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ABSTRACT OF THE DISSERTATION

Linking Structure to Function in Resting State Macroscale Neural Activity

By

Anirudh Wodeyar

Doctor of Philosophy in Cognitive Sciences

University of California, Irvine, 2019

Professor Ramesh Srinivasan, Chair

Macroscopic neural activity measured using fMRI, MEG and EEG shows consistent sta-

tistical dependencies between different areas of the brain which is labeled as functional

connectivity. A major research direction in systems neuroscience has been the effort to trace

functional connectivity back to structural connectivity, defined by the white-matter tracts

of the brain. In this dissertation I examine the extent to which the structural connectiv-

ity constrains dynamic neural function. We first examined, in simulation and empirically,

resting state MEG data from healthy subjects and tested whether effective connectivity esti-

mates (models of functional connectivity) are sensitive to anatomical connectivity. Effective

connectivity (EC) estimated using a graphical model assesses direct connectivity potentially

providing a metric appropriate to compare against anatomical connections. In silico, we

compared two different models for effective connectivity - complex valued Gaussian graphi-

cal models (cGGM) that emphasizes direct connectivity on the timescale of milliseconds and

amplitude Gaussian Graphical models (aGGM) that emphasizes direct connectivity on the

timescale of seconds. We found that the partial coherence, a summary statistic derived from

cGGM, is more aligned to the anatomy than partial correlation (derived from aGGM). Us-

ing resting state MEG data, we found that partial coherence at higher frequencies (¿30Hz)

indeed provided the greatest alignment to the structural connectivity. However, at lower

frequencies (1-30 Hz), we found that the partial correlation was more tightly coupled to the
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anatomy. We then examined the relationship between structure and function in a subject

population with heterogeneous structural connections - subacute (< 1 month post stroke)

patients of stroke who have lesions in the brain. Using fMRI time series parcelled into 114

brain areas, we estimated Gaussian Graphical Models (GGM) to derive the partial corre-

lation and used virtual tractography for the structural connectivity. We found that partial

correlations (relative to traditional correlations) strongly reflected the presence of structural

connectivity damage. Further, applying voxel-based analyses driven by the streamlines (rep-

resenting axonal fibers) allowed us to see modulation from damage across more functional

connections suggesting parceling the brain inappropriately spatial smooths diverse neural

activity. Finally, we examined the impact of structural connectivity damage on function in

subacute and chronic (> 2 months post stroke) patients of stroke using EEG. We found in-

creased structural damage was linked to increased overall connectivity (partial coherence) in

both groups. Overall our results indicate that using simple models of effective connectivity

(GGMs) allow better assessment of the relationship between macroscale structure and func-

tion but even so, structure mediates function only to a limited extent, with the relationship

depending strongly on the timescale and spatial resolution of the effective connectivity.

xiv



Chapter 1

Background

Understanding the functions of the brain while simultaneously learning how the brain func-

tions is a core goal of modern neuroscience. Historically, systems neuroscience has focused

on the microscale, examining the structure and dynamics of individual neurons or neural

population activity. The combined activity of thousands of neurons could be argued to be

uninformative, i.e., potentially all functionally relevant activity occurs only at the lowest

point of reduction along the hierarchy of neural complexity. However, research suggests

that there is organized and functionally relevant activity at multiple scales. Mesoscale and

macroscale oscillatory behavior, the periodic fluctuations in neural population activity in-

fluences the lower scales of activity and appears to be functionally relevant [1–3]. Alongside

this, recent ideas on the philosophy behind studying macroscale neural activity suggests we

could approach the macroscale with the perspective of weak emergence[4, 5]. An expecta-

tion of weak emergence suggests the combined activity of lower scale units is informative

in itself and lends itself to analysis that would be considerably more difficult to perform

when including all lower scale units (while we expect that analysis to still yield the same

results). This multiscale organization of brain structure and dynamics inherently motivates

examining the brain both at the scale of individual neurons and their circuitry and also at
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the scale of populations of neurons and their connectivity through white matter bundles.

The ability to examine the macroscale neural activity non-invasively was advanced greatly

with the advent of electroencephalography in the early 1920s through the efforts of Hans

Berger. Since then, with improved technology (magnetoencephalography - MEG, functional

Magnetic Resonance Imaging - fMRI and Diffusion weighted imaging) alongside improved

methodology and computing resources, systems neuroscience has been moving towards a

deeper understanding of macroscale structural and dynamical organization.

The need for an effort to build a human connectome, a mapping of connections between brain

areas, was first motivated in detail in 2005 [6]. Since then there have been multi-lab initiatives

[7, 8] aimed at collecting the data that would permit the elucidation of the human connectome

- both structural (through DWI/DTI) and functional (fMRI/MEG/EEG). The structural

connectome [6], the set of axonal bundles that connect macroscale neural populations, is

the pathway that organizes functional activity and leads to the presence of a functional

connectome. The organization of functional activity can be expected to vary however, on

different time scales, both on the rapid timescale delineated by axonal conduction velocities

(1-40 milliseconds) to the slower timescale imposed by changing Na+ and K+ concentrations

[9], neuromodulatory systems [10] and the network structure [11]. Different modalities likely

capture distinct aspects of the organization of functional activity, with M/EEG being more

sensitive to rapid timescale activity while fMRI is more sensitive to slower timescale activity.

In our work we examine both M/EEG and fMRI functional connectivity, the relationships

in neural activity between brain areas, and identify the aspects of functional connectivity

that arise directly from the structural connectivity.
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1.1 Non-Invasive Neuroimaging

1.1.1 EEG/MEG

Electroencephalography or EEG is the measurement of electrical potentials at the scalp gen-

erated by the synchronized post-synaptic currents through predominantly pyramidal neurons

in the cortex [12]. EEG is sensitive to millisecond scale events allowing it access to rapid

fluctuations in neural activity. These neurophysiological signals have intrinsic time scales of

organization, often organized in terms of frequency bands that exhibit distinct behaviors in

different cognitive tasks and clinical disease states. EEG has low spatial resolution given it

measures current that propagates to the scalp by volume conduction through the tissues of

the head. The electric properties of tissues and the details of volume conduction are only be

approximately known.

Magnetoencephalography or MEG measures the magnetic fields generated by synchronous

post-synaptic current sources in the brain. Measurements of MEG are usually conducted us-

ing SQUIDs(superconducting quantum interference device) to improve sensitivity to minute

magnetic fields in a magnetically shielded room to reduce interference. Due to the nature

of magnetic field generation from dipole sources (perpendicular to orientation of the dipole

from the right hand rule) MEG sensors at the scalp are much more sensitive to neural sources

in sulci. MEG is sensitive to millisecond fluctuations in neural activity and has an advan-

tage relative to EEG since magnetic fields are less distorted by the resistive skull and scalp

relative to electric fields [13]. More importantly, the physics of field spread to MEG sensors

is easy to precisely model (in contrast to the EEG head models). MEG still has a low spatial

resolution akin to EEG, due to the separation of the sensors from the current sources in the

brain.
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1.1.2 fMRI

Functional magnetic resonance imaging or fMRI is a measurement technique that has risen

to prominence in cognitive neuroscience in the past three decades. While magnetic resonance

imaging (MRI) has been a mainstay of the medical field for several decades, the discovery

that haemodynamic changes could also be measured using MRI led to fMRI. It measures

a surrogate of increased neural activity (specifically the aggregate synaptic activity rather

than the spiking behavior [14]) - the blood oxygen level dependent signal or BOLD. Imaging

of this signal occurs usually on three dimensional voxels of dimensions in the range of 3x3x3

mm and a seconds time scale. So while BOLD imaging is orders of magnitude slower than

M/EEG, its excellent spatial resolution allows us to see detailed activity across the entire

brain.

1.2 Functional Connectivity

Functional connectivity in macroscopic brain data (fMRI, EEG, MEG) refers to evidence of

statistical dependence between two signals recorded from different areas of the brain [15].

This broad definition encompasses multiple techniques that emphasize different aspects of

the underlying brain activity.

1.2.1 fMRI Functional Connectivity

Functional connectivity measures in fMRI data are based on the correlation between the

BOLD signals averaged over voxels in predefined regions of interest, measuring coactivation

(on a seconds time scale) of neural populations in different regions of the brain. These regions

are specified using parcellations that carve up the brain based on anatomical or functional
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characteristics [16]. By estimating correlations between all pairs of brain regions we define

the functional connectome.

The functional connectome has been examined in both the resting state when a subject is

simply resting in the scanner or in a task state. There are sets of brain areas (sub-networks)

that are coactive consistently within and across subjects, referred to as resting state networks

(RSN) [17, 18]. Examining these RSNs has shown that they are present and show differential

expression during task states [18] suggesting they have functional relevance. This work also

spurred the examination of slow timescale modulations of spontaneous activity in M/EEG

[19, 20] to identify potentially similar sub-networks.

1.2.2 Coherence

M/EEG data is a superposition of oscillatory modes, and as such, it is usually analysed in

the frequency domain rather than in the time domain. The Fourier transformed M/EEG

data is separated into different frequency bands and functional connectivity is examined

in specific bands. Coherence is the most widely used measure of function connectivity in

M/EEG studies. It is the analogue of the squared correlation coefficient, but defined for

complex-valued data - the Fourier coefficients in one frequency band measured at two sensors.

Coherence measures the consistency of relative amplitude and relative phase between the two

sensors [21], which an estimate of the synchronization on a millisecond time scale.

1.2.3 M/EEG Amplitude Envelope Correlation

Another estimate of functional connectivity emphasizing slow timescales in M/EEG is am-

plitude envelope correlation [22]. The goal of this method is to match the time scale of

fMRI. Examining the slow amplitude modulations provides a window on slow activation
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changes in fMRI as visible in M/EEG [23]. This estimate of FC is calculated by taking the

amplitude envelope of bandpass filtered M/EEG signals, down-sampling and estimating the

correlation [19, 24]. Theoretically, correlated amplitude modulations can be independent of

purely phasic relationships in the brain. Amplitude envelope correlations have shown strong

relationships to the BOLD correlations [25]. Several studies have shown that the amplitude

correlations can be decomposed to reveal similar patterns as the RSNs from resting fMRI

BOLD signals, further motivating its analysis [19, 23].

1.2.4 Pitfalls in Functional Connectivity Inference

Volume Conduction and Field Spread in M/EEG

Volume conduction [12] is the instantaneous spread of current from current sources in the

brain through the tissues of the head brain, cerebrospinal fluid (CSF), skull, and scalp to the

EEG sensors measuring potentials on the outer surface of the scalp. From any one source, the

current spread through these tissues generates scalp potentials at many sensors, including

sensors distant from the source. Simulations with approximate volume conduction models

suggest this spread of current may extend as far as 10 cm (or more) in directions tangential to

the scalp surface [12, 26]. An implication is that two sensors may show statistical dependence

due to volume conduction because they are measuring the same active source(s). Functional

connectivity due to volume conduction effects can be expected to be independent of frequency

and be reduced with greater separation distance between electrodes [26, 27].

While MEG is not susceptible to volume conduction effects, it is however susceptible to field

spread. Field spread arises from sensors being distant from the sources they are measuring.

Magnetic field from a source is simultaneously measured at multiple sensors leading to high

spurious functional connectivity [27].
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One method to reduce the impact of volume conduction (field spread) on functional con-

nectivity estimates is to apply source localization techniques. The underlying expectation

is that data being measured by M/EEG arises from dipole sources in the brain. We first

build a head model (discussed in more detail for MEG in Chapter 2 and EEG in Chapter 4)

which informs us of how the current from dipole sources spreads to EEG sensors (or how the

magnetic fields spread over MEG sensors). From the head model we get the forward model

matrix- an estimate of the measured potential/field at each sensor due to a unit source at

each location in the brain. Inverting this matrix to localize activity at sources in the brain

is a difficult problem with a degenerate solution space. Different inverse algorithms tackle

this problem using different assumptions on the statistics of source data (two common as-

sumptions being that sources are linearly independent - yielding beamformer solutions [28],

or that source power should be minimized - L2 norm inverse [29]). We favor the L2 norm

inverse as the beamformer is based on the assumption that there is no correlations between

sources. Unfortunately, even if these assumptions are valid, inverse solutions are not perfect

reconstructions that absolutely remove volume conduction (field spread) effects [30]. In all

inverse solutions, we see leakage effects. This phenomenon occurs when the activity localized

to one source is correlated (due to an imperfect inverse solution) to nearby sources.

Common Inputs in M/EEG and fMRI

Another common pitfall when examining functional connectivity are false functional con-

nections due to common inputs. Two areas that have no shared activity by communicating

with the same brain region will have a non-zero functional connectivity. This connectivity

does not reflect a direct connection, for instance by a corticocortical fiber system, between

populations at the two areas. This implies that we cannot directly infer from high functional

connectivity values a map of connections in the brain. We discuss ahead how using graphical

models can help mitigate this pitfall as well.
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Figure 1.1: Common Input Problem: The common input problem asks whether a relationship
between two sources is driven by the presence of a third source. We represent these sources
here by A, B and C and we see in the top figure that when there is a relationship between A
with B and C, the covariance is unable to distinguish this difference from B being connected
to C whereas the precision does in fact make this difference visible. In the second from top
figure we see that when there is in fact a relationship between B and C this is well reflected
in both covariance and precision. In the bottom set of figures we show how multiple sources
of common inputs can be detected if using the precision.
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1.3 Gaussian Graphical Models of Effective Connec-

tivity

We utilize the statistical framework of Gaussian Graphical Models (GGMs [31]) to estimate

the effective connectivity. At the heart of the GGM is the estimation of precision, inverse of

the covariance. The precision matrix quantifies the statistical dependence between any pair

of random variables independent of linear effects from all other random variables. The non-

zero values of the GGM represent the graph G = (V,E), where V are the random variables

and E is a binary matrix (adjacency matrix) representing the existence of a relationship

between any pair from V , i.e., an edge. All edges of the graph G represent direct effects

between a pair of random variables - which in our work will represent sources of neural

activity in the brain. Therefore, an edge represents the direct effects between brain regions.

We show examples of the covariance, precision and how it represents direct connections in

Figure 1.1.

In this thesis we present the statistical framework that allows us to estimate graphical models

for M/EEG and BOLD data. We apply and extend ideas from the graphical lasso literature

[32, 33] - a method to estimate regularized solutions to the precision. We test the model with

simulations (discussed in Chapters 2 and 3) and demonstrate that the Gaussian Graphical

Model provides veridical estimates of effective connectivity, reducing the influence of common

inputs and (in the case of M/EEG data) minimizing the effect of leakage effects.

1.3.1 Using GGM to Examine fMRI Networks

Past work has explored estimation of graphical models for fMRI data. Several papers advo-

cate for estimation of the BOLD partial correlation (normalized precision) and show that it

is a more consistent alternative to estimating linear correlation[34–36]. Partial correlation
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has been used to identify differences in effective connectivity between disease and control,

identify network structure in resting state and in task states [37–40]. Further, it has been ap-

plied to examine the link between connectivity in fMRI data and the anatomical connectivity

[41, 42]. We further this body of research in chapter 4.

1.3.2 Using GGM to Examine M/EEG Networks

The application of graphical models to estimate M/EEG networks has been less prolific. In

particular, graphical models have been mainly used to examine amplitude envelope based

networks in MEG [43]. More recently [44–46] graphical models have been used to estimate

networks from complex-valued data from different frequency bands which incorporate phase

information. So far, GGMs have only been used to discriminate clinical states, identify

commonalities between fMRI and M/EEG networks and establish characteristics of resting

and task based networks [22, 43, 45]. Little empirical work exists comparing graphical models

of M/EEG data to anatomical connectivity. We do this in detail in chapters 2 and 4.

1.3.3 Applying Graph Theory

Brain networks from graphical models are comprised of hundred or even thousands of con-

nections. To make any sense of this across groups we could do statistical tests and correct for

multiple comparisons. In contrast, graph theory offers an elegant counter approach. Graph

theory examines the organizing characteristics of networks and thereby provides an efficient

summary of the network.

Graph theory while useful to summarize networks depends on appropriate application i.e.

valid assumptions [47]. One assumption when estimating graph theoretic metrics is that

the distance (over the network) between two brain regions is correctly estimated. If we use
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correlation to define a network, distance becomes corrupted due to indirect connections being

present in the correlation. Graphical models on the other hand estimate direct connections

and provide a sensible definition of distance.

In M/EEG, network estimation is made difficult due to common input effects, volume con-

duction/field spread and leakage effects. While using graphical models to estimate networks

goes some way in reducing their impact, noise still affects network estimates. We examine

in chapters 2 whether using graph theory instead as summary statistics helps further reduce

the impact of noise.

1.4 Linking Structural to Functional Connectivity

The set of functional connections during the resting state between all pairs of brain areas

is referred to as the functional connectome. One simple explanation for how the functional

connectome might be generated is that neurons in one area of the brain project axons

that synapse with neurons in another areas facilitating the correlation in neural activity

recorded at the two locations. In practice establishing this simple mechanistic explanation

for MEG/EEG/fMRI functional connectivity has proved immensely challenging.

In the past two decades tools (Diffusion Weighted Imaging + tractography) have been de-

veloped that allow us to non-invasively estimate axonal pathways. The set of all fiber tracts

(axonal pathways) is referred to as the structural connectome. A number of studies have in-

vestigated relationship between the structural connectome and fMRI functional connectivity

([48–52]). Pairs of brain areas without a structural connection have significantly weaker func-

tional connectivity strength [48], supporting a relationship between structural and functional

connectivity. However, across these studies, the structural connectivity explains between 10

- 65 % ([53]) of the fMRI functional connectivity variance across different studies. Some of
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this variability may be the results of using different ways to carve up the cortex into different

brain areas and different measures of fMRI functional connectivity.

Fewer studies have examined the link between structural and functional connectomes in

M/EEG data [54–57]. One study found that structural connectivity explained 23% of the

variance in EEG coherence. Another study found structural connectivity explained 9% of the

variance in EEG coherence. This latter study also showed that statistically, low structural

connectivity was linked to low coherence. Structural connectivity explained 4% [56] MEG

coherence in one study, while in another the structural connectivity explained 20% of the

variance [57] (Spearman’s rank correlation) when functional connectivity was estimated using

amplitude envelope correlations. Some of the variability here lies in the source localization

approach applied, the method of estimation of the functional connectivity and finally, the

frequency band in which functional connectivity is estimated. Consistent with the fMRI

literature, structural connectivity alone could potentially constrain the M/EEG functional

connectivity, but only to a limited extent.

Current theories suggest the functional connectivity is driven both by mono-synaptic and

poly-synaptic connections [49, 58] over the structural connectivity. These theories provide

potential explanations for functional connectivity generation when it is estimated using cor-

relation (or coherence). Correlation by definition (if C is correlated to A and B through

structural connections, A and B are also correlated) permits poly-synaptic pathways to in-

fluence the functional connectivity strength, however, it is difficult to distinguish this from

the pitfall of common inputs. One polysynaptic generative mechanism for the functional con-

nectivity is that of Gaussian noise becoming correlated due to the anatomical connectivity.

Given this model, we can use the graphical models to examine the effective connectivity which

are ”direct” connections between nodes representing potential connections in the structural

connectome. A strong effective connectivity estimate implies that the relationship between

two areas exists independent of their relationship to other potentially intermediary areas,
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which may better reflect the wiring of the brain, and be more closely related to the structural

connectome.

1.5 Structure of the Dissertation

In Chapter 2, we build methods to estimate graphical models for MEG frequency domain

data, examining features of MEG data that emphasize slow and fast timescales of neural dy-

namics. We know that several problems make estimation of statistical dependence difficult

- leakage effects and common input. We test the efficacy of effective connectivity and graph

theory in approximating structure through extensive simulations. We apply our understand-

ing to MEG data to see the ability to detect the influence of the structural connectome within

individuals. We follow up this study by looking at the how variance in structural connec-

tivity modifies the functional and effective connectivity across subjects. We use the case

of stroke patients, who show heterogeneity in structural connectivity due to lesions in the

brain, to examine the relationship of altered structural connectivity to effective connectivity

as estimated with fMRI. Finally, we examine the same relationship, structure to function in

stroke patients, but for two different subgroups of stroke patients - subacute (< 1 month post

stroke) and chronic (>2 months post stroke) when using EEG effective connectivity. Our

work informs us of how structural connectivity constrains function across different spatial

and temporal scales.
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Chapter 2

Contribution of the Structural

Connectome to different Temporal

scales of MEG connectivity

2.1 Introduction

Functional connectivity (FC) in macroscopic brain data (fMRI, EEG, MEG) refers to ev-

idence of statistical dependence between signals recorded in two different locations. This

broad definition encompasses different measurement techniques, signal processing methods,

and statistical models that emphasize different aspects of the underlying brain activity. MEG

signals are sampled on a millisecond time scale capturing aggregate synaptic activity in pop-

ulations of neurons. These neurophysiological signals have intrinsic time scales of dynamics,

usually organized in terms of frequency bands that exhibit distinct behaviors in different

cognitive tasks and clinical disease states [13, 59–62].

Functional connectivity in MEG is usually estimated within frequency bands, using a vari-
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ety of methods that prioritize different time scales of dynamics. A widely used measure is

coherence. Coherence is a measure of consistency of relative phase and relative amplitude

within a frequency band between signals recorded in two areas. Consistent phase difference

between two signals is equivalent to a consistent time delay between the signals. For in-

stance a consistent 45 degree phase difference between two signals at 10 Hz corresponds to

a 20 ms delay. Coherence has long been interpreted as reflecting consistent axonal delays

along white-matter tracts of the brain [12, 27]. The communication through coherence the-

ory suggests that the brain uses consistency in phase between areas to help in supporting

communication between them, as this consistency in phase helps alignment of spikes and

thereby communication between areas [2].

More recently, there have been a number of studies that investigated correlation of the

amplitude envelope of MEG signals. The amplitude of an oscillatory signal only varies at

time scales slower than period of the oscillations. Thus amplitude correlation investigates

statistical structure at a much slower timescale on the order of 100s of milliseconds, or even

seconds. The motivation for investigating correlation of the intensity of the signals (while

ignoring the precise phase synchronization) is to match the time scales of MEG functional

connectivity to fMRI functional connectivity. Indeed a number of studies have shown that

correlation of the slow fluctuations of the MEG amplitude envelope in different frequency

bands show similarities to fMRI resting-state networks [19, 23, 24, 63].

Studies of MEG functional connectivity commonly assume that correlation between brain

areas is constrained by axonal pathways between regions (structural connectivity). However,

several studies that have investigated the relationship of electrophysiological (MEG/EEG/ECoG)

functional connectivity with structural connectivity have found variable results[56, 57]. One

study found that group averaged structural connectivity explains only 4% [56] MEG func-

tional connectivity (estimated using coherence) in one dataset while in another study [57],

using the amplitude envelope and Spearman’s rank correlation, structural connectivity ex-
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plained 20% of the MEG functional connectivity variance. There are a number of potential

causes for the variability across studies. First, all MEG (or EEG) based functional connectiv-

ity studies makes use of source localization algorithms that vary in approach and parameter

choices across studies. Second, the frequency band(s) in which functional connectivity is

estimated varies across studies. And finally, the statistical metric of functional connectivity,

emphasizes different types of dynamics, e.g, amplitude or phase correlation.

While previous studies indicate a potential relationship between structural connectivity and

MEG functional connectivity, the relationship is a weak one. Structural connectivity provides

a substrate for communication over axonal fiber bundles with time delays on the order of

milliseconds (cite) to conduct action potentials. Thus, on theoretical grounds, phase based

estimates of connectivity, such as coherence, would be expected to have a close relation-

ship to structural connectivity. However, empirically, MEG amplitude correlation is more

closely related to fMRI functional connectivity [23, 24] which has been shown to correlate

with structural connectivity [48, 53]. Both measures are susceptible to leakage effects and

common input effects which can lead to the presence of false positive connections and poor

estimates of connection strengths. Leakage effects occur when two sources in the brain aren’t

completely distinguishable via MEG source localization due to the nature of their location

and orientation. Leakage effects show up as spurious correlated source activity. A second

issue is common input effects - two sources receiving (either simultaneously or at a delay)

activity from a third source will show correlated activity without any structural connection.

An accurate estimate of functional connectivity that reduces the influence of common inputs

and leakage effects is crucial for studies examining the nature and dynamics of brain function

using MEG, and by extension, increase the alignment of connectivity from MEG with the

structural connectivity. Effective connectivity or model based connectivity estimates such

as graphical models to estimate the precision (inverse of the covariance) potentially offer a

better connectivity estimate which is more closely aligned with the underlying structural
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connectivity. Precision estimates the conditional dependence, i.e., the strength of statistical

dependence between two sources when accounting for variance shared with all other sources,

thereby estimating ”direct” connections between two sources. Estimating conditional depen-

dencies reduces the problem of common inputs (and by extension false positive connections).

In this study we estimated two different graphical models for MEG effective connectivity at

distinct time scales. The complex-valued Gaussian graphical model (cGGM) for millisecond

time scale functional connectivity estimates effective connectivity for complex valued data

accounting for both amplitude and phase [46]. The amplitude Gaussian graphical model

(aGGM) estimates effective connectivity from the real-valued amplitude envelope and ac-

counts for correlated amplitude fluctuations at slower time scales [43]. Both graphical models

shared a common underlying structure based on the structural connectome. The complex

valued Gaussian graphical model (cGGM) can be used to estimate the summary statistic of

partial coherences on each edge, and amplitude Gaussian Graphical models to allow us to

estimate the summary statistic of partial correlation on each edge. Partial coherence is an

estimate of the conditional dependence structure between brain areas when accounting for

shared variance across both amplitude and phase while partial correlation accounts only for

amplitude. In empirical tests, Colclough et al. [64] showed that partial coherence appeared

to be a slightly more consistent an estimate of connectivity over multiple sessions for the

same subject relative to partial correlation. Further, both partial coherence and partial cor-

relation appeared to be more consistent across multiple sessions relative to other measures

of effective connectivity.

Networks from Graphical modelling provide a better approximation to the definition of an

edge (connection) of a brain network needed for graph theoretical analysis[47]. Examina-

tions of the brain network structure using various graph theoretic metrics have helped us

understand brain function better (e.g., which areas are well connected? how are areas func-

tionally organized?[49, 58, 65]) while also helping generate potential biomarkers for clinical
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groups [60]. Graph theoretic metrics provide spatially reduced descriptions of networks that

retain information about the structure of its connectivity. We see the process of representing

a network using source level graph theoretic metrics as being akin to identifying summary

statistics for probability distributions. These are summary statistics for connectivity in-

formation. We expect that by reducing the network using graph theoretic metrics we will

further minimize the influence of leakage effects and common inputs and identify critical

features of the networks estimated from the graphical models that are closely related in

structural and functional connectivity.

In this paper, we examine different ways to summarize MEG networks between sources in

the brain. We identify which methods of modeling effective connectivity provide greater

alignment to structural connectivity in simulations. We examine for the first time (to our

knowledge) which frequency bands and what statistical features of MEG data (phase ver-

sus amplitude) are more tightly facilitated by the structural connectivity. We expect that

effective connectivity (from graphical models) provides estimates of direct connections be-

tween sources which reflect the structural connectivity more closely. Additionally, we exam-

ine through simulations if using graph theory leads to increased accuracy in characterizing

structural connectivity relative to the edge weights from the full network (from partial co-

herence or partial correlation). The central question of this study is determine which aspects

of network topology are better preserved after source localization and effective connectivity

estimation across a range of signal-to-noise ratios and to apply this knowledge to examine

networks in MEG data.
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2.2 Methods

2.2.1 Modeling Framework

Overview

A template of brain connectivity was developed for use in the simulation studies and MEG

data analysis presented here. This model is based on tractography analysis of the group

average template of DTI constructed from 842 subjects from the HCP 842 data set (Yeh et

al., 2018). We combine these streamlines with the Lausanne parcellation [66] to define 129

regions of interest (ROI) and a structural connectivity model. The Lausanne parcellation

was also used to define a source model for MEG simulations and inverse solutions.

At the core of the simulation and data analytic strategy presented here is the notion that

the structural connectivity model constrains the statistics of MEG signals. We develop two

multivariate Gaussian models of effective connectivity to constrain the source activity: (1)

complex-valued Gaussian graphical model, where the structural connectivity determines the

precision (inverse covariance) of the complex-valued multivariate normal distribution that

generates the amplitude and phase of source activity in a frequency band, and (2) amplitude

Gaussian graphical model, where the structural connectivity determines the precision of a

multivariate normal distribution that generates the amplitude envelope of source activity in

a frequency band. The first model is a generative model of coherence, as widely used in

EEG and MEG studies ([21, 26, 27]). The second model is a generative model of amplitude

correlation which has been recently introduced in the MEG literature, as an analog of fMRI

functional networks [19, 24, 67].

19



Figure 2.1: Structural Connectome: We show the streamlines derived from [68] on the right
and the structural connectome for the 114 areas of the Lausanne parcellation on the left.
We show the binarized SC, with any non-zero edge being assigned a weight of 1.

Structural Connectome (SC) Model

We used streamlines generated with deterministic tractography by Yeh et al. [68] using

the HCP842 dataset [8] transformed to the MNI152 template brain pulled from FSL. We

transformed the Lausanne parcellation [66] of 114 cortical and 15 subcortical ROIs to the

MNI152 template brain and generated a volumetric representation for each ROI using the

easy lausanne toolbox (Cieslak, 2015). Each streamline was approximated by a single 100-

point cubic spline using code adapted from the along-tract-stats toolbox [69]. By identifying

the streamlines which ended in a pair of ROIs we were able to create the structural connec-

tome for the Lausanne parcellation. Each streamline only connected a single pair of ROIs.

Any edge Wijwas defined as (for ROIs i and j connected by streamlines s of length l):

Wij =
∑
sij

1

lij
(2.1)
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We weight the streamlines by length to reduce the bias of tractography algorithms towards

longer streamlines [70]. From this process we built the 129 ∗ 129 weighted structural connec-

tome with 1132 edges. We reduced this matrix to 114∗114 with 720 edges (see Figure 1) after

removing all the subcortical structures and limiting interhemispheric connections to known

homologous white-matter tracts. This latter step helped remove potentially noisy estimates

of connections where streamlines intersected and passed outside the cortical surface before

reaching the terminal point in a brain region. The resulting model of structural connectivity

shown in Figure 1 is referred to as the structural connectome (SC). This model is incomplete

in that it does not include thalamocortical projections, and thus there maybe functional

connectivity that is a result of structural connections outside of this SC. Our estimation

procedure described in the next section allows for such connections.

Effective Connectivity Model - Complex Valued Gaussian Graphical Model (cGGM)

The template of structural connectivity derived from HCP 842 (Yeh et al., 2018) gives

us potential constraints on the connection strengths between ROIs, and more importantly,

which ROIs are not connected by white-matter tracts observable with DTI. In order to use

this information to simulate current source activity and to model MEG data, we assume

that the vector of source activity (Z) at all ROIs in one frequency band are samples drawn

from a complex-valued multivariate Gaussian random process (where Φ is the precision):

Z ∼ N(0,Φ) (2.2)

The band-limited MEG signal is characterized by samples of amplitude and phase, or equiv-

alently, by analytic signal coefficients with real and imaginary parts corresponding to sine

and cosine components of the signal in each epoch. For frequency domain data that are

complex-valued, we make use of a complex-valued multivariate normal distribution.
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The complex-valued multivariate Normal for a zero-mean (where E(Z) = 0) complex-valued

Gaussian process [71] is defined as:

ρ(Z) =
1

πndet
1
2 (Θ)

exp (−1

2
ZΘ−1ZH) (2.3)

where

Θ =

Rzz R̃zz

R̃H
zz Rzz

H

 (2.4)

and

Rzz = E[zzH ]; R̃zz = E[zzT ] (2.5)

The key parameter in this model is the covariance matrix Θ and its inverse, the precision

matrix Φ = Θ−1. As defined in equation and , the covariance matrix for complex valued

data is composed of the familiar cross-spectrum Rzz and the complementary cross-spectrum

R̃zz. Most spectral analysis methods only make use of Rzz and implicitly assume circular

symmetry, i.e., Rz1z2 = 0 (Schrier and Scharf, 2010 [71]). In this case, the complex-valued

data is labeled as proper. With the assumption of circular symmetry, we can parameterize

the complex-valued Gaussian using the precision defined as the inverse of the cross-spectrum,

Φ = Θ−1 = Rzz
−1.

Each value in the precision matrix Φ is the conditional covariance between any two variables

(here, sources representing two ROIs) given the other variables (here, sources representing all

other ROIs). The precision removes linear effects from all other sources from the covariance

between any pair of sources, and provides a model of effective connectivity between sources.

For any pair of sources, if the precision is zero, there is no need for a direct connection
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between the sources in order to account for observed coherence (functional connectivity).

Such apparent coherences arise from connections mediated via other sources in the model.

In our model, the precision matrix Φ captures the statistics of effective connectivity and

has nonzero entries only at edges (pairs of ROIs) that have a connection estimated from

DTI in the structural connectome (SC). We are assuming that in each frequency band the

connectivity we estimate arises from random fluctuations at each area becoming correlated

by the structural connectome. This generative model of the source activity giving rise to

MEG signals is used in the simulation studies. In the MEG data analysis, we estimate the

source precision matrix Φ from the MEG data in each frequency using graphical modeling

techniques that inform the precision estimate with the SC estimated from the HCP-842, but

allowing the precision values to be determined by the data.

Effective connectivity model - Amplitude Gaussian Graphical Model (aGGM)

We use the structural connectivity to constrain potential connections due to correlated ampli-

tude envelope fluctuations between ROIs, thereby defining the generative model of amplitude

correlation. We assume that the vector of source activity amplitudes (X) at all ROIs in one

frequency band are samples drawn from a real-valued multivariate Gaussian random pro-

cess (where Φ is the precision with non-zeros entries where there are structural connectome

connections):

X ∼ N(0,Φ) (2.6)

When examining amplitude, we look at samples X of amplitude estimates from the analytic

signal of bandpass filtered MEG signal across epochs. So for amplitude data we use a

real valued multivariate normal distribution as characterizing the fluctuations of amplitudes

in different frequency bands. And the multivariate normal for a zero mean, i.e., (where
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E(X) = 0) is defined as:

ρ(X) =
1

πndet
1
2 (Θ)

exp (−1

2
XΘ−1XT ) (2.7)

This distribution is fully parameterized by the precision matrix Φ = Θ−1. Each value in

the precision matrix Φ is the conditional covariance between the amplitude envelope of any

two sources given the other sources. The precision provides a model of amplitude envelope

effective connectivity between sources. For any pair of sources, if the precision is zero, there

is no need for a direct connection between the sources in order to account for observed

amplitude envelope correlation (functional connectivity).

In our graphical model of amplitude fluctuations, the precision matrix Φ captures the statis-

tics of effective connectivity and has nonzero entries only at edges (pairs of ROIs) that have

a connection estimated from DTI in the structural connectome (SC). We are assuming that

in each frequency band the connectivity we estimate arises from random fluctuations in am-

plitude envelopes at each area becoming correlated by the SC. In the MEG data analysis

(both for the simulation and real data), we estimate the source precision matrix Φ in each

frequency band using graphical modeling techniques that inform the precision estimate with

the SC estimated from the HCP-842, but allowing the precision values (edge weights) to be

determined by the data.

MEG Forward Model

The MEG forward model is an estimate of the magnetic field measured at MEG sensors

above the scalp generated by current sources located in the brain. For both the simulations

and the data analysis presented in this paper, we made use of the orthogonal pair of planar

gradiometer coils at 102 locations above the scalp (shown in in Figure 2.2). Planar gra-

24



Figure 2.2: MEG Forward Model: We show the brain, with x, y, z oriented dipoles for
each brain region of interest, the CSF, skull and scalp boundaries and the location of MEG
gradiometers with respect to the scalp for the fsaverage head. Each of 102 red dots indicates
the location of a pair of orthogonal planar gradiometers.

diometer coils have higher spatial resolution than magnetometer coils [72], which we did not

consider in this study.

The head model was developed from the fsaverage MRI images from the Freesurfer tool-

box [73]. The tesselated cortical surfaces for right and left hemisphere were extracted

using the recon-all pipeline in Freesurfer and then downsampled to 81000 (81k) vertices

(mris decimate from Freesurfer). We used this surface to constrain dipole orientation and

define the volume of the model corresponding to the cortex. We generated the inner skull,
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outer skull and scalp surfaces approximated with 2562 vertices from the fsaverage head gen-

erated using the mri watershed function. Using these surfaces, and with the conductivities

of scalp, CSF and brain set at 1 S/m and the skull at 0.025 S/m (i.e., 40 times lower conduc-

tivity), we used OpenMEEG [74] to compute a Boundary Element Model (BEM) to generate

the MEG forward matrix. Each row of the MEG forward matrix is the magnetic field gra-

dient detected across all 204 gradiometers from a unit current density source at one of the

81k cortical surface vertices (expected to be maximum in the part of the cortex immediately

below the gradiometer).

Using the Lausanne parcellation for 114 cortical ROIs [66], we divided the cortical surface and

identified vertices belonging to each ROI using the volumetric parcellation of the fsaverage

brain. Using this organization of vertices we then reduced the representation for each ROI

down to a set of 3 dipoles in the x, y and z directions at a single location. The location

for each ROI (Loci for the i’th ROI) was selected by taking a weighted average of vertex

locations (Vij for the j’th vertex of the i’th ROI), using the following equation (where c is

channels and W represents the number of vertices in an ROI):

Loci =
1∑

j=1:W

∑
c=1:256 L

2
ijc

∑
j=1:W

((
∑

c=1:256

L2
ijc) ∗ Vij) (2.8)

In this way we reduced our source model to 114 source locations, with 3 sources at each

location in the canonical x,y, and z directions. We computed a new MEG forward matrix

(M ) of dimension 204 * 342 using OpenMEEG. This MEG forward matrix approximates

the (linear) mixing of source activity at the gradiometers to generate the measured MEG

signals, and will be used in the inverse solution discussed in the section on estimation of the

model.

26



2.2.2 Estimation of Effective Connectivity

Overview

The estimation of the complex-valued Gaussian graphical model or the amplitude Gaussian

graphical model from the MEG data proceeds in three steps. First, MEG data is bandpass

filtered into each frequency band of interest. Second, an inverse solution is applied to estimate

the source activity over the observations. After the inverse solution, the Hilbert Transform

is used to estimate amplitude and phase of the signals. The average of the analytic signal

over seconds represents ensemble activity over sources. Third, graphical modelling methods

are used to estimate the precision matrix of a Gaussian graphical model of the effective

connectivity. Graphical modeling involves the choice of regularization parameters and these

parameters are selected by cross-validation. The estimation procedure is tested through a

set of simulation studies discussed in the next section.

Inverse Solution to estimate source activity from MEG

We can represent each sample of the MEG data within a frequency band, after bandpass

filtering, as a vector B of length equal to the number of MEG sensors. The set of samples

of B is related to source activity S of length equal to the number of MEG sources

B = MS (2.9)

where M is the MEG forward matrix. For each participant, we localized activity to the

342 sources by inverting the reduced lead field using regularized minimum norm estimation

(weighted L2 norm [29]) and applying it to data at the scalp. We estimate the inverse M−
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using (where ν is a penalization):

diag(W ) = ||M ||.52 (2.10)

M− = (MW )T ((MW )T ∗ (MW ) + νI)−1 (2.11)

The estimated source activity S = M−B. We identify the time series for the three dipoles

along the x, y and z directions.Using a singular value decomposition at each ROI we identified

the optimal orientation of the dipole as the first singular vector. Using the first singular vector

at each ROI, we reduced the lead field from 204x342 to 204x114. This reduced lead field

was the individual specific (adaptive) lead field. We source localized data to the 114 ROIs

for the individual lead field.

Frequency-domain transformation

Source localized data at each ROI is Hilbert transformed to yield the analytic signal A which

is complex valued. We reduced A by averaging either A over each second of data to get an

ensemble of complex-valued data that capture the amplitude and phase of the signals or |A|

(absolute value of A) to get an ensemble of the real valued amplitude data.

Adaptive Graphical Lasso using SC-QUIC

The graphical lasso [32] is a method that has been applied in multiple fields in the past

decade, from genomics [75], to fMRI functional connectivity ([76], [37]) and climate models

[77]. This is a method used to identify a sparse approximation to the precision matrix. In

this way, estimates in the precision are more robust for the values that are retained. In order

to apply the lasso, we use the penalized likelihood function as follows ([33]) to estimate the
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precision (where Θ is the covariance or cross-spectral density):

Φ̂ = argminΦ�0

(
−log(detΦ) + tr(ΘΦ) + λ

∑
j<k

|Φjk|

)
(2.12)

The penalization parameter λ in the graphical lasso determines the important set of cGGM/aGGM

precision values. The output of the lasso from Equation 4.12 is the precision matrix Φ̂, which

represents directly the complex Gaussian Graphical (cGGM) or amplitude Gaussian Graph-

ical model. Our purpose was to make use of the lasso that takes advantage of our prior

knowledge of the structural connectome (SC) which are the likely locations of nonzero preci-

sion values. We made use of the lasso optimization from QUIC ([78]) using a matrix penalty

term (this process is also called the adaptive lasso - [79]) determined by the SC with edges

W (and λ1 = λ2):

Φ̂ = argminΦ�0 (2.13)−log(detΦ) + tr(ΘΦ) + λ1 ∗
∑

j<k;Wjk∈SC

|Φjk|+ λ2 ∗
∑

j<k;W jk 6∈SC

|Φjk|

 (2.14)

Note that in the limiting case of λ1 = λ2 we are using the same likelihood as the graphical

lasso. Past work along these lines [43] has used the SC weights directly to determine the

penalization weighting, which imposes more structure that appropriate. We expect that the

SC weights will potentially constrain connectivity strengths. However, we do not expect

the SC strengths to map directly onto the effective connectivity strengths due to individual

differences, and variations within individuals across brain states. By using a template, we are

assuming a common SC across participants, so the expected weight may differ. Further, the

SC can be expected to be used differently across frequency bands yielding different effective
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connection weights. For this reason we use the binarized SC to determine the penalization

structure. We estimated the penalization values λ1 and λ2 using cross validation as described

in the next section.

By optimizing the above penalized likelihood, we leveraged the information in the SC as

a prior for our lasso estimate. The output of the lasso when optimizing Equation 3.3

is the (c/a)GGM. We derive our graph G with vertices V = 1, 2, ...C and edges West =

Gij = 1, i, j ∈ V from the (c/a)GGM based on the non-zero values in Φ̂. The final precision

matrix Φ̃ is estimated under the Gaussian likelihood for the set of edges W est defined by

the graphical model using the function ggmFitHtf (PMTK3 toolbox [80]) which optimizes

(unpenalized Gaussian log-likelihood):

Φ̃ = argminΦ�0;|Φ|>0=G − (log(detΦ) + tr((Θ + δ ∗ I)Φ)) (2.15)

Since Θ (covariance) is usually rank deficient, we add a small value (δ) along the diagonal

to make it full rank. We define delta as 0.001 times the maximum value along the upper

triangle of the covariance.

Cross-validation

The adaptive graphical lasso imposes the structural connectome (SC) onto the functional

data potentially allowing for more robust reconstructions of the precision. We tested whether

the adaptive graphical lasso produced estimates of the precision that show reduced error

relative to applying the graphical lasso. Note that applying the graphical lasso would be

equivalent to having the penalization inside and outside the SC be equal i.e. λ1 = λ2. We

estimated the appropriate value for λ1 and λ2 using cross validation.

We split the MEG data (both simulation and real data) into four contiguous pieces of 120
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samples each. We estimated the precision Φ̃i on one segment of the data (i) and estimated

the deviance when using this precision as the inverse for the covariance Θj for all the other

segments j of the data (and vice versa). Deviance was estimated as:

Dev =
∑
i=1:4

∑
j=1:4;j 6=i

(−log(det Φ̃i) + tr(ΘjΦ̃i)) (2.16)

We found that (in the majority of cases), both in simulation and in data, using the prior of

the SC proved useful and reduced cross validated deviance relative to using graphical lasso

directly, i.e., the minimum cross-validated deviance always occurred with λ1 < λ2.

Summary Statistics - Partial Coherence and Partial Amplitude Correlation

In every frequency band, or for each iteration of our simulation, we estimated two graphical

models. We estimated the complex Gaussian Graphical model to estimate the precision

for complex valued data incorporating amplitude and phase and the amplitude Gaussian

Graphical model for the real valued amplitude data. For the cGGM we estimate the partial

coherence (PC) as a summary statistic [81]:

PCz1z2 =

∣∣∣∣∣ Φz1z2√
Φz1z1 ∗ Φz2z2

∣∣∣∣∣
2

(2.17)

For the aGGM we estimate the amplitude partial correlation (APC) as a summary statistic

as (assuming the precision matrix Φ here is the output from estimating an aGGM):
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APCx1x2 =

∣∣∣∣∣ Φx1x2√
Φx1x1 ∗ Φx2x2

∣∣∣∣∣ (2.18)

Summary Statistics - Graph Theory

In silico we compare the accuracy of using the estimates for PC and APC relative to us-

ing reduced characteristics of networks derived from graph theory. Graph theory being a

summary of the network potentially boosts the accuracy in estimating network character-

istics. We derive our graph G with vertices V = 1, 2, ...114 and edges West = Gij = PCij

or APCij, i, j ∈ V from the graphical model based on the non-zero values. We estimate

graph theoretic metrics using the Brain Connectivity Toolbox [82]. We make use of several

measures in this study:

1. The basic measure of a network is the degree of a node (connectivity), that is, the

number of edges a node shares with other nodes in an undirected graph. This measures

how many nodes can communicate with any given node.

2. The local integration of functional clusters of the network is measured by the clus-

tering coefficient. The clustering coefficient is the ratio of the number of triangles

to number of triples in a network and helps give an estimate of how often nodes one

degree apart are connected to one another.

Ci = number of triangles connected to node i
number of possible triangles centered on vertex i

(2.19)

C = 1
n

∑
iCi (2.20)

3. A metric that describes the global segregation of the network is the path length.
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Path length (L) is the average shortest path (d) between all pairs of nodes.

L =
1

1
2
n(n+ 1)

∑
i≤k

dij (2.21)

4. Closeness Centrality uses the path length matrix between every pair of nodes to

define centrality. The closeness centrality for a node is the average path from it to all

other nodes in the largest connected network. It is defined as:

CCent =
N∑

j=1:n Lij

(2.22)

5. Betweenness Centrality is an estimate of how central a node is based on the number

of shortest paths it participates in. A node which lies on more shortest paths in a

network has a higher betweenness centrality.

6. Eigenvector Centrality is an estimate of the closeness of a node to nodes that are

strongly connected to the rest of the network.

The closeness centrality and betweenness centrality can only be estimated for a connected

network. Some reconstructed partial coherence and partial correlation networks weren’t

fully connected. When the network had multiple connected components we selected the

largest connected component and estimated closeness and betweenness centrality for that

component alone. In the majority of cases this component tended to include over 100 (out

of 114) sources.
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2.2.3 Simulations

Overview

We simulate effective connectivity from the structural connectome by assuming that the

structural connectome weights constrain the precision matrix for a circularly symmetric

complex-valued multivariate normal distribution. In the simulations, we generate novel

networks with random weights for edges. While the edge locations are always retained, we

randomized the weights on the edges by shuffling the original weights across edges. Each

edges was then multiplied with a uniform random value between {−1, 1}. Finally, each edge

is assigned a random phase based on sampling from a uniform distribution for conduction

velocities between {4, 14}m/s applied to estimated streamline lengths [12]. We then generate

random weights for the diagonal and ensure positive definiteness of the precision matrix. This

is the complex valued, circularly symmetric precision matrix (Φ) representing the precision

matrix for a frequency band. We match the data analysis for real data by working with 4

epochs of 120 samples each when estimating the appropriate penalization for the adaptive

graphical lasso using cross validation.

Cross Spectral Density and Amplitude Covariance

Using the previously defined precision, we can generate the cross spectral density (covariance)

as its inverse (Θ = Φ−1). As the CSD has a real-valued equivalent[71],treating real and

imaginary components as separated variables governed by the single covariance structure,

we sample 480x114 complex Gaussian values using the Matlab function mvnrnd operating

on the equivalent real-valued covariance matrix. The complex-valued samples are used to

estimate the cross spectrum (covariance) Θ̂ and its inverse, the precision Φ̂). We normalize

the precision to get the partial coherence following equation 2.17.
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We get the amplitude estimates by taking the absolute value for all 480x114 samples i.e.

Xamp = |X|. Using this data we estimate the original amplitude covariance and invert

it to estimate the amplitude precision matrix. The normalized amplitude precision is the

amplitude partial correlation (see Eq. 3.7) .

The estimated source partial coherence and amplitude partial correlation at this stage serve

as the optimal solutions if we were directly measuring sources. We compare all reconstructed

estimates (after forward modeling data, source localization and adaptive graphical lasso) to

these matrices.

Forward Solution and Source Localization

As described earlier we built our MEG forward matrix from 114 sources using the fsaverage

head projecting to MEG gradiometers. We simulated sources of different orientations on

every run of our simulation. Complex-valued data (Z) is projected using this forward matrix

(see Eq 2.9) to the sensors. Noise is added to all sensors while controlling SNR, estimated

as (C is sensor covariance, and N is noise covariance):

SNR = 10 ∗ log10(
trace(C)

trace(N)
) (2.23)

We examined reconstruction of networks with SNR of approximately 1, 5, 10, 20, 30 and 50

dB. Source localization was performed using weighted L2 norm inverse solutions as discussed

in section 2.2.2. We generated inverse solutions across a range of penalizations and examined

correlation between reconstructed cross spectrum and original source cross spectrum. We

chose the optimal penalization based on the value that yielded maximum correlation between

the reconstructed cross spectrum and original source cross spectrum.
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Estimating Partial Coherence and Partial Correlation

After source localization, we have 480 samples of analytic signal at 114 sources. Using this

data we estimate the CSD and the amplitude covariance which serves as the input to the

adaptive graphical lasso. To run our structural connectome (SC) based models, we need to

decide on two penalization values: penalization inside the SC edges - λ1 and penalization

outside the SC edges - λ2. We decide these values based on cross validation. This procedure

is discussed in detail in the section on Cross validation.

Estimating Accuracy of Network Reconstruction

We examined reconstruction error for both sets of graphical models (partial coherence and

partial correlation) and error of graph theoretic metrics. Reliability of effective connectivity

reconstruction was assessed in two ways. First, we examined the sensitivity and false dis-

covery rate in simulations since we possessed a ground truth of the structural connectome

(SC) that give rise to the observed covariance. Sensitivity was estimated as:

S =

∑
(West ∈ WSC)∑

(WSC)
(2.24)

Sensitivity tells us the ratio of edges recovered within the structural connectome relative

to the total number of SC edges. A higher value of sensitivity indicates we are able to

recover more edges from the SC. Note that the relevance of using sensitivity as a measure

of performance when we have biased our estimates with the SC comes from the virtue of

deciding the penalization values based on cross validation. In our procedure, it is inherently

possible for there to be a effective connectivity model identified by the adaptive graphical

lasso that does not use the SC prior at all, i.e. λ1 = λ2 is the optimal solution (minimum

deviance in cross-validation).
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We also examined the false discovery rate or FDR, which was defined as:

FDR =

∑
(West 6∈ WSC)∑

(West)
(2.25)

FDR is the ratio of number of false positive edges estimates, i.e. edges outside the SC,

relative to the total number of edges being estimated. An FDR of 0.5 indicates that of the,

say 100 edges estimated, 50 edges were outside the SC. Note that there is a difference in

interpretation of the FDR in simulations vs in real data. While in simulations, we know the

ground truth (SC), in real data, there is the influence of thalamocortical connections and

neuromodulatory systems which can lead to an increased ”False Discovery Rate”. Thus, in

data the FDR can be (potentially) interpreted as edges necessary to the model rather than

directly as false positives.

We also examined reconstruction of original connection weights. We estimated the Pearson

correlation between the Fisher r-to-z transformed original, sampling based estimate of the

partial coherence/correlation with the Fisher r-to-z transformed reconstructed estimate over

the set of SC edges as well as edges estimated (West ∪WSC).

Finally, we used Spearman rank correlation to correlate the different graph theory metrics

estimated from the original and reconstructed networks.

2.2.4 Application to MEG data

MEG Data

We wanted to examine whether we saw similar results as we did in our simulation when we

applied our methods to real data. Data collection and sharing for this work was provided

by the Cambridge Centre for Ageing and Neuroscience (CamCAN). CamCAN funding was
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provided by the UK Biotechnology and Biological Sciences Research Council (grant number

BB/H008217/1), together with support from the UK Medical Research Council and Uni-

versity of Cambridge, UK. This data was obtained from the CamCAN repository (available

at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/), (Taylor et al., 2016, Shafto et al.,

2015).

The MEG data was collected using a 306 sensor VectorView MEG system (Electa Neuromag,

Helsinki). The 306 sensors consisted of 102 magnetometers and 204 planar gradiometers. As

planar gradiometers have much higher spatial resolution than magnetometers, we focused

the analysis in this paper on the planar gradiometer data. The data were sampled at 1000 Hz

and highpass filtered at 0.3 Hz. This data was run through temporal signal space separation

(tSSS, Taulu et al., 2005; MaxFilter 2.2, Elekta Neuromag Oy, Helsinki, Finland) to remove

noise from external sources and to help correct for head movements (location of the head

was continuously estimated using Head Position Indicator coils). Maxfilter was also used to

remove the 50 Hz line noise and also to automatically detect and reconstruct noisy channels.

Spectral Analysis

We extracted 480 seconds of resting state gradiometer data for individuals aged between

30 to 40 years of age. This yielded 91 subjects (50 male). We first applied a bandpass

filter between 0.5 to 100 Hz and a notch filter at 50 Hz to remove line noise. We then

bandpass filtered data (elliptic filters with stop band set to 0.5 Hz below and above pass

band, stopband attenuation set to 100 dB, and passband ripple set to 0.02) into five bands:

delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-29 Hz) and gamma (30-80 Hz). For

each subject, and within each band we optimized the dipole orientation across 114 ROIs as

described in section 2.2.2. Source localized data was Hilbert transformed and the analytic

signal A was computed.
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We split the analytic signal A into 1 second epochs so that we have a 480x1000x114 matrix

for each frequency band. As input for estimating the cGGM, the complex valued data we

used was derived by averaging the original complex valued analytic signal over each second.

We split the 480 samples from 114 sources into 4 continuous epochs of 120 samples each

based on the expectation that we would have robust, stationary networks estimable with

120 seconds [83] and this also allowed for extensive cross-validation. As input for estimating

the aGGM, we estimated amplitude envelope data by taking the absolute value of A and

averaging it over 1 second segments. We then followed the same procedure as described

earlier in the section 2.2.2 on Cross Validation before estimating the summary statistics

from the cGGMs as the partial coherence and from the aGGMs as the amplitude partial

correlation. Thus, we had at the end of the analysis for each subject, 5 graphical models

(across all frequency bands) of cGGM and 5 graphical models of aGGM.

Alignment to SC

We examined sensitivity and false discovery rate (FDR) of the estimated cGGM and aGGM

networks across different frequency bands and all subjects. A higher sensitivity and lower

FDR indicates better alignment to the SC. In application to real MEG data its important

to note that unlike the simulation studies FDR in data analysis indicates edges needed to

model the effective connectivity that are not in the structural connectome (SC). This is

to be expected since the SC is an estimate of anatomical connectivity based on a group

average, and that the SC we are using does not include connections mediated by subcortical

structures. These latter connections would appear as edges outside the SC. Thus FDR in the

MEG data analysis is a measure of whether the SC is a good model for effective connectivity

in the MEG data.

In addition, we used the other summary statistics discussed previously - metrics from graph

theory. Using the graph theoretic metrics that were most accurate in our simulations we
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categorized centrality of the cGGM and aGGM networks. We estimated the median cen-

trality across all subjects for the frequency bands with the highest sensitivity in the cGGM

and aGGM networks. We used a Spearman rank correlation to compare it to the estimated

centrality from the weighted structural connectome.

2.3 Results

2.3.1 Simulation

We ran 500 iterations of our simulation where on each iteration a novel network was generated

that represented the complex valued precision in a single frequency band. This precision had

non-zero edges only at SC edges. We then forward modeled data generated from this precision

(480 samples) to the MEG sensors before source localizing it to see the extent to which we

can reconstruct the SC network. We reconstructed the precision using the cGGM and aGGM

before estimating summary statistics. We understood the reconstruction performance of the

full network using sensitivity (what percent of the SC edges were detected?), FDR (of total

edges, how many are false positives?) and correlation of reconstructed weights with the

original weights. We compared the correlation of weights to the correlation of reconstructed

network graph theory metrics with the original network characteristics.

Partial Coherence more sensitive to SC than Partial Correlation

From the reconstructed precision using the cGGM and aGGM, we estimated the partial

coherence (PC) and amplitude partial correlation (APC) respectively. We then estimated

sensitivity, false discovery rate (FDR) and correlation. Sensitivity and FDR are estimated

using the binarized PC and APC (using non-zero edges) and compared to the binarized
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Figure 2.3: Sensitivity and False Discovery Rate in Simulation: We estimated networks using
the cGGM and aGGM at different signal to noise ratios. We compared these networks to
the binarized SC and examined the sensitivity (upper figure) and false discovery rate (lower
figure) between them. cGGM models are more sensitive to the SC across all SNR. cGGM
and aGGM have comparable false discovery rates when the SNR rises above 30 dB.
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1 dB 5 dB 10 dB 20 dB 30 dB 50 dB

PC APC PC APC PC APC PC APC PC APC PC APC
Sensitivity 0.66 0.06 0.65 0.09 0.56 0.08 0.64 0.14 0.76 0.24 0.78 0.48
FDR 0.08 0.46 0.08 0.4 0.05 0.33 0.05 0.16 0.05 0.1 0.03 0.04

Edge Correlation 0.07 0.03 0.14 0.08 0.25 0.14 0.4 0.29 0.58 0.42 0.83 0.65
Betweenness Centrality 0.31 0.25 0.36 0.29 0.4 0.3 0.48 0.35 0.56 0.38 0.72 0.5
Closeness Centrality 0.34 0.24 0.41 0.3 0.47 0.35 0.56 0.42 0.66 0.48 0.8 0.55
Clustering Coefficient 0.15 0.1 0.17 0.11 0.2 0.12 0.18 0.15 0.17 0.15 0.23 0.13
Degrees 0.32 0.18 0.35 0.22 0.41 0.23 0.49 0.28 0.58 0.32 0.73 0.4
Eigenvector Centrality 0.21 0.21 0.27 0.23 0.32 0.27 0.39 0.31 0.47 0.34 0.57 0.37

Table 2.1: Simulation Results: We show the averages across all simulation iterations for the
different metrics computed on both the partial coherence and amplitude partial correlation.

SC. We found that sensitivity, false discovery rate and correlation for both the PC and

APC increased with increasing SNR. We report the average sensitivity, FDR and correlation

results in Table 1, while the full distributions are shown in Figure 2.3. Sensitivity for the

partial coherence increased from 0.66 (1 dB) to 0.78 (50 dB) while for the APC it improved

from 0.06 (1 dB) to 0.48 (50 dB). Remarkably even at very low signal to noise ratios, our

simulations show that the cGGM can recover the majority of the SC edges.

False discovery rates for the PC decreased from 0.08 (1 dB) to 0.03 (50 dB) and for APC

it decreased from 0.46 (1 dB) to 0.04 (50 dB). While network metrics for both PC and

APC improve with SNR, the partial coherence remains a consistently better predictor of the

original network across all metrics (sensitivity, false discovery rate and correlation) and SNR

levels relative to the partial correlation. Remarkably, even at very low SNR very few false

edges are estimated by the cGGM.

Finally, we observed that sensitivity shows a non-monotonic relationship to SNR and we

believe this to be a trade-off occurring in the optimization of the AGL as at low SNR

recovery of accurate weights is difficult so instead the algorithm optimizes edge recovery.

However, as SNR increases, weights are more recoverable allowing the SC-QUIC process to

optimize for reduced edges but improved accuracy in weights for edges retained. This is

clear when we examine the monotonic increase in correlation of edge weights across SNR
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(see Table 2.1).

Figure 2.4: Weight Correlation in Simulation: We estimated networks using the cGGM and
aGGM at different signal to noise ratios. We compared the partial coherence (cGGM) and
partial correlation (aGGM) to the SC and examined the correlation between the set of SC
edges and edges estimated. Partial coherence is more correlated to the SC than partial
correlation across all SNR. Partial coherence has a correlation greater than 0.5 for almost
all reconstructions at an SNR above 30 db while this is true for partial correlation only at
50 dB.

Several Centrality Measures are Accurately Reconstructed

For each reconstructed network in simulation we estimated (weighted) degrees, clustering

coefficient, eigenvector centrality, closeness centrality and betweenness centrality. We corre-

lated these measures with the estimates from the original networks (prior to forward modeling

and source localization) across all nodes using a Spearman rank correlation. Alongside this,

we correlated the reconstructed edge weights with the original edges weights. This was done

separately for the cGGM and aGGM networks to see if accuracy in reconstructing graph
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theoretic metrics improved on accuracy in reconstructing edge weights.

We found that across all metrics with networks estimated by the cGGM there was monotonic

improvement in accuracy with SNR, though the degrees, closeness centrality and betweenness

centrality show more rapid improvement with SNR. The full distribution of correlations

across all simulations is shown in Figure 2.5. Degrees, closeness centrality and betweenness

centrality outperformed the reconstruction reliability (correlation of edge weights) of the

partial coherence over all SNR except at 50db. The range of correlation for degrees was:

0.32 at 1 dB to 0.73 at 50 dB, for closeness centrality it was 0.34 to 0.8 and for betweenness

centrality it was: 0.31 at 1 dB to 0.72 at 50 dB. In contrast, we found that the correlation

in edge weights followed a range of 0.07 at 1 dB to 0.83 at 50 dB. Eigenvector centrality

was comparable or slightly worse at some SNR (1 to 20 dB) to the reliability of the network

edge weight reconstruction while clustering coefficient was consistently worse. We show the

average correlations for all graph theory metrics and the average correlation in edge weights

in Table 2.1.

When examining the same graph theory metrics for the aGGM networks we found similar re-

sults. We compared the graph theory metrics calculated from the original partial correlation

(prior to forward modeling and source localization) to the reconstructed partial correlation.

All graph theory metrics improved with increasing SNR (see Figure 2.6). Closeness central-

ity and betweenness centrality were more (or equally as) accurate estimators of the original

network than partial correlation edge weights across all SNR below 50 dB. Degrees and

eigenvector centrality were better only at SNR below 20 dB, while clustering coefficient was

a better estimate below 10 dB SNR. Unlike for the partial coherence, we found degrees and

eigenvector centrality showed comparable performance when using the partial correlation.

The range of correlation (averaged over simulations at each SNR) for degrees was: 0.18 at 1

dB to 0.4 at 50 dB, for closeness centrality it was 0.24 to 0.55 and for betweenness centrality

it was: 0.25 at 1 dB to 0.5 at 50 dB. In contrast, we found that the correlation in edge
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weights followed a range of 0.03 at 1 dB to 0.65 at 50 dB. Thus, graph theory metrics were

more accurately reconstructed than edge weights for both the cGGM and aGGM networks,

however, the difference in accuracy is lower at higher SNR.

Figure 2.5: Graph Theory and Partial Coherence: We show how well using different graph
theoretic metrics does at capturing the structural connectivity characteristics relative to
using the reconstructed partial coherence weights. At each SNR, we plot the correlation be-
tween graph theory metrics calculated from reconstructed network with the original network
across 500 iterations in green. In orange we show the correlation of the weights of recon-
structed partial coherence with the original partial coherence. For comparison purposes we
show the same set of correlations (of edge weights) alongside all graph theory metrics. We
examine the two methods across different SNR and find that at SNR below 50 dB, closeness
centrality, betweenness centrality and degrees provide more accurate reconstruction.

2.3.2 MEG Data

We extracted 480 seconds of preprocessed resting state MEG data from 91 subjects from

the open source CAMCAN dataset. We source localized this data to the 114 sources of the

Lausanne parcellation before using the AGL and our cross validation procedure (see section
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Figure 2.6: Graph Theory and Amplitude Partial Correlation: We show how well different
graph theoretic metrics can capture the structural connectivity characteristics relative to
using the reconstructed partial correlation weights. At each SNR, we plot the correlation
between graph theory metrics calculated from reconstructed network with the original net-
work across 500 iterations in green. In orange we show the correlation of the weights of
reconstructed partial correlation with the original partial correlation. For comparison pur-
poses we show the same set of correlations alongside all graph theory metrics. We examine
the two methods across different SNR and find that at SNR below 30 dB, closeness centrality,
betweenness centrality and degrees provide more accurate reconstruction.

on Cross Validation in Methods) to estimate the most representative cGGM and aGGM

models in each of five frequency bands - delta, theta, alpha, beta and gamma bands. From

this we estimated the summary statistics of partial coherence (PC) and amplitude partial

correlation (APC). We also estimated graph theory metrics we saw as most accurate from

out simulation - weighted degrees, closeness centrality and betweenness centrality.
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cGGM and aGGM

We estimated partial coherence and amplitude partial correlation for all five frequency bands

and estimated the sensitivity and false discovery rate (See Figure 2.7). Sensitivity is infor-

mative about the number of edges within the SC that were discovered while FDR tells us

how often edges outside the SC were a part of the graphical model. Note that since we use

cross validation to determine penalization, sensitivity and FDR are informative about how

useful the SC prior is, and by extension, the relevance of the SC to effective connectivity.

We found that on average the sensitivity across subjects when networks were estimated with

cGGM were: Delta (mean ± standard deviation) - 0.09± 0.14, Theta - 0.15± 0.16, Alpha -

0.18± 0.19, Beta - 0.42± 0.26 and Gamma - 0.75± 0.25. This indicates that in the gamma

band cGGM, of the 720 edges in the SC, on the average across subjects we identified 540

edges. When using aGGM on the other hand we found sensitivity across bands was: Delta

(mean ± standard deviation) - .21 ± .18 , Theta - 0.27 ± 0.22, Alpha - 0.48 ± 0.25, Beta

0.57 ± 0.21, and Gamma - 0.45 ± 0.19. So in the beta band, we were able to, on average,

estimate 57% of the SC connections, i.e. 410 edges. Sensitivity in aGGM compared to sensi-

tivity in cGGM was significantly higher across delta, theta, alpha and beta bands (Wilcoxon

rank-sum test, p < 0.001) but in gamma band it was significantly lower (Wilcoxon rank-sum

test, p < 0.001). So at lower frequencies (< 30 Hz) partial correlation has higher sensitivity,

but at higher frequencies, partial coherence has considerably higher sensitivity. Importantly,

the single measure with the highest sensitivity to the SC was the gamma band cGGM which

incorporates phase information.

We also examined the false discovery rate (see Figure 2.7) and found that beta and gamma

band in cGGM had the lowest FDR. In partial coherence FDR for different bands were:

Delta (mean ± standard deviation) - 0.48 ± 0.26, Theta - 0.37 ± 0.25, Alpha - 0.4 ± 0.27,

Beta - 0.29 ± 0.22 and Gamma - 0.28 ± 0.18. This indicates that, if in the gamma band

we estimated 1000 edges on average, of those 1000 edges 280 edges were found outside the
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SC. While for aGGM, FDR for different bands were: Delta (mean ± standard deviation) -

0.32±0.25, Theta - 0.3±0.19, Alpha - 0.28±0.22, Beta - 0.32±0.19 and Gamma - 0.4±0.22.

Centrality

From our simulations we identified that degree, closeness centrality and betweenness cen-

trality were potentially more accurate than directly examining the recovered weights of

reconstructed networks. We estimated the degree, closeness centrality and betweeness cen-

trality for the aGGM in beta band and for the cGGM in gamma band based on the high

sensitivity to the SC in these networks. Taking the median across subjects in each measure

and for each set of networks (gamma cGGM, beta aGGM) we estimated Spearman rank

correlation to the degrees, closeness centrality and betweenness centrality estimated from

the original weighted structural connectome. Similar to our analysis for the simulations, we

also correlated the median edge weights for the gamma cGGM and the beta aGGM with

the weighted structural connectome. Note that since all networks are weighted and we used

cross validation to estimate penalization, it is possible for estimates to be divergent between

the effective connectivity and the structural connectome. When using the edge weights di-

rectly, we found weak but significant correlations between the gamma band edge weights

and the structural connectome (r = 0.08, p < 0.05) and also for the beta band edge weights

(r = 0.08, p < 0.05). In contrast, we saw that the graph theory metrics outperformed edge

weight reconstruction. We found that gamma band degrees (r = 0.29, p < 0.01) and beta

band degrees (r = 0.33, p < 0.001) were significantly correlated to the SC degrees. We show

the degrees over areas for the gamma, beta and SC in Figure 2.8, where it is clear that,

while there is a strong tie to the SC centrality, gamma and beta bands support different

patterns of connectivity. Beta band has higher degrees in the precentral gyrus and superior

parietal areas while in gamma band, we see greater connectivity in frontal areas. Closeness

centrality in gamma (r = 0.26, p < 0.05) band was linked to the SC closeness centrality while
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Figure 2.7: Sensitivity and False Discovery Rate in MEG data: We estimated networks using
the cGGM and aGGM at different signal to noise ratios. We compared these networks to
the binarized SC and examined the sensitivity (upper figure) and false discovery rate (lower
figure) between them. cGGM networks are more sensitive to the SC in the beta and gamma
bands while aGGM networks are more sensitive to SC in alpha and beta bands. The cGGM
network has lower false discovery rates relative to aGGM networks in beta and gamma bands.
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beta band only showed a weak relationship (r = 0.17). We saw that with SC betweenness

centrality, gamma (r = 0.28, p < 0.01) and beta band (r = 0.21, p < 0.05) betweenness

centrality showed strong relationships. As expected from our simulations, the correlations

of the graph theoretic metrics outperformed the edge weight reconstructions.

2.4 Discussion

2.4.1 Partial Coherence and Partial Correlation

Using a simulation that generates pseudo-MEG data constrained to one frequency band and

forward models this data to the scalp, we examined the ability to reconstruct source level

partial coherence and partial correlation based networks. We found that PC based networks

recover original network weights betterand have higher sensitivity than APC networks across

a range of SNR. When we examined partial coherence and partial correlation in real data,

we found gamma band partial coherence to be highly sensitive ( 75%) to the SC and have

low false discovery rates across subjects. Alpha and beta band partial correlation showed

significantly higher sensitivity ( 50%) than their partial coherence counterparts.

Past work on showing the link between electrophysiological networks and structural connec-

tivity have been few but have shown significant relationships between structure and function.

Our study extends this line of research. No study to our knowledge, thus far, has exam-

ined the relationship of the SC to both estimates of connectivity based on amplitude and

phase, and estimates of connectivity based on only amplitude, in humans. We examined

the summary statistics of the cross-validated cGGM and aGGM - the partial coherence and

partial correlation networks using simulations and showed that at reasonable SNR (> 10dB),

sensitivity above 50% is possible (effectively learning that field spread and common input

effects can be significantly reduced). In data we then identified that, gamma band cGGM
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reflects the SC more closely than any other network estimate (75% sensitivity). This result

indicates that the coherence has information about the connectome, but primarily in higher

frequencies. The slower amplitude modulation reflects information about the SC primar-

ily in lower frequencies, reaching a peak in the beta band (57% sensitivity). On average,

across all these measures, false discovery rates was around 30%, indicating that only 30%

of edges recovered were outside the SC. There are three consequences of these results (1)

The binarized SC provides a valid and useful blueprint from which to estimate the effective

connectivity using partial coherence and partial correlation;(2) There are potentially edges

that we have failed to include because our SC estimate fails to account for some genuine

anatomical connections; (3) Both the coherence based and amplitude based networks reflect

the SC to varying degrees, with cGGM reflecting the SC more strongly at higher frequencies

(>30 Hz) while aGGM reflects it better at lower frequencies (1-30 Hz).

Why do the cGGM and aGGM models reflect divergent results? One possibility is that

at lower frequencies the uncertainty in phase is much greater than the range of possible

phases. For example in the theta band, at axon conduction velocities of 10 m/s, for a 20 cm

axonal fiber, we can see that the phase difference between the areas connected can only be

expected to be in the range of π/10. In these cases, leakage effects (which only occur at zero

lag) might overwhelm the possibility of being able to estimate genuine phase consistency

relationships. the amplitude might serve as a better connectivity estimate by providing

greater signal to noise ratios. At higher frequencies however, more of the phase spectrum

is accessible, possibly improving the ability to estimate genuine phase relationships. Thus,

it is possible that the higher sensitivity of gamma band partial coherence relative to the

partial correlation could be due to the amplitude correlation being biased by genuine phase

relationships in the gamma band [84]. A second possibility is that proposed by the authors

in [67]. They use Kuramoto oscillators (at 40 Hz) connected by the structural connectome

and tuned to maximize fit to empirical amplitude envelope correlations. They show how

frequency modulation due to the presence of temporarily synchronized (phase difference of

51



0) groups of areas (chimera states) could yield the amplitude envelope modulation on the

rate of 0.1Hz as reported in the literature. This idea even has some empirical backing [85].

Note that given this mechanistic model, coherence in lower frequencies would be too noisy

(when we have too few samples) and thus not a robust estimate for connectivity. A third

possibility, using the framework of envelop and phase intrinsic coupling modes[3], is that the

envelope intrinsic coupling modes (the networks expressed when using the amplitude) is more

tightly coupled to the structural connectome while phase based relationships (coherence) vary

more so that phase relationships can be used to manage information transfer during tasks

(communication through coherence [2]). However, this framework does not explain why

amplitude correlation relationships between areas in lower and higher frequencies should

differ. Yet another possibility is that lower frequencies simply are not expressed well in the

way we have parcelled the brain,and in fact, it may be a good idea to build parcellations

separately for lower and higher frequencies given prior knowledge that oscillatory activity in

lower frequencies tends to recruit larger groups of neurons [1] - though this may not relevant

at the M/EEG spatial resolutions.

2.4.2 Using Graph Theory

Using graph theoretic metrics to summarize networks showed reduced error when using

degree, closeness centrality and betweenness centrality over the majority of SNR levels for

both PC and APC networks. However, in contrast, clustering coefficient and eigenvector

centrality showed increased error in reconstructed networks relative to other graph theoretic

metrics. We estimated degree, CC and BC for the gamma band MEG-PC, and the alpha

and beta band MEG-APC. We found significant correlations between all centrality estimates

with the SC estimates, however, there was considerable unexplained variance indicating the

hubs in data do not exactly map onto the hubs from the SC. In summary, these results

suggest that using graph theory to collapse connectivity structures of nodes is useful and
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Figure 2.8: Degrees Across Connectomes: We show degrees across different areas in the
structural connectome. Similarly we show median degrees across subjects in the beta band
when using partial correlation, and in gamma band when using partial coherence.

robust but only for a subset of metrics.

Using graph theoretic tools to summarize networks has been suggested and applied in highly

specific ways in the literature, such as by examining the minimum spanning tree of a network

[86]. The minimum spanning tree (MST) represents the skeletal backbone of the network

and the underlying interpretation is that using this approach improves robustness of the

inference on the networks. A recent empirical study examined MST properties for networks

constructed at the scalp and at source level. They found that for most network characteristics

(as estimated using the MST) there was weak correlation between scalp and source level.
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Other simulation work [87] has shown that identifying the generative process that created

a network is difficult to impossible when analyzing scalp based networks. For these reasons

estimation of graph theoretic metrics are better done at source level given the theoretical and

empirical justifications of using source localized data. We expanded on these questions by

examining which GT tools can be estimated well at source level after field spread and volume

conduction. Further, we examined whether the accuracy of GT tools improved on directly

using the weight structure of the networks. We have shown that we can in fact identify hub

nodes using degree or closeness centrality or betweenness and expect those estimates to be

closer to the underlying structural connectome relative to using the weights of the network.

However other GT tools such as the clustering coefficient and eigenvector centrality were poor

estimates. Clustering coefficient has been shown to be biased (underestimated) when using

partial correlation estimates [88] and this may be part of the reason it is a poor estimate.

Our results suggested that maximum accuracy with respect to reconstructing networks that

aligned with the structural connectome, when using weighted networks, was found using

the degrees, closeness centrality and betweenness centrality. We estimated these measures

for the networks that the highest sensitivity to the SC from the empirical MEG networks-

gamma band partial coherence, alpha and beta band partial correlation. We found that

for these networks when we collapsed the three centrality estimates across subjects, there

was a significant correlation to the centrality estimated from the weighted SC. This result

indicates that graph theory metrics provide useful information about the network properties

in different bands.

2.4.3 Other Methods to Reduce Leakage Effects

In the literature, a common method to reduce the influence of leakage effects when estimating

amplitude envelope based connectivity is to orthogonalize the amplitude envelopes [19].

54



When estimating phase based connectivity, it is common to use the imaginary coherence[89].

Both of these approaches operate on the (valid) assumption that there is field spread effects

only at zero lag under pseudo-static assumptions. However, three notable problems with

imaginary coherence and orthogonalized AEC are that (1) It may be too conservative an

estimate and chooses to lose considerable information about connectivity in the data; (2) It

is susceptible to spurious ghost connections where long range connections exist at a delay but

only due to local leakage effects (a particular instance of common input effects) [84]and (3)

Common input driven connectivity. Thus, we believe that using partial coherence or partial

correlation estimated using cGGM or aGGM with the SC prior is a more robust connectivity

estimate when making inference on connectivity.

2.4.4 Limitations

Several limitations exist in our work. In our simulation to simplify the analysis we assumed

a generative model where different parts of the brain show random oscillatory behavior

linked by the structural connectome. This could be represented using a zero mean complex

multivariate normal with a circularly symmetric precision. More detailed mean field models

of neural activity may be more phenomenologically accurate, however, past work suggests

there is limited gain in using them when explaining empirical data [51, 54]. Another issue

is that we assumed a common generative model for both the amplitude and the coherence

based networks. Other work suggests that potentially there may be independent mechanisms

at play in generating these two modes of neuronal coupling [3, 67, 90].

Source localization can be formulated in several ways based on prior assumptions. While

we used a weighted L2 norm inverse, beamformer reconstruction approaches are also quite

common. More detailed bayesian techniques potentially account for priors more explicitly

and afford better source reconstruction [91]. Examining these approaches was beyond our
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scope for the purposes of our simulation and data analysis. Additionally we chose to limit

our analysis to a case where there are 114 sources, a future extension to this work might

examine cases with more (fewer) sources.

We ignore for our purposes subcortical source activity and connectivity. This may lead to

large variation in the estimated results, however, estimation of subcortical activity in MEG

while possible is difficult without explicit prior knowledge [92]. An important note is that the

influence of subcortical-cortical connectivity could bias graphical model based connectivity

approaches.

Coming to the application of graph theory, we have limited our analysis to common metrics.

However, there is a wide range of graph theoretic tools [82] whose use is justified as a function

of the question being asked. Our simulation approach could well be used to test whether

other metrics can be well estimated when working with MEG data.

2.4.5 Conclusion

In summary, we used simulations and data to determine the extent to which structural

connectivity instantiates effective connectivity. Using real and complex valued graphical

models we showed that partial coherence is a high sensitivity, low false discovery rate estimate

of the SC in simulations. Further, we saw that graph theory can improve accuracy in

reconstructing structural connectome characteristics. In data, we found that cGGM models

of the gamma band showed the highest sensitivity. Across cGGM and aGGM models of data

we found that the false discovery rate hovered around 30% suggesting that our SC may be

incomplete, or there are unaccounted for influences on the effective connectivity. Finally,

we saw that our results using graph theory in simulations were borne out in the data where

graph theoretic metrics of gamma band partial coherence and beta band partial correlation

showed a stronger correlation to the SC than the edge weight correlation.
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Chapter 3

Influence of damage to the Structural

Connectome on Functional and

Effective Connectivity in resting state

fMRI

3.1 Introduction

A sub-field of systems neuroscience focuses on examining the structure of spontaneous neural

activity when subjects are at rest. A large body of evidence shows that there exist signif-

icant statistical dependencies, labeled functional connectivity, between brain areas during

rest (e.g.,[17, 93]) in the blood oxygen level dependent (BOLD) fMRI signal. In the most

direct analyses, functional connectivity is measured by linear correlation of the BOLD signal

averaged over voxels in two regions of interests (ROI). Resting state networks, defined by

groups of brain areas with significant functional connectivity [17, 94, 95], have been shown
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to predict task performance and discriminate clinical states (for a detailed review see [18]).

One obvious question is ”what mechanism gives rise to resting state functional connectiv-

ity?”. One simple explanation is that axons of neurons in one area of the brain make a

synapse onto neurons in another area facilitating the correlation in neural activity recorded

at the two locations. In practice, establishing this anatomical basis for fMRI functional

connectivity has proved immensely challenging. In the past two decades new brain imag-

ing protocols (Diffusion Weighted Imaging) and analysis methods (tractography) have been

developed that allow for non-invasive estimation of axonal fiber tracts of the human brain.

The set of all fiber tracts is referred to as the structural connectome [6].

A large number of studies have investigated relationship between the diffusion imaging based

estimate of the structural connectome and fMRI functional connectivity ([48–52, 96, 97]).

Pairs of brain areas without a structural connection have significantly weaker fMRI func-

tional connectivity [48], supporting a direct relationship between structural and functional

connectivity. However, across studies, the group average structural connectome weights ex-

plains between 10 - 65 % ([53]) of the group averaged fMRI functional connectivity across

different studies. The wide range of these results suggests that the structural connectome

wiring doesn’t fully determine functional connectivity, which in any case must vary across

brain states. Moreover, structural connectome estimates are susceptible to error due to

crossing fibres and difficulty in following fibre orientation showing both false positives and

false negatives. ([98]). In addition, estimates of fMRI functional connectivity are strongly

influenced by the parcellation applied to carve up the brain into different regions of interest

(ROIs) [99] and the method used to estimate functional connectivity [100]. Finally, across

different datasets ([48, 101, 102]), structural to functional connectivity association doesn’t

depend on having an individual specific estimate of the structural connectome for the subject

whose functional connectivity is being estimated. Individual differences in structural connec-

tivity are less pronounced than the individual difference in functional connectivity [101] in
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fMRI as the structural connectivity examined ROI by ROI shows globally lower variability

relative to the functional connectivity variance.

This limited variability of the structural connectome suggests that quantifying the contri-

bution of the structural connectivity to functional connectivity is challenging when working

with data from healthy brains. In this study, we set out to examine the relationship between

structural connectivity and fMRI functional connectivity using data from stroke patients.

Patients who suffer stroke have lesions that damage their brain anatomy, most commonly

the white-matter tracts. Each stroke patient has unique lesions, indicating considerable

individual differences in damage to the structural connectome. We leverage this resulting

heterogeneity in structural connections to investigate the relationship between structural

connections and fMRI functional connectivity. In our work we examine the edge by edge

relationships of the structural connectivity to fMRI functional connectivity across patients

with lesions due stroke, to identify how structural damage modulates functional connectiv-

ity, providing a strong test of the relationship between structural connectivity and fMRI

functional connectivity.

Current theories suggest that functional connectivity is driven both by mono-synaptic and

poly-synaptic connections through the structural connectome[49, 51, 58, 103, 104]. These

theories provide potential explanations for fMRI functional connectivity estimated using

correlation. Correlation by definition permits poly-synaptic pathways to influence fMRI

functional connectivity - if C is correlated to A and B through structural connections, A

and B are also correlated. One polysynaptic generative mechanism for the fMRI functional

connectivity is Gaussian noise becoming correlated due to structural connections. Under this

model, partial correlations are normalized precision estimates that reflect conditional depen-

dence. A strong partial correlation implies that the relationship between two areas exists

independent of their relationship to other potentially intermediary areas, which potentially

directly reflect the wiring of the brain, and may be more closely related to the structural
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connectome. We introduce a a novel model-based estimate of fMRI effective connectivity in

terms of the partial correlation that explicitly models FMRI functional connectivity using

the structural connectome.

This study offered an opportunity to examine what type of communication pattern could

explain the generation of functional connectivity by the spread of activity over structural

connections. In a monosynaptic model that only considers direct connections, functional

connectivity would be expected to simply reflect the weights of the structural connectome

and damage to the strongest structural connections would have the strongest effects of func-

tional connectivity. We anticipate this direct relationship could only be found for fMRI

effective connectivity, which is based on partial correlations which enforces direct connec-

tions. Functional connectivity estimates based on correlation include both mono-synaptic

and polysnaptic connections. One way that neural activity may spread across the SC is

through diffusion. Under diffusion, functional connectivity is determined by how often ran-

dom walks from A or B end up at the other area. If diffusion is the critical model, we expect

that damage to connections with higher rates of diffusion would have the strongest effects

on functional connectivity. The alternative is that activity always passes through shortest

path between A and B and not all possible paths. If the spread of activity is constrained

to shortest paths, we expect that damage to connections between nodes which are relevant

to more of the shortest paths in the network would have the strongest effects on functional

connectivity. We test whether diffusion or shortest path routing are active over the SC by ex-

amining which provides an estimate of functional connectivity that better predicts the edges

where structural connectome damage is reflected in functional or effective connectivity.

In this study we examined the relationship between structural connectivity and functional

connectivity in 20 stroke patients. We estimate the structural connectome (SC) for each

patient using virtual tractography [105, 106] across the pairs of 114 cortical ROIs from the

Lausanne parcellation[66]). We measured fMRI-functional connectivity (fMRI-FC) using
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conventional linear correlation between ROI-averaged signals as well as a finely resolved

(voxel-level) estimate of fMRI functional connectivity which we refer to as streamline func-

tional connectivity (fMRI-sFC). We also used the Adaptive Graphical Lasso to develop a

SC-based model of fMRI effective connectivity (fMRI-EC) to estimate direct connections,

and remove polysynaptic (indirect) functional connections. We expected that damage to the

SC would more clearly influence the model based fMRI-EC than fMRI-FC due to the effects

of polysynaptic connections. Our results support the effectiveness of fMRI-EC over fMRI-FC

in identifying damage to the structural connectome. However, the results also indicate that

even more information about the SC is available in functional connectivity estimates at the

voxel level in our measure of streamline functional connectivity (fMRI-sFC).

3.2 Methods

3.2.1 Patient Details

Subjects were recruited from the UC, Irvine Medical Center inpatient rehabilitation facility

(N=20) having suffered stroke between 3 to 26 days prior to being enrolled in the study.

The mean age of subjects was 57.45 ± 12.05 years (range 27-79), and their Fugl-Meyer score

ranged from 10 to 65 (with an expected score of 66 for someone without motor difficulties).

Of these 20 patients, 7 patients were found to have lesions that damage both gray and white

matter, while 13 had lesions that primarily impact white matter.

3.2.2 MRI

Neuroimaging was acquired on a 3.0 T Philips Achieva (Best, the Netherlands) scanner.

Anatomical imaging included a high-resolution T1-weighted scan that utilized a three-dimensional
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magnetization-prepared rapid gradient echo sequence (TR=8.1 ms, TE=3.7 ms, 150 slices)

and T2-weighted FLAIR scan (TR= 9,000 ms, TE=120 ms, 33 slices). Following prepro-

cessing, lesions were flipped to the left side so that the left hemisphere was the ipsilesional

hemisphere for all subjects.

3.2.3 fMRI

Individuals (N=20) with subacute stroke completed a resting-state fMRI scan: TR=2,000

ms, TE= 30 ms, 180 volumes, voxel size= 3.38x3.38x3 mm3. Subjects were instructed to re-

main still and keep eyes open to avoid falling asleep. We discarded the initial 8 fMRI volumes.

Structural and fMRI data were preprocessed using the CONN toolbox [107]. Preprocessing

steps included functional slice-time correction, functional realignment (six rigid-body motion

parameters), structural segmentation and normalization to MNI space, functional normal-

ization to MNI space and co-registration to structural volumes, functional outlier detection

using the artifact removal toolbox (ART), and functional smoothing using a 6mm3 Gaus-

sian kernel. Functional MRI data also underwent denoising procedures to remove unwanted

motion, physiological effects, artifacts, and the global signal from the BOLD signal. These

additional procedures included: bandpass filtering (0.008-0.09 Hz) and regression.

3.2.4 Virtual Tractography

We used streamlines generated with deterministic tractography by Yeh et. al. [68] using

the HCP842 dataset [8] transformed to the MNI152 template brain pulled from FSL. We

transformed the Lausanne parcellation [66] of 114 cortical and 15 subcortical ROIs to the

MNI152 template brain and generated a volumetric representation for each ROI using the

easy lausanne toolbox (Cieslak, 2015). The MNI coordinates of the areas are listed in

Appendix A1. Each streamline was approximated by a single 100-point cubic spline using

62



code adapted from the along-tract-stats toolbox [69].

We drew lesion masks on T1-weighted MRIs, informed by the corresponding T2 FLAIR

images. For one subject unable to complete an MRI scan, we drew the lesion mask on their

corresponding CT scan. Infarct masks were binarized and spatially transformed to MNI

space. We intersected these lesion masks with the predefined streamlines for the undamaged

SC. Right hemisphere lesions were flipped to the left hemisphere. Using the reduced set of

streamlines, we define individual structural connectomes. We graphically show this process

in Figure 4.1. By identifying the streamlines which ended in a pair of ROIs we were able to

create the structural connectome for the Lausanne parcellation. Any edge Wijwas defined

as the sum over the streamlines biased by the length of the streamline. So for ROIs i and j

connected by streamlines s of length l:

Wij =
∑
sij

1

lij
(3.1)

We weight the streamlines by length to reduce the bias of tractography algorithms towards

longer streamlines [70]. From this process we built the 129 ∗ 129 weighted structural connec-

tome with 1132 edges. We reduced this matrix to 114∗114 with 720 edges after removing all

the subcortical structures and limiting interhemispheric connections to known homologous

white-matter tracts. This latter step helped remove potentially noisy estimates of connec-

tions where streamlines intersected and passed outside the cortical surface before reaching

the terminal point in a brain region. The resulting model of structural connectivity shown in

Figure 1 is referred to as the structural connectome (SC). This model is incomplete in that

it does not include thalamocortical projections, and thus there may be functional connec-

tivity that is a result of structural connections outside of this SC. Our estimation procedure

described in the next section allows for such connections.

There was considerable variability in the set of connections that were damaged by the lesions
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across 20 patients. We found through visual examination of the distribution of damage to

edges that the distribution was skewed or showed bimodal behavior. We decided to stratify

damage based on this observation. Each edge for each patient was designated as either high

or low damage. High damage indicated that, for that edge, connection strength was less

than the midpoint of the range of connection strengths seen for that edge. We show how

many edges have high damage across patients in Figure 4.1. We found that over half of the

connections showed high damage in few to no patients. When categorizing the damage in

this way, we found that 341 edges showed high damage across at least 3 patients. Majority

of the edges modeled connected frontal (111), parietal (72) and motor (48) areas in the

damaged hemisphere to the rest of the brain. We show the edges modeled by area in Figures

3.5 and 3.6.

3.2.5 Measures of fMRI Functional Connectivity

We use the pre-processed time series from fMRI averaged over ROIs from the Lausanne

parcellation and estimate the covariance in the time domain. We labeled this ROI-averaged

functional connectivity fMRI-FC. In addition we estimated a model based effective connec-

tivity using the adaptive graphical lasso that we labeled as fMRI-EC. Finally, as described

below we also examine a finely-resolved (voxel-level) estimate of the functional connectivity

biased by the streamlines that we label as streamline functional connectivity or fMRI-sFC.

3.2.6 Adaptive Graphical Lasso to Estimate fMRI Effective Con-

nectivity

FMRI-FC was estimated using the linear correlation between ROIs. By default, it includes

indirect connections representing connections formed over poly-synaptic paths and through
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Figure 3.1: Virtual Tractography - in (a) we show the pipeline for virtual tractography. We
remove from the set of streamlines that represent the undamaged structural connectome
(top left) the streamlines intersecting any particular patient’s lesion(s), as shown in the top
middle figure. Using the reduced set of streamlines we apply the Lausanne parcellation to
get the final structural connectome for that patient (shown on the right). (b)Edges Showing
High Damage Across Patients - We show the number of edges where patients show high
damage. We found that for over 50% of edges there are few (1 or 2) to no patients showing
the presence of high damage. In our analysis we used all edges where 3 or more patients had
high damage (341).
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Figure 3.2: Using the Adaptive Graphical Lassso - This was the general processing pipeline
for applying the AGL to fMRI covariance from patients. The binarized undamaged SC is used
to bias the penalization used when optimizing under the AGL to estimate the precision(which
after normalization gives us the partial correlation).
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common inputs. Instead by using graphical models (effective connectivity) to estimate the

precision, we can examine direct connections. Partial correlation is estimated using the

normalized inverse (precision) of the covariance of the fMRI time series. The estimate of

precision from direct inversion tends to be noisy due to an ill-conditioned covariance matrix.

To improve the robustness of the precision, it is usually estimated using the graphical model

estimated from the graphical lasso. The graphical lasso [32] is a method that has been applied

in multiple fields in the past decade, from genomics [75], to fMRI functional connectivity

([76], [37]) and climate models [77]. In order to apply the lasso, we use the penalized

likelihood function as follows ([33]) to estimate the precision (where Θ is the covariance):

Φ̂ = argminΦ�0

(
−log(detΦ) + tr(ΘΦ) + λ

∑
j<k

|Φjk|

)
(3.2)

Our purpose was to make use of the lasso while taking advantage of our prior knowledge of

the structural connectome (SC) which are the likely locations of nonzero precision values.

We made use of the lasso optimization from QUIC ([78]) using a matrix penalty term (this

process is also called the adaptive lasso - [79]) determined by the SC with edges W (and

λ1 = λ2):

Φ̂ = argminΦ�0 (3.3)−log(detΦ) + tr(ΘΦ) + λ1 ∗
∑

j<k;Wjk∈SC

|Φjk|+ λ2 ∗
∑

j<k;W jk 6∈SC

|Φjk|

 (3.4)

Past work along these lines [43] has used the SC weights directly to determine the penalization

weighting, which imposes more structure that appropriate. We expect that the SC weights

will potentially constrain connectivity strengths. However, we do not expect the SC strengths
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to map directly onto the effective connectivity strengths due to individual differences, and

variations within individuals accross brain states. By using a template, we are assuming a

common SC across participants, so the expected weight may differ. Further, the SC can be

expected to be used differently across frequency bands yielding different effective connection

weights. For this reason we use the binarized SC to determine the penalization structure.

We estimated the penalization values λ1 and λ2 using cross validation as described in the

next section.

To run both lasso optimizations we used QUIC [78]. By using the adaptive lasso, we leveraged

the information in the SC as a prior for our estimate of fMRI effective connectivity which we

summarize as partial correlation. We heavily penalized the non-existent edges in the SC (λ2),

while being more gentle on those that do exist (λ1). The penalization parameters λ1 and λ2

in the graphical lasso determine the set of precision values retained. The output of the lasso

when optimizing Equation 4.12 or Equation 3.3 is the gaussian graphical model (GGM).

We derive our graph G with vertices V = 1, 2, ...C and edges West = Gij = 1, i, j ∈ V from

the GGM based on the non-zero values. The precision matrix Θ̂−1 is estimated under the

Gaussian likelihood for the set of edgesWest defined by the graphical model using the function

ggmFitHtf (PMTK3 toolbox [80]) which optimizes (unpenalized Gaussian log-likelihood):

Φ̃ = argminΦ�0;|Φ|>0=G − (log(detΦ) + tr((Θ + δ ∗ I)Φ)) (3.5)

Since Θ (covariance) is usually rank deficient, we add a small value (δ) along the diagonal

to make it full rank. We define delta as 0.001 times the maximum value along the upper

triangle of the covariance.
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Cross-validation to test the Structural Connectome model of Effective Connec-

tivity

The adaptive graphical lasso allows us to impose the structural connectome onto the func-

tional data potentially allowing for more robust reconstructions of the precision. We tested

whether the adaptive graphical lasso produced estimates of the precision that show reduced

error relative to applying the graphical lasso. We split the fMRI data from patients into two

halves. Using graphical lasso and adaptive graphical lasso we estimated the precision Φ̃1 on

one half of the data and estimated the deviance when using this precision as the inverse for

the covariance of the other half Θ2 of the data (and vice versa). Deviance was estimated as:

Dev = .5(−log(detΦ̃1) + tr(Θ2Φ̃1)− log(detΦ̃2) + tr(Θ1Φ̃2)) (3.6)

We tested whether the adaptive graphical lasso lead to improved estimation of the fMRI-EC

relative to the graphical lasso. We applied the process of cross-validation over the same

range of penalization for λ1 in the adaptive graphical lasso (3.3) and for λ in the graphical

lasso (Equation 4.12). For the adaptive graphical lasso (Equation 3.3) we maintained λ2 (the

penalization for non-SC edges) constant at 0.2. The results from this analysis are shown in

Figure 3.3. We found that with the graphical lasso a sparser model (fewer connections) is

always better (indicated by the decreasing cross-validated deviance). However, when using

the adaptive graphical lasso, we find there is an optimal set of SC edges while minimizing

non-SC edges which minimizes the deviance. Further the adaptive graphical lasso leads

to consistently lower cross-validated deviance relative to using the graphical lasso. Based

on the minimum deviance from cross-validation, we estimated fMRI-EC using the adaptive

graphical lasso with the penalization value of 0.125 inside the SC (i.e. λ1 from Equation 3.3)

and 0.2 (λ2 from Equation 3.3) outside the SC.
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Figure 3.3: GL vs AGL - We show performance (cross-validated deviance) across penalization
for the graphical lasso (on the left) and adaptive graphical lasso (right figure). The error
bars represent the standard deviation of the deviance across patients. We found that for all
but very high penalization the AGL outperformed the GL. Further, the AGL shows minimal
cross-validated deviance for an optimal set of SC edges (at an SC penalization of0.125) while
the graphical lasso shows minimum deviance only for very sparse models.
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Partial Correlation

We estimate partial correlation as the summary statistic for the Gaussian Graphical Model.

We estimate the partial correlation (for any two areas x and y and estimated precision Φ̃):

PCxy =

∣∣∣∣∣ Φxy√
Φxx ∗ Φyy

∣∣∣∣∣ (3.7)

We use PC as our estimate of the effective connectivity and refer to it as the fMRI-EC. We

use this partial correlation similarly to the correlation matrix when estimating the impact

of damage to the SC edges. This is discussed in section 4.2.3.

3.2.7 Modeling Impact of SC damage

We transformed the correlation and partial correlation across subjects by taking their ab-

solute value and applying Fisher r-to-z transforms. For the partial correlation we added a

small value (10−4) to make all values non-zero (gamma distribution is undefined for 0). Let

Cijk represent the transformed correlation between ROIs i and j for subject k and Pijk the

transformed partial correlation. We treat the Cijk and Pijk as Gamma distributed variables

because the values are positively valued and tend to be skewed towards the positive axis of

the real line. Using this notation, Cij: and Pik: represent the response vectors for a gamma

generalized linear models using a log link function. We used the stratified SC damage as

a predictor for the GLM (represented as SCij:). Thus the models built for each structural

connection Wij can be represented as (E is the expectation):

ln(E(Cij:)) = β0 + β1 ∗ SCij: (3.8)
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ln(E(Pij:)) = β0 + β1 ∗ SCij: (3.9)

The fMRI correlation and partial correlation edge by edge models were multiple comparisons

corrected using FDR correction with α set to 0.05.

3.2.8 fMRI streamline Functional Connectivity

fMRI data being averaged over an ROI is a heuristic rather than a necessity and enforces pos-

sibly unnecessary spatial homogeneity. To account for this, we ran a fine-grained streamline-

by-streamline analysis to examine the impact of averaging fMRI data over an ROI. Using

the unique pairs of voxel end-points for every streamline, we estimated the fMRI-streamline

Functional Connectivity (sFC) using the correlation of that pair of voxels (see Figure 3.4).

This resulted in, for every edge of the SC matrix for 114 ROIs, a set of fMRI correlations from

streamlines across subjects which were intact, and a set of fMRI correlation from streamlines

that were disconnected. Disconnection was inferred from whether a streamline intersected

the infarct volume. We took the absolute value of these correlations and applied the Fisher

r-to-z transform. We again assumed that the correlation sCijkl for ROIs i and j and stream-

line k for each subject l is Gamma distributed and used this as the response variable. We

used an indicator variable sSCijkl that defined for ROIs i and j whether streamline k for

a specific subject l was disconnected (1) or connected (0) as the dependent variable. We

built Gamma GLMs that collapsed the correlation and whether a streamline was cut over

subjects:

ln(E(sCij::)) = β0 + β1 ∗ sSCij:: (3.10)

We corrected for multiple comparisons using false detection rate with α set to 0.05.
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Figure 3.4: Streamline Functional Connectivity (sFC) - We show how sFC was calculated for
two streamlines in two different patients. For each streamline the end points were identified
as fMRI voxels and we estimated the correlation between them. We did the same for both
connected (top) and disconnected streamlines (bottom).

3.2.9 Communication Models of FC

Past work [49, 51, 58, 103] has examined whether functional connectivity is generated from

structural connectivity using diffusion and shortest path models of how neural activity tra-

verses the connectome. Similarly, we simulated fMRI-FC strengths given models of diffusion

and shortest path. Under diffusion, it’s assumed neural activity randomly travels across

the connectome when passing between any two ROIs. In contrast, under shortest path, it’s

assumed that neural activity takes the shortest weighted path between any two ROIs.

We estimate functional connectivity under a diffusion process using the mean first passage time.m

function from the Brain Connectivity Toolbox [82]. This function estimates the ”mean first

passage time” (MFPT) between any two nodes a and b which is the expected number of

weighted steps for a random walker going from a to b. We standardize (subtract the mean

and divide by the standard deviation) the MFPT across nodes and make it symmetric for
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analyses. A lower value of MFPT for an edge indicates it is more rapidly reached by a ran-

dom walker, indicating a higher expected functional connectivity. We estimate functional

connectivity under a shortest path routing process using the betweenness centrality (cite)

for every edge. The betweenness centrality (BC) calculates how many shortest paths use

any edge in the structural connectome. We standardized the BC for our analysis. A higher

value of the betweeness centrality indicates greater use by a shortest path routing process

and thus, a higher expected functional connectivity. We also directly used the standardized

SC weights as a third possible predictor of functional connectivity. All simulated functional

connectivity were estimated using an undamaged weighted SC.

The set of edges (represented by Wdmg) where SC damage influenced any of our connectivity

measures (FC/EC/sFC) was assumed to be a binomially distributed random variable (1

where damage influenced connection strength and 0 otherwise). We first examined using

Wilcoxon rank-sum tests whether there was a significant difference in MFPT, SP and SCweight

between edges where damage altered connection strength and edges where it didn’t. When

there was a significant difference between the two groups for multiple predictors, we built

a logistic regression model as follows (assuming for this example case that all three showed

significant differences):

logit(E(Wdmg)) = β0 + β1 ∗MFPT + β2 ∗ SCweight + β3 ∗ SP (3.11)
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Figure 3.5: Effective Connectivity and Structural Connectivity - On the top we show repre-
sentative streamlines connectivity areas for which damage influenced effective connectivity.
In the center is a matrix with edges modeled in gray and edges where EC was modulated in
orange. U-Areas represents sets of areas in the undamaged hemisphere and D-Area repre-
sents groups of areas in the damaged hemisphere.
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3.3 Results

3.3.1 ROI level analysis show that SC damage modulates fMRI-

EC but not fMRI-FC

We averaged the fMRI data over each ROI of the Lausanne parcellation. Using this data

we computed the fMRI-FC and fMRI-EC between the 114 cortical ROIs. We estimated the

fMRI-EC using the adaptive graphical lasso. We examined the models built between all

pairs of appropriate SC edges when the response is the partial correlation/correlation, where

the predictor is the presence of white matter damage. We initially only examined the set

of edges where at least 3 patients showed the presence of high damage. When examining

fMRI-FC we found only 1 edge was significantly modulated by damage. When using the

fMRI-EC (Figure 3.5) on the other hand, 24% (80/341) edges were significantly modulated

by damage (applying a FDR correction for multiple comparisons). We also tested how many

edges were modulated by damage when we altered the number of patients who needed to

show the presence of high damage before we modeled that edge. When we set the threshold

to 5 patients, we again only found 1 edge showing the presence of damage in fMRI-FC and

22% (23/104 edges) using fMRI-EC. Finally, when we set the threshold to 7 people, in fMRI-

EC 23% (3/13) edges showed the presence of damage and no edges in the correlation showed

the presence of damage.

3.3.2 Voxel level analysis shows that SC damage modulates fMRI-

sFC

Similar to the analysis we used when we averaged fMRI data over ROIs, we examined the

streamline based functional correlation. The sFC analysis was also organized using the
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114 ROI Lausanne parcellation. We built gamma GLMs between sFC and the presence of

streamline disconnection for the set of edges where at least 3 patients showed high damage.

We found that we could identify modulation from disconnection in the fMRI-sFC in 38%

(129/341) of the edges we modeled (see Figure 3.6). We also compared how many edges

showed the influence of disconnection when the set of edges was chosen based on at least 5

and 7 patients showed high damage. When 5 patients showed high damage, 36.5% (38/104)

edges had sFC that was influenced by streamline disconnection and when 7 patients showed

high damage then 6 out of 13 edges had sFC modulated by disconnection.

We examined the breakdown of where damage influenced EC and sFC by looking at groups

of ROIs. For the sFC, we found that damage could be detected in 40% (19/48) of damaged

motor connections (inter+intrahemispheric connections), 50% (8/16) of damaged occipital

connections (inter+intrahemispheric connections) and 43% (48/111) of frontal connections.

On the other hand for the EC, we found that damaged temporal (30% - 25/78 edges) and

damaged parietal (33% - 24/72 edges) showed the impact of damage the most. For the sFC,

intrahemispheric connections were more easily identified relative to interhemispheric connec-

tions - 42.5%(77/181) of edges modeled relative to 31% (50/160) of edges modeled. However,

we saw this reversed for the EC where interhemispheric connections were more easily iden-

tified 27% (43/160) relative to 20% (37/181) of intrahemispheric connections modeled.

3.3.3 Relevance of SC edges modulating fMRI-FC

Using the undamaged structural connectome we estimated the mean first passage time or

MFPT and betweenness centrality or BC between all pairs of nodes. We then extracted and

standardized the SC weights (SCweight), MFPT and BC for the 341 edges where we modeled

the impact of damage (3 or more patients showing high damage). We treated these values as

FC weight estimates and examined if they predicted the set of edges where we could estimate
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Figure 3.6: Streamline Functional Connectivity and Structural Connectivity - On the top
we show representative streamline connectivity for areas for which damage influenced sFC.
In the center is a matrix with edges modeled in gray and edges where sFC was modulated in
orange. U-Areas represents sets of areas in the undamaged hemisphere and D-Area represents
groups of areas in the damaged hemisphere.
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the presence of damage in sFC and EC.

We found that all three FC weight estimates (MFPT, BC and SCweight) were significantly

different (Wilcoxon rank-sum test, p < 0.05) between edges where fMRI-sFC was modulated

or unmodulated by structural damage. To see their relative influence, we used them together

in a logistic regression model, with the response as a vector of length 341 x 1 with zeroes

for non-modulating edges and ones for modulating edges. We found that MFPT (βMFPT =

−0.63± 0.4; p=0.003) had a stronger influence on the odds than the betweenness centrality

(p > 0.1) and the raw SC weights (p > 0.1). The negative value indicates that for a

unit increase in MFPT, which indicates a reduced FC weight estimate, the odds of damage

impacting the FC are multiplicatively reduced by 0.52.

We found that for the SC edges where partial correlation (fMRI-EC) was altered by damage,

both MFPT and SC weights were significantly different (Wilcoxon rank-sum test, p < 0.05)

between edges where fMRI-EC was modulated or unmodulated by structural damage. To

identify which predictor was most important we first put both predictors into a single model.

In a single model, neither of the predictors were significant, further the full model itself

was also not significant. In separate models for each predictor, we again found neither

predictor to be significant. Examining the parameter estimates in the separated models,

βSCweight
= 0.19 ± 0.11 (p = 0.11) and βMFPT = −0.14 ± 0.12 (p = 0.24) suggested that

SC weight has relatively stronger influence on the odds. This is consistent with the fMRI-

EC being a measure of direct statistical dependence, removing the influence of any indirect

connections.
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3.4 Discussion

Using an estimate of structural connectivity damage in stroke using virtual tractography and

novel model based estimates of fMRI-EC we examined how SC damage modulates fMRI-

FC,fMRI-EC and fMRI-sFC. We estimated structural connectivity damage in stroke using

virtual tractography. Further, we examined novel model based estimates of fMRI-EC. We

found that using an estimate of the effective connectivity, the partial correlation, allowed

us to estimate modulation of EC under damage in 24% of the edges modeled. Edges that

showed the influence of damage were edges with stronger SC weights. Using our fine-grained,

streamline by streamline correlation analysis we identified that SC damage modulated 38%

of the edges modeled. The edges where SC damage modulated the fMRI-sFC were edges that

were reached more rapidly by neural activity traversing the SC through a diffusion process

(random walks).

The relationship between structural and functional connectivity when there is damage to

brain anatomy is less clear has been investigated in animal models. In an fMRI study with

macaques[50], corpus callosectomy lead to significantly decreased fMRI functional connec-

tivity between hemispheres but only when both anterior commissure and corpus callosum

were transected. In one monkey where the anterior commissure was spared, fMRI func-

tional connectivity between hemispheres was nearly the same as prior to transection, sug-

gesting anatomical damage may not always lead to reduced functional connectivity because

functional connectivity is influenced both by mono-synaptic and poly-synaptic pathways

([49, 58]). In another macaque study, the amygdala was inhibited using DREADDs and

functional connectivity between amygdala and the rest of the brain was shown to decrease

[52]. The decrease in functional connectivity could be predicted by a model of neural com-

munication over the structural conectome that incorporated all walks (potentially repeated

poly-synaptic pathways) across the structural connectome (communicability). In a mouse

study of the structure to function link link[42], demyelination lead to reduced partial cor-
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relations for long range connections in the mouse brain. Thus, damage to the structural

connectivity may or may not influence functional connectivity (which includes indirect con-

nections) but a measure of effective connectivity (partial correlation) is more likely to be

sensitive to damage.

In this study we found that damage doesn’t modulate fMRI functional connectivity measured

at the ROI level. Effective connectivity, as we expected, does show the impact of damage,

though in a circumscribed set of edges. Past work employing the partial correlation to

examine structural connectivity to effective connectivity relationships have been few. In

humans, partial correlation was used to study the voxel-level effective connectivity and its

relationship to the structural connectome [41]. In [41], the authors found that while a

significant relationship existed between voxel-level effective connectivity and the structural

connetome, the correlation between them was comparable to the correlation between voxel-

level functional and structural connectivity. Another study [108] found that that structural

connectome edge strength was more correlated to the variability of effective connectivity

across multiple sessions but not functional connectivity suggesting effective connectivity is a

more robust estimate. Our work is in line with this, since, first, damage seems more linked

to fMRI-EC than to fMRI-FC and second, by assuming partial correlation was gamma

distributed, we constrained both the mean and the variance.

fMRI data has millimeter scale spatial resolution of neural activity. However, when estimat-

ing the fMRI-FC and fMRI-EC, we removed this source of variability by averaging over an

ROI in an effort to improve signal to noise ratio. By using fMRI-sFC, we tried to examine

fMRI data at the scale at which it measures neural activity. One other study followed a

similar approach [109]. The authors of [109] found that when only examining pairs of voxels

with a direct structural connection, and estimating a pseudo functional connectivity from

the structure using all polysynaptic paths, they saw a correlation of 0.26 between the pseudo

functional connectivity and empirical functional connectivity. When the authors of [109]
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used all voxels and correlated their estimate of the pseudo functional connectivity with the

empirical functional connectivity, they saw a correlation of 0.18 across 5000 voxels (note

that 61% of voxels were disconnected i.e. pseudo functional connectivity was 0). However,

when looking at the correlation between structural and functional connectivity at the voxel

level [41], correlations are much weaker - 0.046 at 40000 voxels. This suggests that choosing

voxels using streamlines may be a good approach to constrain the fMRI data space to that

accessible to tractography applied to diffusion weighted imaging. In our work, we saw this

was indeed the case, with fMRI-sFC being modulated by streamline disconnection across

38% of the edges modeled.

We know the structural connectome to functional connectome link is highly variable [53] and

depends upon the parcellation applied [99] and how the functional connectome is estimated

[100]. However, by assuming a generative model operating over the structural connectome

studies have shown greater alignment between structural and functional connectivity [49,

51, 58]. Following up on this work, we examined whether specific communication models

(diffusion/shortest path) could be distinguished based on the set of edges where damage was

linked to altered fMRI-sFC and fMRI-EC. We found that edges where damage influences

fMRI-sFC are relevant when neural activity passes through random walks across the SC

than those where pairs of nodes had the shortest paths between ROIs. This suggests that

we cannot ignore how an edge is placed relative to the rest of the network, and also that

functional connectivity leverages diffusion over shortest paths for communication over a static

structural connectome. On the other hand, fMRI-EC was more likely to show modulation for

edges where the SC weight is higher. This suggests that, as we might expect, when using the

effective connectivity, an estimate of direct connection strength, the SC weight differentiates

modulated and non-modulated edges. Overall, this suggests that network context matters

for seeing the influence of damage. However, the network context that is relevant depends

on how connectivity is estimated.
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Several factors influence our ability to see the influence of damage on the fMRI-sFC or fMRI-

EC. First, virtual tractography ignores individual variability in white matter. Estimating

structural connectivity damage even with diffusion imaging for patients of stroke is chal-

lenging ([110]). Kuceyeski et al. (2013) first suggested estimating structural connectivity

relative to a template built from healthy controls. We used a streamline template generated

by Yeh and colleagues from the HCP-842 dataset[68]. They filtered out streamlines based

on anatomical priors and expert knowledge, thereby creating a template with fewer false

positives (a known problem with tractography estimates[98]). Individual differences in the

structural connectome are more limited than individual differences in functional connectiv-

ity [101] suggesting that virtual tractography a reasonable method to estimate SC damage.

Future work will ideally compare an estimate of the white matter integrity in patients of

stroke to estimates of the structural connectivity when using virtual tractography.

Another methodological limitation of this study is the use of a common space (MNI template)

to run our analyses. While this is problematic, we saw it as a useful way to avoid issues

of transformations [110] in the presence of lesions. Finally, we use streamline end points to

estimate fMRI-sFC. However, there will be cases where these end points are distant from

gray matter. In our analysis procedure, when this is the case, there will be no fMRI signal at

the voxels, and hence this streamline does not contribute to discrimination using fMRI-sFC.

Despite these caveats, we found that we could see the influence of damage in 24% of edges

when using a measure of effective connectivity and in 38% of the edges when using streamline

functional connectivity. Given how we see that network context makes a large impact on the

ability to see the impact of damage, we hypothesize that having data from multiple days or

appropriate tasks will make it possible to see the impact of damage across all edges modeled

when using fMRI streamline functional connectivity. However, there may be intrinsic limi-

tations to using effective connectivity to see the impact of damage partly due to its coarse

grained nature.

83



Chapter 4

Influence of damage to the Structural

Connectome on EEG Effective

Connectivity

4.1 Introduction

The ability to elucidate the human structural connectome, the set of anatomical connections

between brain regions, using diffusion weighted imaging and tractography has been a huge

leap forward for macroscale systems neuroscience [6]. The structural connectivity scaffold

is expected to constrain and modulate the macroscale functional activity, as measured for

example by electroencephalography (EEG). Studies probing this relationship have however

been far and few between for several reasons [54, 55]. A major reason is the low intersubject

variance in structural connectivity as opposed to functional connectivity (as estimated from

both EEG). Studies examining the intersubject correlation of structural connectivity and

functional connectivity have shown that there is much higher correlation between subjects’
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structural connectomes than there is between their functional connectomes [55, 102]. Addi-

tionally, work has shown that there is simply greater variability in the functional connectivity

(fMRI) than there is in the structural connectivity [101]. Also, functional connectivity mea-

sured with EEG will vary with brain state, so we can only expect any particular EEG signal

to partly reflect the structural connectome.

In examining connectivity with EEG, several methodological difficulties must be overcome.

After source localizing EEG data to reduce the effects of volume conduction (spread of current

from sources in the brain through the tissues of the brain, skull and scalp [27]), we examine

activity at regions of interest within the brain rather than at sensors. We are faced then with

the problems of leakage effects [30, 84] and common inputs. Leakage effects occur when two

sources in the brain aren’t completely distinguishable due to the nature of their location and

orientation. Leakage effects show up as spurious correlated source activations. A second issue

is common input effects - two sources receiving (either simultaneously or at a delay) activity

from a third source will show correlated activity. We reduce the problems of leakage effects

and common inputs by using effective connectivity or model based connectivity estimates

such as graphical models to estimate the precision (inverse of the covariance). The precision

estimates the strength of a connection between two sources when accounting for variance

shared with all other sources, so it estimates ”direct” connections, and reduces the influence

of leakage effects and common inputs. In this way we examined EEG estimates of effective

connectivity that are the ideal points of comparison to the structural connectivity.

Each patient of stroke has unique lesions, leading to large individual differences in damage to

the structural connectome. The variability in damage across patients provides an interesting

window on the impact of structure on functional activity as measured in EEG, potentially

informing us of how different frequency bands are modulated by the presence of structural

damage. We estimate the SC for each patient using virtual tractography [105, 106] and use

novel model-based estimates of EEG connectivity - partial coherence and partial correlation
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- which we jointly refer to as EEG-Effective Connectivity or EEG-EC. We analyzed the

relationship of the EEG-EC to the structural connectivity at two levels. The first is the

broad connectome scale, where we examined the relationship between average connectivity

strength in the structural connectivity and EEG-EC. The second spatial scale we examined

is across the individual edges of the connectome that show the presence of damage. We

look at these two levels because (1) we found that summarizing network characteristics is a

robust way to identify the relationship between structural connectivity and EC (described in

Chapter 2) and (2)Past work has shown that the impact of stroke can be diffuse and visible

in connectivity changes between an ROI and the rest of the brain [111], and in the graph

theoretic properties of the whole network [111–113]. However, this does not tell us how and

whether individual edges are affected by the presence of damage, which we saw was possible

to see when using fMRI effective connectivity (discussed in Chapter 3). To test this, across

all pairs of 114 cortical ROIs from the Lausanne parcellation[66] where sufficient SC damage

across subjects permitted modeling, we examined if SC damage altered the EEG-EC.

We examine two different stroke subgroups - subacute (<1 month) and chronic (> 2 months).

When using fMRI data for subacute patients we found that we could easily identify the

influence of damage (discussed in Chapter 3). The authors of [114] used dynamic causal

modeling to show how reinstatement of ipsilesional effective connectivity from subacute to

chronic periods for the same set of subjects led to improved behavioral outcomes. We would

expect based on these results that structural connectivity damage alters the EEG functional

connectivity, and thus, by extension the EEG-EC. In subacute and chronic patients, we

expect different patterns of EEG effective connectivity (and EEG-EC) due to plasticity and

reorganization.
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4.2 Methods

4.2.1 Modeling Framework

Overview

A template of brain connectivity was developed for use in the EEG data analysis presented

here. This model is based on tractography analysis of the DTI data from the HCP 842 data

set, which is a group average template constructed from 842 subjects [68]. We combine these

streamlines with the Lausanne parcellation [66] to define 129 regions of interest (ROI) and

a structural connectivity model. The Lausanne parcellation was also used to define a source

model and inverse solutions.

At the core of the data analytic strategy presented here is the notion that the structural

connectivity model constrains the statistics of EEG signals. We use two multivariate Gaus-

sian models of effective connectivity to constrain the source activity: (1) complex-valued

Gaussian graphical model, where the structural connectivity determines the precision (in-

verse covariance) of the complex-valued multivariate normal distribution that generates the

amplitude and phase of source activity in a frequency band, and (2) amplitude Gaussian

graphical model, where the structural connectivity determines the precision of a multivari-

ate normal distribution that generates the amplitude of source activity in a frequency band.

The first model is a generative model of coherence, as widely used in EEG and MEG studies

([21, 26, 27]). The second model is a generative model of amplitude correlation which has

been recently introduced in the MEG literature, as an analog of fMRI functional networks

([19, 24, 67]).
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Structural Connectivity (SC) Model

We used streamlines generated with deterministic tractography by Yeh et. al. [68] using

the HCP842 dataset [8] transformed to the MNI152 template brain pulled from FSL. We

transformed the Lausanne parcellation [66] of 114 cortical and 15 subcortical ROIs to the

MNI152 template brain and generated a volumetric representation for each ROI using the

easy lausanne toolbox (Cieslak,2015). Each streamline was approximated by a single 100-

point cubic spline using code adapted from the along-tract-stats toolbox [69]. By identifying

the streamlines which ended in a pair of ROIs we were able to create the structural con-

nectome for the Lausanne parcellation. Each streamline only connected a single pair of

ROIs.

We drew lesion masks on T1-weighted MRIs, informed by the corresponding T2 FLAIR

images. For one subject unable to complete an MRI scan, we drew the lesion mask on their

corresponding CT scan. Infarct masks were binarized and spatially transformed to MNI

space. Right hemisphere lesions were flipped to the left hemisphere, thus the ipsilesional

hemisphere is always the left hemisphere. We intersected these lesion masks with the pre-

defined streamlines for the undamaged SC. Using the reduced set of streamlines, we define

individual structural connectomes. We graphically show this process in Figure 4.1. By iden-

tifying the streamlines which ended in a pair of ROIs we were able to create the structural

connectome for the Lausanne parcellation. Any edge Wij was defined as (for ROIs i and j

connected by streamlines s of length l):

Wij =
∑
sij

1

lij
(4.1)

We weight the streamlines by length to reduce the bias of tractography algorithms towards

longer streamlines [70]. From this process we built the 129 ∗ 129 weighted structural con-

nectome with 1132 edges. We reduced this matrix to 114 ∗ 114 with 720 edges (see Figure
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1) after removing all the subcortical structures and limiting interhemispheric connections

to known homologous white-matter tracts. This latter step helped remove potentially noisy

estimates of connections where streamlines intersected and passed outside the cortical sur-

face before reaching the terminal point in a brain region. The resulting model of structural

connectivity shown in Figure 1 is referred to as the structural connectome (SC). This model

is incomplete in that it does not include thalamocortical projections, and thus there may

be functional connectivity that is a result of structural connections outside of this SC. Our

estimation procedure described in the next section allows for such connections.

There was considerable variability in the set of connections that were damaged by the lesions

across chronic and subacute groups of patients. We found through visual examination of

the distribution of damage to edges that the distribution was skewed or showed bimodal

behavior. We decided to stratify damage based on this observation. Each edge for each

patient was designated as either high or low damage. High damage indicated that, for that

edge, connection strength was less than the midpoint of the range of connection strengths.

We show how many edges have high damage across patients in Figure 4.1. We found that

over half of the connections showed high damage in few to no patients. When categorizing

the damage in this way, we found that 462 (343) edges showed high damage across at least

3 patients among chronic (subacute) patients.

EEG Forward Modeling

The EEG forward model is an estimate of the potentials measured at EEG sensors above

the scalp generated by current sources located in the brain. For the data analysis presented

in this paper, we made use of the 256 channels of the Hydrocel EGI cap.

The head model was developed from the fsaverage MRI images from the Freesurfer tool-

box [73]. The tesselated cortical surfaces for right and left hemisphere were extracted
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using the recon-all pipeline in Freesurfer and then downsampled to 81000 (81k) vertices

(mris decimate from Freesurfer). We used this surface to constrain dipole orientation and

define the volume of the model corresponding to the cortex. We generated the inner skull,

outer skull and scalp surfaces approximated with 2562 vertices from the fsaverage head gen-

erated using the mri watershed function. Using these surfaces, and with the conductivities

of scalp, CSF and brain set at 1 S/m and the skull at 0.025 S/m (i.e., 40 times lower conduc-

tivity), we used OpenMEEG [74] to compute a Boundary Element Model (BEM) to generate

the EEG forward matrix. Each row of the EEG forward matrix is the potential gradient

detected across all 256 sensors from a unit current density source at one of the 81k cortical

surface vertices.

Using the Lausanne parcellation for 114 cortical ROIs, we divided the cortical surface and

identified vertices belonging to each ROI using the volumetric parcellation of the fsaverage

brain. Using this organization of vertices we then reduced the representation for each ROI

down to a set of 3 dipoles in the x, y and z directions at a single location. The location

for each ROI (Loci for the i’th ROI) was selected by taking a weighted average of vertex

locations (Vij for the j’th vertex of the i’th ROI), using the following equation (where c is

channels and W represents the number of vertices in an ROI):

Loci =
1∑

j=1:W

∑
c=1:256 L

2
ijc

∑
j=1:W

((
∑

c=1:256

L2
ijc) ∗ Vij) (4.2)

In this way we reduced our source model to 114 source locations, with 3 sources at each

location in the canonical x,y, and z directions. We computed a new EEG forward matrix

(M ) of dimension 256 * 342 using OpenMEEG. This EEG forward matrix captures the

(linear) mixing of source activity at the sensors to generate the measured EEG signals.
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Effective Connectivity Model - Complex Valued Gaussian Graphical Model (cGGM)

The template of structural connectivity derived from HCP 842 [68] gives us potential con-

straints on the connections between ROIs, and more importantly, which ROIs are not con-

nected by white-matter tracts observable with DTI. In order to use this information to model

EEG data, we assume that the vector of source activity (Z) at all ROIs in one frequency

band are samples drawn from a complex-valued multivariate Gaussian random process

(where Φ is the precision):

Z ∼ N(0,Φ) (4.3)

The EEG fourier transformed signal is characterized by samples of amplitude and phase, or

equivalently, by a Fourier coefficient with real and imaginary parts corresponding to sine and

cosine components of the signal. For frequency domain data that are complex-valued, we

make use of a complex-valued normal distribution. The complex-valued multivariate Normal

for a zero-mean (where E(Z) = 0) complex-valued Gaussian process [71] is defined as:

ρ(Z) =
1

πndet
1
2 (Θ)

exp (−1

2
ZΘ−1ZH) (4.4)

where

Θ =

Rzz R̃zz

R̃H
zz Rzz

H

 (4.5)

and

Rzz = E[zzH ]; R̃zz = E[zzT ] (4.6)
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The key parameter in this model is the covariance matrix Θ and its inverse, the precision

matrix Φ = Θ−1. As defined in equation 4.5 and 4.6, the covariance matrix for complex

valued data is composed of the familiar cross-spectrum Rzz and the complementary cross-

spectrum R̃zz. Most spectral analysis methods only make use of Rzz and implicitly assume

circular symmetry, i.e., Rz1z2 = 0 (Schrier and Scharf, 2010). In this case, the complex-valued

data is labeled as proper. With the assumption of circular symmetry, we can parameterize

the complex-valued Gaussian using the precision defined as the inverse of the cross-spectrum,

Φ = Θ−1 = R−1
zz . Each value in the precision matrix Φ is the conditional covariance between

any two variables (here, sources representing two ROIs) given the other variables (here,

sources representing all other ROIs). The precision removes linear effects from all other

sources from the covariance between any pair of sources, and provides a model of effective

connectivity between sources. For any pair of sources, if the precision is zero, there is no

need for a direct connection between the sources in order to account for observed coherence

(functional connectivity). Such apparent coherences arise from connections mediated via

other sources in the model. In our model, the precision matrix Φ captures the statistics

of effective connectivity and has nonzero entries only at edges (pairs of ROIs) that have a

connection estimated from DTI in the structural connectome. We are assuming that in each

frequency band the connectivity we estimate arises from random fluctuations at each area

becoming correlated by the structural connectome. In the EEG data analysis, we estimate

the source precision matrix Φ from the EEG data in each frequency using graphical modeling

techniques that inform the precision estimate with the structural connectome estimated from

the HCP-842, but allowing the precision values to be determined by the data.

Effective connectivity model - Amplitude Gaussian Graphical Model (aGGM)

We use the structural connectivity to constrain potential connections due to correlated ampli-

tude envelope fluctuations between ROIs, thereby defining the generative model of amplitude
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correlation. We assume that the vector of source activity amplitudes (X) at all ROIs in one

frequency band are samples drawn from a real-valued multivariate Gaussian random pro-

cess (where Φ is the precision with non-zeros entries where there are structural connectome

connections):

X ∼ N(0,Φ) (4.7)

When examining amplitude, we look at samples X of amplitude estimates from the fourier

coefficients from a single frequency band of the EEG signal across epochs. So for amplitude

data we use a real valued multivariate normal distribution as characterizing the fluctuations

of amplitudes in different frequency bands. And the multivariate normal for a zero mean,

i.e., (where E(X) = 0) is defined as:

ρ(X) =
1

πndet
1
2 (Θ)

exp (−1

2
XΘ−1XT ) (4.8)

This distribution is fully parametrized by the precision matrix Φ = Θ−1. As with the cGGM,

each value in the precision matrix Φ is the conditional amplitude covariance between any

two sources given the other sources. The precision provides a model of amplitude effective

connectivity between sources. For any pair of sources, if the precision is zero, there is no

need for a direct connection between the sources in order to account for observed amplitude

correlation (functional connectivity).

In our graphical model of amplitude fluctuations, the precision matrix Φ captures the statis-

tics of effective connectivity and has nonzero entries only at edges (pairs of ROIs) that have a

connection estimated from DTI in the structural connectome. We are assuming that in each

frequency band the connectivity we estimate arises from random fluctuations in amplitude

at each area becoming correlated by the structural connectome. In the EEG data analysis

(both for the simulation and real data), we estimate the source precision matrix Φ in each
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frequency band using graphical modeling techniques that inform the precision estimate with

the structural connectome estimated from the HCP-842, but allowing the precision values

(edge weights) to be determined by the data.

4.2.2 Estimation of Effective Connectivity

Overview

The estimation of the complex-valued Gaussian graphical model or the amplitude Gaussian

graphical model from the EEG data proceeds in three steps. First, the EEG data is trans-

formed to the frequency domain using a fast fourier transform(FFT). Second, an inverse

solution is applied to estimate the ensemble source activity over the observations, using

broadband activity. Third, graphical modelling methods are used to estimate the precision

matrix of a Gaussian graphical model of the effective connectivity. For the complex Gaus-

sian Graphical Model we used took the mean over the cross spectral density matrices for the

frequency band of interest before estimating the precision. While for the amplitude Gaussian

graphical model we used the absolute value of the Fourier coefficients before estimating the

covariance and taking the mean over the frequency band of interest. Graphical modeling

involves the choice of regularization parameters. We set these parameters beforehand and

examined performance over a range of penalization.

Inverse Solution to estimate source activity from EEG

We can represent each sample of the EEG data, as a vector B of length equal to the number

of EEG sensors. The set of samples of B is related to source activity S of length equal to
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Figure 4.1: Virtual Tractography - in (a) we show the pipeline for virtual tractography. We
remove from the set of streamlines that represent the undamaged structural connectome
(top left) the streamlines intersecting any particular patient’s lesion(s), as shown in the top
middle figure. Using the reduced set of streamlines we apply the Lausanne parcellation to
get the final structural connectome for that patient (shown on the right). (b)Edges Showing
High Damage Across Chronic and Subacute Groups - We show the number of edges where
patients show high damage.
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the number of EEG sources:

B = MS (4.9)

where M is the EEG forward matrix. For each participant, we localized activity to the

342 sources by inverting the reduced lead field using regularized minimum norm estimation

(weighted L2 norm, [29]) and applying it to data at the scalp. We estimate the inverse M−

using (where ν is penalization applied):

diag(W ) = ||M ||2 (4.10)

M− = (MW )T ((MW )T ∗ (MW ) + νI)−1 (4.11)

Using the estimated source activity S as M−B, we identify the 3 x samples matrix at each

ROI for the dipoles along the x, y and z directions. Using a singular value decomposition

at each ROI of the 3xsamples we identified the optimal orientation of the dipole as the first

singular vector. Using the first singular vector, we reduced the lead field from 204x342 to

204x114. This reduced lead field was the individual specific (adaptive) lead field. We source

localized data to the 114 ROIs for the individual lead field.

Adaptive Graphical Lasso using SC-QUIC

The graphical lasso [32] is a method that has been applied in multiple fields in the past

decade, from genomics [75], to fMRI functional connectivity ([76], [37]) and climate models

[77]. This is a method used to identify a sparse approximation to the precision matrix. In

this way, estimates in the precision are more robust for the values that are retained. In order

to apply the lasso, we use the penalized likelihood function as follows ([33]) to estimate the
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precision (where Θ is the covariance or cross-spectral density):

Φ̂ = argminΦ�0

(
−log(detΦ) + tr(ΘΦ) + λ

∑
j<k

|Φjk|

)
(4.12)

The penalization parameter λ in the graphical lasso determines the important set of partial

coherence/correlation values. The output of the lasso from Equation 4.12 is the precision

matrix Φ̂, which represents directly the complex Gaussian Graphical (cGGM) or Gaussian

Graphical model. For our purposes, we ran the lasso optimization from QUIC ([78]) using a

matrix penalty term (this process is also called the adaptive lasso - [79]) determined by the

structural connectome (SC) with edges W (and λ1 = λ2):

Φ̂ = argminΦ�0−log(detΦ) + tr(ΘΦ) + λ1 ∗
∑

j<k;Wjk∈SC

|Φjk|+ λ2 ∗
∑

j<k;Wjk 6∈SC

|Φjk|



We set the λ2 = 0.2 - the penalization for edges outside the SC, and the penalization inside

the SC - λ1 = 0.05. We also examined the results for penalization within a range around λ1

and ensured that our results weren’t strongly influenced by the penalization applied. Past

work along these lines [43] has used the SC weight directly to determine the penalization

weighting, we choose not to do this. We expect that the SC weights will potentially constrain

connectivity strengths. However, we do not expect the SC strengths to map directly onto the

effective connectivity strengths. By using a template, we are assuming a common SC across

participants, so the expected weight may differ. Further, the structural connectome can be

expected to be used differently across frequency bands yielding different effective connection

weights. For this reason we use the binarized SC to determine the penalization structure.

By optimizing the above penalized likelihood, we leveraged the information in the SC as

a prior for our lasso estimate. The output of the lasso when optimizing Equation 3.3
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is the (c)GGM. We derive our graph G with vertices V = 1, 2, ...C and edges West =

Gij = 1, i, j ∈ V from the (c)GGM based on the non-zero values in Φ̂. The final preci-

sion matrix Φ̃ is estimated under the Gaussian likelihood for the set of edges West defined by

the graphical model using the function ggmFitHtf (PMTK3 toolbox [80]) which optimizes

(unpenalized Gaussian log-likelihood):

Θ̃−1 = argminP�0;|P |>0=G − (log(detP ) + tr((Θ + δ ∗ I)P )) (4.13)

Since Θ (covariance) is usually rank deficient, we add a small value (δ) along the diagonal

to make it full rank. We define delta as 0.001 times the maximum value along the upper

triangle of the covariance.

Partial Coherence and Partial Amplitude Correlation

In every frequency band, we estimated two graphical models. We estimated the complex

Gaussian Graphical model to estimate the precision for complex valued data incorporating

amplitude and phase and the amplitude Gaussian Graphical model for the real valued am-

plitude data. For the cGGM we estimate the partial coherence (PC) as a summary statistic

[81]:

PCz1z2 =

∣∣∣∣∣ Φz1z2√
Φz1z1 ∗ Φz2z2

∣∣∣∣∣
2

(4.14)

For the aGGM we estimate the partial correlation (APC) as a summary statistic as (assuming

the precision matrix Φ here is the output from estimating an aGGM):
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APCx1x2 =

∣∣∣∣∣ Φx1x2√
Φx1x1 ∗ Φx2x2

∣∣∣∣∣ (4.15)

4.2.3 Data Analysis

Subjects were recruited from the UC, Irvine Medical Center. Twenty five subacute patients

had suffered stroke between 3 to 26 days prior to being enrolled in the study. Thirty seven

chronic patients had suffered stroke between 76 days to 9 years prior to being enrolled. The

mean age of patients with subacute stroke was 57.404 ± 14.46 years (range 27-79), while

that of chronic patients was 56.38 ± 14.68 years (range 23-75). Fugl-Meyer scores for all

patients ranged from 8 to 65 (with an expected score of 66 for someone without motor

difficulties), subacute patients had a mean of 42.9 while chronic patients had a mean of 42.7

(no significant difference, p > 0.1, Wilcoxon rank sum test).

EEG

We recorded eyes open resting state EEG for 3 minutes from subjects using high-density

electroencephalography (EEG) from Electrical Geodesics, Inc.s 256-channel Geodesic Sensor

Net and Advanced Neuro Technologys amplifier at a sampling rate of 1000 Hz. This data was

filtered between 0.5 Hz to 100 Hz before being epoched into seconds. We performed manual

artifact removal of high variance trials and sensors and subsequent ICA based eyeblink

artifact removal before transforming the data back into channel space. Sensors were flipped

across hemispheres when necessary so that the left hemisphere was always the lesioned

hemishphere. We defined six frequency bands for analysis - Delta (1-3 Hz), Theta (4-7 Hz),

Alpha (8-13 Hz), Lower Beta (14 -20 Hz), Upper Beta (21-30 Hz) and Gamma (31-50 Hz).
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Modeling Impact of SC damage

After estimating cGGM and aGGM models for the 6 frequency bands of interest, we esti-

mated the summary statistics of partial coherence and partial correlation. We transformed

the partial coherence and partial correlation across subjects by taking their absolute value

and applying Fisher r-to-z transforms. We added a small value (10−4) to make all values

non-zero (gamma distribution is undefined for 0). Let Pijk represent the transformed partial

correlation or partial coherence between ROIs i and j for subject k. We treat the Pijk as

Gamma distributed variables because the values are positively valued and tend to be skewed

towards the positive axis of the real line. Using this notation, Cij: and Pik: represent the

response vectors for a gamma generalized linear models using a log link function. We used

the stratified SC damage as a predictor for the GLM (represented as SCij:). Thus the models

built for each structural connection Wij can be represented as (E is the expectation):

ln(E(Pij:)) = β0 + β1 ∗ SCij: (4.16)

The edge by edge models were multiple comparisons corrected within each frequency band

using FDR correction with α set to 0.05.

Modeling Degrees between SC and EC

Degrees for a weighted network G = {V,E} represent the summed weight of connections

E made by a node V in the network. In our analysis, nodes are the ROIs defined by the

Lausanne parcellation. For a network G, the mean degrees across all ROIs is then defined
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as (where n is number of ROIs and i and j represent ROIs):

D =
1

n

∑
i=1:n

(
∑
j=1:n

Eij) (4.17)

We estimated the correlation between the D across patients from the SC with the D esti-

mated from the amplitude partial correlation or the partial coherence.

4.3 Results

4.3.1 Edge Analysis Showed Weak Modulation from Damage

We source localized EEG data to the 114 regions of the Lausanne parcellation. Using this

data we computed the cGGM and aGGM between the 114 cortical ROIs using the adaptive

graphical lasso for each patient. We examined the models (gamma distributed GLMs) built

for SC edges where the response is the partial coherence/partial correlation, and the predictor

is the presence of white matter damage across subjects (subacute). We examined the set

of edges where at least 3 patients showed the presence of high damage and at least 33%

of (subacute) patients had a non-zero EC estimate to ensure robust models were being

estimated. When examining EEG-PC (cGGM) across all frequencies (FDR corrected within

frequency) we found only 8 (out of 132) unique edges were significantly modulated by damage.

When using the EEG-APC (aGGM) on the other hand, we found only 16 (out of 157) unique

edges among subacute patients were significantly modulated by damage.

We ran the same analysis edge by edge as described earlier now limited to patients in the

chronic stroke group. Once again, we examined the set of edges where at least 3 patients
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(from the chronic population) showed the presence of high damage and at least 33% of pa-

tients had a non-zero EC estimate to ensure robust Gamma GLMs were being estimated.

When examining EEG partial coherence (cGGM) across all frequencies (FDR corrected

within frequency) we found only 10 (out of 110) unique edges among chronic patients were sig-

nificantly modulated by damage. When using the EEG amplitude partial coherence (aGGM)

on the other hand, we found only 9 (out of 171) unique edges among chronic patients were

significantly modulated by damage. In summary, it’s clear that the edge-by-edge analysis is

unable to identify the influence of damage.

4.3.2 Mean Degrees and Damage

Following the edge by edge analysis, we examined data on a broader scale. We looked at the

relationship between damage and connectivity at the whole connectome scale by examining

the mean degrees. We estimated mean degrees for all frequency bands when using EEG-PC

to determine the weights of the cGGM network and EEG-APC for the aGGM network and

the mean degrees for the structural connectivity. Using these measures, we estimated a

correlation between mean degrees of effective connectivity and mean degrees of SC. In the

subacute group, we found a negative correlation existed in the delta (r = −0.47, p < 0.05)

band in the partial coherence. When examining the relationship between mean degrees in

the amplitude partial correlation and mean degrees of damage, we found no relationship in

subacute group. We found that for chronic group when using the partial coherence there

was a robust negative correlation between the mean degrees in theta (r = −0.46, p < 0.005),

alpha (r = −0.49, p < 0.005) and lower beta (r = −0.39, p < 0.05) bands and the mean

degrees of SC across patients. When examining the same relationship between mean degrees

in the amplitude partial correlation and mean degrees of damage, we found weak but non-

significant relationships in the chronic group. To ensure that the relationship between mean

degrees and damage is truly a function of the network properties rather than the influence of
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Figure 4.2: Mean Degrees in SC and Delta Band for Subacute group: In the top row we show
the correlation between the degrees for each area and the mean degrees of damage across
the subacute group of patients. In the bottom row we show a scatter of mean degrees over
each hemisphere (ipsilesional/contralesional) and the mean degrees of damage in SC (across
all areas).
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the signal to noise ratio, we checked whether the correlation between the mean degrees of SC

and EC was significant when partialling out the mean power in the band being examined.

We found the relationship between SC and PC (in theta, alpha and lower beta for chronic

and in delta for subacute) remained robust (p < 0.01) even when accounting for the power.

Additionally, we checked whether the contralesional or ipsilesional hemispheres were more

influential in driving the negative correlation when using partial coherence. For the subacute

group, we found that in the delta band. Correlations were more negative in the contralesional

hemisphere relative to the ipsilesional hemisphere - r = −0.45 for contralesional hemisphere

and r = −0.31 in the ipsilesional hemisphere (the difference was not significant). We show

these results in detail in Figure 4.2. We found that for the chronic group in the theta band,

the mean degrees of the ipsilesional hemisphere showed a significantly stronger (p < 0.1)

negative correlation to mean SC degrees, i.e. the trend we see in the subacute group of

patients is reversed. Correlations were −0.29 for contralesional hemisphere and −0.55 in

the ipsilesional hemisphere. We saw a similar trend in the alpha and lower beta band -

r = −0.39 and r = −0.34 for contralesional hemisphere and r = −0.49 and r = −0.37 in the

ipsilesional hemisphere, however neither difference was significant.

Finally, in the theta band partial coherence for chronic patients we examined which areas

particularly contributed to the relationship between mean degrees in partial coherence and

the mean degrees of the structural connectome. We estimated the correlation between the

degree of each area (in the theta band) and the mean degrees of the SC. We found a negative

correlation over a majority of areas and this was particularly pronounced (r < −0.4) in

the rostral middle frontal, pars orbitalis, postcentral and superior temporal areas of the

ipsilesional hemisphere. In the contralesional hemisphere, paracentral, lingual and precuneus

showed strong negative correlations (r < −0.4). Visually examining the correlations in

Figure 4.3 we see that the negative correlation is heavily driven by areas in the ipsilesional

parietal lobe.
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Figure 4.3: Mean Degrees in SC and Theta Band for Chronic group: In the top row we show
the correlation between the degrees for each area and the mean degrees of damage across
the chronic group of patients. In the bottom row we show a scatter of mean degrees over
each hemisphere (ipsilesional/contralesional) and the mean degrees of damage in SC (across
all areas).
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4.4 Discussion

Using virtual tractography to define individual specific structural connectome (SC) damage,

and EEG effective connectivity, we examined the influence of SC damage on effective con-

nectivity in subacute and chronic stroke patients. In both patient groups, we showed that

only a limited number of edges show the influence of damage on EEG-EC.

When examining the whole-brain level relationship between the connectome and EEG-EC,

in the subacute group of patients we found mean degrees in delta band increased with in-

creasing damage. This potentially compensatory mechanism was driven by the contralesional

hemisphere. In the chronic group of patients, we found that partial coherence mean degrees

increases with increasing damage in theta and alpha bands across chronic patients. There

was again lateralization of the relationship to damage, with the ipsilesional hemisphere mean

degrees being more tightly linked to the presence of damage.

Past work on discerning how the anatomical connectivity facilitates EEG connectivity [54, 55]

has shown that there is a weak but significant relationship at an individual level functional

and structural connectivity, explaining between 1 to 16% of the variance in EEG coher-

ence. This relationship is stronger when using group averaged matrices for the functional

connectivity [54], with structural connectivity explaining 23.4% of the variance in the EEG

coherence. Further both of these studies looked at structural connectivity and coherence

within individuals, rather than looking at the relationship between variability in structural

connectivity and coherence across individuals. In our work, we used the case of patients of

stroke where there is large heterogeneity in structural connectivity to examine this relation-

ship. However, as might be expected from past studies where the structural connectivity

to coherence relationship was weak, we did not find that damage influenced the EEG ef-

fective connectivity strongly. In Chapter 2 we found that when using MEG, the effective

connectivity at frequencies above 8 Hz was tightly linked to SC for over 50% of the struc-
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tural connectivity edges. A potential reason that, in EEG, estimating the SC to effective

connectivity relationship is limited by the poorer knowledge of the forward model for EEG

in comparison to MEG.

After the initial lesion from disruption in blood flow leading to stroke, there are broad

changes in electrical activity in the brain [111, 115–117]. EEG activity as measured by

spectral power in different frequency bands differs in characteristic ways during the acute,

subacute and chronic stages of stroke [118–120]. In particular, in a rat model of stroke [121],

during the subacute period, EEG showed higher delta power, while in the chronic stage

there was higher theta and alpha power. These results have been replicated in longitudinal

studies in human stroke patients [119, 120]. Further, connectivity in specific frequency bands

during the acute (0-12 days) stage of stroke is important for predicting patient prognosis

[122]. Characteristics of networks at the connectome level (estimated through graph theory)

is altered in stroke patients [111, 112, 117]. In our connectome level analysis we found that

mean degrees in the partial coherence increased with increasing damage in both subacute

and chronic stage patients. While for chronic patients we saw this to be true in theta, alpha

and lower beta bands, for subacute patients we only saw a negative correlation between mean

degrees in EC and SC in the delta band. This higher sensitivity of the delta band in subacute

patients fits with past work showing that during the early period after stroke delta power is

specifically increased while other bands are not [119–121]. Further, our theta, alpha, lower

beta results, is in line with past work that suggests that activity in these bands is altered in

later stages of stroke. Our results add to this line of work by showing that, specifically in

relation to increased white matter damage there is a compensatory increase in connectivity

strengths. The increasing partial coherence with damage visible on the connectome scale

suggests that there are compensatory mechanisms that are operating in both subacute and

chronic patients.

We observed that the relationship of the overall connectivity in partial coherence and the SC
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damage was lateralized, with the contralesional hemisphere driving the relationship for sub-

acute stage patients while the ipsilesional hemisphere was relevant for chronic stage patients.

In other words, the hemisphere where there is no damage seems to be more connected in

subacute patients, while the hemisphere where there is damage is more connected in chronic

patients. Past work on the changes in EEG and fMRI post stroke have shown that im-

provement in behavioral deficits is linked to the ipsilesional hemisphere showing greater

activation over time, and regaining some of its functionality [114]. Our work demonstrates

that this same trend is visible in the connectivity, with the chronic patients showing greater

compensatory mechanisms in the ipsilesional hemisphere in the presence of greater damage.

However, for the subacute patients, this renormalization is yet to occur and the contralesional

hemisphere is undertaking the burden of damage.

On a technical note, our work shows the potential of using virtual tractography [105, 106]

with effective connectivity estimates from EEG source imaging to identify the influence of SC

damage on EEG EC. Virtual tractography’s success is attributable to the low levels of across

individual variability in structural connectivity[101]. In addition estimating EEG effective

connectivity using the SC-QUIC method allows us to reduce the problems of leakage effects

and common inputs. Using EEG-EC with virtual tractography is a framework that could

be used in future studies to expand our understanding of the relationship between structure

and function.

4.4.1 Limitations

Source localization in EEG is a heavily debated field, with many algorithms having been

suggested to optimally reconstruct EEG activity in source space. The primary influence

on source localization is the accuracy of the head model used. Studies have shown that

neglecting the gray-white boundary and building a head model with a common boundary
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for both leads to considerable error in the forward model [123]. Additionally, the conductivity

for different tissues is only known approximately and assumed to be isotropic which may

very well not be the case. These issues potentially lead to the weak results we see when

examining the relationship between structural connections and effective connectivity.

When estimating effective connectivity, we assumed the simplest model possible, however,

several papers have shown that more complex, phenomenologically accurate models of neural

mass activity can be fitted with EEG data [124–127]. These models are potentially better at

identifying the genuine effective connectivity between areas, but this is yet to be explored.

Also, and more importantly, we ignore for our purposes subcortical source activity and

connectivity. We do this partly because we expect that source localizing data at subcortical

sources without explicit prior expectations is difficult given the measurement capabilities of

EEG [92]. However, this may lead to large variation in the estimated results. An important

note is that the influence of subcortical-cortical connectivity could bias graphical model based

connectivity approaches as it acts as an unseen common influence. Similarly, unaccounted

for neuromodulatory influences that only affect a small set of regions will also appear as

unseen common influences on the connectivity structure and thus, bias the results.

In conclusion, while we found EEG effective connectivity to be a poor reflection of structural

connectivity damage when examining individual edges, we saw that at a connectome scale

there is a clear influence of white matter damage. This result indicates that the EEG EC is

mediated by the structural connectome but unaccounted for influences (source localization,

nonlinear connectivity, nonstationarity) make it difficult to identify the SC influence in a

more resolved manner.
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Chapter 5

Conclusion

Across three different neuroimaging modalities - fMRI, MEG and EEG - and using methods

of estimating statistical dependencies between brain areas that emphasize different timescales

of activity, we examined how structure constrains function in the brain. Using MEG (Chapter

2) we found that both slow and fast timescale effective connectivity estimates were sensitive

to the structural connectome, but in different frequency bands. Also, using graph theory

tools led to more accurate reconstructions of structural connectome characteristics. When

using fMRI data in patients of subacute stroke (Chapter 3), with diverse damage to the white

matter, we found that using an effective connectivity model showed the impact of damage

across more edges than using functional connectivity (correlation). Averaging fMRI activity

over the groups of voxels that demarcate a region of interest seems to unnecessarily spatially

smooth diverse neural data. Instead, using streamlines to guide functional connectivity

estimation at the voxel level showed the influence of structural connectivity damage across

a larger set of connections. Finally, we found, using graph theory in EEG (Chapter 4) from

subacute and chronic patients of stroke, that damage to the structural connectome influences

EEG effective connectivity differently after damage is instantiated in the brain, possibly due

to plasticity and potential compensatory effects.
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5.1 Structural Connectivity and Graphical Models for

Effective Connectivity

Simple models of functional connectivity - graphical models - were a core method we applied

in examining how structure influenced function. Graphical models estimate conditional de-

pendencies between areas thereby removing the influence of polysynaptic pathways and com-

mon input on the connection strength between brain areas. We built a framework (adaptive

graphical lasso) that allowed us to bias graphical model estimation towards the structural

connectome, and unlike past efforts [43], we did not directly use the SC weights, instead

expecting connection strengths to vary between subjects and across frequency bands. Using

this approach was clearly beneficial, as we saw when using MEG and fMRI data. Penaliza-

tions applied in the adaptive graphical lasso (as decided by cross validation) showed that

there was high sensitivity in the data for the structural connectome, i.e, conditional depen-

dencies between areas were mediated through the SC. In fMRI and EEG, use of graphical

models allowed us to see modulation of connectivity from structural connectivity damage.

Additionally, we saw when examining streamline functional connectivity that edges where

damage induced modulation in FC were those that were traversed more rapidly under a

diffusion process. This indicates that polysynaptic pathways are relevant for the generation

of functional connectivity and potentially suggests that we should use graphical models at

the voxel level. It is worth noting that while using graphical models appears to be well mo-

tivated by our analyses, there are caveats to appreciate. First, by not including subcortical

areas, it is possible that common input effects appear as connections outside the connec-

tome. Indeed we observed in Chapter 2, that in real MEG data, 30% of the edges recovered

in cGGM and aGGM models were outside the original SC. Future efforts need to examine

the level of impact this has on effective connectivity, and the ability to detect the presence

of SC damage. Our work suggests that while we are able to detect the presence of damage

reasonably well, we weren’t able to see its influence in over 60% of connections in fMRI. One

111



of the reasons for this may be subcortical common drive effects. Second, gaussian graphical

model estimation yields undirected connectivity. The expectation of undirected connectiv-

ity will estimate incorrect connectivity when there is directionality to connections between

areas. For example, common input effects become more complex, with a connection motif

such as A −→ B ←− C leading to connectivity between A and C in both functional and

effective undirected connectivity. The potential presence of such motifs and their relevance

to functional connections will need to be explored in more detail in future work.

5.2 Structural Connectivity and Function across Dif-

ferent Timescales

Past work on showing the link between electrophysiological (M/EEG) networks and struc-

tural connectivity have been few but have shown significant relationships between structure

and function[54–57]. No study to our knowledge, thus far, has examined the relationship

of the SC to both estimates of connectivity based on amplitude and phase, and estimates

of connectivity based on only amplitude, in humans. We found that in the MEG, gamma

band (31 - 80 Hz) cGGM (using amplitude and phase) reflects the SC more closely than

any other network estimate. This result indicates that the phase has information about

the connectome, but primarily in higher frequencies (> 30 Hz). The slower timescale am-

plitude envelope modulation (aGGM) reflects information about the SC primarily in lower

frequencies (1-30 Hz), reaching a peak in the beta band. These results provide potentially

useful constraints on theories of how the MEG connectivity is instantiated over the structural

connectome. One possible theory is that phase information in lower frequencies occupies a

range around 0 and is corrupted by leakage effects. However, at higher frequencies, we are

able to recover phase consistency based networks with greater fidelity. At lower frequencies,

amplitude alone provides a higher signal to noise ratio than amplitude and phase. However
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at higher frequencies, using amplitude and phase together is better than using amplitude

alone, which may be biased from genuine phase relationships [84].

5.3 Link between Structure and Function is Limited

Our work with MEG/ fMRI data to understand the influence of the structural connectome

indicated an important item of note. We could see the influence of damage across only 40%

of edges when using the fMRI streamline functional connectivity. The low number of edges

being influenced by damage is likely related to some degree to the compensatory mechanisms

occurring after stroke. Other potential influences could be subcortical and neuromodulatory

in nature. When examining the sensitivity of MEG amplitude graphical models (known

to have similar organization as fMRI resting state networks) to structural connectivity, we

found that for the bands that best reflected the SC, sensitivity lay between 40 to 60% (40

to 60 % of SC edges were detected). Once more we see that 100% of SC edges do not

influence the slow timescale connectivity structure. These results motivate explorations of

whether the structural connectivity to functional connectivity relationship changes across

different disease states and across different cognitive states[128–130]. This line of work

may be particularly useful at identifying sources of influence on the functional connectivity

other than the structural connectivity and exposing in greater detail the relationship of the

structural connectome to functional connectivity.

5.4 Summary

In summary, our work showed how structure constrains function to a limited extent, influ-

enced by the timescale and spatial resolution of effective connectivity estimates. Our results

provide useful constraints on models of the link between structure and function in macroscale
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resting state neural activity. Finally, our work motivates efforts to examine this relationship

in more detail, incorporating information about other potential influences such as subcortical

sources and neuromodulatory activity.
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Appendix A

Locations of Areas

A.1 MNI coordinates of Lausanne Parcellation

Areas X Y Z

R-lateralorbitofrontal 1 26.97 42.28 -35.02

R-lateralorbitofrontal 2 23.78 63.03 -33.88

R-parsorbitalis 1 45.48 59.01 -29.34

R-frontalpole 1 10.13 84.69 -28.81

R-medialorbitofrontal 1 7.07 71.81 -28.42

R-medialorbitofrontal 2 6.78 46.77 -37.22

R-parstriangularis 1 50.07 51 -13.32

R-parsopercularis 1 49.98 34.56 -4.01

R-rostralmiddlefrontal 1 38.85 57.15 10.37

R-rostralmiddlefrontal 2 30.71 76.7 -15.22

R-superiorfrontal 1 10.58 75.15 -1.21

R-superiorfrontal 2 14.21 58.85 24.29

R-superiorfrontal 3 11.02 32.88 36.71
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Areas X Y Z

R-superiorfrontal 4 22.63 25.48 42.16

R-caudalmiddlefrontal 1 38.39 29.7 29.68

R-precentral 1 54.72 23.92 -1.53

R-precentral 2 50.67 15.57 24.56

R-precentral 3 27.28 2 45.74

R-paracentral 1 9.31 -6.28 37.95

R-rostralanteriorcingulate 1 7.84 56.45 -14.87

R-caudalanteriorcingulate 1 7.27 42.04 8.19

R-posteriorcingulate 1 7.54 4.39 19.98

R-isthmuscingulate 1 9.71 -26.34 1.43

R-postcentral 1 57.67 10.33 -0.26

R-postcentral 2 42.02 -5.4 37.26

R-supramarginal 1 58.26 -15.51 23.26

R-supramarginal 2 56.58 -5.84 9.73

R-superiorparietal 1 30.18 -23.56 40.04

R-superiorparietal 2 26.51 -40.13 42.99

R-superiorparietal 3 24.63 -59.21 20.82

R-inferiorparietal 1 50.95 -30.78 22.56

R-inferiorparietal 2 42.98 -46.78 23.12

R-inferiorparietal 3 50.28 -45.64 5.32

R-precuneus 1 14.59 -42.18 7.51

R-precuneus 2 9.24 -34.67 31.75

R-cuneus 1 9.85 -59.25 5.28

R-pericalcarine 1 13.21 -59.32 -10.25

R-lateraloccipital 1 28.32 -73.83 -5.41

R-lateraloccipital 2 37.09 -66.83 -24.79
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Areas X Y Z

R-lateraloccipital 3 48.76 -49.32 -13.38

R-lingual 1 11.81 -55.19 -22.38

R-lingual 2 20.9 -36.4 -20.23

R-fusiform 1 40.19 -41.26 -31.93

R-fusiform 2 36.06 -3.6 -47.53

R-parahippocampal 1 26.76 -11.24 -35.67

R-entorhinal 1 26.5 14.78 -51.04

R-temporalpole 1 31.32 33.8 -52.97

R-inferiortemporal 1 50.35 8.32 -51.78

R-inferiortemporal 2 57.45 -30.29 -30.29

R-middletemporal 1 62.67 -22.56 -18.07

R-middletemporal 2 57.86 13.58 -41.33

R-bankssts 1 55.87 -20.54 -8.03

R-superiortemporal 1 60.13 -0.45 -13.5

R-superiortemporal 2 49.16 26.79 -33.95

R-transversetemporal 1 46.46 -0.6 -8.94

R-insula 1 39.32 10.13 -10.77

R-insula 2 37.47 30.36 -24.25

L-lateralorbitofrontal 1 -26.17 40.79 -34.04

L-lateralorbitofrontal 2 -17.86 62.99 -34.75

L-parsorbitalis 1 -41.71 56.61 -30.39

L-frontalpole 1 -5.77 85.45 -25.71

L-medialorbitofrontal 1 -4.04 58.13 -33.47

L-parstriangularis 1 -44.94 51.42 -15.19

L-parsopercularis 1 -45.78 35.54 -3.14

L-rostralmiddlefrontal 1 -32.7 51.98 14.48
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Areas X Y Z

L-rostralmiddlefrontal 2 -30.86 68.07 1.5

L-rostralmiddlefrontal 3 -26.99 76.58 -19.85

L-superiorfrontal 1 -7.11 74.07 -3.76

L-superiorfrontal 2 -5.91 62.3 17.89

L-superiorfrontal 3 -14.02 44.37 32.89

L-superiorfrontal 4 -8.2 25.33 40.62

L-caudalmiddlefrontal 1 -33.57 30.13 28.77

L-precentral 1 -16.86 0.58 48.21

L-precentral 2 -34.61 2.8 41.26

L-precentral 3 -45.2 13 23.67

L-precentral 4 -50.68 21.66 1.57

L-paracentral 1 -4.99 -8.44 38.66

L-rostralanteriorcingulate 1 -3.93 55.55 -18.13

L-caudalanteriorcingulate 1 -3.77 40.06 8.16

L-posteriorcingulate 1 -3.93 0.84 19.69

L-isthmuscingulate 1 -5.38 -27.4 1.68

L-postcentral 1 -19.93 -16.06 49.99

L-postcentral 2 -41.23 -9.55 36.43

L-postcentral 3 -54.34 5.16 7.28

L-supramarginal 1 -52.77 -8.2 7.14

L-supramarginal 2 -52.39 -23.28 20.95

L-superiorparietal 1 -22.81 -30.44 43.02

L-superiorparietal 2 -24.03 -40.14 34.29

L-superiorparietal 3 -15.42 -60.88 21.38

L-inferiorparietal 1 -40.16 -56.58 9.05

L-inferiorparietal 2 -39.37 -44.71 23.99
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Areas X Y Z

L-precuneus 1 -5.79 -31.47 33.21

L-precuneus 2 -7.33 -45.79 12.62

L-cuneus 1 -4.32 -60.35 3.62

L-pericalcarine 1 -7.89 -62.18 -12.14

L-lateraloccipital 1 -14.69 -78.59 -11.92

L-lateraloccipital 2 -38.62 -62.7 -14.32

L-lingual 1 -8.94 -55.72 -24.34

L-lingual 2 -16.29 -39.21 -19.68

L-fusiform 1 -36.54 -44.32 -33

L-fusiform 2 -31.18 -5.46 -46.05

L-parahippocampal 1 -23.44 -11.87 -36.46

L-entorhinal 1 -23.72 12.63 -51.1

L-temporalpole 1 -27.73 31.81 -53.41

L-inferiortemporal 1 -49.26 2.2 -49.31

L-inferiortemporal 2 -50.32 -34.64 -29.43

L-middletemporal 1 -59.05 -29.05 -16.77

L-middletemporal 2 -54.41 10.17 -39.03

L-bankssts 1 -51.46 -26.3 -9.84

L-superiortemporal 1 -55.15 -17.25 -3.97

L-superiortemporal 2 -49.22 16.88 -28.11

L-transversetemporal 1 -41.83 -4.28 -9.04

L-insula 1 -35.62 7.3 -12.91

L-insula 2 -32.68 30.21 -21.23

Table A.1: Lausanne Parcellation of 114 areas: For each area we define the center of the
area in X,Y , and Z coordinates defined for the MNI template.
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