no influential single study driving the signal 

(Supplementary Figure 3B); (iii) when focusing on European ancestry, we found similar 

results (Supplementary Table 4); (iv) the lack of association with cross-sectional eGFRcrea 

was confirmed in independent data (UK Biobank, n=364,686, e.g. rs141809766, P-

value=0.65). In summary, these analyses supported this locus as a genuine finding.

Characterizing identified effects by alternative markers for kidney function

A challenge in using eGFRcrea to detect genetic variants for kidney function is the fact that 

it is influenced both by kidney function and creatinine production, the latter being linked to 

muscle mass21. Alternative biomarkers such as estimated GFR based on cystatin C22 

(eGFRcys) and blood urea nitrogen17 (BUN) can be used to support eGFRcrea loci as 

kidney function loci. We thus evaluated the seven lead variants for their direction-consistent 

association with annual change in eGFRcys and BUN in UK Biobank (n=15,746 or 15,277, 

respectively; mean follow-up time=4.3 years): annual decline of eGFRcys and/or annual 

increase of BUN for the Rapid3/CKDi25-risk increasing allele. For completeness, we also 

present the seven variants’ association with cross-sectional eGFRcys and BUN (n=364,819 

and 358,791). These analyses with alternative renal biomarkers supported UMOD-PDILT, 

WDR72, PRKAG2, and OR2S2, but not LARP4B or GATM loci (Table 2, Supplementary 

Note 3).

From lead variants to the statistical signals

Each lead variant represents a signal consisting of correlated variants. Regional association 

plots (Supplementary Figure 4) illustrate that the seven rapid eGFRcrea decline signal 

mostly coincided with the cross-sectional eGFRcrea signal, except for a weaker signal in the 

WDR72 locus and no corresponding OR2S2 signal for cross-sectional eGFRcrea. Between 

the two traits, Rapid3 and CKDi25, the signals were mostly comparable, except for 

LARP4B and OR2S2.

To prioritize variants at identified signals, we ranked each signal variant by their posterior 

probability of driving the observed association and added them to the “99% credible set of 

variants” until the cumulative posterior probability was > 99% (Methods). Such a credible 

set is thus a parsimonious set of variants that most likely includes the causal variant, 

assuming that there is exactly one causal variant per signal and that this variant was 
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analyzed23. When deriving the 99% credible sets of variants for each of the seven identified 

signals for Rapid3 and CKDi25 (Methods) wand comparing them with cross-sectional 

eGFRcrea credible sets17, we found the following (Table 3): (i) for most GWAS-derived 

signals, the credible sets coincided with those for cross-sectional eGFRcrea, except for the 

WDR72 locus; (ii) the credible set of the second UMOD-PDILT signal for CKDi25 

consisted of precisely one variant, rs77924615, which was exactly the one credible set 

variant for eGFRcrea supporting this as the most likely causal variant for this association 

signal; (iii) the two correlated genome-wide significant variants in the OR2S2 locus for 

Rapid3 formed the credible set (posterior probability 77% and 23%, respectively); (iv) the 

credible sets for the two candidate-approach derived loci, LARP4B and GATM, included 

1438 to 2955 variants for Rapid3 and CKDi25, which was due insufficiently strong 

associations resulting from the lack of genome-wide significance. We thus considered these 

credible sets unsuitable for in-silico follow-up and focused on further evaluation on the five 

genome-wide significant signals.

From statistical evidence to biology

One of the key challenges in translating GWAS associations into an understanding of the 

underlying biology is the identification of variants and genes causing the statistical signal. It 

is unclear exactly what evidence to weigh in and how expansive the search for causal genes 

should be; ±500kB around the lead variant is often used (“locus region”). A variant is often 

considered more likely causal when it is in a credible set and predicted to have a relevant 

function, such as protein-altering (e.g. changing the peptide sequence, truncating, affecting 

RNA splicing) or modulating a gene’s expression24 (expression quantitative trait locus, 

eQTL). A gene is often considered more likely causal when it (i) contains a protein-altering 

credible set variant, (ii) is a target of an eQTL-variant, or (iii) has a kidney-related 

phenotype reported from animal models or monogenic disease. We annotated the credible 

set variants and the 64 genes across the five genome-wide significant signals accordingly 

(Methods, Supplementary Table 6A,B, 7A,B). We summarized the evidence per gene in a 

Gene PrioritiSation (GPS) Table and implemented a customizable score, where each 

category’s weight can be modified according to personal interest or preference 

(Supplementary Table 8).

By this, we identified eight genes with functional evidence (score ≥1; Table 4): two genes 

with protein-altering variant (WDR72, PRKAG2), four genes as target of a significant 

eQTL-variant (PDILT, WDR72, GALNTL5 and OR2S1P), and four genes with a phenotype 

in mice and/or human (UMOD, PRKAG2, GNE and CD72). Particularly interesting were 

the 36 genes in the OR2S2 locus (Supplementary Table 9) and the findings from in-silico 

follow-up in three of these genes: OR2S1P as an eQTL-target of the lead variant 

rs141809766 in lung tissue with a particularly high effect estimate also for kidney tissue 

(Supplementary Figure 5; no data available in NephQTL) and GNE as well as CD72 with 

abnormal morphology of podocytes or renal glomerulus in mice providing candidates for a 

potential kidney function biology.
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The cumulative genetic effect

A genetic risk score (GRS) is an approach to summarize the genetic profile of a person 

across the identified variants. We computed the GRS across the seven variants in four studies 

for Rapid3 and CKDi25 (overall 3,683 cases vs. 8,579 controls for Rapid3; 895 cases vs. 

21,472 controls for CKDi25) and defined genetic high-risk and low-risk groups (individuals 

with 8–14 adverse alleles, ~30% in UK Biobank; 0–5 alleles, ~20%, respectively (Methods). 

In the meta-analysis of study-specific odds ratios, we found a 1.11-fold increased risk for 

Rapid3 (95%-confidence interval, CI, 0.99–1.24, P-value=0.07) and a 1.29-fold increased 

risk for CKDi25 (1.06–1.57, P-value=0.01, Table 5). The lower risk for Rapid3 compared to 

CKDi25 can be explained by the less pronounced effect sizes for Rapid3 for most variants in 

the GRS and by the fact that the only variant with a high effect for Rapid3 (near OR2S2) 

was rare and thus with little impact on the distribution of the GRS.

Since rapid eGFRcrea decline is known to be associated with high ESKD risk, we were 

interested to see whether the genetic risk carried forward also to the severe renal endpoint 

further down the road. We gathered data on individuals with ESKD from three different 

sources (ICD-10 codes N18.5 and N18.6; UK Biobank, GENDIAN25 and 4D26, together 

2,098 cases) and compared them to “healthy” individuals frequency-matched by age-groups 

and sex per case-source (eGFRcrea>60 mL/min/1.73 m2, no health record for chronic 

kidney impairment; UK Biobank, KORA-F3, KORA-F4, together 4,730 controls). When 

comparing the same GRS high-risk versus low-risk group as defined above, we found no 

association with ESKD risk (OR=1.01, 95% CI=0.87–1.18, P-value=0.91; Table 5).

When comparing the same GRS high-risk versus low-risk group for AKI risk in UK 

Biobank (ICD-10 code N17.0–17.9, 4,123 cases; 12,369 controls frequency matched on age-

group and sex, eGFRcrea>60 mL/min/1.73m2, no record of AKI), we found a 1.20-fold 

statistically significant increased risk (95%CI: 1.08–1.33, P-value=4.45×10−4; Table 5). 

Thus, the derived GRS across the seven identified variants was associated with increased 

risk of AKI, but not ESKD.

DISCUSSION

Overall, we identified seven independent genetic variants across six loci that were 

significantly associated with two binary traits of rapid eGFRcrea decline, Rapid3 and/or 

CKDi25. In this GWAS meta-analysis of >40 studies with follow-up time of up to 15 years, 

we provide – to our knowledge - the first record of genome-wide significant variants for 

these traits. While there are several genetic studies for cross-sectional eGFRcrea (e.g.17,27, 

summarized in a review28) and some on annual eGFRcrea decline18,29,30, we adopted this 

extreme phenotype approach and focused on two binary traits for rapid eGFRcrea decline 

reported for increased ESKD risk7. Our work is unique in its large sample size for these two 

case-control definitions with ~35,000 Rapid3 cases and ~20,000 CKDi25 cases versus 

>100,000 controls. These trait definitions were based on precisely two creatinine 

measurements over time, which does not allow for a characterization of the slope, but for 

differentiating persons with rapid decline yes/no. Besides the fact that these traits require 

longitudinal data with all known challenges to maintain sample size, another challenge are 

the stringent case-control definitions as they exclude individuals with moderate decline or 
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baseline eGFRcrea<60 mL/min/1.73m2 (neither a case, nor a control). To derive these case-

control sample sizes, we had >270,000 individuals with at least two assessments of kidney 

function from population-based studies, exceeding previous work18 by >4- fold. Despite the 

relatively large sample size, we cannot exclude that the lack of association of an identified 

variant for one trait or the other as well as differences in effect sizes between traits might 

result from chance. We expect that the analysis of even larger samples in the future might 

increase the overlap of findings between the two traits and allow for a more formal 

comparison of effect sizes.

It might be considered a limitation that these binary traits were only similar, but not identical 

to KDIGO-recommended surrogate endpoints for ESKD. However, those endpoints would 

have limited the GWAS sample size even more. Our sample size is still much smaller than 

GWAS sample sizes for cross-sectional eGFRcrea, which might explain the relatively few 

identified loci for rapid decline, even with the candidate approach allowing for a less 

stringent threshold of significance, compared to the vast number of loci identified for cross-

sectional eGFRcrea17. For example, our sample size for Rapid3 enabled a power of >80% to 

detect a variant with MAF=30% (2%) with 1.13-fold (1.28-fold) increased Rapid3 risk with 

genome-wide significance. There might be genetic variants with smaller MAF or smaller 

risk that have been missed. The sample size in Non-European ancestry individuals was too 

small for separate evaluation. There are current efforts to substantially enhance longitudinal 

studies and their molecular content31–33, also with Non-European ancestry, which will foster 

more GWAS on clinical endpoints in the future. Among the six identified loci for Rapid3 

and/or CKDi25, four were identified with genome-wide significance (near UMOD-PDILT (2 

signals), PRKAG2, WDR72 and OR2S2) and two among previously reported loci for cross-

sectional eGFRcrea17 (LARP4B and GATM). Our in-silico follow-up highlighted the 

relevance of genome-wide significant associations for fine-mapping: credible sets identified 

via candidate-based approach contained >1000 variants, rendering the GPS unfeasible. For 

the four loci with genome-wide significance, the credible sets contained 1–40 variants, 

providing a more practical number of targets to turn the statistical signals into potentially 

relevant biological findings. For the four loci with genome-wide significance, our GPS helps 

prioritize genes for functional follow-up and provides the opportunity to customize the 

weighing of each piece of bioinformatic evidence. While some of the findings overlap with 

previous reports17 including functionally interesting variants mapping to the PRKAG2 and 

GALNTL5 gene both residing in the PRKAG2 locus, the WDR72 gene is supported with a 

missense variant that was not among credible set variants for cross-sectional eGFRcrea. Our 

data also highlights the two independent variants in the UMOD-PDILT locus known for 

large effects on eGFRcrea17 as the two strongest genetic risk factors for rapid eGFRcrea 

decline with each of the four adverse alleles increasing CKDi25 risk by 1.06-fold. One 

variant captures the signal in UMOD with unclear function and the other is the PDILT-

residing variant rs77924615. The rs77924615 was reported as likely causal, modulating 

UMOD expression and urinary uromodulin concentrations17. The fact that this variant is the 

sole variant in the credible set for CKDi25 and for cross-sectional eGFRcrea17 provides a 

proof-of-concept that overlapping single-variant credible sets between cross-sectional and 

longitudinal traits may be indicative of the causal variant.
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Particularly interesting is the OR2S2 locus, which was not identified by the previous GWAS 

of cross-sectional eGFRcrea17 and showed no association with cross-sectional eGFRcys or 

BUN here. In this locus, the genes OR2S1P, GNE, and CD72 were supported by our GPS: 

CD72 and GNE with evidence of abnormal morphology of podocytes or renal glomerulus, 

respectively, and by a link of CD72 molecules to systemic lupus erythematosus patients with 

renal involvement 34 or GNE mutation in mice as model for human glomerulopathy35. There 

is little published evidence on OR2S1P, but we find OR2S1P as target of an eQTL-variant 

that is a credible set variant and thus a likely variant to drive the association signal. We 

provide no independent replication for this locus association due to the lack of available 

comparable data for the low-frequency (MAF~2%) driver variants, but our sensitivity 

analyses supported the signal as genuine.

The genuineness of the OR2S2 locus for rapid kidney function decline was supported by 

consistent associationwith annual change in eGFRcys and BUN. These alternative biomarker 

results also supported five of the seven identified variants to be associated with kidney 

function (UMOD-PDILT (2 variants), WDR72, PRKAG2, OR2S2), but not the loci near 

GATM and LARP4B.

A challenge in clinical practice is the identification of individuals at increased risk of ESKD 

and little evidence on genetic factors for ESKD. Some GWAS including 500 to 4,000 ESKD 

cases reported genome-wide significant loci, but none of these overlap with the loci 

identified here29,36–44. Two genetic variants were identified in ~4,000 ESKD cases and 

equal number of controls36 testing 16 variants known for cross-sectional eGFRcrea. One 

variant, rs12918807, is highly correlated with our UMOD-PDILT lead variant rs12922822 

(R2=1.00), but the other variant rs1260326, near GCKR, was not associated with rapid 

eGFRcrea decline (OR=1.01 and 1.00, P-value=0.396 and 0.757). Previous GWAS on 

ESKD may have been hampered by sample size: to detect a variant with MAF 30% (10%) 

and 1.1-fold increased disease risk at genome-wide significance with 80% power, the 

required sample size sizes is 13,500 (31,000) cases and similar number of controls; to detect 

such a variant with nominal significance, 2,700 (6,100) cases are needed. Therefore, ESKD 

case-control data with thousands of cases might work for candidate-based approaches, but 

will be underpowered for GWAS. While the genetic variants identified for rapid kidney 

function decline might be effective candidates, but we did not find increased ESKD risk 

comparing the high- versus low genetic profile in > 2100 ESKD patients and health controls. 

This could be due to insufficient power or survival bias on the adverse alleles45, but the data 

would also be in line with a lack of effect.

We did find a 1.20-fold increased risk for AKI comparing the genetic high-risk versus low-

risk group in UK Biobank including 4000 individuals recorded for AKI. While AKI is 

defined as an acute event, AKI and particularly repeated episodes of AKI are known to 

deteriorate patients’ kidney function also chronically, at least for a subgroup46. Due to the 

nature of population-based studies in contrast to hospital-based studies, it is conceivable that 

some of the individuals in the GWAS studies had AKI between baseline and follow-up and 

that those with chronically rather than transiently reduced kidney function could have 

become cases for rapid decline. We assume it unlikely that persons in the acute phase of 

AKI come to the study center for a follow-up visit. While not each patient with AKI-episode 
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will experience long-term and rapid deterioration of kidney function, individuals in the 

genetic high-risk group might include individuals at a higher risk of sustained deterioration 

of kidney function after AKI. Therefore, the genetic variants identified for rapid kidney 

function decline might capture mechanisms and individuals at increased risk for sustained 

kidney function deterioration after AKI.

METHODS

Overall 42 studies contributed GWAS results estimated via logistic regression on Rapid3 and 

CKDi25 with 1000 Genomes phase 3 v5 ALL47 or Haplotype Reference Consortium v.1.148 

reference variants. After an inverse-variance weighted meta-analysis, genome-wide 

significantly associated loci including primary and secondary lead variants were identified. 

In addition, we identified loci among known loci for cross-sectional eGFRcrea17. We 

validated identified effects by alternative cross-sectional and longitudinal renal markers 

eGFRcys and BUN. We derived credible sets of variants for each identified signal and 

conducted a comprehensive in-silico follow-up for all genes underneath identified loci. 

Finally we estimated the cumulative genetic effect of the identified lead variants on rapid 

kidney function decline, ESKD, and AKI. A detailed description of the methods can be 

found in the Supplementary Material (Supplementary Methods).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Illustration of the case-control definitions of Rapid3 and CKDi25.
Rapid3 defines cases as individuals with an eGFRcrea decline>3 mL/min/1.73m2 per year 

and controls with an eGFRcrea decline between −1 and +1 mL/min/1.73m2 per year. 

CKDi25 defines cases as a ≥25% drop from baseline eGFRcrea≥60 mL/min/1.73m2 into 

eGFRcrea<60 mL/min/1.73m2 at follow-up and controls as an eGFRcrea≥60 mL/min/

1.73m2 at baseline and follow-up. Shown are cases (red), controls (black) and excluded 

individuals (grey) according to the eGFRcrea values observed at baseline and follow-up.
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Figure 2 |. Four loci identified with genome-wide significance for Rapid3 or CKDi25.
Shown are association P-values versus genomic position for Rapid3 (34,874 cases; 107,090 

controls) and CKDi25 (19,901 cases; 175,244 controls). Horizontal dashed lines indicate 

genome-wide (5.00×10−8), Bonferroni-corrected (0.05/265≈1.89×10−4) and nominal (0.05) 

significance thresholds. The four identified genome-wide significant loci are annotated by 

the nearest genes (blue). The 264 loci reported previously for cross-sectional eGFRcrea17 

are marked in orange and respective lead variants as red dots.
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