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ABSTRACT

The physical meaning of the macrocausality property of

scattering transition probabilities is described, and the role of

this property in S-matrix theory and other physical theories is
discussed. The macroscopic causality préperties of theories with
shadow particles, are examined and are shown to contradict the
general interpretatioral principles of quantum theory. Shadow
particles have been introduced to remedy the unitarity difficulties

of indefinite-metric field theories.

Thisvwork was supported by the U. S. Atomic Energy Commission.
Talk delivered at the conference on ”Cauéglity and

Physiéal Theories, " held at Wayne Sﬁate’University, betroit,
Michigan, May 12-13, 1975. To be published in the_Americén

Institute of Physics Conference Proceedings.
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I. INTRODUCTION

Experience has causal properties, and these should be reflected

in physicel theory. However, one cannot simply deduce general theoret-

ical causality properties directly from experiment, for experiments
are neither infinitely precise nor infinitely extensive., Experiment
can merely suggest possibilities, and rule out others.

The form that a theoretical causality property takes will
depend on the theoretical structure in which it is imbedded. In fact,
a given theoretical structure often suggests a natural causality
property. For example, in quantum field theory the natural causality

property is tha£ fields at space-like-separated points commute:
{

Alx) Aly) = A(y) Ax) for x -yP<o. (1)

This commutator causality requirement appears to lead to
mathematically inconsistencies, and the suggestion is often made that
it mway be too stringent. For it imposes precise conditions at
infinitely small distances, and hence goes far beyond what experience
tells us.,

This lack of close connection between the commutator causality
prqperty and experiment is due in part to the lﬁck of any cldée
cbnnection between the field.operators of quantum field.theory and
experimental observables. This latter deficiency is an objectionable
feature of quantum field theory. For & basic precept of quantum theory,
at least at the noﬂrelativistic level, where the mathematical
inconsistencies do not arise, is that the basic operators of the theory
correspond directly to experimental observables. The logical structure
of quantum theory and its connection to experience was built on this

premise.
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To bring relativistic quantum theory into accord with this
precept Heisenberg devised S-matrix theory. This theory conforms to
the basic precepts of both quantum theory and relativity theory, and
it does hot encounter the mathematical difficulties associatéd with
the commutetor form of the causality condition.

S-matrix theory has no observables corresponding to space-time
points or to sharply defined space-time regions. Thus it might seem
that S-matrix theory would have no natural causality property. This
is not the case: S-matrix theory has a natural causality property,
called macrocausality, which in fact plays an important role in the
logical and mathematical structure of the theory. .

In this talk I shall first describe the physiéal content of
the maérocausality property. This property blends a certain intuitive
idea of causality with a specific dynemical assumption. Then I shall
discuss the role of macrocausality in S-matrix theory and other
physical theories. Finally, I shall apply these considerations to the
problem of causality in theories with shadow states.

My subject is narrower and more technical than those of most
of the earlier talks. And my presentation is aimed partly»at
physicists Qho wish to understand ﬁhe S-matrix-céuéality concept.
However, I shall discuss hére only the physical idéas, not the
mathematical deta.ils,l an& thus hope to reach also those in the
audience whose interests are mainly philosophical. Philosophers should
find it useful to have a clear understanding of ;ausality property that
is more elaborate than gertain traditional ones, and to see how this

causality property is actually used in contemporary physical theory.

b
II. MACROCAUSALITY

A. General Remarks

Macrocausality deals only with those observables that occur in
S-matrix theory, namely with écattering transition probabilities.
These quantities can be measured to high accuracy by means of exper-
imental arrangements of a kind that physicists actually can and do set
up. This does not mean, however, that macrocausality can be derived
froﬁ experiment. For mecrocausality is & general property, whereas
tests cover only special cases. Moreover, macrocausality refers to
asymptotic distances whereas only finite distances are experimentally
accessible.

' Macrocausality cannot be derived from microcausality. These
two causality properties are complementary. Macrocausality deals with
arbitrarily large.distances, whereas microcausality deals with
infinitely small distances. Moreover, as will be discussed, macro-
causality is equivaient to a set of ammlytic properties inm the physical
reglon itself, whereas microcausality implies analytic properties only
outside the physical region. Thus neither one implies the other.

Macrocausality formalizes a certain physical idea, which is

called the physicél'idéa of macrocausality. This physical idea is

discussed next.

B, The Physical Idea

Thevphysical idea of macrocausality is that interactions are
transmitted over macroscopic distances only by physical objects. This
idea is a macroscopic version of the primitive idea that the world
consists only of physical objects, and that these objects act on each
other only by direct contact. Two examples will illustrate the main

points,
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Example I. A baseball is hit into a window. In this example we can
identify the following features:
. {&) Cause: The baseball is hit.
(b) Effect: The window breaks.
(e) ‘ Link: The baseball travels from the bat to the window.
That is, & éhysica.l object travels from the space-
time region. of the cause to the space-time region of

the effect. This is illustrated in Fig. 1.
W Pyl Oect
Cause Space Efect

T—o Time

Fig. 1. A physical object travels from the space-time

of the cause to the space-time region of the

ef‘feci: .

Example II. A set of billiards balls move about under ’cﬁe influence -

of their mutual dollisigohs. In this case physical objects travel

"7 between the space-time collision regioms, This is illustrated in Fig. 2.

-6-

Fig. 2. Physical objects travel between the spece-

time collision regions. Each space-time
trajectory represents the path of the

center-of-mass of a physical obJject.

: In these exnmpleé & distinction is drawn between long-range
interactions and short-range interactions. The long-range interactions
are those that are transmitted from one space~time region to a far-away
space~time region by a physical object. These interactions fall off
(in a statistical sense) at large distances only by the geometric
factor éssocmted with beam spreading. The reinaining interactions are
’qhose_aésociaﬁed with the exchanges of momentum;energy that occur when

the physical..ob,jects collide, These htter interactions are associated

in various theoretical models, with potentials, or virtual-particle

exchange, or unstable-particle exchange, or nonlocal interactions, or
even with a breakdown of the concept of space-time at small distances.
The physical idea of ms.croéausality is that these remaining
interactions are short range. That is, the longest-range interactions
are tﬁose carried by physical objects, and hence all interactions not

carried by physical objects fall off faster at large separation than
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those carried by physical objects.

To make this idea well defined one must‘identify the interac-
tions carried by physical objects. This is don? by invoking two basic
ideas of relativistic mechanics.

(a) Physical Objects: Each pﬁysical object has a maés

m, and the momentum energy p carried by an object
equals the product of its mass with its covariant
velocity v P = mv,

(b) Conservation of Momentum-Energy; The momentum-

energy carried into any collision eqpals'that
carried out.

These two principles, together with the feqpifement that the
remaining interactions havé short range, determine the gross features

of billiard ball dynamics (see Fig. 3).

S pace

Fig. 3. ‘A necessafy condition for the réaction to §ccur is
that the space-time collision regions can be comnected
by the:space-time trajectories of physical objects. The
momentum-energy p carried by each object must be
directed along its space-time wvelocity v, and the
proportionality factor must be the mass of that object.

Momentum-energy must be conserved at each collision.

8-

The finer details of the dymamics will depgnd on the precise
form of the short-range interactions. However, uncertainties asso-
ciated with short-range interactions can be effectively damped out by
hoving the physical objects farther apart.

This ides can be made precise by considering a set of -
scattering processes that are reiated to each other by space-time.
dilation. This dilation of the physics can .be described by introducing a_
a "scaled" coordinate system. The scaled coordinates x' are defined
by x=x't, wheré x represents the physical space-time coordinate,
and T is a scale parameter that tends to infinity. If one fixes the
space-time trajectories in %' .space then the physical objects
corresponding to these trajectories are moved apart as Tt tends to
infinity, unless the trajectories iﬁterséct.

Any finite distance /& shrinks to a point in x' space, as
T - . Hence the x'-sface image of'any (finite-radius) physical
object shrinks to a point. And the x'-space image of any finite-radius
interaction-region shrinks to a point. Thus if all interactions not
carried by physical objects had finite radius then the necessary

conditions for a reaction with specified initial and final trajectories

"in x' space to occur for arbitrarily large t  would be this: the

trajectories of the initial and final particles would have to coincide
with the initial and final trajectories of a "causal network." These

petworks are defined in and below Fig. L.
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The quantum mechanical transition probability formuls can be
cast into classical form.° The function w(p,x) 1is defined by a

relativistic generalization of Wigner's formula:

w(px) = | Vv - L a) v + 2 q) eI 0m)Y2 20 8(a-v) o
7T
where / .
- . S 1/2

M o= @ -}d)
and

v = p/m.
The function S[[pj,xj}] is defined in a similar way:

n dhq. «ig.°x, 1/2
- 'l l . J 7

S[[pj,xj}] = ) z;;%E 2n S(c;_'j vj) e (Mj/mj)

x S({ijj 7 %q}) S*({ij'j + ']Elq]) .

Here the upper sign is to be used for initial particle variables, and
the lower sign is to be used for final particle variables, and
»s({pj}) is the usual S matrix.

C. Quantum Formulation

-

The physical idea of macrocausality is expressed in terms of
Ehe concepts of classical physics. From this idea one can derive some
very general properties of the classical scattering transition
probabilities. The quantum theoretical macrocausality property is the
statement that these general properties, which follow directly from
the (classical) physical idea of macrocausality, are enjoyed by the

scattering transition probsbilities of quantum theory.

-12-

These general properties are of the following kind: they
assert that under spécified conditions on the initial and final wave
functions of the scattering process the scattering transition
probability falls off at least exponentially as T = o, due to the
assumed exponential fall off of all interactions that are not carried
by physical objects. For under fhe specified conditions the scatter-
ing process can occur only if there is at least one trénsfer of
momentum-energy that canhot be carried by any physical object, yet
must cerry over a distance that increases linearly with + . Under
these conditions the exponential fall off of the scattering transition
probability follows directly from the physicai idea of_macrocausaiity.

These considerations can be made quantitive by considering -
semi-classical models. In these mﬁdels one allows momenfum-energy to

be transferred between particles by various possible mechanisms (see

Fig. 5).

Fig. 5. Momentum-energy can be transferred between physical
particles (solid lines) by various possible mechanisms

(wiggly lines).



Fig. 4. A typical causal network. A causal network represents
the necessary condition for a classical reaction to
occur if the physical objects are point perticles that

interact only via point interactioms.

A causal network depicts the spece-time flow of conserved
momentum-energy from initial particles to final particles via a netwark
of intermediate physical particles. The momentum energy pJ_ carried
by each particle is related to its space-time velocity w,"j by
pJ =m 3 vj. Momentum-energy is transferred between particles only at
_points where thelr tragectories intersect. _

The a.ssumpt;ion that all 1nteract10ns not ca.rried by physical
’ obJjects have a finite radlus is unrealistic and unnecessary-

However, some assumption about the way in which those interactions

fall off is needed to give precise content to the macrocausality

° property.

The dynamical assumption is now introduced. It is assumed
that all interactions not carried by physical obgects fall off at

‘least exponentially u.nder space-time dilation. This dynamical

-10-

assumption is analogous to the assumption that the potentials of non-

relativistic theory have Yukswa-type tails.

From this exponential fall-off property one can derive
analyticity properties. Weaker fall-off properties yield weaker
conclusions. TFor example, power-law fall-off properties yield

continuity properties. However, in what follows the exponential fall

off is assumed.

-

So far the discussion has been purely classical. To pave the
way to quantum theory it is useful to exhibit the classical form of
the scattering transitiorn probability formula. To do this each initial
and final particle Jj 1is replaced by a statistical ensemble. This
ensemble is.represented By a classical probability function

v, (pyx) = wj(E,p°,§€,'t), defined by

32
Lplx v,(p,x) =

( )3 The probability that a perticle from
2n

D the ensemble corresponding to particle
Ax .
j satisfies (x,p) € (AXx, Ap) at

time t.

The particles in these ensembles ﬁar"e free., Thus the enérgy po is
fixed by the mass-shell constraint. Moreover, the values of w(p,x)
at any one time t determines its value for all times.

The classical transition probability formula is then

v
w.(pox, )] = X, X, }
CRCNEN) v (2, >} sl(z,,
4 .
where S 1s the transition probability kernel. In this formula the

times tj can be chosen arbitrarily.
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» shall discuss the consequerices of this conflict with macrocausality
toward the end of my talk.
From the normal anmalytic structure plus unitarity one masy
derive all physical-region_discontinuities_. These discontinuities are
fhe differences between Athe two different continuations of the
scattering function around a physical-region singularity (see Fig. 9).

E‘.— 51'3@“

Fig. 10, The simplest case of the pole-factarize.tibn theorem.

Figures a and b represent, respectively, the Landau

- - - = —f\’.:—. _ 3 diagram (or causal hetwork) 'and the expression for the
' corresponding discontinuity. This discontinuity is
simply the product of the two corresponding scattering
a.mplitudes;. integrated over the intermediate-particle
Fig. 9. The discontinuity is the difference between the : momentum,

. functions obtained by continuing the scattering' B. Check on Causality Properties

1 ble wa d & singularity.
function in the two possible ways around a s y Macrocausality not only implies the normal analytic structure.

Cutkosky obtained formulas for such discontinuities from » It is also implied by it. This means that one can check the causal
perturbation theory. ' However, his formulas were not well defined, and properties of a proposed theory by examining its physié&l-region

© his arguments vere. inadequate. Also, they depended on the validity of " emalyticity Froperties: If the theory has the normal analytie. struc-
perturbation theory. Since these discontinuity formulas play a basic ture then it has the macrocausality property. But if the fheory has
role in S-matrix theory--discontinuities are the S-matrix analogs of the the macrocausality property then all long-range interactions are
,pOtentials of monrelativistic theory--it is important, from the point carried by physical particles. Thus the theory possesses all the
of view of internal cohesion, that formulas for them should be . general causal features thgt it needs to conform to ordinary maecro-
derivable from S-matrix principles. scopic experilence about causality. Any further causality requirement

The simpleét and most important discontinuity formula is known - places conditions on the short;range structure of the theory, and hence

as the pole-factorization theorem. Its simplest case is represented iﬁ extends causality ideas derived from macroscopic experience into realms

Fig. 10.
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where empirical support may be lacking.

It is interesting to compare the éhysical consequences of
macrocaﬁsality aﬁd microcausality. This can be done by:considering- K
first the analytic properties implied by these two causality rroperties

The analyticity properties implied ﬁy macrocausality are very
different from those -implied By microcausality. Macrocauéality gives

anglyticity only at physical points (end hence of course in finite,

‘ bﬁt perhaps very Small, neighbéfhobdé of these real poipts) vhereas
microcausality glves analyticity only away from the physical points.

. By céunter example it can be shown that microcausality (plus spectral
conditions) can never yield analyticity in the physical regiop itself.
: Indeed, the primitive domain of analyticity in field £heory includes
no mass-shell points at all, eitﬁer inside the physical region or
outside it. However, this primitive domain can be extendéd by methods
of analytic completion into mass-éhell domains that contain physical-

region points on their boundaries. The situation.is‘schematically

indicated in Fig. 11.

.Pkﬂ;C¢("ch‘+

TThoma

_f>kq>ic4"7?:j"“
“ lM--l"}

Lo\v\/ﬂh\ S’j

Fig. li. Macrocausality gives analyticity in the (real)
| physical»region, except at Landau singularities. Micro-

causality gives analyticity in some physical-sheet

domain that contains physical-region points on its

boundary.
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C. Effects of Poles

To gain understanding of the physical significance éf these
different domains of analyticity it is useful to consider the effect
on scattering transition probabilities of poles that lie in the
different regions., Consider, for example, a 2 —+ 2 scattering process.
Suppose, first, that the pole lies at the point E =m - 1T/2 in the

center-of-mass energy.variable, And suppose this point is situated on

‘the "unphysical sheet" reached by. passing from the physical sheet

" through the physical region, as indicated in Fig. 12.

SN

‘.

Fig. 12. A pole located at E =m - i7/2 on the unphysical

sheet.

' Suppose now that the two incoming beams intersect in a space-~’

time region A, and that the two outgoing beams intersect in a space-

time region B. (Tﬁe outgoing beams are defined by the acceptance
conditions of the devices that detect the outgoing,particles.) Suppose

A and B are both centered around the origin of space {not time) in

' some average center-of-mass frame, and that B. is later than A by

 some average time t, as shown in Fig. 13.
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Tl -

Fig. 13. The two incoming beams intersec't at A, and the
two outgoing beams intersect at B. The region B 1s

later than A by the time %.

If the center-of-mass energy of the pair of incoming particles
is centered around m, and the center-of-mass energy of the peir of
outgoing particles is also centered around m, and if there are no.'
other nearby singularities, then the scattering transition probability
will have the behavior expected from the production and subsequent
decay of an unstable particle of lifetime 1/1" . In particular, for

positive t the transition probability will fall off like exp -T'lt] .

. (Omnes-type wave functions are used, with t = v .) For negative ¢,

on the other hand, the fall off will be much faster, provided there

are no other nearby singularities—on the scale_ of . T. [The rate of
fall off is determined by the nearness of the other singularities, and
by the width of the gaussians in the Omnes-type wave functions.> )
Suppose, however, that the pole is situated at E=m+ 1l /2
in the physical‘ sheet, as shown in Fig. 14. Then the situation is
reversed: for large negative times t the scattering t_rans‘ition

-Ie ]

probability will have a term that falls off like e , Whereas for

20w

Fig. 14, Pole at m + il'/2 in the physical-sheet domain.

large positive times t it will fall off much faster. Thus in this
case-the scattering transition probébility has the behavior that would
cor-respoﬁd, not to an ordimﬁ decaying particle, but rather to a
particle that propagates backward in time with a decay factor e-P It ,
Figure 15 shov'rs the space-time configuration of the incoming and out-
going beams that would reveal this acausal effect of the pole at

m+ iT/2 .
Spatr.

Fig. 15. The effect of the bole at m + i'/2, The scattering
transition probability falls off like exp -I |t| for
negative times, where negative times correspond to the
outgoing particles being produced before the incoming

particles have come together,



2%

Microcauéality allows the singularity at m -niF/é, which
produces the causai behavior, but it forbids the singularity at
m + 1T/2. '

If T is sufficiently small, and hence the lifetime 1/T is
sufficiently long, then the acausal effects.of this singularity should,
in general, be observable. However, if I is large then these acéusal
would be hard to observe,

For & 2 »+ 2 reaction the pole cannot lie riéht.in the

physical region itself because of stability requirements. But if two

external particles are added, in the manner shown in Fig. 16, then the
SPR&C

Time

—> B
~

Pig. 16. Generalization of Fig. 13.
interﬁediate rarticle pole can lie in the physical region‘(i.e;,
I' = 0). - In this case the exponential decrease factor tgrns5into the
géometrical factor corresponding to the classical spreading of the
intermediate particle beams. In perticular, a pole at m - ie (where
€ is infinitesimal) has an effect on the 3 - 3 scattering transition
probability of precisely the kind that would be caused by a classical

particle of mass m being produced at A and absorbed at B.

.

D. Theory of Measurement

These physical-region siﬁgularities, at points m - i€, and
the pqle-fectorization theorem expressions for their discontinuities,
play & crucial role in the theory of measurements. Bohr and Heisenberg
emphasized that the consistency of quantum theory requires that the
boundary between the quantum system and the (classically treated) world
in which the qgantum system is imbedded can in certain circumstances
be shifted{ soithat what was originally part of the classically treated
measuring device becomes part of the quantum system under consideratim.
This requirement was studied by von Neumann, in the framework of ﬁon-
relativistic quantum theory.

The S-matrix study of this requirement is based on a gen-
eralization of the pole-factorization theorem, a speciml case of wﬁich

is illustrated in Fig. 17.

Pig. 17. A generalization of the pole-factorization theorem.
Figures & and b represent, respectively, & Landau
diagram (or causal network) and the corresponding

discontinuity formula.
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The probability that momentum=-energy is transferred by a given
mechanism is allowed to depend on the momenta p. of the various

particles involved, and on the various space-time interwvals x, over

i
which the transfers carry. However, in accordance with the physical
idea of macrocausality, this probability P(Pj’xi) is required to..

have a bound that decreases exponentially under space-time dilation:
. t < . -rT
Plppx'ym) & Blpgxg) e70 .

Here B(Pj’xi) is bounded in any bounded region. in (P,j’xi) space.

Different mechanisms can have different B and 7, but it is
assumed that an upper bound- on the scattering transition probability
can be obtained by considering, in any finite momentum-energy renge, -
only a finite number of different mechanisms.

Properties of scattering transition probabilities that hold in
every model of the kind just described are regarded as general
properties that follow directly from the physical idea of macrocausality.

It may be remarked that Planck's constant enters into S-matrix
theory 'only as the parameter that fixes the scale of physical space=
time relative to the mthema.ticali space-time variable 'that occurs in
the .ItepreSéntaltion- exp i px of the .tranélétion operato'r.v Thus the
space-timé dilation generated by tbhe- transformafion T>® 1is
equivalent to the transformation h - _O.. This means that the
macroscopic limit 7 - oo is equivalent to a classical limit # - O.
Consequently, the macrocausality property can be regarded as a form
éf correspondence principle: it asserts that the classical physi_cal :

idea of macrocausality becomes valid in the classical limit.

~1h-

III. APPLICATIONS

A. Derivation of Analyticity Properties

To derive analyticity Properties from the macrocausality

properYy one uses, for the initial and final perticles, wave functions

of the Omnes type:

in

Wj(pj, T) Xj(pj) exp(1 P, 85 1) exp 4(35 - f5)2 7yT -

The factor Xj(pj) is an Infinitely differentiable function that is
zZero ogtside some finite region. The second factor vgenerates 8 space-
time translation by the amount. ajT . These translations move the
varticles apart in x space, but leave them unmoved in x' space,

The third factor is a gaussian which concentrates the function near’

—1;3 = -ISJ for large T .

Thes_e Omnes functions have important properties. The width in

momentum space shrinks like —r'l/ 2. Thus the width in coordinate space

2 : -
expands like 'rl/ . Therefore the width in x' space shrinks like T 1/2

s

and the x'-space trajectory region (i.e. the region where the particle

is likely to be found) shrinks to & line, as indicated in Fig. 6.

Fig. 6._ The trajectory region shrinks to a classical

trajectory in x' space.
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More quantitatively, one finds that the probability that the
particle lies in any closed bounded region in x' space that does not
intersect the classical trajéctory drops exponentislly to zero. And,
similarly, the probebility that the particle has p in any closed
bounded interval that does not intersect B goes exponentially to zerao.

Thus when viewed in x' space the particle goes over, in effect, to

a free particle, modulo effects that fall off exponentially as T - @ .
Using these properties of the Omnes wave functions one may show
that the macrocauselity property implies the normal analytic structure} Fig. 7. The i€ rules specify the path of continuation

This normal analytic structure consists of two properties. The first . that connects the physical scattering functions on

is that the physical-region singularities of scattering functions are ) different sides of Landau surfaces.
confined. to landau surfaces. These surfaces, discovered by Lendau,
contain all perturbation theory physical-region singulari#ies. That
is, the functions represented by'Féynman diagrams have physical-region
singularities only on these surfaces. .

Iandau derived equatioms that defined these surfaces. lLater . -
Coleman and Norton pointed out tﬁat landau's equations are just the
.condition that the Feynman diagram be interpretable as a causai
netwofk. This connection between causal networks and Lapdau surfaces
is the root of the'cén;ection petweén macrocéusalityragd Fhé normal . Fig. 8..:In‘an appfopriate.energy Qafiable the Lanﬁ#u
analytic structure. . v . .

surface is (locally) a point, and the physical

i t ur ists of
The second part of the normal analytic structure consists o continuation asses into the upper-half plane.

the i€ rules. The rules assert that the physical scattering func-

tions on different sides of the Landau singularity surfaces are all ~ The fact that the scattering function is ome single amelytic
parté of one single analytié function. And these rules specify. - function is neither trivial nor obvious. In fact, in theories with
precisely how this function should be continued around each Iandau shadow particles of the kind discussed in the preceding talk by

surface to reach the physical scatterihg function on the other side . P?ofessor Sudarshan the scattering function is not a single analytic

‘ . ) ) o function. Thus these theories lack the macrocausality property. I
of that surface (see Figs. 7 and 8). » .
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The important point is that asymptotiéally only the singular
part of the scattering amplitude contributes. -Thus, if the space-time

separations between the five collision regions in Fig. 18 are all

large (see Fig. 18) then the scattering amplitude.for the overall 6 - 6

~a ~a

Fig. 18. A spece-time process corresponding to Fig. 17.

process can be replaced by its singular part, which is exhibited in

Fig. 18b, and the trensition amplitude takes the factorized form

-

Here S(Pi) is the S matrix for the central 2 - 2 process in Figs.

- 17 and 18, where the index 1 runs over the four outer processes.

The four functions ’Si(pi, pij) are the S matrices for these four

(*)

- M
outer 2 ~ 2  processes. The various Wi are Wi or Wi
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according to whether particie i. 1is an incoming or outgoing particle

. . _
for the central reaction, and the Wﬁj) are or according

*
Y13 13
to whether 1ij .labels an incoming or outgoing particle of the ith

outer reaction.

The first two ocuter reactions (reading from left to right in

Fig. 18) cén be regarded as the reactions in which the two incoming

particles of the central reactioﬁ are prepared. And the final two.
outer reactions can be regarded as the reactions that detect the two
outgoing particles of the central reaction. Thus the factorized
formula for the transitiqn hrobability shows the consistency between
the interpretations in which the outer reactions are considered,
alternatively, as integrai perts of the oversll 6 - 6 process, or
as the reactions thatbprepare and detect the incoming and outgoing

particles of the centrel 2 =+ 2 reaction.
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IV. THEORIES WITH SHADOW PARTICLES . . Suppose the momentum-energies of the three external particles
A. The Measurement Problem | ‘ ' Ny that intersect aF A are such that a particle of mass m and
Theorieés with shadow particles encounger problems concérning momentum-energy k could be produced in this subreaction. And suppose

measurement, which will now be discussed. The discussion is based on the momentum-energies of the three external particles that intersect
the foregoing discussion of the theory of measurements. ' at B are such that their momentum-energy imbalance would be corrected

' Consider a theory with shadow particles, of the kind discussed by an extre incoming particle of mass m and momentum energy k. And
by Professor Sudarshan in the preceding talk.h Suppo;e there is a suppose the locgtions of A .and B are such that a space-timé
shadow particle of mass m . Consider a 3 - 3 .scattering ﬁroéess_ | trajectory with direction. v'=k/m comnects A to B, as shown in
in which the three incoming particles and the three outgoing particles Fig. 20.

are all ordinary (i.e., non-shadow) particles. And suppose the

VU= ’i/;ha

incoming and outgoing beams are arranged as shown in Fig. 19.

Z

~ 5 SPn!C‘ )
Space
LT"""
\ .
Fig. 20. The space-time region B 1lies in the region
Fig. 19. ‘The incoming and outgoing beaﬁs of the 3~ 3 s G ' o wherg & ;article of ggs; m and momentum engrgy_»k:
scattering process are arranged so that two of the : o could go if it were produced in A. The region of
incoming beams and one of the outgoing beams intersect : space-time corresponding to th? varléus values of k
in & space-time region A, and so that the other two that are compatible with the momentum-energy ranges
outgoihg beams and the other incoming beam intersect in - ) in the incoming and outgoing Wave functions is also
a space-time region B. The outgoing beams are defined ‘ . ) shown.

by the acceptance conditions of the measuring devices ' - If the particle of mass m were an ordinary (i.e.‘non-shadow)
that detect the outgoing ;articles. particle, then there would be pole in the scattering amplitude at



.separation between A and B, would have the form
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m - ie . The effect of such a pole is to give a contribution to this
scattering process of exactly the kind that would be expected if a
particle éf'mB.SS m were produced at A and absorbed at B. In
particular, the pole-factorization property emsures that the dominant

contribution to the 3 - 3 scattering transition amplitude, for large
5

d3
v y = (v | g)
e (p) #lp . g
where
)ﬂ | e Or
#(p) = 8,(», 2, o, (21!)5
and
6 * d-5P
V(@ = | sy p) ﬂ [\ i,

and all momentum-energy vectors are on-mass-shell. If the formula for
¥(p) is substituted into the expression for the transition amplitude

¢ ) then the: result can be interpreted by saying tmt a pa.rticle

-of mass .m and wave function $(p) is produced in the reaction at A

5
and detected in the reaction at B .

- If the particle of mass m is & sha.dov particle then the

‘rules set forth by Sudarshan and co—wcxrkersh say that the S matrix for

this % — 3 process should be calculated by using the principal-value

resolution of the pole singularity at E =

1 1 + 1
2 m - ie m + i€ ;

instead of the usual retarded propagator resolution (1/(m -~ 1e)] .

That is, one should use
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The effect of this change on the transitioh probability rates
predicted under the conditions represented in Figs. 19 and 20 is to
decrease them by a factor of four. For in these situations only the
retarded part of the propagator contributes significantly, and hence
the fa.ctc_)r of one-half occurring in front of the retarded part of the
principal-value »pro;l:agator produces a factor of one-quarter im the
sca_ttefiné frénsition probabilities., This means that the shadow
particle can be detected by its interaction at B with ordinary
particles, but that the probability of its being found at B is
decreased by a factor of foui'.

The fact that thé shadow particle can be detected in this way
far away from the region in which it was formed conflicts with the
ideas of shadow theory. For shadow particles are supposed to
contribute to the dyn;a.mics, yet not appear as physically observed
particles, .

The problem, however, 1s that dynamics cennot be separated
from observation. For what is observed is dynamical effects. If the
long-range dynamical effects corresponding to a particle are present,
then thié pir_ticle is present For in quantum theory a physical
'part'ic':le‘ is pé_thing more than the physi;:al effects that we associate
with e particle.

Thé point, then, is that the effect of the retarded part of
the principal-value propagator is to ensure that the shadow particle
ﬂ propagate through the space-time region indicated in Fig. 20, -in
the physical sense that it can be detected in this region by probes

consisting of ordinary particles.
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Since the long-range dynamical effects corfespondihécto fhe
reaction at B are‘présent it is hard to understand how & charged
shadow particle could fail to produce also tracks in a clbu@ chamber.
For the two effects do not seem qualitatiwvely different.

The obvious way out.of these difficulties‘is to make the masses
of all shadow particles complex. Then these particles would be
unstable, and hence would not contriﬁute to the asymptotic states.

Tﬁis is the stfategy of Lee and Wick.6 But Sudarshan and co-workers
do not require their shadow-particle masses to be complex, and in fact
usually deai with cases in which the shadow-particle masses are real.

B. Causality Problem

The difficulties Just discussed arise from the retarded part
of the shadow-particle propegator. The advanced part leads to other '
difficulties.

The advanced part of the shadow-particle propagator produces
acausal precursor effects. In particular, it generates contributions

to reactions of the kind shown in Fig. 21.
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Fig. 21. A scattering proéess exhibiting the acausal effect.

In this 3 =+ 3 process two of the incoﬁing particles

. ’
collide at _A, and one outgoing particle emerges. The
missing energy-momentum k 1is compatible with that
of a shadow particle. The other two outgoing particles
are observed tb emerge from a region B, which lies in
the interséction of the third incoming beam with a
space~-time trajectory that starts at A and moves
backward in time along a space-time liﬁe that is

.;arallel to the momentum-energy vector k .

The pzjobiem,‘ now, is that the_'outgoiﬁg merticles from B can,
in principle, be detected before the incoming beams aimed at A are
turned on. And the expériment can be set up so that these incoming
beams are turned on if and only if the perticles from B are not
detected. On the other hand, by making the incoming beams sufficiently
intense one can arrange that quantum theory will predict this: if the

incoming beamé are turned on then particles from B will almost surely



~33.

be detected. And the set-up can be such that quantum theory will also
predict this: 1if the incoming beams are not turned on then particles
from B will almost surely not be detected.

This gives a "l;:ausa.l loop" similar to those diséussed in -
_ea.rlier talks: 1if particles from B are detected then the beams will
not be turned on, and quantum theory will predict that particles from
B will almost surgly not be detected. Conversely, if particles
from B . are not detected then the 'be;a.ms will be turned on, and
quantum thecry will predict that particles from B will almost surely
be detected. |

It is logically impossible for the;e statistical predictions
of quantum theory to bebborne out in a sequence of repetitions of this
experiment. Thus_quantum theory must, by logical necessity, fail to
carrespond to experience in the way that quantum principles demand.
Thus the introduction of the principal-value propegator in the manner
prescribed by shadow theory is incompatible with the basic interpreta-
tional principles of quantum theory.

The above argument is based on the Copenhagen interpretation
of quentum theory. That is, quantum theory is viewed as fundamentally
- a. procedure by which scientists maké, pred.ictions about' what they will
| observe under specified conditvions. And the wave function is viewed
as the quantum theorist's representation of an idealization of the
finite system that he is examining, rather than some absolute rep-
resentation of the world itsel_f. |

This Copenhagen view places the scientist and his macroscopic
measuring devices outside the quantum system. Thﬁs the quantum system

is "open"”, in the sense used in earlier talks. The scientists sets up

. k-
the experimeﬁtal conditions and. is, as far as quantum theory is
concerned, a free external agent.7

The causality problem just discussed, unlike the measurement -
problem discussed earlier, is not résolved by simply'makix;g the shadow-
particle masses complex. For if the unstable shadow particles have .
sufficiently long lifetimes then by making the incoming beam suffi-
ciently intense one could; in principle, still con‘struct‘experimeptal
arrangements that would lead to the contradictions with q_uan'tum‘
theoretical principles. Moreover, even for shadow particles with small
lifetimes there are two-partiéle branch-points at m'+ m =2 Re m
that lie in the physical region itself, and which would give acausal
effects that have a power-law fall off, rather than an exponential
fa].l off.6 . Though these acausal effects would in ;iractice be small,
they would generally lead in principle to causality problems of the
kind just discussed. : . : :

A central question to which this conferencé has addressed ‘
itself is whether causality requirements have the force of logical
necessity, or are mere expressions of convention ér prejudice.
Logical _necessity»can, of course, operate only within a logical or
theoretical framework. However, within a giveﬁ general théorétical
framework cé.usalit_y requirements can be a logical necessity. The

example discussed in this section illustrates this point.
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‘There is an opposing naive view of quantum theory that holds that

the entire world is represented by a wave function. vThis view
entails, héwever, either that the superposition principle féils to
hold universally, in which case the theory is not qﬁantum theory,
or that the world we know is one of a continuously infinite

collection of similar worlds, all but one of which must remain
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forever'unobservable.8 The need to accept such a metaphysical

assumption is.a big price to pay for shadow particles. Moreover,
& technical problem arises. For this interpretation is based ﬁn'
the idea that there is a Schroedinger equation that governs the
temporal evolution of the world's wave function. Shadow theory,
on the other hand, has been formulated in the é:-matrix framework.
Thus additional work would be'needed to show that shadoﬁ theory
can be generally formulated in termé of an evﬁlving wave function
of the world. »

These opposing ;nterpretafions'of qpahtum fheory are discussed in

H. P. Stapp, Am. J. Phys. 40, 1098 (1972). References are éiven
there.
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