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Texture-based optical flow for wind velocity estimation from
water vapor data

Joel R. Barnetta, Andrea Bertozzia, Luminita A. Vesea, and Igor Yanovskya

aUniversity of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA, USA

ABSTRACT

Accurate estimation of atmospheric wind velocity plays an important role in weather forecasting, flight safety
assessment and cyclone tracking. Atmospheric data captured by infrared and microwave satellite instruments
provide global coverage for weather analysis. Extracting wind velocity fields from such data has traditionally
been done through feature tracking, correlation/matching or optical flow means from computer vision. However,
these recover either sparse velocity estimates, oversmooth details or are designed for quasi-rigid body motions
which over-penalize vorticity and divergence within the often turbulent weather systems. We propose a texture
based optical flow procedure tailored for water vapor data. Our method implements an L1 data term and
total variation regularizer and employs a structure-texture image decomposition to identify key features which
improve recoveries and help preserve the salient vorticity and divergence structures. We extend this procedure
to a multi-fidelity scheme and test both flow estimation methods on simulated over-ocean mesoscale convective
systems and convective and extratropical cyclone datasets, each of which have accompanying ground truth wind
velocities so we can qualitatively compare performances with existing optical flow methods.

Keywords: Atmospheric wind estimation, optical flow, total variation

1. INTRODUCTION

Optical flow has a long and successful history in computer vision applications as a motion estimator. The
method has found a place in object tracking including such applications as optical computer-mice, stereo-vision,
and scene motion estimation. In general, an optical flow method attempts to extract a displacement field which
describes the motion between two scenes (often two consecutive frames from an image sequence or video). While
the method is traditionally used on natural imagery, it has been applied as a tool in studying fluids by examining
particle-laden flows, a practice known as particle image velocimetry (PIV),1,2 as well as for cloud and weather
tracking.3,4 Applications like PIV and cloud tracking prove challenging because of the complicated nature of
fluid motion—in particular, there are no longer stable features or quasi-rigid motions typical of natural imagery.

We are interested in applying optical flow towards water vapor data with the aim of recovering atmospheric
wind velocities. The ability to extract such estimates from satellite data is of significant interest since microwave
and infrared instrument equipped satellites provide comprehensive coverage of weather phenomenon without the
need for in-place instruments (e.g., ocean drifters, physical wind sensors), which are both costly and provide
only sparse estimates. Our data comes from direct numerical simulations of atmospheric conditions from the
Weather Research and Forecasting model,5 and includes ground truth wind velocities for comparison. Water
vapor from three weather scenarios is extracted from this nature-run data and used in our experiments. First,
we have a mesoscale convective system (MCS) over the eastern Pacific which provides higher spatial resolution
but with larger time intervals between frames. Second, we consider tropical convection (TC) over the maritime
continent. Last, we consider an extratropical cyclone (ETC) event over the western Atlantic. The size, spatial
and temporal resolution of each dataset is given in Table 1.
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Table 1: Water vapor data description

Name Image Size Spatial Resolution Time Resolution

MCS 850× 1850 px2 3000 m/px 900 s

TC 999× 1299 px2 3500 m/px 72 s
ETC 480× 480 px2 12000 m/px 120 s

2. BACKGROUND AND MODEL

The primary assumption of optical flow methods is one of brightness constancy. That is, the brightness of an
object in a scene does not change over short time intervals. More precisely, let I(x, t) : Ω ⊂ R2 → R represent
the image intensity at some point x ∈ Ω for each fixed time t, where x = (x, y). If we assume the object at x is
displaced by d = d(x, t) as time advances to t+∆t, then brightness constancy assumes I(x + d, t+∆t) = I(x, t).
Taylor expanding I about (x, t) gives the so-called optical flow constraint equation (OFCE)

It(x, t) + uT∇I(x, t) = 0, (1)

where u = d/∆t is the velocity field describing the displacement. By letting ∆t → 0, the left-hand side of (1)
can also be seen as the total time-derivative of I(x, t), where it is understood that (x, t) = (x(t), t) traces out
the space-time path objects take as they move within the scene. Since (1) is obtained through linearization, it
is sometimes called the linear OFCE. The non-linear version is simply

I(x + d, t+∆t)− I(x, t) = 0. (2)

In practice, when working with video or imagery data it is standard to take ∆t = 1 (in which case u = d) and
define frame one by I1(x) = I(x, t+ 1) and frame zero by I0(x) = I(x, t). An optical flow method aims to find
the flow field u = (u1, u2)

T given the images I0 and I1.

As it stands, (1) is ill-posed and additional constraints are required to determine the flow. This can be
remedied by assuming the flow is constant on neighborhoods as was done by Lucas and Kanade,6 or imposing
regularization on the flow as was introduced by Horn and Schunck7 (HS) in 1981. Methods which impose
constraints on local regions, e.g. Lucas and Kanade’s flow, block matching or correlation techniques,8,9 are known
as local methods which generally produce a sparse flow field describing the motion within a scene. Conversely,
schemes which place requirements on the whole flow are known as global methods, and produce dense velocity
fields. Additionally, hybrid methods10–13 which blend correlation and varational techniques have been tested.
Because we are interested in recovering dense flow estimates for wind velocities, we focus on global variational
optical flow methods, which have outperformed cross correlation techniques for atmospheric tracking (see Ref. 3).

Subsequent optical flow techniques have primarily been based on the seminal work of Horn and Schunck,
which solves the minimization problem

min
u=(u1,u2)

λ

∫
Ω

(
It + uT∇I

)2
dx+

∫
Ω

(
|∇u1|2 + |∇u2|2

)
dx. (3)

These have been applied to PIV,1,2 tailored for fluid flow through relaxed vorticity and divergence penalties,14

tested for weather forecasting4 and utilized in atmospheric tracking.3,15–19

Each of these methods can broadly be categorized as the minimization problem

min
u
λ

∫
Ω

ψ(ρ(u; I))dx+ J(u) (4)

where ρ represents the data fitting term, ψ a non-negative penalizing function and J(·) is a regularization term.
For instance, the HS flow is characterized by ψ(x) = x2, ρ(u) = It +uT∇I and J(u) =

∫
Ω
|∇u1|2 + |∇u2|2. The

positive constant λ weights the emphasis of the data over the regularization. For scenes with large displacements



between frames, the linearized OFCE is often inaccurate, so either non-linear schemes are devised (see Ref. 20
for e.g.), or a method of “warping”, whereby I(x + u0) is computed via interpolation (typically bicubic) for
some approximation u0 to the desired flow. The OFCE is formed by linearizing (2) around the most recent
approximation x+u0. Additionally, to further assist with large displacements, optical flow algorithms commonly
make use of a hierarchical pyramid scheme (see Ref. 21) in which spatially downsampled images are used to form
flow estimates which then serve to initialize estimates for higher resolution images, iteratively repeating until
the original resolution is reached (see Ref. 22 for a HS implementation).

2.1 Optical flow constraint equation limitations

Applying HS directly to fluid data yields less than satisfactory results. This is not surprising, as the HS method
is designed for more rigid motions, with the regularizing term ∥∇u∥2 penalizing turbulent flows (specifically the
divergence and vorticity of u) harshly.14,23 A natural starting place to try and improve flow estimates is to
modify ψ(ρ) and J to be more suited for the data. A more robust data term such as L1, which the authors
in Refs. 24–26 consider, in addition to total variation regularization, better adapt to illumination changes and
promote discontinuities common in complicated flows. Efficient implementations of this so named TV-L1 optical
flow method are discussed in Refs. 24–26, along with a non-linear scheme which requires no warping in Ref. 20.
A Python language implementation is available from the Scikit-image27 library. The method has also been
proposed for atmospheric motion vector estimation, and the authors in Refs. 16, 17 show that TV-L1 performs
favorably compared with conventional atmospheric motion tracking methods. TV-L1 improves flow estimates in
our data compared with HS and is able to extract the general behavior of the flow, but struggles to recover flow
in areas of low image variation and over-smooths the divergence and vorticity present in the flow.

While additionally modifying the penalty ψ and regularization J may yield some improvements, we consider
more generally whether the OFCE alone is appropriate for recovering the desired flow. Because we have the
ground truth data uGT available, we are able to test the performance of the ground truth and any computed
flow u at minimizing (4) as well as satisfying the data term ρ(·; I). We make the critical observation that the
TV-L1 computed flows outperform the ground truth, both at minimizing (4) and satisfying the OFCE (both
linear and non-linear adaptations), yet do not match the desired flow satisfactorily. This indicates that for our
data, the OFCE alone is insufficient for guiding flow discovery. Driving u to satisfy the OFCE more exactly can
move u further from uGT , and additions or modifications to the constraint equation are needed if we hope to
recover improved estimates.

2.2 Texture features for flow estimation

In an attempt to provide more context to the flow estimator in regions of uniform image-intensity, we propose
decomposing the image into texture and structure components, thereafter extracting a velocity field from a
combination of these components. We note that using the texture portion of images for optical flow has been
proposed as a way to combat the effects of brightness variation on flow estimation (i.e. illumination changes
which break the brightness constancy assumption),25 however in the context of water-vapor imagery, the data is
not illumination based and so our motivation for such a decomposition is distinct.

A standard image decomposition can be formed by the iconic Rudin-Osher-Fatemi total variation denoising
model, where an image I is split into the sum I = IS + IText, with the structure portion IS minimizing

min
f∈BV (Ω)

λ

∫
Ω

(I − f)2dx+ TV (f), (5)

where BV (Ω) is the space of functions of bounded variation over Ω. However, a decomposition with more
oscillatory texture is desirable because this provides more features to add context for flow extraction, especially
in regions of low image variation. One such texture-structure image decomposition was proposed by Meyer,28 in
which IText = I − IS belongs to the weaker space G(Ω) = {div(g) : g ∈ L∞(Ω)}. Oscillations such as texture
have small norms in G(Ω), and thus are not penalized by such a model. The decomposition is determined by
solving

IS = argmin
f∈BV (Ω),g∈L∞(Ω)

λ

∫
Ω

(I − (f + div(g))2dx+ TV (f) + µ∥g∥∞. (6)

Details on numerically determining (6) are found in Ref. 29, that we utilize to find IText = I − IS for our data.



2.2.1 Texture-flow

Armed with IText computed for both frames I0 and I1, we compute the TV-L1 texture-flow uText determined
by these textural components (i.e. solve (4) with ψ(x) = |x|, ρ(u; IText) = IText

1 (x + u) − IText
0 (x) and

J(u) = TV (u1) + TV (u2)). This “texture-based” flow can be further improved by finding the flow refinement
uR which further registers (according to ψ(ρ(·))) the warped image I1(x+ uText) to I0, producing a total flow
u = uText + uR. This texture-flow process is encoded in (7)

uText ← argminu λ
∫
Ω
ψ(ρ(u; IText))dx+ J(u)

I1 ← I1(x+ uText)

uR ← argminu λ
∫
Ω
ψ(ρ(u; I))dx+ J(u)

u ← uText + uR.

(7)

The hope is that the texture within IText
0 and IText

1 affords enough information to determine uText more accu-
rately in regions of uniform image intensity, while uR corrects for the motions of the larger structures present
within I0 and I1.

2.2.2 Multi-fidelity flow

Alternatively, one can reconstruct the full flow in a single process by concurrently considering the original and
textural portions of the data I0 and I1. This is done by creating a data fidelity term which incorporates multiple
features—in this case, the raw data I0, I1 and it’s texture IText

0 , IText
1 —from the data simultaneously, as given

in the following multi-fidelity minimization problem

argmin
u

λ1

∫
Ω

|ρ(u; I)|+ λ2

∫
Ω

|ρ(u; IText)|dx+ TV (u1) + TV (u2), (8)

where the λi are weights for each fidelity term.

3. NUMERICAL MINIMIZATION

To solve for the flow, we must minimize (4) for a specific choice of ψ, ρ and J . In TV-L1 flow, the corresponding
problem is

min
u
λ

∫
Ω

|ρ(u; I)|dx+ TV (u1) + TV (u2),

where ρ(u; I) = I1(x + u) − I0(x) is highly nonlinear. To approach this minimization, we linearize ρ about a
current flow estimate u0,

ρ(u; I) ≈ ρ(u;u0, I) := I1(x+ u0)− I0(x) + (u− u0)
T∇I(x+ u0),

where, with some abuse of notation we refer to the linearized version by ρ(u;u0, I). At times when the context
is clear, we will drop the explicit dependence of ρ on I. We approach minimizing

min
u
λ

∫
Ω

|I1(x+ u0)− I0(x) + (u− u0)
T∇I(x+ u0)|dx+ TV (u1) + TV (u2) (9)

by splitting the fidelity and regularizing terms, alternatingly solving the two proximal problems (10) and (11)

uk+1 ∈ argmin
u

λ

∫
Ω

|ρ(u;u0)|dx+
1

2θ
∥u− vk∥2 (10)

vk+1 ∈ argmin
v

1

2θ
∥uk+1 − v∥2 + J(v), (11)

with u0 initialized to some guess for the flow (typically the current estimate u0). The tightness parameter θ
forces vk near uk, and letting θ → 0 the split minimization problems given in (10) and (11) is equivalent with
(9). The reason for splitting is that the individual minimization problems are easier when considered separately.



Indeed, (11) decouples along the components of v, giving two ROF total variation denoising problems. These
have a well documented (see Ref. 30) fast dual-projection method,

pn+1
i =

pn
i + τ∇(divpn

i − uki /θ)
1 + τ |∇(divpn

i − uki )|
(12)

vk+1
i = uki − θdivpN

i , (13)

which can be used to solve for each component, vk+1
i , of vk+1 after running n in (12) to some convergence

criterion N . For (10), we follow a shrinkage-like thresholding procedure (14) detailed in Refs. 24–26

uk+1 = vk +


λθ∇I1(x+ u0) if ρ(vk;u0) < −λθ|∇I1(x+ u0)|2

−λθ∇I1(x+ u0) if ρ(vk;u0) > λθ|∇I1(x+ u0)|2

−ρ(vk;u0)∇I1(x+ u0)/|∇I1(x+ u0)|2 if |ρ(vk;u0)| ≤ λθ|∇I1(x+ u0)|2.
(14)

This process which solves (9) can be used in both the minimization steps in the texture-flow procedure (7). We
use the Python TV-L1 implementation available from the Scikit-image image processing library27 when solving
(9).

The splitting strategy has the additional benefit of simplifying the process of adding or removing terms from
the fidelity (see Ref. 18 for further exploration), and we can easily test the influence of including a texture-based
fidelity term in the multi-fidelity problem (8). We are able to solve problems in the form of (10) and (11), so
our goal is to use splitting to recast (8) into these forms. The constrained optimization,{

argminu,v,w λ1
∫
Ω
|ρ(u;u0, I)|dx+ λ2

∫
Ω
|ρ(v;u0, I

Text)|dx+ J(w)

subject to u = v = w,
(15)

is equivalent with (8) and we can relax (15) by adding the quadratic penalty

Q(x1, x2, . . . , xn, θ) =
1

2θ

∑
i̸=j

∥xi − xj∥2,

giving the unconstrained problem

argmin
u,v,w

λ1

∫
Ω

|ρ(u;u0, I)|dx+ λ2

∫
Ω

|ρ(v;u0, I
Text)|dx+ J(w) +Q(u, v, w, θ). (16)

The parameter θ > 0, and for θ ↓ 0, (16) is equivalent with (8) and (15). We will approach (16) by alternatingly
minimizing in u, v, and w and noting that

Q(x, y, z, θ) =
1

2θ

(
∥x− y∥2 + ∥x− z∥2 + ∥y − z∥2

)
=

1

θ

(∥∥∥∥x− y + z

2

∥∥∥∥2 + c(y, z)

)
,

where c is some function independent of x. Since Q is symmetric about all but its last argument, we can
equivalently reduce the dependence of Q on y and z to the same quadratic penalty. Our iterative scheme is

uk+1 ∈ argmin
u

λ1

∫
Ω

|ρ(u;u0, I)|dx+
1

θ

∥∥∥∥u− vk +wk

2

∥∥∥∥2 (17)

vk+1 ∈ argmin
v

λ2

∫
Ω

|ρ(v;u0, I
Text)|dx+

1

θ

∥∥∥∥v − uk+1 +wk

2

∥∥∥∥2 (18)

wk+1 ∈ argmin
w

J(w) +
1

θ

∥∥∥∥w − uk+1 + vk+1

2

∥∥∥∥2 , (19)



starting with some initialization for u0, v0 and w0 (usually the current flow estimate u0). Again, the problem
has been reduced into proximal problems and an ROF problem, which can be solved via the explicit formula
(14) and dual projection procedure (12).

Computing the derivative terms in these schemes is done with finite differences. Central differences are
used in the gradient terms in (14) and forward and backward differences are composed when computing the
gradient-of-divergence terms in (12).

In order to overcome inaccuracies from large displacements (in terms of pixels), we also incorporate a hi-
erarchical pyramid scheme (see Ref. 21), downsampling I1 and I0 until the resolution is reduced sufficiently
so that the displacements no longer span many gridpoints. Then, recoveries are determined at each resolution
level, starting from the coarsest and working towards the original resolution, with each recovery acting as an
initialization for the next pyramid level. The full algorithm with warping for the multi-fidelity flow (8) is given
below.

Algorithm 1 Multi-fidelity Optical Flow

Input: images I0, I1, I
Text
0 , IText

1 , initial flow estimate u0, parameters Nwarp, Niter, Nlevels, θ, and λ1, λ2.
Output: flow estimate u

1: Form downsampled pyramid levels I0,l, I1,l, u0,l, l = 1, 2, . . . , Nlevels.
2: for l = Nlevels, . . . , 2, 1 do
3: for k = 0, 1, . . . , Nwarp − 1 do
4: Compute I1,l(x+ uk,l), ∇I1,l(x+ uk,l), I

Text
1,l (x+ uk,l) via bicubic uplook

5: u0,v0,w0 ← uk,l

6: for n = 0, 1, . . . , Niter − 1 do
7:

un+1 ← argmin
u

λ1

∫
Ω

|ρ(u;uk,l, Il)|dx+
1

θ

∥∥∥∥u− vn +wn

2

∥∥∥∥2
vn+1 ← argmin

v
λ2

∫
Ω

|ρ(u;uk,l, I
Text
l )|dx+

1

θ

∥∥∥∥v − un+1 +wn

2

∥∥∥∥2
wn+1 ← argmin

w

1

θ

∥∥∥∥w − un+1 + vn+1

2

∥∥∥∥2 + J(w)

8: end for
9: uk+1,l ← wNiter

10: end for
11: u0,l+1 ← Upsample(uNwarp,l)
12: end for
13: Return uNwarp,Nlevels

4. RESULTS

In this section we discuss the results of our texture-based and multi-fidelity flows and compare them against
existing optical flow methods. In particular, we will compare against the classic HS optical flow method as
well as the popular TV-L1 scheme, which recently has shown success16,17 over the conventional feature-tracking
algorithm which is widely used, including for the National Oceanic and Atmospheric Administration (NOAA)
Geostationary Operational Environmental Satellites (GOES) cloud motion retrieval.

Recall we are interested in determining a vector field describing the atmospheric wind velocity given a sequence
of water-vapor images. A typical water vapor image is given in Fig. 1. In all our experiments, we take in two
images to guide flow retrieval which are separated by 2∆t, where ∆t is the time between frames in the image
sequence. The wind velocity associated with the intermediate frame is taken as the ground truth, and the



Figure 1: A typical water-vapor image, in this case from the MCS. Pixel values correspond to the water vapor
mixing ratio in g/kg.

(a) = (b) + (c)

Figure 2: Structure-texture decomposition of a cropped portion of Fig. 1. The original image I is given in (a),
it’s structure portion IS in (b), and textural portion IText in (c). Recall I = IS + IText.

estimated vector field is compared against the ground truth using root-mean-squared-vector-distance (RMSVD).
The RMSVD between two vector fields u, v defined on an M ×N pixel grid is

RMSVD(u,v) =

√√√√ 1

MN

M∑
i=1

N∑
j=1

(v1,ij − u1,ij)2 + (v2,ij − u2,ij)2.

We also make use of a hierarchical pyramid scheme for each method, downsampling by a factor of 2 for 10 levels
(or until the minimum dimension of the image is 16 pixels).

As discussed in Section 2, using optical flow for wind velocity estimation can be challenging for a variety of
reasons. We are considering several datasets, and the ground truth displacements between frames can be large
(in terms of pixels), violating the linearization assumptions when forming the OFCE. On the other hand, in
the case of very coarse spatial resolution such as with the ETC dataset, the displacements can be quite small,
so that the ground truth motion vectors are at a subpixel level. These issues are handled by a combination of
the hierarchical pyramid and warping routines. However, atmospheric motion is complex and turbulent, and
large regions of uniform water vapor within the data provide little information for a flow estimator to extract a
velocity estimate accurately.

This last issue is the primary motivation for incorporating image texture into the estimation procedure. In
our texture-flow scheme, we decompose an image into its structural and textural portions, as shown for a crop
of the MCS dataset in Fig. 2, and use the textured portion for motion estimation. In Fig. 3, we visualize the
wind velocity field using a colormap, where color indicates the direction of the wind and saturation indicates



Table 2: RMSVD in m/s and px/∆t between flow estimations and ground truth wind velocity. Here, ∆t is the
time between frames for each respective dataset. Bold entries indicate lowest error in each row.

HS TVL1 Texture-flow Multi-fidelity

m/s px/∆t m/s px/∆t m/s px/∆t m/s px/∆t

MCS 3.400 1.020 2.483 0.745 1.985 0.596 1.985 0.596

TC 2.903 0.060 2.462 0.051 2.361 0.049 2.299 0.047
ETC 6.205 0.062 5.855 0.059 5.838 0.058 5.675 0.057

the speed. Our tests extracting wind velocity estimates using the textured portion, IText, of an image alone
demonstrate that texture is an excellent feature for atmospheric motion tracking. This is made clear in Fig. 3d
when compared with 3c. Fig. 3d is obtained from only the information contained in IText, while 3c is formed
from the whole image, yet 3d outperforms the TV-L1 estimate 3c. Of note, we see sizable improvement within
the boxed regions of 3d, which represent portions of I with relatively uniform water-vapor levels (see Fig. 1).
This indicates that texture indeed provides good context within these challenging regions, and our motivation
for including texture in the flow retrieval process is valid. The remaining images in Fig. 3 show the complete
texture-flow and multi-fidelity flow estimates, along with the HS flow for comparison.

Similar flow visualizations are given for the TC and ETC datasets in Figures 4 and 5. The texture-flow
and multi-fidelity flow produce 8–40% improved flow estimates compared with HS and 3–20% improvements
over the TV-L1 methods across the three datasets. Full results are recorded in Table 2. We remark that lower
performance in units m/s does not necessarily imply lower performance relative to the resolution of the data
collected. For instance, since the ETC dataset has a very coarse spatial resolution (12,000m per pixel) and
moderate temporal resolution (∆t = 120s), an error of 1 m/s corresponds to 0.01 px/∆t.

5. CONCLUSION

In this work we demonstrate that optical flow can effectively perform wind velocity estimation from remote
sensing water-vapor data. Additionally, we show that texture is a pertinent feature for motion estimation and
we introduce two texture-based optical flow procedures.

The first method, “texture-flow”, arrived from observing that the optical flow constraint equation (OFCE)
on which the vast majority of variational optical flow methods are built, cannot recover the desired complex flow
of atmospheric motion alone. Modifying the regularization term or considering a non-linear OFCE approach is
insufficient, and modified or additional data fidelity terms should be considered. We determine that image-texture
is a viable fidelity term, and augment the fidelity with a textural portion of the data.

The second “multi-fidelity” method extends the idea from texture-flow by developing a convenient algorithm
which has the advantage of easily handling additional fidelity terms, and can be extended to include many more
image-features in the flow retrieval process. In future works, we would like to test additional image-features
including non-local methods and develop stopping criteria for strategically halting the process.

Collectively, these methods perform well on convective and cylconic weather systems, and this research
would benefit the microwave and infrared instrument systems that commonly record such data. Both methods
outperform the Horn Schunck and TV-L1 schemes across varying spatial and temporal resolutions.
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(a) Ground truth flow (b) HS flow RMSVD = 3.400 m/s

(c) TVL1 flow: RMSVD = 2.483 m/s. (d) Flow from IText alone: RMSVD = 1.996 m/s.

(e) Texture-flow from (7): RMSVD = 1.985 m/s. (f) Multi-fidelity flow from (8): RMSVD = 1.985 m/s.

(g) Flow direction and speed color-
key

Figure 3: Colored flow visualization for a mesoscale convective system (MCS). The boxed regions in (c) and
(d) indicate areas where the image has primarily uniform water-vapor levels, and show the improvement that
the texture features add to velocity estimation. In (g), the color-key color indicates velocity direction and the
saturation indicates flow velocity magnitude.
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