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ABSTRACT OF THE DISSERTATION 
 
 

 

Identifying drivers of phenotype heterogeneity in breast cancer 
 

 

by 
 
 

 

Kevin Chen 
 

 

Doctor of Philosophy in Bioengineering 
 

 

University of California San Diego, 2020 
 

 

Professor Stephanie I. Fraley, Chair 
 
 
 

A major component of cancer’s complexity lies in its heterogeneity. Because cancer 

heterogeneity can manifest across multiple spatiotemporal and biological scales(1–4), 

comprehensive characterization is challenging. Assays that allow controlled experimentation to 

determine the mechanisms behind cancer heterogeneity remain underdeveloped. Many existing 

technologies rely on exploitation of predetermined characteristics(5–7), which precludes 

exploration of phenotypes that are ill-defined. Other platforms begin with blind genomics, using 

post-sequencing experiments for validation(8, 9). These approaches inherently require 

significant differences in the genomics underlying heterogeneity to elucidate potential 
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mechanisms, since unsupervised clustering relies on deploying mathematics to obtain clear 

separations(10–12). While successful when involving multiple cell types, since their biological 

profiles lie in separable state spaces(6, 8, 13, 14), unsupervised analysis has limitations when 

evaluating more similar cells, such as within-cell-type heterogeneity, as it becomes difficult to 

separate profiles that are highly alike. A study on this specialized scope has not yet been done, 

probably due to the challenges of parsing a more subtly heterogeneous sample. 

This dissertation describes the development and application of a platform that enables 

detailed interrogation of within-cell-type heterogeneous, 3D collective cancer cell migration 

phenotypes. Collective migration is a process where multiple cells coordinate their 

movement(15, 16). Recent studies point to the importance of collective cell migration in cancer 

metastasis(17–20). Although various phenotypes have been identified, factors that regulate 

collective behavior are not fully understood(15, 16, 21). Using a flexible, microscopy-based 

platform, I identified and isolated cells that exhibit invasive and non-invasive collective 

migration. By first defining functional subpopulations, I deployed a supervised approach to 

determine the mechanisms behind this aspect of heterogeneity. I found that the collectively 

invasive phenotype is associated with upregulated proliferation, increased stress responses, and 

the ductal carcinoma subtype, while the collectively non-invasive phenotype was associated with 

immune-related processes and the luminal carcinoma subtype. Functional perturbation of 

differentially expressed genes resulted in shifts in migration phenotypes. These results validate 

the platform I developed for identifying mechanisms of within-cell-type heterogeneity. 

Furthermore, the results demonstrate a link between migration regulation, stress response, 

proliferation, and immune response and indicate potential value in exploring how collective 

invasion may be controlled through these associated modules.
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Chapter 1: Development of an automated, high-throughput 

platform to separate cancer cells based on visual heterogeneity 

1.1 Introduction 

Tumor heterogeneity is one of the major features of cancer that precludes effective 

treatment. Since standard treatment plans target a particular receptor or pathway, the existence of 

subclones presents opportunities for resistance and complicates therapeutic strategy(22–24). 

Experimental approaches for the identification of regulatory factors that modulate tumor 

heterogeneity can therefore importantly contribute to the design of therapeutic agents for the 

treatment and/or prevention of cancer.  

Advances in sequencing technologies have helped elucidate information on the genetic 

mechanisms of tumor heterogeneity through evolutionary and cellular differentiation models(25). 

However, functional characterization of tumor heterogeneity remains lacking, and approaches 

linking omics data to functional outputs remain underdeveloped(26).  

The elucidation of the exact pathways that result in the manifestation of heterogeneity in 

cancer has been hampered by the lack of suitable methodology to functionally interrogate the 

putative roles of protein regulators. In principle, studying the differences between heterogeneous 

profiles requires isolation of these subpopulations for experimental comparison. This separation is 

non-trivial, especially for phenotypes that are not well characterized. This problem is further 

complicated by the rise of 3D culture models, which aim to better recapitulate native physiology. 

Extraction of cells embedded in 3D culture presents additional challenges. Isolation of cells from 

the culture platform is not a trivial task, particularly when only specific and possibly rare 

phenotypes are of interest. Furthermore, these methods need to be designed to minimize 
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disturbance so that the native biology is preserved after isolation, yet rapid enough to attain the 

throughput needed for large-scale studies. Additionally, there is a need for this technique to be 

widely applicable and easy to use. 

In recent advancements, transcriptome measurements have been integrated with multiple 

omics, genotype, cell electrophysiology, lineage tracing, and spatial information(27–32). In other 

protocols, rare cell subpopulations are functionally sorted using physical or image-guided 

techniques in an attempt to link phenotype to omics data(5, 33). However, these approaches are 

often limited in their capacity to explore undefined phenotypes that have no known biomarkers. In 

other cases, the technique can directly tackle particular phenotypes but is highly technical and 

specialized, resulting in low throughput when isolating subpopulations of interest. This results in 

a need to amplify the cell population after collection to obtain enough genetic material for 

downstream experiments, which presents problems when investigating phenomena that may 

change between cell cycles. 

To address the need to develop a quick, flexible, high-throughput platform for 

interrogating cellular heterogeneity, I have developed a method that enables fluorescent tagging 

of groups of cells within 3D culture. I can then release the cells from 3D culture by gel digestion 

and collect the targeted population using fluorescence activated cell sorting (FACS) while 

preserving their viability. This platform enables to collection of thousands of cells over the course 

of a few hours and is widely adaptable for use in interrogating any visual manifestation of 

heterogeneity. 



3 

 

1.2 Results 

1.2.1 Dendra2 photoconversion enables selective phototagging of cells in 3D 

culture 

As the basis for our technique, I virally transduced Dendra2, a protein known to exhibit 

green-to-red photoconversion, into our cells. Post transduction, cells were sorted for expression 

and maintained a baseline green fluorescence in culture. To obtain cells with the highest Dendra2 

signal, we sorted for the 15% of cells with the highest green fluorescence. We outfitted our 

microscope with a laser box and galvanometer scanner to enable fine spatial control of a 405 nm 

laser beam. Exposure of cells to 405 nm light at 50% laser power and 30 µs dwell time caused the 

cells of interest to express red fluorescence, while untargeted cells only expressed green 

fluorescence. 

We then sought proof of concept in 3D culture. Cells were embedded in 3D collagen, and 

then exposed to 405 nm light. We tried various different laser power strengths and dwell times to 

optimize the exposure needed for photoconversion while minimizing phototoxicity effects. In the 

x-y plane, we had no observation of unintended photoconversion. A laser power of 70% and a 

dwell time of 30 µs was sufficient in producing a distinctive red fluorescence post-exposure 

(Figure 1.1). In the z-axis, cells directly underneath the target cell would exhibit photoconversion 

if the distance was less than 200 µm. Thus, to minimize unintended phototagging, we avoided 

targeting cells that containing overlapping cells in the z-axis less than 300 µm apart. 
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Figure 1.1. Cells transduced with Dendra2 are able to be selectively phototagged. Representative FITC and 

TRITC images of cells transduced with Dendra2 pre and post stimulation. Only the targeted cells (bottom left in field 

of view) were phototagged and expressing red fluorescence (photoconverted Dendra2). 

1.2.2 Collagenase and trypsin treatments release the cells from the matrix and 

preserves the photoconverted signature 

Post-phototagging, cells then needed to be isolated from 3D culture. Treatment of the gels 

with 1 mg of collagenase per mg collagen for 15 minutes, aided with mechanical disruption, caused 

the gel to fully dissolve. The solution was then diluted with cell culture media and centrifuged at 

400 xg to pellet the cells. The supernatant was aspirated to remove the collagenase, and the cells 

were resuspended in trypsin to dissociate them into a single cell suspension for 10 minutes. Post 

digestion, the cells remain viable and retain red fluorescence imparted by phototagging (Figure 

1.2). 
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Figure 1.2. BRCA cells remain viable and phototagged post gel digestion. Representative brightfield, FITC, and 

TRITC image of MDA-MB-231 cells after extraction from a 3D collagen gel. Almost all cells express green 

fluorescence (Dendra2), while only a select few are expressing red fluorescence from phototagging (Dendra2 (PC)). 

Scale bar 200 µm. 

1.2.3 Fluorescence activated cell sorting (FACS) enables purification of 

phototagged cells  

Post-gel digestion, cells then needed to be purified to isolate the cells that were 

phototagged. To preserve viability and the transcriptome state, cells were sorted in a chilled 

environment. Cells were resuspended in a buffer containing BSA and EDTA to minimize 

aggregation and sorted at a low flow to minimize stress. Sorting the cells based on red fluorescence 

enables capture of the phototagged cells (Figure 1.3). Post FACS, the cells remain viable and all 

cells retain red fluorescence imparted by phototagging (Figure 1.4). 
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Figure 1.3. FACS enables separation and recovery of phototagged cells. The fluorescent profile of a control gel 

(not photoconverted) is used to gate the red fluorescence level. Cells in the photoconverted gel are then collected if 

they fall within the gate.  A fraction of cells exhibits greater red fluorescence compared to the control. 

 

 

 

 

 

 

 

 

 
Figure 1.4. BRCA cells remain viable and phototagged post FACS. Representative brightfield and TRITC image 

of MDA-MB-231 cells after sorting via FACS. All cells express red fluorescence from phototagging (Dendra2 (PC)) 
and contain a pure population of the phototagged cells. Scale bar 200 µm. 

1.3 Discussion 

1.3.1 Development of the protocol 

We developed a workflow that enables investigation of molecular mechanisms of 

heterogeneity in cancer through transcriptomic sequencing on functionally sorted populations. 

While adaptable to many contexts, we chose to focus on isolating collectively invasive cancer cells 

and collectively non-invasive cancer cells that spontaneously form in our 3D culture model(21, 
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34). This method is based on the fluorescent tagging of the subpopulation of interest through 

photoconversion. Dendra2 was chosen as the photoconvertible protein, which can be transduced 

into any cell line, rendering them green-fluorescent. Upon exposure to 405 nm light, cells will start 

to become red-fluorescent. Dendra2 was originally used to track intracellular protein movement, 

but we found that it could also be used as a general fluorescent tag to mark cells within 3D culture, 

enabling its use in any system that is amenable to transduction or transfection. 

Combining this fluorescent tagging technique with gel digestion and FACS, we were able 

to isolate out populations of cells that exhibit invasive and non-invasive modes of collective cancer 

migration. This approach of using an agnostic fluorescent tag to perform phenogenomic 

sequencing is a powerful way to link functional output to transcriptomic data without the need for 

prior knowledge on biomarkers that define heterogeneous profiles. 

Accordingly, the protocol presented here can be used for high-throughput separation of 

phenotypically heterogeneous cells in 3D culture based on any visual indicator. We describe a 

photoconversion-based platform that enables fluorescent tagging of visual phenotypes based on 

morphological characteristics. We also attach a streamlined 3D culture method, gel digestion and 

FACS protocol. 

1.3.2 Comparison with other methods 

Current methods developed for phenogenomic sequencing often require more stringent and 

less flexible methods of identifying the phenotype of interest(28–30). The application of these 

techniques are limited to situations where established biomarkers already define the subpopulation 

to be isolated. Other agnostic labeling methods using confocal microscopy provide more flexibility 

but are often limited in throughput and scale(33). The amount of cells that can be tagged typically 

range in the tens or hundreds, and the time required to tag the cells at such a fine resolution 
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precludes high throughput, making these techniques unsuitable for studies above the single cell 

level. These methods often require growth-based amplification after sorting to obtain enough 

genetic material for sequencing, which is problematic if cells are plastic and can redefine their 

transcriptome between sorting and extraction. Furthermore, no published method has yet described 

a tagging platform based on flexible recognition of heterogeneous visual phenotypes. 

1.3.3 Applications of the method 

The presented methodology enables researchers to interrogate the molecular basis of 

biological heterogeneity that can be defined by any visual parameter. Although this technique was 

used to probe heterogeneity in the collective migration profiles of MDA-MB-231 cells, other cell 

lines and other aspects of biological heterogeneity can also be investigated, provided the 

heterogeneity manifests in a visual manner. Because our fluorescent tagging method is based on 

transduction of Dendra2, any cell amenable to viral transduction can be used with our method. 

Combined with downstream FACS and transcriptome sequencing, an insight into the mechanisms 

of the heterogeneous property in question can be answered at the transcriptome level. This can 

then lead to functional perturbations at the protein level to confirm the inferences made from 

sequencing outputs. Our platform can also be adapted to probe gene expression perturbation 

strategies downstream to investigate their impact on the biological heterogeneity in question. 

1.3.4 Limitations 

To increase throughput, our platform uses a wide-field fluorescent microscope at lower 

magnification to photoconvert a larger amount of cells with a shorter amount of time compared to 

confocal microscopy. However, this loss in resolution could potentially lead to unintended 

photoconversion of nearby cells, particularly above and below the plane where the targeted cells 
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lie. This limitation can be overcome by avoiding photoconversion of cells that contain nearby 

neighbors, and to more sparsely seed in 3D culture to minimize overlap of cells in the vertical axis. 

With our system, we calculated that objects farther than 10 µm in x-y and farther than 200 µm in 

z do not receive sufficient exposure to 405 nm light to be photoconverted. We also validated this 

experimentally.  

Separation of the photoconverted cell population requires the use of collagenase and 

trypsin, which may destroy surface markers. If surface proteins need to be preserved for 

downstream applications, enzymes with less disruptive mechanisms can be used, or more 

sophisticated techniques, such as laser microdissection, may need to be used. 

The protocol as presented requires manual phototagging of phenotypes, hampering 

throughput. I have already developed preliminary image acquisition and processing algorithms to 

automate the phototagging process. I can obtain volumetric images and identify spheroidal 

collective cell structures within the 3D gel and draw a proper ROI for stimulation. Future work 

will focus on integrating the communication with the laser unit to allow for stimulation, as well as 

developing additional image processing algorithms to expand on phenotypes available for 

targeting. 

1.3.5 Experimental Design 

The experimental workflow of the procedures is described in Figure 1.5, which depicts the 

different stages of the Procedure. In broad terms, the Procedure consists of four main sections, 

which are detailed below. 
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Figure 1.5. Experimental workflow of the phenotypic sorting platform. Cells are first transduced with Dendra2 

and cultured in a 3D collagen matrix, where they are grown for 7 days to enable the development of collective 

migration phenotypes. The gel is then transferred to a microscope, where select phenotypes are identified in 3D space 

and photoconverted. The gel is then digested using collagenase and cells are recovered using FACS. 

 

Choice of cell line 

Successful transduction of a photoconvertible protein into the experimental cell line is the 

foundation of this technique. Thus, selection of a cell line amenable to gene editing is critical. 

While we present a method of lentiviral transduction to induce expression of Dendra2 in our 

protocol, other methods of induced gene expression and other photoconvertible proteins may be 

used as well. 

Culturing platform 

The presented protocol separates cells expressing heterogeneous collective migration 

profiles within 3D culture, specifically in 3D COLI. While heterogeneity can be investigated in a 

variety of contexts, there are specific considerations to keep in mind for 3D cultures to maintain 

an appropriate context. The biophysical properties of the environment, including choice of 
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material, should be adapted according to the type of heterogeneity being studied. Tissue specific 

studies, for instance, may need to be matched with particular extracellular matrix proteins at 

specific densities and stiffnesses to ensure biological relevance. 

Fluorescent tagging by photoconversion 

The choice of imaging strategy is not limited to the specific microscopes and settings 

presented in this protocol. However, for optimal configuration, a widefield microscope should be 

equipped with at least a laser line at wavelengths suitable for photoconversion, a galvanometric 

scanner, and climate control (temperature, humidity, and CO2). The code and macros we provide 

are specifically optimized for image sequences obtained using our microscope setup and software. 

However, this can be easily adapted to other platforms. The choice of lenses should be optimized 

to focus the laser light as much as possible to minimize off-target photoconversion, while also 

taking in consideration the physical size of the attributes used to determine the modes of 

heterogeneity being studied and maximizing throughput (subpopulation photoconversion). 

Preparation for FACS 

Proper digestion and preparation of cells into a single cell suspension is crucial for the 

efficient collection of the fluorescently tagged population. We have minimized the processing time 

to preserve the transcriptional signature as much as possible. In our case, since we culture our cells 

in a Col I hydrogel, we chose to use collagenase as our gel digestion enzyme. 3D cultures using 

other materials should use their respective appropriate enzyme(s) and be optimized for a short 

processing time while minimizing adverse effects on the cells. Since we study collective 

phenotypes, we also had an incubation phase with trypsin followed by straining to further 

dissociate the cells. This may not be necessary in other cases where cells are less adherent to each 

other after gel digestion. In addition, if preservation of cell surface markers are important for the 
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study, the choice of digestive enzymes to be used will need to be carefully selected to prevent loss 

during processing. We describe a standard buffer for FACS that was amenable to the survival of 

our cells. Cells that cannot survive in this basic flow sorting buffer may require other supplements 

or growth media while sorting. 

The flow cytometer to be used must have the proper lasers and filters to detect the emission 

spectrum of the photoconvertible protein, in its native and photoconverted state. The equipment 

we use allows for stringent gating to ensure the collection of a phenotypically pure population. 

Users can adjust the gate depending on the stringency of their experiment. The flow sorter we use 

comes equipped with liquid chilling to help preserve our sample, although this may not be 

necessary in all cases. 

1.3.6 Controls 

It is important to verify that the biological heterogeneity being studied is not altered 

through expression of the photoconvertible protein. Cells expressing the photoconvertible protein 

should be compared to wild-type cells to ensure the same modes of heterogeneity exist and at 

similar frequencies or modes. 

Proper controls must also be used to ensure collection of purified photoconverted 

populations. A non-photoconverted sample exhibiting biological heterogeneity should be used to 

gate the baseline fluorescence of the photoconverted channel. To ensure purity of the sample, a 

strict gate should be applied where all cells collected express higher fluorescence in the 

photoconverted channel compared to the negative control. Users can adjust the strictness of this 

gate to their application on the demands for the purity of their enriched population. 
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1.4 Materials and Methods 

1.4.1 Biological materials 

• MDA-MB-231 (ATCC, cat. no. HTB-26) 

• Lenti-X 293T (Takara Bio, cat. no. 632180) 

1.4.2 Reagents 

Cell culture 

• Dulbecco’s Modified Eagle Medium (Life Technologies, cat. no. 11995073) 

• Fetal bovine serum (Fisher Scientific, cat. no. MT35010CV) 

• Phosphate-Buffered Saline (Life Technologies, cat. no. 10010-031) 

• Gentamicin (Life Technologies, cat. no. 15750060) 

• Trypsin (Life Technologies, cat. no. 25200056) 

3D Culture 

• Rat tail collagen I (Fisher Scientific, cat. no. CB354249) 

• Sodium Hydroxide (Fisher Scientific, cat. no. S318-500) 

• HEPES, Free Acid (Millipore Sigma, cat. no. 5310-OP) 

• Sodium Bicarbonate (MP Biomedicals, cat. no. 02119484783) 

• Polyethylene Glycol (Sigma-Aldrich, cat. no. P5413-500G) 

• Wet Ice 

Viral Particles Generation and Viral Transduction 

• Dendra-2-Lifeact-7 plasmid (Addgene, cat. no. 54694) 

• pSin-EF2-Nanog-Pur plasmid (Addgene, cat. no. 16578) 

• ECORI (NEB, cat. no. R0101S) 
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• SPEI (NEB, cat. no. R0133S) 

• Forward Primer (5’ TAAGCAACTAGTGGTTTAGTGAACCGTCAGA 3’, IDT) 

• Reverse Primer (5’ GGTGCTTAGAATTCGTAAAACCTCTACAAATGTGG 3’, IDT) 

• Kanamycin Sulfate (Fisher Scientific, cat. no. 11-845-024) 

• Tryptone (Neogen, cat. no. NCM0211A) 

• Nutrient Agar (Neogen, cat. no. NCM0269) 

• Ampicillin (Fisher Scientific, cat. no. BP1760-5) 

• BactoTM Yeast Extract (ThermoFisher, cat. no. 288620) 

• Sodium Chloride (Promega, cat. no. H5271) 

• Viral packaging/envelope plasmids (Addgene, cat. no. 12260, 12259) 

• Chemically competent DH5a 

• Lipofectamine 3000 kit (ThermoFisher, cat. no. L3000008) 

• 0.45 µm sterile filter (VWR, cat. no. 28137-938) 

Flow Cytometry 

• Collagenase (Sigma-Aldrich, cat. no. C0130) 

• Nanopure water 

• Bovine Serum Albumin (Fisher Scientific, cat. no. BP671-10) 

• EDTA (BioPioneer, cat. no. MB1010) 

Single cell RNAseq 

• Chromium Chip B Single Cell Kit (10x Genomics, cat. no. 1000154) 

• Chromium i7 Multiplex Kit (10x Genomics, cat. no. 120262) 

• Chromium Single Cell 3’ Library & Gel Bead Kit v3 (10x Genomics, cat. no. 1000092) 

• Chromium Single Cell 3’ Library Construction Kit v3 (10x Genomics, cat. no. 1000078) 
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1.4.3 Equipment 

Culture 

• Inverted contrast microscope for routine examination of cell cultures (Nikon DIAPHOT)  

• Water bath at 37°C (Fisher Scientific, cat. no. 15-462-20Q) 

• Incubator at 37°C with 5% CO2 

• Centrifuge for 15-ml, 50-mL and Eppendorf tubes (ThermoFisher, cat. no. 750072003) 

• Centrifuge tubes (50 mL, sterile, DNAse/RNase free, Corning, cat. no. 430829) 

• Centrifuge tubes (15 mL, sterile, DNAse/RNase free, Corning, cat. no. 352095) 

• Filtered sterile pipette tips (Neptune Scientific, cat. no. BT10E, BT20, BT200, BT1250) 

• Micropipettes (Fisher Scientific, cat. no. 13-675-48, 13-675-49, 13-675-51, 13-675-52) 

• Multiple-well plates (6 wells; Corning, cat. no. 353224) 

• Multiple-well plates (48 wells; VWR, cat. no. 734-2326) 

• Tissue Culture flasks (T75; VWR, cat. no. 734-2313) 

Photoconversion 

• 35 mm glass cover dish (WPI, cat. no. FD35-100) 

• Inverted widefield fluorescence microscope (Nikon, model no. Eclipse Ti-E 

(MEA53100)) equipped with 

• 20x Objective (Nikon, MRD00205) 

• High Speed Galvo Miniscanner (Nikon, 99316) 

• Nikon LUNA (Nikon, MHF45000) 

• Detectors: Hammamatsu Flash 4.0 sCmos camera (Hammamatsu, cat. no. C11440-22CU) 

• Light engine for epifluorescence (Nikon, MEE54100) 

• Large incubator with heating and CO2 control (Nikon, 77025108) 
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Flow cytometry 

• BD Influx sorter (BD, cat. no. 646500) equipped with 

• Lasers (488, 563 nm) 

 

1.4.4 Reagent setup 

Complete medium I 

For cancer cell expansion, prepare complete medium I by supplementing DMEM (450 mL) 

with FBS (50 mL), and Gentamicin (500 µL). Sterile filter and store at 4C until needed. Before 

use, warm up in a water bath (37°C). Complete medium I can be stored at 4C for up to 6 months. 

 

FACS buffer 

Mix 0.2 g BSA, 20 µL of EDTA, and 50 mL of nanopure water. Sterile filter and store at 

4C until needed. FACS buffer can be stored at 4C for 4 months. 

 

Reconstitution buffer (RB) 

Mix 110 mg NaHCO3, 240 mg HEPES free acid, and 5 mL nanopure water to make a stock 

solution. Sterile filter, aliquot, and store at -20C until needed. RB can be stored at -20C for 1 week. 

 

PEG 

Mix PEG with PBS to make a 100 mg/mL stock solution. Sterile filter, aliquot, and store 

at -20C until needed. PEG can be stored at -20C for 3 weeks. 
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NaOH 

Mix NaOH with nanopure water to make a 1N stock solution. Sterile filter and store at -

20C until needed. NaOH can be stored at -20C for 6 months. 

 

Gel digestion buffer 

Mix 10 mg of collagenase with 1 mL of PBS. Sterile filter and store at -20C until needed. 

Gel digestion buffer can be stored at 4C for 6 months 

1.4.5 Equipment setup 

Photoconversion 

Before you begin, make sure to calibrate the laser with the galvo scanner. You will need to 

determine the appropriate settings for some key simulation parameters, such as dwell time and 

laser power. Optimize these parameters to obtain high post-photoconversion fluorescence but not 

expose your cells to phototoxicity. 

 

FACS 

Ensure that the 405 nm laser line on the machine can be turned off, as this can result in 

photoconversion during flow sorting. Ensure that the equipment contains the appropriate lasers 

and filters to capture both the native and photoconverted fluorescent states to ensure enrichment 

of the desired population. A machine that can support chilled sorting is preferred to maintain 

viability of the cells. 

1.4.6 Procedure 

Cloning of Dendra2 into lentiviral vector 
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1. Amplify the Dendra2-Lifeact vector using PCR with the custom primers. Thermocycling 

conditions are listed in Box Y. 

2. Digest the pSin plasmid using EcoRI and SpeI. 

3. Run the digested plasmid, along with an undigested control, on a 1.5 wt% agarose gel 

4. Check for successful digestion, and gel purify the digested backbone using QIAQuick gel 

extraction kit. 

5. Clone the Dendra2-Lifeact fragment into the pSin backbone using T4 Ligase. 

6. Transform the plasmid into competent DH5a for amplification. 

7. Harvest the lenti-Dendra2 vector using the Promega miniprep kit. 

8. Verify the sequence through sequencing with the custom primers. 

  Box Y 

Step Temp Time 

Initial Denaturation 98°C 30s 

Cycling (30x) 98°C 

68°C 

72°C 

10s 

20s 

20s 

Final Extension 72°C 5 min 

Hold 4C 

 

 

Production of Lentiviruses 

9. Culture HEK293T cells in a 6-well plate until 70-80% confluency. 

10. Transfect the cells 16–24 h after plating with the lenti-Dendra2 plasmid along with 

lentiviral packaging and envelope vectors using the Lipofectamine 3000 kit. For the DNA 

component, add equimolar amounts of each plasmid. Add the transfection mix drop-wise 

to the cells and gently swirl the plate to mix. 
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11. Twenty-four hours after transfection, replace the medium with fresh medium. Check the 

cells, using a fluorescence microscope to determine transfection efficiency. 

12. Harvest the virus-containing medium on the 3rd day after transfection. Check the cells 

again, using a fluorescence microscope to determine virus production efficiency. Collect 

the medium and filter using the 0.45 µm filter to remove cell debris. Collect the virus in 

1.5 mL eppendorf tubes and store at -80C for long term storage, or use immediately for 

transduction. 

Viral transduction of Dendra2 into MDA-MB-231 

13. Culture MDA-MB-231 cells in a 6-well plate until 70-80% confluency. 

14. Aspirate the media, wash the cells once with PBS, and replace with new growth media. 

15. Add 75 µL of collected lenti-Dendra2 dropwise to the well. Gently swirl to mix. 

16. Monitor transduction efficiency through fluorescent microscopy. It may take 2-3 days 

before cells start to fluoresce. 

17. Passage cells into larger flasks to prepare for purification through FACS. Using a wild-

type control, gate for the cells expressing above background levels of green fluorescence. 

You may choose to collect only the cells that have the highest fluorescence for ease of 

identification for downstream experiments. 

3D culture of MDA-MB-231 Dendra2 (MDA-Dendra) 

18. Thaw out RB, NaOH on ice. 

19. Place a 48-well plate in the incubator to preheat to 37°C. 

20. Passage MDA-Dendra and count the cells using a hemocytometer. Keep cells on ice. 
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21. Calculate the amount of reagents required to make the 3D collagen hydrogel. Box Z 

displays sample calculations for making a 2.5 mg/mL collagen + 10 mg/mL PEG hydrogel, 

with 50,000 cells/mL embedded. Adjust calculations as necessary.  

  Box Z 

  Total desired volume of gel: 200 µL. Make 250 µL to account for reagent loss during pipetting. 

Stocks Desired Concentration or Volume Final Volume 

Collagen: 9.00 mg/mL 2.5 mg/mL 2.5*0.25/9.00 = 69.4 µL 

PEG: 100 mg/mL 10 mg/mL 10*0.25/100 = 25 µL 

NaOH 6.25% * volume Collagen 0.0625*69.4 = 4.34 µL 

RB Remaining Volume / 2 (250-69.4-25-4.34)/2 = 75.6 µL 

Cells (200 Kcells/mL) 50 Kcells/mL 50*0.25/150 = 62.5 µL 

Media Top off until gel volume is reached 250-69.4-25-4.34-75.6-62.5 =  

13.2 µL 

 

Note: The following steps must be performed quickly and carefully. Carefully mix the solutions 

at every step and do not introduce bubbles into the solution. If bubbles form, start over as the 

architecture of the hydrogel will not be homogenous. Steps must be performed quickly and 

reagents kept as cold as possible to prevent polymerization before the gel solution is incubated at 

37°C. 

22. Place the collagen, media, and an empty 1.5 mL Eppendorf tube on ice. 

23. Mix the reagents in the empty Eppendorf tube in the following order: cells, media, PEG, 

RB, Collagen, NaOH. 

24. Immediately pipet the gel solution into the preheated well plate and incubate at 37°C for 

30 minutes. 
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25. After 30 minutes, perform 3 washes of PBS for 5 minutes each. The amount of PBS to 

pipette on top of the gel is the same as the gel volume. 

26. After the last wash, aspirate the PBS and add growth media on top of the gel. The amount 

of growth media to pipette on top of the gel is the same as the gel volume. 

27. Leave the 3D culture for a week, changing media every 2-3 days. 

Tagging of collective cell phenotypes by photoconversion 

28. Transfer the collagen gel to a glass-bottom dish. Add enough media to keep the gel 

hydrated, but not so much that the gel will float in solution or move around in the dish. 

29. Transfer the glass-bottom dish to a fluorescent microscope stage.  

30. In the Bruker Miniscanner panel, set the dwell time to 75 us and the 405 nm laser power 

to 30%. 

31. Calibrate the galvanometric scanner. 

32. Using a 20x lens, identify the cells you would like to photoconvert. 

33. Verify that other cells are not within 10 µm in x-y and not within 200 µm in z 

34. Draw an ROI around the cells you would like to photoconvert. Right-click and select to 

use ROI as a Stimulation ROI. 

35. In the Bruker Miniscanner panel, click Stimulate. 

36. Repeat steps 24-27 until all cells of interest within the hydrogel have been 

photoconverted. 

Gel extraction and FACS sorting of photoconverted cells 

37. Transfer the collagen gel to a 1.5 mL Eppendorf tube. 

38. Add 50 µL of 10 mg/mL collagenase to the gel. 

39. Use a P1000 pipette tip to gently mash and mechanically disrupt the gel 
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40. Incubate the gel in the water bath at 37°C for 5 minutes 

41. Mix the solution further with the P1000 pipet tip. The entire solution should be pipetted 

up and down within the pipette tip. Minimize the introduction of bubbles as much as 

possible. 

42. Incubate the gel in the water bath at 37°C for 5 minutes 

43. Mix the solution with a P200 pipette tip. The entire solution should be pipetted up and 

down within the pipette tip. Minimize the introduction of bubbles as much as possible. 

44. Incubate the gel in the water bath at 37°C for 5 minutes 

45. Centrifuge the solution at 400 xg for 4 minutes 

46. Discard the supernatant, add 50 µL of 0.25% trypsin, and resuspend the pellet. 

47. Incubate in the water bath at 37°C for 5 minutes. 

48. Mix the solution with a P200 pipette tip. 

49. Incubate in the water bath at 37°C for 5 minutes. 

50. Centrifuge the solution at 400 xg for 4 minutes. 

51. Remove the supernatant and resuspend the pellet with an ice-cold FACS buffer. 

52. Strain the cells prior to FACS. 

53. Use forward scatter and side scatter to exclude debris. 

54. Use un-photoconverted controls to set gates for red-fluorescence 

55. Collect cells expressing red-fluorescence higher than gate 

1.4.7 Troubleshooting 

Problems 

• low transduction efficiency 

o increase viral load, or post sort cells for expression by flow cytometry 
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• cell subpopulations are too closely clustered together 

o seed cells sparser in culture platform 

• low fluorescence of photoconverted cells 

o flow sort for the highest Dendra2 expressing cells, or increase the dwell time of the 

laser at each point 

• gel digestion is incomplete 

o increase collagenase concentration, increase mechanical disruption intervals, or 

increase incubation time with collagenase 

• low cell viability post sorting 

o ensure cells are placed on ice at all times and that the flow sorting speed is lower 

1.4.8 Timing 

Steps 1-8, cloning of Dendra2: 1 week for the provided protocol 

Steps 9-12, lentiviral production: 3 - 4 days 

Steps 13-17, lentiviral transduction: 4-5 days 

Steps 18-27, 3D Culture: 1 week 

Steps 28-36, photoconversion: 3 hours 

Steps 37 - 55, gel extraction and FACS sorting: 1-2 hours 
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Chapter 2: Stress response, proliferation, and immunologic cellular 

processes are coordinated with invasive and non-invasive phenotypes 

2.1 Introduction 

Cellular heterogeneity is indispensable for population-level survival strategies of 

multicellular organisms, such as bet-hedging in order to achieve a better chance of survival when 

faced with new stresses(36, 37). In cancer, the genetic, epigenetic, transcriptional, and proteomic 

differences among tumor cells can give rise to diverse phenotypes, some of which can persist in 

dysregulated environmental conditions, survive therapeutic attempts, and migrate away from the 

primary tumor to form metastases(20). Linking the heterogeneity observed in cellular genomics 

with phenotypic heterogeneity has significant potential to inform successful population-level 

treatments. However, the challenges associated with measuring phenotypic heterogeneity and 

isolating particular cells within the complex in vivo environment make it difficult to identify the 

most basic transcriptional modules regulating individual cell behaviors.  

Fortunately, significant evidence suggests that physiologically relevant phenotypes of 

BRCA cells can be studied in less complex in vitro systems by embedding the cells in 3D Type I 

Collagen (COL1) hydrogels. BRCA cell lines, organoids from mouse tumors, and organoids from 

human tumors embedded in this model system harbor the same pattern of differentiation markers 

as are observed in studies of mouse mammary tumor histology and human BRCA histology(33, 

38). Studies have also shown that BRCA cells cultured in this model system upregulate a conserved 

transcriptional program of 70 genes that is predictive of poor prognosis in human BRCA and eight 

additional cancer types, with the highest predictive value in triple negative breast cancer (TNBC) 

(Hazard Ratio = 3.85, Cox p value = 0.007)(21, 38). Thus, a growing body of evidence suggests 
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that 3D culture of BRCA cells in COL1 is a relevant model system for studying physiologically 

relevant cancer phenotypes.  

Importantly, BRCA cells embedded in a 3D COL1 matrix maintain heterogeneity. In 

particular, they can take on a range of migration phenotypes, from non-invasive to single-cell 

mesenchymal style migration to collective invasion(21), with the collective invasion phenotype 

being linked to the metastatic phenotype in vivo(39). To begin to define the molecular programs 

underlying BRCA cell migration heterogeneity, we sought a method capable of linking cell 

phenotype to gene expression programs. While advances in single cell omics technologies have 

significantly improved our ability to characterize cell heterogeneity, these methods involve the 

sequencing of individual cells from a bulk sample and determining cell clusters solely based on 

differences in the molecular signature. However, the biological interpretation of these complex 

data is only at an early stage. Inferring cell state, function, and response to treatment from such 

data remains highly subjective and dependent on a priori knowledge(25). Cell subpopulations 

identified from analyzing sequencing data can only be validated with experiments after clusters 

have been defined, and this relies heavily on the assumption that transcriptomic data maps well to 

functional profiles. Partitions made from unsupervised clustering methods could potentially divide 

the sample into groups that may have no functional biological meaning, particularly for samples 

that are more similar as a whole, like cells of the same type. While standards and strategies are 

constantly evolving, there remains a lack of consensus on how to define cell types and subtypes 

based on sequencing data(26). The field of single cell analysis is rapidly moving towards 

integrative, multi-scale measurements to improve the functional interpretability of single cell data. 

Thus far, transcriptome measurements have been integrated with multiple omics, genotype, cell 

electrophysiology, lineage tracing, and spatial information(27–32). To more concretely link 
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phenotype to omics data, rare cell subpopulations may also be functionally sorted using innovative 

physical or image-guided techniques(5, 33).  

Here, we explored whether traditional single cell RNA sequencing (scRNAseq) followed 

by unsupervised clustering analysis would be capable of correctly inferring migration phenotype. 

This would inherently require that phenotypic regulators dominate the transcriptome of the cells 

to enable similarity-based clustering. However, we posited that other processes might dominate 

single cell transcriptomes such that phenotypic regulators could represent a much smaller signal 

in the data. So, we used an image-guided phenotypic sorting technique to ask whether 

phenotypically supervised scRNAseq (hereafter referred to as pheno-scRNAseq for ease of 

reference) can provide more insight into the heterogeneous cell migration behaviors of MDA-MB-

231 BRCA cells (MDAs) than unsupervised scRNAseq. Photoconversion-based cell labeling 

followed by rapid dissociation into a single cell suspension, fluorescence activated cell sorting 

(FACS), and scRNAseq enabled direct comparison of phenotype labels with unsupervised 

transcriptional clustering. Unsupervised clustering was not able to correctly infer migration 

phenotype. Accordingly, pheno-scRNAseq revealed unique molecular programs associated with 

the migration state. Functional experiments targeting several identified genes validated that they 

play an active role in regulating migration behaviors. Specifically, perturbing HSP90AB1, DEK, 

and F3 regulated the collective invasion phenotype. Pheno-scRNAseq further revealed that 

collectively invasive cells exist in a “go and grow” state, where biosynthetic processes, 

proliferation, oxidative stress responses, and ER stress responses are upregulated. However, non-

invasive cells limit proliferation and biosynthesis and are dominated by redox homeostasis and 

immunomodulatory gene expression programs. These relationships were recapitulated in mouse 

4T1 BRCA cells to confirm that the results were not cell line specific. Our phenotypic sorting 
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approach also enabled reseeding experiments that probed the stability of these cellular states, 

revealing that invasive cells remain in a stable migration state while non-invasive cells are plastic 

and capable of repopulating both phenotypes. Studies of other phenotypes and cell types of interest 

may benefit from the unique information provided by the pheno-scRNAseq approach.  

2.2 Results 

2.2.1 BRCA cells exhibit heterogeneous migration phenotypes 

MDA-MB-231 (MDA) cells embedded in 3D COL1 matrix take on at least two distinct 

collective phenotypes, which develop from single cells over the course of 7 days (Fig. 2.1A). The 

majority of cells, approximately 81%, formed collectively invasive cell structures (Fig. 2.1B), a 

morphology characterized by a low circularity index (Fig. 2.1D). A smaller subset of tumor cells, 

approximately 19%, did not invade (Fig. 2.1C), characterized by a high circularity index (Fig. 

2.1D). Based on their morphology, we termed the invasive structures as “networks” and the non-

invasive structures as “spheroids.” Confocal microscopy revealed that collectively invading 

networks were tightly packed with cells (Fig. 2.1B) while spherical structures were capable of 

forming hollow lumens reminiscent of normal breast epithelial acini (Fig. 2.1C). Similar 

phenotypes were observed for mouse 4T1 mammary carcinoma cells embedded in 3D COL1 

matrix (Fig. 2.1E). 

Timelapse microscopy revealed that cells that developed into network structures (Movie 

S1) began as single cells undergoing uniaxial elongation at early time points (Fig. 2.1F). 

Proliferation appeared to support the eventual creation of a smooth, continuous, collectively 

invasive clonal network (Fig. 2.1F). Cells that developed into spherical structures did not elongate 



29 

 

at early time points (Fig. 2.1G). These cells maintained a predominantly rounded morphology. In 

this case, proliferation enabled the eventual creation of a smooth, rounded spheroid (Fig. 2.1G).  

The collective phenotypes also displayed differential aptitudes for invading into the local 

matrix. The network structures were significantly more invasive than the spheroids, displaying 

increased spreading away from the initial seeding point over the course of several days (Fig. 2.1H). 

By 2.5 days, the cells that composed network structures invaded roughly three times farther into 

their surroundings compared to cells in spheroid structures (Fig. 2.1I). 

Since the formation of hollow acini by normal breast epithelial cells has previously been 

linked to basement membrane deposition(32), we assessed whether MDA cancer cells deposited 

matrix proteins into the COL1 microenvironment. Immunofluorescent staining revealed that both 

invasive and non-invasive subpopulations deposited their own cell-derived matrix consisting of 

basement membrane proteins Laminin-5 (LAM5) and type IV collagen (COL4A1) (Fig. 2.1J, K). 

COL4A1 appeared to be localized more towards the cell-extracellular matrix interface in spheroids 

compared to invasive networks, where localization was more heterogeneous and intracellular. For 

LAM5, expression in spheroids was low, while invasive networks displayed heterogeneous, 

intracellular expression. 
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Figure 2.1. BRCA cells exhibit heterogeneous migration phenotypes. (A) Representative brightfield image of 

MDA-MB-231 cells cultured in a 3D COL1 matrix after 7 days of culture. Scale bar 200 μm. (B) Confocal z-slice of 

the network and (C) spheroid phenotypes. Scale bar 100 μm. (D) Quantification of the circularity of heterogeneous 

collective phenotypes.  (E) Similar phenotypes are observed in 4T1 cells cultured in 3D type I collagen. (F and G) 

Timelapse microscopy depicting the different patterns of growth and morphogenesis of two structurally distinct 
multicellular phenotypes. (F) Single cells that eventually develop into networks display growth and migration that 

lead to eventual fusion into a multicellular network. (G) Single cells that eventually develop into spherical structures 

display localized growth and development with continual maintenance of the spherical shape. Scale bar 50µm. (H) 

Quantification of the invasion of cells into the local ECM depending on their collective phenotype. (I) Maximum 

invasion of each phenotype from the initial seeding point after 60 hours of culture. (J and K) Representative 

immunofluorescence z-slice images of networks (J) and spheroids (K) stained for COL4A1 and LAM5. 
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2.2.2 Phenotypic cell sorting improves transcriptome-phenotype coupling 

To begin to identify the mechanisms underlying collective migration heterogeneity in 

MDA cells, we next sought to separate the network cells from the spheroid cells and analyze their 

molecular differences. Morphologically, these invasive and non-invasive tumor cell 

subpopulations could be clearly differentiated based on their circularity (Fig. 2.1D), so we 

subsequently used circularity as a metric by which we distinguished the two phenotypes. To sort 

the cells based on their phenotype for direct scRNAseq analysis, we devised a technique that 

enables fluorescent tagging of cells of interest (Fig. 2.2A). Building on a method recently described 

by Konen et al.(33), MDAs were first transduced with Dendra2-Lifeact (MDA-Dendra). Dendra 

is a photoconvertible protein that changes from green to red fluorescence upon stimulation with a 

405 nm laser, facilitating targeted red-fluorescent tagging of specific cells. MDA-Dendra cells 

were embedded sparsely and cultured in COL1 matrices for one week, allowing the development 

of clonal collective structures. Transduction with Dendra2-Lifeact did not significantly impact 

collective cell migration capabilities compared to wild-type MDA cells(21). To enable higher 

throughput photoconversion of each cell phenotype of interest while maintaining fine spatial 

resolution to target individual cell structures (see Methods for details), we constructed a custom 

widefield microscope with a galvanometer scanner and laser power source. In one experiment, 

spheroid structures were selectively stimulated with the 405 nm laser, inducing red fluorescence, 

while unexposed cells continued to fluoresce green (Fig. 2.2B). In a separate experiment and 

sample, network cell structures were similarly selectively photoconverted. Subsequent rapid 

digestion of the matrices and sorting of the cells by FACS enabled recovery of phenotypically pure 

populations for direct molecular analysis (Fig. 2.2C, D). 
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Network and spheroid cells isolated by photoconversion were directly subjected to 

scRNAseq. A UMAP plot of the scRNAseq data from both cell phenotypes aggregated together 

was constructed (Fig. 2.2E). Conventionally, unsupervised clustering would be used to identify 

two transcriptionally distinct subpopulations of cells (Fig. 2.2F). However, with our phenotypic 

labels applied to the data (Fig. 2.2G), it was evident that agnostic transcriptional clusters were not 

predictive of the functional cell migration phenotypes (compare Fig. 2.2F to 2.2G). Even though 

there was a significant enrichment of network cells in the larger cluster (cluster 0) and of spheroid 

cells in the smaller cluster (cluster 1) (Fisher’s exact test: odds ratio = 12.51, p-value = 5.37e-62), 

there was still a high number of spheroid cells that clustered together with network cells. Analysis 

on the basis of our phenotypic labels revealed a set of 178 genes that were differentially expressed 

(DE) between network and spheroid cells (Table S2.1), whereas analysis on unsupervised clusters 

highlighted a set of 528 DEGs. Importantly, 70 of the genes identified using phenotypic labeling 

were not identified using unsupervised clustering (Table S2.1, highlighted genes). 

To control for the effects of our labeling and sorting process, we also sequenced MDA-

Dendra cells extracted from COL1 matrices that were not stimulated or sorted. Integrating the 

sorted and non-sorted cell datasets by normalizing for sequencing depth and correcting for batch 

effects demonstrated that both have a similar data structure (Figure 2.2H). We then constructed a 

metagene from the 178 DEGs between the network and spheroid cells and applied this metagene 

to score and label the non-sorted cells. The 178 gene signature placed phenotypic labels on the 

non-sorted cells in a similar state space compared to their sorted counterparts (Figure 2.2H), adding 

further evidence that stimulation and sorting did not significantly change the transcriptional 

profiles of the cells. We also investigated the DEGs between the sorted and non-sorted cells, which 

represent some combination of sequencing batch effects and photoconversion/sorting effects. This 
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revealed 1127 DEGs, of which only 8 were associated with a response to UV. Further analysis 

showed that only 2 of these 8 UV response associated genes were contained in our list of 178 

DEGs that differentiated the network and spheroid cells. This suggested that the effects of the 

photoconversion and sorting process are negligible for our analysis. 
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Figure 2.2. Phenotypic cell sorting improves transcriptome-phenotype coupling. (A) Schematic overview of our 

workflow for phenotypic cell sorting. MDA-Dendra cells are cultured in type I collagen, photoconverted, released 

from the matrix, and sorted based on red fluorescence for immediate scRNAseq or other downstream experiments. 

(B) Images of multicellular MDA-Dendra structures before photoconversion (left) and after photoconversion (right). 

Scale bar 100 µm. (C) Fluorescent profile of a control gel, where no cells were photoconverted. (D) Fluorescent profile 
of cells released from a gel after photoconversion. A fraction of cells exhibits greater red fluorescence compared to 

the control. (E) A UMAP plot generated from the pooled transcriptomic signatures of the cells isolated by phenotypic 

cells sorting. (F) Clusters identified based on unsupervised clustering methods. (G) Clusters labeled by phenotype. 

(H) Comparison of cells labeled by photoconversion with non-photoconverted cells that were scored by the metagene 

derived from the differentially expressed genes of the labeled cells. Data was corrected for batch effects and 

sequencing depth prior to UMAP projection. 
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2.2.3 Biological processes that differentiate collective cell phenotypes are 

conserved 

Gene expression analysis based on phenotypic labels revealed that 101 of the 178 DE genes 

were significantly upregulated in invasive network cells compared to non-invasive spheroid cells. 

Gene ontology (GO) analysis of these genes identified several enriched processes, including 

positive regulation of biosynthesis, translation in response to endoplasmic reticulum (ER) stress, 

response to oxidative stress, and positive regulation of proliferation (Fig. 2.3A). Interestingly, the 

remaining 77 genes upregulated in the spheroid cells were enriched for several immunomodulatory 

processes, negative regulation of proliferation and migration, transcriptional regulation through 

ER-nucleus signaling pathways, and processes promoting homeostasis, including redox 

equilibrium (Fig. 2.3B).  

To determine whether our findings extended to other BRCA cells, we performed 

scRNAseq on 4T1 murine mammary carcinoma cells. As shown in Figure 2.1E, 4T1s take on very 

similar migration phenotypes as MDAs, forming network and spheroid structures over seven days. 

UMAP projection and labeling by metagene scoring reveal a similar pattern to the MDA cells, 

where the spheroid phenotype is the predominant phenotype in the smaller cluster, while the 

network phenotype occupies the state space farthest from the lone cluster (Fig 2.3C). Differential 

expression analysis revealed 166 DEGs that describe the differences between scored 4T1 networks 

and spheroids with 1:1 human orthologs. When compared to the 149 MDA DEGs that had 1:1 

mouse orthologs, 40 genes are shared between the mouse and human datasets (Fig. 2.3D). This 

overlap was statistically significant (Fisher’s exact test: odds ratio = 33.92, p-value = 6.50e-41). 

GO enrichment analyses of the murine cells also reveal similarly themed biological processes 

being enriched compared to their human counterparts, as shown in Figure 2.3E and F. 
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2.2.4 Pheno-scRNAseq provides unique and selective information 

 Since pheno-scRNAseq identified a smaller set of DEGs (178) than unsupervised 

scRNAseq (528), we hypothesized that phenotypic labeling may provide a more selective and 

more functionally relevant gene set than analyses on populations identified from unsupervised 

clustering. To further explore this idea, we asked whether certain biological processes were 

uniquely enriched by phenotype labeling or consistently enriched between supervised and 

unsupervised analyses. Such differences could provide important guidance for prioritizing gene 

modules to target in functional studies aimed at identifying meaningful associations with migration 

behaviors. Figure 2.3G shows a Venn Diagram comparing the detected DEGs using supervised 

pheno-scRNAseq analysis to those found using unsupervised scRNAseq analysis. Figure 2.3H 

displays a Venn Diagram comparing the significant GO enrichment terms detected using DEGs 

from supervised pheno-scRNAseq analysis to those found using DEGs from unsupervised 

scRNAseq analysis. A detailed list of the GO enrichment analysis is provided in Table S2.2. These 

plots reveal two distinct features of supervised analysis compared to unsupervised analysis. First, 

for our dataset, supervised analysis narrows down the number of DEGs and GO enrichment terms 

that are found to be statistically significant (adjusted p-value < 0.05, FDR < 5%). The second 

feature can be seen visually in the left most partition in each Venn Diagram. These are DEGs and 

GO terms that were uniquely detected using supervised analysis and not in unsupervised analysis. 

Together, these results suggest that supervised analysis is indeed more selective and provides 

unique information. 
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Figure 2.3. Biological processes that differentiate collective cell phenotypes are conserved. (A) Highlighted 

significant GO enrichment terms based on the list of upregulated genes in the network cell population. (B) Highlighted 

significant GO enrichment terms based on the list of upregulated genes in the spheroid cell population. (C) UMAP of 

4T1 mouse cells, labeled after scoring with the metagene derived from the DEGs between the MDA network and 

spheroid cells. (D) Overlap of the orthologs of the 4T1 DEGs between labeled networks and spheroids and the 178 
DEGs found between the MDA networks and spheroids. (E) Highlighted significant GO enrichment terms based on 

the list of upregulated genes in the labeled 4T1 network cell population. Similarly colored highlights between (A) and 

(E) denote similarly themed processes that were enriched. (F) Highlighted significant GO enrichment terms based on 

the list of upregulated genes in the labeled 4T1 spheroid cell population. Similarly colored highlights between (B) and 

(F) denote similarly themed processes that were enriched. (G) Venn Diagram displaying the unique and overlapping 

DEGs when comparing supervised to unsupervised analysis. Unsupervised analysis identified a larger number of 

significant DEGs. However, many of these DEGs were not significant when compared to supervised analysis. (H) 

Venn Diagram displaying the unique and overlapping GO enrichment terms when comparing supervised to 

unsupervised analysis. Unsupervised analysis identified a larger number of significant GO enrichment terms. 

However, many of these GO enrichment terms were not significant when compared to supervised analysis. 
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2.2.5 Invasive network cells are more proliferative and more sensitive to 

chemotherapy treatment 

We set out to validate that gene modules identified by supervised analysis were 

functionally relevant. Of the GO terms that were uniquely identified by supervised analysis, we 

focused on “negative regulation of cell population proliferation” (GO:0008285, Figure 2.4A). 

Expression of this group of genes were higher in the spheroid population compared to the network 

population of cell. Furthermore, MKI67 (Ki-67), a known marker of proliferation, was uniquely 

identified as differentially regulated by supervised analysis (Table S2.1) and higher expressed in 

the network subpopulation. Immunostaining and quantification of Ki-67 showed that the 

percentage of actively proliferating cells was significantly higher in invasive networks (Fig. 2.4B-

E). Cell cycle scoring on the transcriptional markers reveal that the spheroid subpopulation also 

occupies multiple cell cycle states and has not simply exited the cell cycle (Figure S2.1). 

Intriguingly, 34% of invasive networks contained leader cells that were Ki-67 positive (Fig. 2.4C, 

F), suggesting that tip cells can be both invasive and proliferative (Fig. 2.4C). The remaining 66% 

of networks had Ki-67 positive cells located randomly throughout the network (Fig. 2.4F). 

Spherical structures were less proliferative, and many exhibited no staining for Ki-67 (Fig. 2.4D, 

E). These results support our suggestion that supervised analysis provides distinct and important 

information that can effectively guide follow-up experiments compared to unsupervised analysis. 

To further validate the functional relevance of this difference in proliferative state, we 

performed a cytotoxicity assay with a widely used chemotherapy drug that acts on the cell division 

process: Paclitaxel. Paclitaxel stabilizes tubulin polymerization, which results in cell cycle 

arrest(43). We hypothesized that the spheroid cells, which express relatively lower Ki-67 and 

exhibit less Ki-67 staining, should be less sensitive to this drug. We cultured MDAs in 3D COL1 
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for one week, followed by three days of drug treatment with either 1 μM Paclitaxel or vehicle 

control. Figure 2.4G and H, shows representative images of dead cell staining in treated networks 

versus spheroids. Representative images of vehicle control cells are shown in Supplementary 

Figure S2.2. Cell death was significantly greater in drug treated conditions compared to vehicle, 

and network cells died more than the spheroid cells (Fig. 2.4I; Fig. S2.2). These data further 

confirm that the spheroid subpopulation is less proliferative and more resistant to chemotherapy 

(Fig. 2.4). Taken together, these experiments serve as validation of the functional relevance of a 

biological process that was uniquely identified by supervised analysis, not by unsupervised 

analysis.  
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Figure 2.4. Invasive network cells are more proliferative. (A) A heatmap of the list of genes detected by 

phenotypically guided DE analysis that are in the GO:0008285 term. Spheroids display upregulation of genes 

associated with “Negative Regulation of Cell Population Proliferation”. (B and C) Immunofluorescent staining of Ki-

67 in the network cell population. Scale bar 50 µm. (C) Some network structures display Ki-67 staining at the tips of 

the structures. (D) Immunofluorescent staining of Ki-67 in the spheroid cell population. Many spheroids displayed no 
staining. Scale bar 50 µm. (E) Quantification of the percentage of cells in each collective phenotype that stained 

positively for Ki-67. (F) Quantification of the percent of networks that had a tip cell which stained positively for Ki-

67. (G and H) Brightfield and fluorescence images after treatment with Paclitaxel of spheroids (G) and networks (H). 

(I) Quantification of cell death after treatment with Paclitaxel. Spheroids show a statistically significant decrease in 

sensitivity compared to networks. 
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2.2.6 Functional validation of additional processes identified by pheno-

scRNAseq  

Of the 77 genes upregulated in the spheroid cells compared to network cells, GO analysis 

indicated significant enrichment of several immunomodulatory cellular processes (Fig. 2.3B), 

including components of the innate, adaptive, and cytokine immune signaling machinery. A 

heatmap of the differentially expressed genes corresponding to the GO term “immune system 

process” (GO: 0002376) is shown Figure 2.5A. In particular, Human Leukocyte Antigen Class I 

(HLA-I) gene expression was significantly upregulated in spheroid cells and downregulated in 

network cells (Table S2.1). Unexpectedly, immunofluorescence staining of HLA-A revealed 

distinct patterns of localization in each cell phenotype (Fig. 2.5B, C). Spheroid cells appeared to 

properly localize HLA-A to their plasma membrane (Fig. 2.5B), whereas invasive cells seemed to 

localize HLA-A near the nucleus (Fig. 2.5C). Quantification of this staining pattern demonstrated 

that spheroid cells had approximately three-fold less perinuclear co-localization of HLA-A 

compared to network cells (Fig. 2.5D).  
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Figure 2.5. Spheroid cells display proper antigen localization and are more plastic. (A) A heatmap of the list of 
genes detected by phenotypically guided DE analysis that are in the GO:0002376 term. Spheroids display upregulation 

of genes associated with “Immune System Process”. (B) Immunofluorescent staining of HLA-A in the spheroid cell 

population. Spheroid cells display membrane localization of HLA-A. Scale bar 50 µm. (C) Immunofluorescent 

staining of HLA-A in the network cell population. Many network cells display perinuclear staining of HLA-A. Scale 

bar 50 µm. (D) Quantification of the perinuclear staining of HLA-A within each collective phenotype.  

 

Of the 101 genes upregulated in the network cells compared to the spheroid cells, we 

selected three targets for functional studies: HSP90AB1, DEK, and F3. This was motivated by the 

fact that GO enrichment analysis based on supervised DEGs identified many stress response terms, 
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many of which contained HSP90AB1 or F3. (Table S2.1) In addition, several GO enrichment terms 

identified were associated with the regulation of gene expression, of which DEK is functionally 

associated. Based on their upregulation in networks, we hypothesized that their inhibition would 

negatively impact cell invasion and/or network formation, while their activation would positively 

promote cell invasion or network formation. Indeed, this is what we observed. Inhibition of 

HSP90AB1 by Radicicol and DEK by Cordycepin significantly reduced the invasive potential of 

MDA cells and also reduced the rate of formation of collectively invasive networks (Figure 2.6). 

Conversely, supplementing the culture media with recombinant F3, which was upregulated in the 

network cells, increased the invasiveness of MDA cells (Figure 2.6A, B). However, adding 

recombinant F3 did not increase the rate of network formation (Figure 2.6C, D). Thus, pheno-

scRNAseq supervised gene expression analysis successfully predicted the roles that several DEGs 

played in regulating cell migration behavior.   
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Figure 2.6. Inhibition of upregulated genes in the network phenotype reduces invasion. (A) Spider plots of cell 

trajectories during drug treatment. (B) Quantification of the maximum invasion of cells within each drug condition. 

Inhibition of the upregulated genes in the network phenotype reduced invasion. Adding recombinant F3, an 

upregulated network gene, increased invasion. (C) Representative brightfield images of the cells after 7 days of drug 

treatment. (D) Quantification of the number of network structures after 7 days of drug treatment. 
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2.3 Discussion 

Our study demonstrates that unsupervised transcriptional clustering analysis does not 

necessarily separate cells according to specific functions, and thus may represent lost opportunities 

to decipher functional intra-tumour heterogeneity. Precision sorting prior to scRNA-seq, as 

implemented here via Dendra2-based phenotype marking, can help overcome limitations of 

unsupervised clustering. Analysis based on unsupervised clustering resulted in the identification 

of 528 DEGs, whereas analysis based on phenotypic labeling of each cell subpopulation resulted 

in the identification of 178 DEGs, and only 108 genes overlapped. Thus, roughly 80% of the DEGs 

identified by unsupervised clustering were not specific to the observed cell phenotypes. 

Importantly, phenotypic labeling allowed for the identification of 70 unique DEGs that were not 

detected by unsupervised clustering. We validated the functional relevance of one of these genes, 

Ki-67. This suggests that phenotypic labeling allows for a more direct and relevant approach to 

investigating the molecular regulators of functional heterogeneity within a given cell type. 

However, the results of our sorting and reseeding experiments could support the view that 

traditional unsupervised clustering analysis is more likely to give information about how cells 

could behave, rather than how they are currently behaving(32).  

Phenotypically supervised scRNAseq based on the invasion phenotype of BRCA cells 

enabled us to gain a systems level view of distinct cancer cell states. Compared to confocal 

microscopy-based approaches, our setup significantly increased the number of cells that can be 

labelled and sorted within the limited timeframe before photoconverted protein turnover. A 

previous study was only able to photoconvert and sort tens of cells(33), demanding growth-based 

amplification of cells prior to omics analyses. Given the plasticity and rapid adaptation of cancer 

cells in response to changes in their environment, which occurs on short timescales that cannot be 
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explained by genetic evolution or clonal selection, the requirement for cell amplification could 

skew omics data and complicate our ability to directly link omics data to phenotypes(46). Our 

custom setup enabled us to photoconvert thousands of cells, resulting in a ten-fold increase in 

throughput while maintaining high spatial precision through the optimization of the 

photoconversion parameters. This higher throughput approach powered our statistical analysis, 

enabling us to directly compare the differences between unsupervised and phenotypically 

supervised scRNAseq, and led us to discover distinct biological processes that are linked to 

specific migration states. Both our transcriptional and functional evidence suggests that collective 

invasion is associated with anabolic metabolism, proliferation, redox stress, and ER stress. 

Conversely, collective acini formation is associated with lower levels of proliferation, quality 

control mechanisms, homeostasis, and immunomodulatory functions. Such knowledge may 

provide opportunities to design multiplexed therapeutic cocktails that take advantage of the 

susceptibilities of each complex cancer phenotype. 

In conclusion, the field of single cell analysis is rapidly moving towards integrative, multi-

scale measurements to improve the interpretability and actionable value of single-cell data. Our 

approach to enabling phenotypically supervised scRNAseq of BRCA cells reveals specific stress 

response and immunologic cellular processes that are coordinated with invasive and non-invasive 

phenotypes. Further, our 3D culture system and phenotypic cell sorting approach enable in vitro 

modelling of key aspects of phenotypic plasticity, which may provide a useful platform for the 

mechanistic dissection of these processes and identification of strategies that could effectively treat 

heterogeneous tumors. Understanding this plasticity may reveal ways to selectively target 

seemingly non-proliferative, non-invasive tumor cells while leaving quiescent noncancerous cells 

(such as normal stem cells) unharmed. For example, given the plasticity of the non-proliferative 
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spheroid cells, it may be possible to identify mechanisms capable of sensitizing them to 

chemotherapies or preventing a phenotypic switch to a more invasive, more proliferative state. Our 

system also offers the opportunity to dissect the mechanisms underlying tumor cell plasticity in 

the expression and localization of MHC Class I molecules, which could inform therapeutic 

strategies complementary to immunotherapies. 

2.4 Methods 

2.4.1 Cell Culture  

MDA-MB-231 cells were a gift from Adam Engler (UCSD Bioengineering) and 4T1 

cells were obtained from ATCC (Manassas, VA). All cells were cultured in high glucose 

Dulbecco’s modified Eagle’s medium supplemented with 10% (v/v) fetal bovine serum (FBS, 

Corning, Corning, NY) and 0.1% gentamicin (Gibco Thermofisher, Waltham, MA) and 

maintained at 37oC and 5% CO2 in a humidified environment during culture and imaging. The 

cells were passaged every 2-3 days. Cells were tested for mycoplasma contamination using the 

Mycoalert kit (Lonza, Basel, Switzerland). 

To generate MDA-MB-231 cells that express Dendra2, we generated viral particles by 

cloning a Dendra2-Lifeact-7 plasmid (Addgene #54694, Watertown, MA) into a lentiviral vector. 

We then transfected the plasmid into lentiX293 T cells (Clonetech, Mountain View, CA. Cat 

#632180) along with packaging expressing plasmid (psPAX2, Addgene #12260) and envelope 

expressing plasmid (pMD2.G, Addgene #12259). Viral particles were collected at 48 h after 

transfection and they were purified by filtering through a 0.45 μm filter. MDA-MB-231 cells were 

then transduced with the viral particles in the presence of polybrene (Allele Biotechnology, San 

Diego, CA).  
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2.4.2 3D culture in type I collagen hydrogels 

Cells embedded in 3D collagen matrices were prepared by mixing cells suspended in 

culture medium and 10× reconstitution buffer, 1:1 (v/v). Polyethylene glycol (PEG, Sigma-

Aldrich, St. Louis, MO) was diluted in phosphate buffered saline (PBS, Gibco Thermofisher, 

Waltham, MA) and added to achieve a final concentration of 10 mg/mL. Soluble rat tail type I 

collagen in acetic acid (Corning, Corning, NY) was added to achieve a final concentration of 2.5 

mg/mL. 6.25% of 1 M NaOH (volume of NaOH / volume of type I collagen) was used to 

normalize pH and the mixture was polymerized at 37 °C. 

2.4.3 Phenotypic cell sorting 

Collagen gels containing MDA Dendra cells were transferred to a microscope stage top 

incubator. Collective cell structures were identified using a Nikon TiE fluorescent microscope 

(Nikon Instruments Inc., Melville, NY). Regions of interest were outlined using NIS-Elements 

software, and a Galvo Miniscanner (Nikon Instruments Inc.) was used to control the exposure of 

405 nm laser from a Nikon LUnA power source (Nikon Instruments Inc.) to the outlined region 

to photoconvert the selected cells.  25% laser power with a 300 us dwell time were used to 

photoconvert the cells. This results in less than 1mJ of energy delivered to each multicellular 

structure. To ensure fidelity of converting only the desired phenotype, we did not photoconvert 

overlapping cell structures. The collagen gel was then digested using collagenase for 15 minutes 

at 37oC (Sigma-Aldrich) and the cells were resuspended in FACS buffer (1% BSA, 0.5 mM 

EDTA in PBS). A gel with cells that were not photoconverted was used as a sorting control. Cells 

were sorted at the stem cell core of Sanford Consortium of Regenerative Medicine (La Jolla, CA) 

using a BD Influx cell sorter (BD, Franklin lakes, NJ). The cells from the control gel were used 



53 

 

to establish a negative gate, and cells expressing red fluorescence above that gate were collected 

for re-culture or sequencing.  

2.4.4 Single cell sequencing and analysis 

RNA extraction and library construction were performed using the Chromium Single 

Cell 3’ v3 kit (10x genomics, Pleasanton, CA). At least 700 cells were extracted for the network 

and spheroid cells, with one independent experiment each. These two experiments were pooled 

together for sequencing. The non-sorted MDA cells and the 4T1s were also extracted from one 

independent experiment each, and these were pooled together for sequencing. RNA integrity was 

verified using RNA Analysis ScreenTape (Agilent Technologies, La Jolla, CA) before 

sequencing. The RNA was sequenced on the Illumina HiSeq 4000 at a depth of > 20,000 reads 

per cell. The cellRanger analysis pipeline was used to construct the human reference genome 

GRCh38 and align reads. Differential gene expression analysis was performed using Seurat(47). 

Cell expression data was filtered, log-normalized, and scaled prior to differential expression 

analysis using the non-parametric Wilcoxon rank sum test. Differentially expressed genes were 

filtered for those that had an absolute log-fold change of > 0.25 and expressed in at least 10% of 

either subpopulation with an adjusted P < 0.05 (Bonferroni).  

2.4.5 Gene ontology term overrepresentation analysis 

Gene ontology enrichment analysis was performed using Panther with the GO biological 

process complete annotation set(15). The Fisher’s Exact test was used and the significance level 

was set at 0.05. The false discovery rate (FDR) was calculated to correct for multiple testing. The 

fold enrichment is the observed number of genes in our dataset associated with the term divided 

by the expected number of genes associated with the term. 
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2.4.6 Cell tracking and phenotypic analysis 

Collagen gels containing cells were imaged every 10 min for 60 hours. Coordinates of 

the cell location at each time frame were determined by tracking single cells using image 

recognition software (Metamorph/Metavue, Molecular Devices, Sunnyvale, CA). All cell 

tracking data comes from three independent experiments performed on different days and with 

different cell passages. Morphologic measurements and phenotype quantification were performed 

in NIS-Elements using at least three independent experiments performed on different days with 

different cell passages.  

2.4.7 Immunofluorescence and cell imaging 

For cell imaging after 7 days of culture to visualize collective phenotypes, collagen gels 

were fixed with 4% PFA for 30 min at room temperature. F-actin was stained using AlexaFluor® 

488 Phalloidin (Cell Signaling Technology, Danvers, MA) and the nuclei were counterstained 

with DAPI. For immunofluorescence staining the gels were incubated with the primary antibody 

for 24 hrs at 4oC. The antibodies used were anti-COL4A1 (1:200 dilution, NB120-6586, Novus 

Biologicals, Littleton, CO) , anti-LAMC2 (1:200 dilution, MAB19562, Millipore Sigma), anti-

Ki-67 (1:400 dilution, 8D5, Cell Signaling Technology), anti-HLA-A (1:100 dilution, ab52922, 

Abcam, Cambridge, UK). 

2.4.8 Paclitaxel treatment and susceptibility analysis 

After 7 days of culture in collagen gels, MDAs were treated with 1 μM Paclitaxel (Cell 

Signaling Technolgy) or DMSO vehicle control. Cell death was assessed 3 days later using a 

Live/Dead Cell Assay (Abcam, Cambridge, UK) with Hoescht counter-stain. Z-stack imaging 

was conducted and the total number of nuclei forming either spheroids or networks were 
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quantified as well as the number of nuclei with red co-localization (dead cell dye). % Death is 

calculated as the number of nuclei with co-localized red fluorescence over the total number of 

nuclei. Measurements were repeated across 3 biological replicates per condition equating to ~300 

cells analyzed per condition.  

2.4.9 Radicicol, Cordycepin, and recombinant F3 treatment 

MDAs were treated with 10 μM Radicicol (Cayman Chemical, Ann Arbor, MI), 50 μM 

Cordycepin (MedChemExpress, Monmouth Junction, NJ), 1 μg/mL F3 (BioLegend, San Diego, 

CA), or DMSO vehicle control (Sigma-Aldrich) after embedment into 3D COL1 matrices. Cell 

invasion and the formation of the network phenotype was quantified as mentioned above. 

Measurements were repeated across 3 biological replicates per condition equating to at least 100 

cells analyzed per condition.  

2.4.10   Statistical Analysis 

All measurements were analyzed using Prism (Graphpad, San Diego, CA). Significance (P) was 

indicated within the figures using the following scale: *P<0.05, **P<0.01, ***P<0.001. Unless 

otherwise noted, bar graphs show mean and s.e.m. of quantified variables. Statistical analyses 

between two groups were performed with Student’s unpaired t tests and between three or more 

groups with one-way analysis of variance (ANOVA), followed by Tukey’s multiple comparison 

post hoc test to determine significance. Additional relevant information is detailed in the figure 

captions. 
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2.5 Supplementary material 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2.1. Cell cycle state analysis of MDA cells. Spheroid cells lie in multiple cell cycle states and are not 

simply a subpopulation that have withdrawn from the cell cycle. 

 

 

Figure S2.2. Brightfield and fluorescence images after treatment with vehicle control of spheroids and networks 

corresponding to the Paclitaxel experiments. Scale bar 50 µm. 

 

Table S2.1. Differential Gene Expression Based on Phenotypic Labels. A positive log (fold change) indicates 

higher expression in the network subpopulation, while a negative log (fold change) indicates higher expression in the 

spheroid subpopulation. Highlighted genes were identified exclusively by using phenotypic labels. 

Gene 
Average log (Fold 

Change) 

Fraction of Network 

Cells in which Gene 

was Detected 

Fraction of Spheroid 

Cells in which Gene was 

Detected 

Adjusted P 

Value 

ABCE1 0.347206818 0.914 0.755 4.87E-39 

ACO1 0.26708818 0.711 0.456 1.04E-28 
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Table S2.1. Differential Gene Expression Based on Phenotypic Labels. A positive log (fold change) 

indicates higher expression in the network subpopulation, while a negative log (fold change) indicates higher 

expression in the spheroid subpopulation. Highlighted genes were identified exclusively by using phenotypic 

labels, Continued. 

Gene 
Average log (Fold 

Change) 

Fraction of Network 

Cells in which Gene 

was Detected 

Fraction of Spheroid 

Cells in which Gene was 

Detected 

Adjusted P 

Value 

AGR2 -0.474297729 0.094 0.321 1.99E-28 

AHCTF1 0.328163761 0.717 0.443 1.97E-38 

ALCAM 0.292156653 0.9 0.721 1.33E-31 

ANLN 0.339629831 0.781 0.567 1.95E-21 

ANP32B 0.25347614 0.984 0.947 2.50E-33 

AREG -0.413443519 0.804 0.848 8.28E-07 

ASPM 0.349340874 0.717 0.535 1.58E-14 

ATAD2 0.404334004 0.785 0.541 9.09E-31 

B2M -0.34555291 0.996 0.999 5.07E-56 

BNIP3 -0.269784306 0.984 0.985 7.87E-20 

BRCA2 0.259307656 0.633 0.391 2.07E-24 

BST2 -0.2684989 0.543 0.626 7.68E-08 

CACYBP 0.259391683 0.978 0.919 7.76E-30 

CAVIN3 -0.339054269 0.938 0.945 7.19E-23 

CCL2 -0.749475941 0.01 0.19 8.22E-28 

CCNA2 0.290266153 0.636 0.468 4.83E-14 

CCT3 0.268504626 0.982 0.94 1.38E-33 

CCT5 0.274809261 0.992 0.969 8.88E-39 

CCT6A 0.30469092 0.99 0.971 1.27E-46 

CD46 0.281689121 0.892 0.722 1.11E-29 

CD59 -0.261255954 0.891 0.889 1.25E-12 

CD63 -0.273323731 0.989 0.988 9.40E-32 

CD82 -0.393028534 0.267 0.479 1.94E-23 

CD9 -0.360062881 0.926 0.949 1.14E-34 

CDC37 0.288304529 0.947 0.824 2.16E-31 

CENPF 0.351900186 0.873 0.742 6.02E-16 

CENPU 0.277812138 0.785 0.591 4.87E-21 

CEP55 0.268813628 0.739 0.557 2.42E-14 

CHML 0.311510528 0.695 0.432 2.40E-33 

CLTC 0.298014182 0.926 0.787 5.48E-35 

CNN3 0.318594305 0.982 0.927 2.92E-41 

COL8A1 0.297120783 0.674 0.468 6.69E-20 

CSF2 -0.500910691 0.19 0.38 1.17E-18 

CST1 -0.446218659 0.304 0.447 3.18E-08 

CST3 -0.403390583 0.982 0.993 3.95E-28 
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Table S2.1. Differential Gene Expression Based on Phenotypic Labels. A positive log (fold change) 

indicates higher expression in the network subpopulation, while a negative log (fold change) indicates higher 

expression in the spheroid subpopulation. Highlighted genes were identified exclusively by using phenotypic 

labels, Continued. 

Gene 
Average log (Fold 

Change) 

Fraction of Network 

Cells in which Gene 

was Detected 

Fraction of Spheroid 

Cells in which Gene was 

Detected 

Adjusted P 

Value 

CST4 -0.491148213 0.272 0.452 4.08E-15 

CTGF -0.410392483 0.828 0.839 1.42E-08 

CTNNB1 -0.280733264 0.573 0.646 1.68E-11 

CTSD -0.61140053 0.856 0.942 2.75E-56 

CYBA -0.356448119 0.923 0.946 6.94E-35 

CYSTM1 -0.291234014 0.529 0.659 2.10E-17 

DDX3X 0.391475003 0.926 0.793 3.99E-53 

DEK 0.260632314 0.993 0.982 8.46E-35 

DHX9 0.350386545 0.829 0.583 3.30E-42 

DLGAP5 0.294108732 0.752 0.614 7.51E-08 

DNAJC9 0.252727121 0.866 0.694 3.25E-20 

DNMT1 0.334549273 0.951 0.831 2.38E-40 

DSP 0.33297117 0.77 0.512 2.25E-35 

DST 0.364716501 0.984 0.919 1.65E-52 

DYNC1H1 0.287017494 0.977 0.919 5.94E-32 

ECH1 -0.26986806 0.679 0.735 1.04E-12 

ECT2 0.28831074 0.839 0.694 1.16E-17 

EIF4G1 0.250803504 0.922 0.796 1.22E-24 

EIF4G2 0.282150388 0.986 0.946 1.32E-36 

EREG -0.346952505 0.46 0.614 2.96E-14 

ETFB -0.341502218 0.743 0.829 2.56E-24 

EXOC5 0.274229527 0.744 0.487 6.63E-31 

F3 0.485697637 0.847 0.61 1.74E-37 

FAT1 0.417340258 0.832 0.586 1.24E-51 

FOS 0.276366938 0.863 0.817 1.69E-06 

FTH1 -0.376801826 1 0.999 1.11E-48 

G0S2 0.512380975 0.959 0.855 1.05E-36 

G3BP2 0.269202064 0.926 0.767 2.94E-27 

GLRX -0.259483568 0.781 0.825 1.47E-11 

HIF1A 0.289935623 0.874 0.701 7.32E-28 

HIST1H1C 0.354032061 0.888 0.797 1.06E-20 

HIST1H1E 1.098513765 0.885 0.556 6.18E-89 

HIST1H2AC 0.310698099 0.544 0.419 0.000233978 

HLA-A -0.358114507 0.962 0.968 1.08E-35 

HLA-B -0.395354336 0.487 0.641 5.48E-22 
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Table S2.1. Differential Gene Expression Based on Phenotypic Labels. A positive log (fold change) 

indicates higher expression in the network subpopulation, while a negative log (fold change) indicates higher 

expression in the spheroid subpopulation. Highlighted genes were identified exclusively by using phenotypic 

labels, Continued. 

Gene 
Average log (Fold 

Change) 

Fraction of Network 

Cells in which Gene 

was Detected 

Fraction of Spheroid 

Cells in which Gene was 

Detected 

Adjusted P 

Value 

HLA-C -0.429845022 0.644 0.783 3.50E-35 

HMGB3 -0.256795934 0.787 0.808 8.34E-06 

HNRNPAB 0.253644515 0.941 0.864 1.73E-21 

HNRNPD 0.331844329 0.988 0.931 3.42E-56 

HNRNPU 0.52257376 0.997 0.939 1.95E-114 

HPCAL1 -0.329427981 0.906 0.932 2.81E-19 

HSP90AA1 0.25010694 0.999 1 4.23E-39 

HSP90AB1 0.273648191 1 0.994 8.37E-49 

HSPA4 0.387806247 0.952 0.831 4.82E-51 

HSPD1 0.301665804 0.988 0.94 2.53E-37 

IARS 0.263170065 0.798 0.601 1.35E-23 

IGFBP1 -0.545270718 0.814 0.858 1.73E-19 

IGFBP4 -0.520106708 0.97 0.976 5.15E-46 

ILF3 0.331310214 0.943 0.819 4.88E-43 

IPO5 0.27434702 0.804 0.588 2.54E-30 

ISG20 -0.38074709 0.124 0.359 4.58E-29 

KCTD20 0.252870202 0.804 0.645 1.13E-20 

KDM1A 0.311170882 0.773 0.51 1.99E-36 

KIF11 0.286489068 0.636 0.438 3.63E-17 

KRT19 -0.290049977 0.978 0.978 1.73E-10 

KRT81 -0.458348079 0.148 0.321 6.97E-16 

LBR 0.418727156 0.821 0.555 3.86E-48 

LMNB1 0.268602966 0.694 0.475 5.78E-21 

LRP10 -0.252457563 0.687 0.732 2.39E-08 

LRPPRC 0.26829432 0.705 0.461 5.53E-26 

MAGED2 -0.330929038 0.464 0.609 2.72E-17 

MALAT1 -0.401932229 0.996 0.996 2.28E-34 

MAP4 0.258236162 0.962 0.861 7.94E-26 

MARCKSL1 -0.365377223 0.917 0.921 5.14E-10 

MCM4 0.266754101 0.632 0.372 1.57E-26 

MIF -0.291815881 0.876 0.917 6.44E-32 

MKI67 0.30526856 0.822 0.667 2.06E-14 

MSH6 0.317505341 0.673 0.481 1.06E-18 

MT-ND6 0.251673496 0.886 0.756 2.98E-18 

MYADM -0.348677494 0.813 0.872 3.23E-26 
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Table S2.1. Differential Gene Expression Based on Phenotypic Labels. A positive log (fold change) 

indicates higher expression in the network subpopulation, while a negative log (fold change) indicates higher 

expression in the spheroid subpopulation. Highlighted genes were identified exclusively by using phenotypic 

labels, Continued. 

Gene 
Average log (Fold 

Change) 

Fraction of Network 

Cells in which Gene 

was Detected 

Fraction of Spheroid 

Cells in which Gene was 

Detected 

Adjusted P 

Value 

MYOF 0.258004758 0.9 0.787 3.67E-21 

NCL 0.404556063 0.996 0.979 1.98E-71 

NDRG1 -0.318450145 0.49 0.617 1.43E-14 

NEAT1 -0.337521898 0.944 0.932 1.63E-05 

NFKBIA -0.304129907 0.711 0.746 0.00029272 

NPM1 0.405487433 0.995 0.997 1.21E-90 

NUDCD1 0.312156487 0.821 0.588 1.59E-30 

OGFRL1 0.252895192 0.829 0.679 7.45E-18 

PABPC1 0.26610874 0.999 0.974 1.39E-39 

PABPC4 0.267822305 0.845 0.656 1.88E-27 

PAICS 0.306392867 0.94 0.801 1.10E-34 

PARP1 0.312274018 0.891 0.729 5.50E-35 

PAWR 0.293207369 0.865 0.728 3.08E-23 

PGK1 -0.286153853 0.944 0.96 3.86E-27 

PHLDA2 -0.354885605 0.993 0.996 6.69E-39 

PLAT -0.253475682 0.622 0.688 0.00014821 

PLS3 0.377871026 0.921 0.722 4.23E-45 

PNN 0.272055701 0.963 0.899 1.75E-23 

PNPT1 0.263850665 0.663 0.461 7.74E-20 

PRDX5 -0.336608283 0.955 0.965 1.78E-41 

PRKDC 0.353014368 0.948 0.838 3.35E-46 

PRPF4B 0.265643014 0.921 0.777 3.34E-23 

PRSS2 -0.501911066 0.026 0.204 2.20E-24 

PRSS23 -0.397352707 0.814 0.892 1.13E-26 

PTPN11 0.310242687 0.914 0.767 2.30E-35 

RABAC1 -0.2863141 0.848 0.892 2.65E-18 

RAD21 0.256105486 0.926 0.819 8.29E-18 

RGCC -0.275200396 0.409 0.535 5.53E-08 

RPN2 -0.251292729 0.892 0.896 2.22E-16 

RRAD -0.408790811 0.399 0.569 3.05E-14 

S100A10 -0.250126001 0.996 0.999 3.65E-22 

S100A4 -0.403308415 0.956 0.919 1.30E-05 

SACS 0.283234153 0.65 0.374 3.13E-34 

SAT1 -0.36329149 0.707 0.784 1.52E-09 

SEC61G -0.288944238 0.966 0.97 5.75E-33 
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Table S2.1. Differential Gene Expression Based on Phenotypic Labels. A positive log (fold change) 

indicates higher expression in the network subpopulation, while a negative log (fold change) indicates higher 

expression in the spheroid subpopulation. Highlighted genes were identified exclusively by using phenotypic 

labels, Continued. 

Gene 
Average log (Fold 

Change) 

Fraction of Network 

Cells in which Gene 

was Detected 

Fraction of Spheroid 

Cells in which Gene was 

Detected 

Adjusted P 

Value 

SELENOS -0.282263325 0.698 0.783 7.02E-15 

SLC25A24 0.259890193 0.84 0.648 1.49E-22 

SLCO4A1 -0.583997806 0.706 0.826 2.26E-35 

SLCO4A1-AS1 -0.517171935 0.352 0.568 3.32E-27 

SMARCA5 0.345306426 0.889 0.726 4.74E-42 

SNRNP200 0.260360973 0.769 0.558 4.99E-25 

SPANXB1 -1.20541394 0.094 0.414 4.24E-52 

SPTAN1 0.302157264 0.795 0.563 2.00E-29 

SQSTM1 -0.281830289 0.843 0.852 1.92E-05 

SRPK1 0.331147302 0.977 0.904 6.46E-45 

SSR4 -0.27144288 0.944 0.952 6.05E-24 

STC1 -0.372804746 0.332 0.456 5.46E-09 

SUPT16H 0.270895059 0.933 0.803 4.86E-28 

SUZ12 0.258708104 0.866 0.684 2.82E-25 

TARS 0.260755944 0.943 0.839 1.56E-26 

TFF1 -0.304905865 0.066 0.183 1.20E-09 

TFF2 -0.447642564 0.137 0.328 6.35E-18 

TFF3 -0.398193906 0.105 0.289 2.55E-18 

TFPI -0.261055313 0.68 0.731 3.98E-09 

TFRC 0.306500229 0.685 0.474 6.83E-26 

TIMP1 -0.515981814 0.911 0.945 1.70E-45 

TLN1 0.291201795 0.96 0.852 3.11E-36 

TM4SF1 -0.380554119 0.951 0.974 7.77E-35 

TMEM158 -0.459986631 0.845 0.852 7.61E-09 

TMEM30A 0.253429377 0.737 0.503 1.00E-23 

TMEM59 -0.29794336 0.863 0.905 5.05E-25 

TMPO 0.414854545 0.952 0.819 7.91E-44 

TMSB10 -0.336427758 0.999 1 3.68E-97 

TMSB4X -0.32898135 0.999 0.999 3.47E-65 

TPI1 -0.280628212 0.982 0.991 1.01E-41 

TPM4 0.255413058 1 0.993 3.98E-43 

TPR 0.30721659 0.978 0.912 5.85E-40 

TPX2 0.374838719 0.832 0.679 2.64E-17 

TSC22D1 -0.262388537 0.949 0.94 4.98E-11 

VAMP8 -0.406914311 0.938 0.96 6.67E-50 

XPO1 0.372002023 0.866 0.67 4.28E-44 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A positive 

log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold change) 

indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively by using 

phenotypic labels. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

activation of protein kinase activity (GO:0032147) 100 2.84 

aggrephagy (GO:0035973) 35.9 2.67 

aging (GO:0007568) 0.0942 3.74E-03 

ameboidal-type cell migration (GO:0001667) 100 2.29 

amide biosynthetic process (GO:0043604) 95.5 1.06E-08 

amide transport (GO:0042886) 27.1 3.43E-03 

anaphase (GO:0051322) 8.25 2.42 

anaphase-promoting complex-dependent catabolic process 
(GO:0031145) 

100 4.42 

anatomical structure development (GO:0048856) 0.0113 0.108 

anatomical structure formation involved in morphogenesis 

(GO:0048646) 

27.4 0.0601 

anatomical structure homeostasis (GO:0060249) 0.0234 29.3 

angiogenesis (GO:0001525) 17.4 4.63E-04 

animal organ development (GO:0048513) 0.832 0.0274 

animal organ morphogenesis (GO:0009887) 96 4.79 

antigen processing and presentation (GO:0019882) 0.296 0.0156 

antigen processing and presentation of endogenous antigen 

(GO:0019883) 

0.721 1.91 

antigen processing and presentation of endogenous peptide antigen 

(GO:0002483) 

0.283 3.78 

antigen processing and presentation of endogenous peptide antigen via 

MHC class I (GO:0019885) 

0.282 3.77 

antigen processing and presentation of endogenous peptide antigen via 

MHC class I via ER pathway (GO:0002484) 

0.679 4.16 

antigen processing and presentation of endogenous peptide antigen via 
MHC class I via ER pathway, TAP-independent (GO:0002486) 

0.682 4.16 

antigen processing and presentation of exogenous antigen 

(GO:0019884) 

0.087 5.21E-03 

antigen processing and presentation of exogenous peptide antigen 

(GO:0002478) 

0.0627 2.99E-03 

antigen processing and presentation of exogenous peptide antigen via 

MHC class I (GO:0042590) 

0.721 0.0162 

antigen processing and presentation of exogenous peptide antigen via 

MHC class I, TAP-dependent (GO:0002479) 

0.56 9.44E-03 

antigen processing and presentation of exogenous peptide antigen via 

MHC class I, TAP-independent (GO:0002480) 

0.0411 0.661 

antigen processing and presentation of peptide antigen (GO:0048002) 0.115 8.96E-03 

antigen processing and presentation of peptide antigen via MHC class I 
(GO:0002474) 

1.71 0.025 

apoptotic process (GO:0006915) 5.3 0.0101 

aromatic compound biosynthetic process (GO:0019438) 70.6 0.0174 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

aromatic compound catabolic process (GO:0019439) 100 2.08E-08 

ATP-dependent chromatin remodeling (GO:0043044) 40.1 0.931 

biological adhesion (GO:0022610) 77.4 3.21 

biological phase (GO:0044848) 20.6 0.0596 

biological regulation (GO:0065007) 3.36E-05 3.26E-13 

biological_process (GO:0008150) 7.18E-03 1.32E-12 

biosynthetic process (GO:0009058) 59 6.89E-07 

blood coagulation (GO:0007596) 5.2 2.78 

blood coagulation, extrinsic pathway (GO:0007598) 4.14 12.1 

blood vessel development (GO:0001568) 70.6 0.0156 

blood vessel morphogenesis (GO:0048514) 40 6.66E-04 

bone development (GO:0060348) 100 1.41 

bone morphogenesis (GO:0060349) 100 0.926 

branch elongation of an epithelium (GO:0060602) 91.9 3.27 

branching morphogenesis of an epithelial tube (GO:0048754) 100 2.09 

bronchus development (GO:0060433) 71.6 0.871 

catabolic process (GO:0009056) 100 1.57E-05 

cell activation (GO:0001775) 3.11E-05 7.08E-11 

cell activation involved in immune response (GO:0002263) 3.22E-04 8.79E-08 

cell adhesion (GO:0007155) 100 4.25 

cell communication (GO:0007154) 3.15 0.117 

cell cycle (GO:0007049) 7.33E-03 0.239 

cell cycle phase (GO:0022403) 20.6 0.0592 

cell cycle process (GO:0022402) 4.25E-03 0.307 

cell death (GO:0008219) 0.867 7.70E-04 

cell development (GO:0048468) 3.32 0.411 

cell differentiation (GO:0030154) 1.36E-03 2.96 

cell division (GO:0051301) 0.327 0.274 

cell migration (GO:0016477) 80.5 0.111 

cell motility (GO:0048870) 100 1.12 

cell population proliferation (GO:0008283) 24 0.273 

cell redox homeostasis (GO:0045454) 7.21 2.27E-04 

cell surface receptor signaling pathway (GO:0007166) 1.23 1.27E-03 

cellular amide metabolic process (GO:0043603) 100 3.85E-08 

cellular aromatic compound metabolic process (GO:0006725) 7.96 7.26E-10 

cellular biosynthetic process (GO:0044249) 62.7 1.23E-06 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

cellular catabolic process (GO:0044248) 100 9.81E-06 

cellular component assembly (GO:0022607) 4.82E-03 5.10E-05 

cellular component biogenesis (GO:0044085) 5.21E-03 1.78E-07 

cellular component disassembly (GO:0022411) 35.6 0.313 

cellular component organization (GO:0016043) 5.42E-07 2.71E-09 

cellular component organization or biogenesis (GO:0071840) 1.30E-06 1.40E-11 

cellular detoxification (GO:1990748) 100 4.16 

cellular developmental process (GO:0048869) 1.00E-04 0.979 

cellular localization (GO:0051641) 3.02E-05 2.89E-16 

cellular macromolecule biosynthetic process (GO:0034645) 17 2.54E-06 

cellular macromolecule catabolic process (GO:0044265) 100 9.95E-06 

cellular macromolecule localization (GO:0070727) 0.956 2.93E-06 

cellular macromolecule metabolic process (GO:0044260) 1.48 9.93E-10 

cellular metabolic process (GO:0044237) 7.57 3.39E-12 

cellular nitrogen compound biosynthetic process (GO:0044271) 15.8 2.01E-12 

cellular nitrogen compound catabolic process (GO:0044270) 100 7.63E-09 

cellular nitrogen compound metabolic process (GO:0034641) 14.2 1.99E-12 

cellular process (GO:0009987) 1.10E-04 1.27E-24 

cellular protein localization (GO:0034613) 0.91 2.56E-06 

cellular protein metabolic process (GO:0044267) 42.2 9.77E-05 

cellular protein-containing complex assembly (GO:0034622) 6.01E-03 4.93E-07 

cellular response to biotic stimulus (GO:0071216) 9.69 0.322 

cellular response to chemical stimulus (GO:0070887) 2.63E-05 4.73E-15 

cellular response to chemical stress (GO:0062197) 6.86E-03 0.782 

cellular response to cytokine stimulus (GO:0071345) 1.74E-05 3.22E-11 

cellular response to decreased oxygen levels (GO:0036294) 7.13 0.14 

cellular response to endogenous stimulus (GO:0071495) 5.68 0.066 

cellular response to growth factor stimulus (GO:0071363) 47.9 9.24E-03 

cellular response to heat (GO:0034605) 1.23 8.13 

cellular response to hormone stimulus (GO:0032870) 8.07 4.15 

cellular response to hypoxia (GO:0071456) 6.02 0.0842 

cellular response to inorganic substance (GO:0071241) 1.19 12.5 

cellular response to interferon-gamma (GO:0071346) 27.1 3.16 

cellular response to interleukin-1 (GO:0071347) 30.9 0.0327 

cellular response to interleukin-7 (GO:0098761) 100 0.788 

cellular response to lipid (GO:0071396) 5.72 0.105 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

cellular response to lipopolysaccharide (GO:0071222) 5.41 0.501 

cellular response to molecule of bacterial origin (GO:0071219) 6.45 0.292 

cellular response to nitrogen compound (GO:1901699) 6.98 3.37 

cellular response to organic cyclic compound (GO:0071407) 2.87 1.52 

cellular response to organic substance (GO:0071310) 1.07E-04 1.91E-14 

cellular response to oxidative stress (GO:0034599) 6.39E-03 0.319 

cellular response to oxygen levels (GO:0071453) 9.52 0.309 

cellular response to oxygen-containing compound (GO:1901701) 0.569 9.42E-03 

cellular response to peptide (GO:1901653) 65.2 1.91 

cellular response to reactive oxygen species (GO:0034614) 1.23 5.45 

cellular response to stimulus (GO:0051716) 0.078 2.26E-08 

cellular response to stress (GO:0033554) 1.36E-03 4.97E-06 

cellular response to topologically incorrect protein (GO:0035967) 20.8 4.52E-03 

cellular response to transforming growth factor beta stimulus 

(GO:0071560) 

100 0.0731 

cellular response to tumor necrosis factor (GO:0071356) 59 0.92 

cellular response to type I interferon (GO:0071357) 2.21 1.72 

cellular response to unfolded protein (GO:0034620) 13.8 3.53E-03 

CENP-A containing chromatin organization (GO:0061641) 8.04 3.28 

CENP-A containing nucleosome assembly (GO:0034080) 8.08 3.29 

central nervous system development (GO:0007417) 12.1 3.35 

centromere complex assembly (GO:0034508) 2.04 1.62 

chaperone-mediated protein complex assembly (GO:0051131) 0.444 5.55 

chaperone-mediated protein folding (GO:0061077) 100 0.718 

chromatin assembly (GO:0031497) 6.64 0.171 

chromatin assembly or disassembly (GO:0006333) 3.28 0.174 

chromatin organization (GO:0006325) 0.156 4.34 

chromatin remodeling (GO:0006338) 63.8 0.376 

chromatin remodeling at centromere (GO:0031055) 9.52 4.43 

chromosome organization (GO:0051276) 1.41E-03 0.101 

circulatory system development (GO:0072359) 25.5 0.0752 

coagulation (GO:0050817) 5.41 2.85 

common-partner SMAD protein phosphorylation (GO:0007182) 100 2.53 

cotranslational protein targeting to membrane (GO:0006613) 100 9.47E-10 

craniofacial suture morphogenesis (GO:0097094) 100 3.76 

cytokine-mediated signaling pathway (GO:0019221) 0.0169 1.14E-07 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

cytoplasmic sequestering of NF-kappaB (GO:0007253) 0.676 4.15 

cytoplasmic sequestering of transcription factor (GO:0042994) 2.84 15.7 

cytoplasmic translation (GO:0002181) 100 1.60E-03 

cytoskeleton organization (GO:0007010) 0.0351 6.22 

defense response (GO:0006952) 1.06 0.225 

detection of chemical stimulus (GO:0009593) 100 0.165 

detection of chemical stimulus involved in sensory perception 

(GO:0050907) 

100 0.0426 

detection of chemical stimulus involved in sensory perception of smell 

(GO:0050911) 

41.3 0.116 

detection of stimulus involved in sensory perception (GO:0050906) 100 0.0854 

developmental growth (GO:0048589) 0.338 0.394 

developmental process (GO:0032502) 7.78E-05 7.65E-03 

DNA biosynthetic process (GO:0071897) 31.2 2.73 

DNA conformation change (GO:0071103) 0.181 1.54E-03 

DNA damage response, detection of DNA damage (GO:0042769) 100 1.77 

DNA metabolic process (GO:0006259) 2.06 0.0327 

DNA packaging (GO:0006323) 5.65 0.0233 

DNA recombination (GO:0006310) 3.73 12.3 

DNA replication-independent nucleosome assembly (GO:0006336) 13.1 1.95 

DNA replication-independent nucleosome organization (GO:0034724) 2.53 2.13 

embryo implantation (GO:0007566) 53.6 2.52 

endochondral bone morphogenesis (GO:0060350) 100 2 

endoderm development (GO:0007492) 94.4 0.804 

endoderm formation (GO:0001706) 63.8 1.45 

endoplasmic reticulum unfolded protein response (GO:0030968) 25.5 1.63E-03 

endothelial cell differentiation (GO:0045446) 42 3.34 

endothelium development (GO:0003158) 51.9 0.809 

entry into host (GO:0044409) 27.1 1.69 

enzyme linked receptor protein signaling pathway (GO:0007167) 45.4 0.253 

epithelial cell differentiation (GO:0030855) 12.3 2.96 

epithelial cell migration (GO:0010631) 100 1.61 

epithelial cell proliferation (GO:0050673) 18.6 0.566 

epithelium development (GO:0060429) 23.9 1.71 

epithelium migration (GO:0090132) 100 1.92 

ERBB signaling pathway (GO:0038127) 2.34 0.493 

ERBB2 signaling pathway (GO:0038128) 8.97 0.897 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

ER-nucleus signaling pathway (GO:0006984) 12.4 1.77 

establishment of Golgi localization (GO:0051683) 100 4.15 

establishment of localization (GO:0051234) 5.23E-04 3.64E-12 

establishment of localization in cell (GO:0051649) 1.28E-04 4.96E-16 

establishment of organelle localization (GO:0051656) 1.19 31.2 

establishment of protein localization (GO:0045184) 11.2 4.67E-04 

establishment of protein localization to endoplasmic reticulum 

(GO:0072599) 

100 2.13E-10 

establishment of protein localization to membrane (GO:0090150) 100 2.35E-05 

establishment of protein localization to organelle (GO:0072594) 28.8 1.69E-06 

establishment of RNA localization (GO:0051236) 0.155 23.8 

exocrine system development (GO:0035272) 100 3.49 

exocytosis (GO:0006887) 1.10E-04 1.01E-10 

export from cell (GO:0140352) 2.72E-03 1.20E-09 

extracellular matrix organization (GO:0030198) 100 1.7 

extracellular structure organization (GO:0043062) 100 1.72 

gene expression (GO:0010467) 1.51 9.79E-09 

generation of precursor metabolites and energy (GO:0006091) 73.9 1.91 

gland development (GO:0048732) 75.4 0.242 

gland morphogenesis (GO:0022612) 100 1.35 

glial cell development (GO:0021782) 100 2.5 

gliogenesis (GO:0042063) 4.63 0.567 

global genome nucleotide-excision repair (GO:0070911) 100 2.14 

granulocyte activation (GO:0036230) 1.84E-04 2.62E-08 

granulocyte chemotaxis (GO:0071621) 100 3.97 

growth (GO:0040007) 0.115 0.446 

hair cycle (GO:0042633) 100 2.03 

hair cycle process (GO:0022405) 94.2 2.66 

hair follicle development (GO:0001942) 90.6 2.24 

hematopoietic or lymphoid organ development (GO:0048534) 11 0.0856 

hemopoiesis (GO:0030097) 7.11 0.21 

hemostasis (GO:0007599) 5.56 3.02 

heterocycle biosynthetic process (GO:0018130) 71.8 0.0156 

heterocycle catabolic process (GO:0046700) 100 7.27E-09 

heterocycle metabolic process (GO:0046483) 7.5 2.30E-10 

histone exchange (GO:0043486) 19.6 0.231 



68 

 

Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

histone H3-K27 methylation (GO:0070734) 1.23 91.5 

homeostatic process (GO:0042592) 7.04 0.142 

immune effector process (GO:0002252) 8.84E-04 5.24E-07 

immune response (GO:0006955) 0.385 1.05E-03 

immune system development (GO:0002520) 3.97 0.0301 

immune system process (GO:0002376) 1.35E-03 9.46E-09 

immunoglobulin production involved in immunoglobulin mediated 

immune response (GO:0002381) 

34.5 2.41 

inflammatory response (GO:0006954) 34.4 1.62 

integrated stress response signaling (GO:0140467) 14.3 1.41 

integrin-mediated signaling pathway (GO:0007229) 24 3.38 

interaction with host (GO:0051701) 10.7 0.215 

interferon-gamma-mediated signaling pathway (GO:0060333) 10.6 1.97 

interleukin-1-mediated signaling pathway (GO:0070498) 100 0.868 

interspecies interaction between organisms (GO:0044419) 1.61E-05 1.79E-13 

intracellular protein transport (GO:0006886) 31 3.97E-05 

intracellular transport (GO:0046907) 7.27 3.96E-05 

IRE1-mediated unfolded protein response (GO:0036498) 100 0.105 

iron ion homeostasis (GO:0055072) 4.21 96.3 

kinetochore organization (GO:0051383) 95.2 3.77 

leukocyte activation (GO:0045321) 4.47E-04 8.52E-10 

leukocyte activation involved in immune response (GO:0002366) 3.15E-04 7.26E-08 

leukocyte degranulation (GO:0043299) 2.06E-04 1.07E-07 

leukocyte differentiation (GO:0002521) 24.5 1.41 

leukocyte mediated immunity (GO:0002443) 5.31E-04 2.39E-07 

localization (GO:0051179) 2.43E-03 5.26E-13 

localization of cell (GO:0051674) 100 1.12 

lung development (GO:0030324) 100 1.97 

lymphocyte activation (GO:0046649) 71.2 2.45 

M phase (GO:0000279) 11 0.226 

macromolecule biosynthetic process (GO:0009059) 19.3 1.00E-06 

macromolecule catabolic process (GO:0009057) 100 1.13E-07 

macromolecule localization (GO:0033036) 0.181 1.82E-05 

macromolecule metabolic process (GO:0043170) 2.19 3.37E-08 

macrophage differentiation (GO:0030225) 34.6 2.14 

maintenance of gastrointestinal epithelium (GO:0030277) 3.53 100 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

maintenance of location (GO:0051235) 3.45 0.194 

maintenance of location in cell (GO:0051651) 6.13 0.869 

maintenance of protein location (GO:0045185) 6.76 1.11 

maintenance of protein location in cell (GO:0032507) 33.1 4.47 

maturation of LSU-rRNA (GO:0000470) 100 0.591 

maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-

rRNA, 5.8S rRNA, LSU-rRNA) (GO:0000463) 

100 2.41 

membrane organization (GO:0061024) 0.626 2.37 

metabolic process (GO:0008152) 2.81 7.07E-12 

microtubule cytoskeleton organization involved in mitosis 

(GO:1902850) 

1.51 29.5 

microtubule-based process (GO:0007017) 3.13 64.8 

mitochondrial transport (GO:0006839) 26.5 4.94 

mitotic anaphase (GO:0000090) 8.24 2.42 

mitotic cell cycle (GO:0000278) 0.0168 2.39 

mitotic cell cycle phase (GO:0098763) 20.6 0.0594 

mitotic cell cycle process (GO:1903047) 0.0386 1.97 

mitotic M phase (GO:0000087) 10.9 0.225 

mitotic prometaphase (GO:0000236) 3.63 1.7 

mitotic spindle organization (GO:0007052) 0.81 35.6 

modulation by symbiont of entry into host (GO:0052372) 100 1.1 

modulation by symbiont of host defense response (GO:0052031) 63.6 0.485 

molting cycle (GO:0042303) 100 2.02 

molting cycle process (GO:0022404) 94.2 2.66 

morphogenesis of a branching epithelium (GO:0061138) 100 2.7 

morphogenesis of a branching structure (GO:0001763) 100 1.62 

movement in host environment (GO:0052126) 28.3 0.725 

mRNA catabolic process (GO:0006402) 100 3.27E-09 

mRNA metabolic process (GO:0016071) 33.2 2.15E-06 

mRNA splicing, via spliceosome (GO:0000398) 5.58 3.07 

mRNA stabilization (GO:0048255) 4.29 36.4 

mucus secretion (GO:0070254) 2.07 46.4 

multicellular organism development (GO:0007275) 0.169 0.193 

multicellular organismal process (GO:0032501) 9.58E-04 1.56 

MyD88-independent toll-like receptor signaling pathway (GO:0002756) 100 4.42 

myeloid cell activation involved in immune response (GO:0002275) 3.08E-04 2.57E-07 

myeloid cell differentiation (GO:0030099) 4.53 0.209 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

myeloid leukocyte activation (GO:0002274) 1.21E-04 3.03E-09 

myeloid leukocyte differentiation (GO:0002573) 3.78 1.44 

myeloid leukocyte mediated immunity (GO:0002444) 2.75E-04 1.85E-07 

ncRNA metabolic process (GO:0034660) 100 0.246 

ncRNA processing (GO:0034470) 100 0.918 

negative regulation of amyloid fibril formation (GO:1905907) 100 2.52 

negative regulation of apoptotic process (GO:0043066) 3.03 8.61E-07 

negative regulation of apoptotic signaling pathway (GO:2001234) 11.6 0.0739 

negative regulation of biological process (GO:0048519) 1.54E-07 7.39E-21 

negative regulation of biosynthetic process (GO:0009890) 4.08 7.62E-05 

negative regulation of blood coagulation, extrinsic pathway 

(GO:2000264) 

4.18 12.3 

negative regulation of catabolic process (GO:0009895) 2.75 1.4 

negative regulation of catalytic activity (GO:0043086) 40.5 0.0411 

negative regulation of cell activation (GO:0050866) 100 0.386 

negative regulation of cell adhesion (GO:0007162) 75.5 0.235 

negative regulation of cell communication (GO:0010648) 28.5 1.81E-05 

negative regulation of cell cycle (GO:0045786) 1.13 3.72 

negative regulation of cell cycle phase transition (GO:1901988) 28.6 3.15 

negative regulation of cell cycle process (GO:0010948) 3.11 6.96 

negative regulation of cell death (GO:0060548) 0.114 7.60E-08 

negative regulation of cell development (GO:0010721) 100 1.83 

negative regulation of cell differentiation (GO:0045596) 24.5 0.0213 

negative regulation of cell population proliferation (GO:0008285) 12.9 0.187 

negative regulation of cell-cell adhesion (GO:0022408) 66.2 0.0527 

negative regulation of cellular amide metabolic process (GO:0034249) 24.1 2.33 

negative regulation of cellular biosynthetic process (GO:0031327) 5.54 8.52E-05 

negative regulation of cellular catabolic process (GO:0031330) 0.836 4.69 

negative regulation of cellular component organization (GO:0051129) 2.54E-04 1.78E-05 

negative regulation of cellular macromolecule biosynthetic process 

(GO:2000113) 

4.04 6.44E-05 

negative regulation of cellular metabolic process (GO:0031324) 1.54E-03 6.55E-10 

negative regulation of cellular process (GO:0048523) 8.50E-07 6.86E-14 

negative regulation of cellular protein metabolic process (GO:0032269) 0.0796 1.34E-07 

negative regulation of cellular response to transforming growth factor 

beta stimulus (GO:1903845) 

100 3.75 

negative regulation of chromatin organization (GO:1905268) 1.75 11.9 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

negative regulation of chromatin silencing (GO:0031936) 1.92 11.5 

negative regulation of chromosome organization (GO:2001251) 9.92E-03 0.331 

negative regulation of cytokine production (GO:0001818) 73.8 1.13 

negative regulation of cytoskeleton organization (GO:0051494) 8.1 2.33 

negative regulation of developmental process (GO:0051093) 0.0705 8.46E-03 

negative regulation of endopeptidase activity (GO:0010951) 6.64 2.75 

negative regulation of gene expression (GO:0010629) 0.108 2.52E-13 

negative regulation of glycoprotein biosynthetic process (GO:0010561) 82.4 2.05 

negative regulation of glycoprotein metabolic process (GO:1903019) 21.9 0.518 

negative regulation of hemopoiesis (GO:1903707) 88.5 3.44 

negative regulation of immune effector process (GO:0002698) 12.4 3.74 

negative regulation of immune system process (GO:0002683) 24 1.82 

negative regulation of intracellular signal transduction (GO:1902532) 50.8 0.975 

negative regulation of kinase activity (GO:0033673) 100 1.28 

negative regulation of leukocyte activation (GO:0002695) 100 0.394 

negative regulation of leukocyte cell-cell adhesion (GO:1903038) 100 1.75 

negative regulation of lymphocyte activation (GO:0051250) 100 0.766 

negative regulation of lymphocyte differentiation (GO:0045620) 100 1.86 

negative regulation of macromolecule biosynthetic process 

(GO:0010558) 

3.31 3.15E-04 

negative regulation of macromolecule metabolic process (GO:0010605) 4.03E-03 7.14E-18 

negative regulation of metabolic process (GO:0009892) 1.97E-03 1.25E-17 

negative regulation of mitotic cell cycle (GO:0045930) 14.7 2.03 

negative regulation of mitotic cell cycle phase transition (GO:1901991) 24.8 1.91 

negative regulation of mitotic nuclear division (GO:0045839) 2.7 8.73 

negative regulation of molecular function (GO:0044092) 19.3 5.38E-04 

negative regulation of multicellular organismal process (GO:0051241) 0.115 4.24E-04 

negative regulation of nervous system development (GO:0051961) 100 2.27 

negative regulation of neurogenesis (GO:0050768) 100 0.898 

negative regulation of neuron apoptotic process (GO:0043524) 48.3 4.56 

negative regulation of nitrogen compound metabolic process 

(GO:0051172) 

0.0295 4.28E-10 

negative regulation of nuclear division (GO:0051784) 4.55 15 

negative regulation of nucleic acid-templated transcription 

(GO:1903507) 

36.3 0.0699 

negative regulation of nucleobase-containing compound metabolic 

process (GO:0045934) 

6.68 0.0592 

negative regulation of organelle organization (GO:0010639) 4.40E-05 9.68E-04 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

negative regulation of ossification (GO:0030279) 40.6 0.0509 

negative regulation of peptidase activity (GO:0010466) 7.54 4.88 

negative regulation of phosphate metabolic process (GO:0045936) 100 0.099 

negative regulation of phosphorus metabolic process (GO:0010563) 100 0.101 

negative regulation of phosphorylation (GO:0042326) 100 0.069 

negative regulation of programmed cell death (GO:0043069) 3.24 6.31E-07 

negative regulation of protein catabolic process (GO:0042177) 80.6 0.786 

negative regulation of protein kinase activity (GO:0006469) 100 1.46 

negative regulation of protein metabolic process (GO:0051248) 0.0781 4.62E-10 

negative regulation of protein modification by small protein conjugation 

or removal (GO:1903321) 

100 0.527 

negative regulation of protein modification process (GO:0031400) 62 5.77E-05 

negative regulation of protein phosphorylation (GO:0001933) 100 0.0285 

negative regulation of protein ubiquitination (GO:0031397) 100 0.803 

negative regulation of protein-containing complex assembly 

(GO:0031333) 

17.4 0.353 

negative regulation of proteolysis (GO:0045861) 2.03 0.493 

negative regulation of response to stimulus (GO:0048585) 6.92 2.33E-07 

negative regulation of RNA biosynthetic process (GO:1902679) 36.3 0.0713 

negative regulation of RNA catabolic process (GO:1902369) 2.03 54.9 

negative regulation of RNA metabolic process (GO:0051253) 5.16 0.0302 

negative regulation of signal transduction (GO:0009968) 37.5 6.77E-06 

negative regulation of signaling (GO:0023057) 27.2 1.87E-05 

negative regulation of supramolecular fiber organization (GO:1902904) 20.8 0.193 

negative regulation of T cell activation (GO:0050868) 100 0.976 

negative regulation of T cell differentiation (GO:0045581) 100 3.25 

negative regulation of transcription by RNA polymerase II 

(GO:0000122) 

88.3 1.71 

negative regulation of transcription, DNA-templated (GO:0045892) 28.5 0.0345 

negative regulation of transferase activity (GO:0051348) 100 0.927 

negative regulation of transforming growth factor beta receptor 

signaling pathway (GO:0030512) 

100 3.34 

negative regulation of ubiquitin-dependent protein catabolic process 

(GO:2000059) 

100 4.78 

nervous system process (GO:0050877) 62.5 2.98 

neuropilin signaling pathway (GO:0038189) 100 1.3 

neutrophil activation (GO:0042119) 1.59E-04 1.98E-08 

neutrophil activation involved in immune response (GO:0002283) 1.28E-04 3.76E-08 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

neutrophil degranulation (GO:0043312) 1.20E-04 2.96E-08 

neutrophil mediated immunity (GO:0002446) 1.52E-04 5.65E-08 

nitrogen compound metabolic process (GO:0006807) 19 1.12E-09 

nitrogen compound transport (GO:0071705) 1.24 8.93E-03 

nuclear-transcribed mRNA catabolic process (GO:0000956) 100 4.58E-10 

nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 

(GO:0000184) 

100 8.84E-11 

nucleic acid metabolic process (GO:0090304) 2.01 5.17E-09 

nucleic acid transport (GO:0050657) 0.145 23.1 

nucleobase-containing compound biosynthetic process (GO:0034654) 52.5 0.0327 

nucleobase-containing compound catabolic process (GO:0034655) 95.8 5.65E-10 

nucleobase-containing compound metabolic process (GO:0006139) 2.54 1.50E-09 

nucleobase-containing compound transport (GO:0015931) 0.225 37.4 

nucleosome assembly (GO:0006334) 2.92 0.0219 

nucleosome organization (GO:0034728) 2.51 2.18E-03 

nucleosome positioning (GO:0016584) 2.18 12.8 

odontogenesis of dentin-containing tooth (GO:0042475) 41.9 3.34 

oogenesis (GO:0048477) 4.13 24.8 

organelle localization (GO:0051640) 1.71 9.31 

organelle organization (GO:0006996) 4.35E-06 1.54E-05 

organic cyclic compound biosynthetic process (GO:1901362) 80.1 0.104 

organic cyclic compound catabolic process (GO:1901361) 100 1.45E-07 

organic cyclic compound metabolic process (GO:1901360) 15.5 2.36E-09 

organic substance biosynthetic process (GO:1901576) 65.8 4.72E-07 

organic substance catabolic process (GO:1901575) 100 1.55E-04 

organic substance metabolic process (GO:0071704) 5.61 4.99E-10 

organic substance transport (GO:0071702) 1.4 0.0591 

organonitrogen compound biosynthetic process (GO:1901566) 100 1.12E-06 

organonitrogen compound metabolic process (GO:1901564) 84.9 8.47E-06 

ossification (GO:0001503) 2.91 0.127 

osteoblast differentiation (GO:0001649) 4.14 4.27 

oxidation-reduction process (GO:0055114) 100 2.58 

peptide biosynthetic process (GO:0043043) 40.7 1.61E-10 

peptide metabolic process (GO:0006518) 94.8 7.38E-11 

peptide transport (GO:0015833) 25.6 1.69E-03 

PERK-mediated unfolded protein response (GO:0036499) 14.2 1.4 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

platelet degranulation (GO:0002576) 4.32 2.93E-07 

positive regulation by symbiont of entry into host (GO:0075294) 100 1.11 

positive regulation of actin filament bundle assembly (GO:0032233) 30.4 3.71 

positive regulation of adaptive immune response based on somatic 

recombination of immune receptors built from immunoglobulin 

superfamily domains (GO:0002824) 

7.71 4.15 

positive regulation of angiogenesis (GO:0045766) 100 0.0753 

positive regulation of animal organ morphogenesis (GO:0110110) 100 0.567 

positive regulation of apoptotic process (GO:0043065) 1.37 6.10E-11 

positive regulation of apoptotic signaling pathway (GO:2001235) 100 0.997 

positive regulation of autophagy of mitochondrion (GO:1903599) 3.92 54.4 

positive regulation of binding (GO:0051099) 1.24 4.40E-05 

positive regulation of biological process (GO:0048518) 1.43E-05 3.26E-13 

positive regulation of biosynthetic process (GO:0009891) 1.37E-03 9.42E-05 

positive regulation of blood vessel endothelial cell migration 

(GO:0043536) 

71 2.14 

positive regulation of cardiac muscle cell differentiation (GO:2000727) 100 4.34 

positive regulation of catalytic activity (GO:0043085) 1.89 1.84E-06 

positive regulation of cell activation (GO:0050867) 13.4 3.91 

positive regulation of cell adhesion (GO:0045785) 5.71 9.59E-03 

positive regulation of cell communication (GO:0010647) 1.23 3.25E-05 

positive regulation of cell cycle (GO:0045787) 8.49E-03 0.468 

positive regulation of cell cycle process (GO:0090068) 0.145 0.402 

positive regulation of cell death (GO:0010942) 0.184 1.66E-11 

positive regulation of cell differentiation (GO:0045597) 5.58 0.0668 

positive regulation of cell division (GO:0051781) 100 1.62 

positive regulation of cell growth (GO:0030307) 10.5 1.62 

positive regulation of cell migration (GO:0030335) 100 0.0247 

positive regulation of cell morphogenesis involved in differentiation 

(GO:0010770) 

51.9 2.6 

positive regulation of cell motility (GO:2000147) 100 0.0702 

positive regulation of cell population proliferation (GO:0008284) 0.0133 1.56E-05 

positive regulation of cell size (GO:0045793) 12.6 1.12 

positive regulation of cell-cell adhesion (GO:0022409) 43.4 3.57 

positive regulation of cell-matrix adhesion (GO:0001954) 100 2.15 

positive regulation of cell-substrate adhesion (GO:0010811) 34.7 0.519 

positive regulation of cell-substrate junction organization 

(GO:0150117) 

100 2.98 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

positive regulation of cellular amide metabolic process (GO:0034250) 0.991 0.0719 

positive regulation of cellular biosynthetic process (GO:0031328) 0.0405 5.64E-04 

positive regulation of cellular component biogenesis (GO:0044089) 1.75 15.5 

positive regulation of cellular component movement (GO:0051272) 100 0.0528 

positive regulation of cellular component organization (GO:0051130) 8.35E-04 0.0139 

positive regulation of cellular metabolic process (GO:0031325) 2.71E-05 9.37E-09 

positive regulation of cellular process (GO:0048522) 6.45E-06 1.92E-14 

positive regulation of cellular protein localization (GO:1903829) 0.036 0.414 

positive regulation of cellular protein metabolic process (GO:0032270) 0.03 4.99E-10 

positive regulation of chromosome organization (GO:2001252) 0.0217 0.228 

positive regulation of collagen biosynthetic process (GO:0032967) 6.42 0.375 

positive regulation of collagen metabolic process (GO:0010714) 6.73 0.44 

positive regulation of cytokine production (GO:0001819) 0.0464 0.803 

positive regulation of defense response (GO:0031349) 28.3 1.17 

positive regulation of developmental process (GO:0051094) 3.63 0.1 

positive regulation of DNA binding (GO:0043388) 73.8 0.719 

positive regulation of DNA biosynthetic process (GO:2000573) 6.37E-03 5.34 

positive regulation of DNA metabolic process (GO:0051054) 6.58E-03 0.386 

positive regulation of DNA replication (GO:0045740) 2.71 8.75 

positive regulation of DNA-binding transcription factor activity 
(GO:0051091) 

8.83 1.11 

positive regulation of endothelial cell migration (GO:0010595) 100 0.12 

positive regulation of endothelial cell proliferation (GO:0001938) 51 0.761 

positive regulation of epithelial cell migration (GO:0010634) 100 4.19E-03 

positive regulation of epithelial cell proliferation (GO:0050679) 39.2 0.0988 

positive regulation of epithelial to mesenchymal transition 

(GO:0010718) 

58.8 0.989 

positive regulation of ERK1 and ERK2 cascade (GO:0070374) 21.5 2.98 

positive regulation of establishment of protein localization 

(GO:1904951) 

0.171 0.187 

positive regulation of establishment of protein localization to telomere 

(GO:1904851) 

1.03 31.4 

positive regulation of fibroblast proliferation (GO:0048146) 0.846 0.358 

positive regulation of focal adhesion assembly (GO:0051894) 100 1.91 

positive regulation of gene expression (GO:0010628) 3.88E-03 8.52E-05 

positive regulation of gene expression, epigenetic (GO:0045815) 0.194 2.83 

positive regulation of hemopoiesis (GO:1903708) 75.2 0.126 

positive regulation of hydrolase activity (GO:0051345) 11.1 1.22 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

positive regulation of I-kappaB kinase/NF-kappaB signaling 

(GO:0043123) 

35.8 3.47 

positive regulation of immune effector process (GO:0002699) 3.72 12.3 

positive regulation of immune response (GO:0050778) 9.93 1.11 

positive regulation of immune system process (GO:0002684) 10.8 0.0634 

positive regulation of inflammatory response (GO:0050729) 46.9 1.53 

positive regulation of integrin-mediated signaling pathway 

(GO:2001046) 

60.3 3.28 

positive regulation of interleukin-6 production (GO:0032755) 5.57 2.27 

positive regulation of intracellular protein transport (GO:0090316) 14.7 3.04 

positive regulation of intracellular signal transduction (GO:1902533) 13.5 5.02E-04 

positive regulation of intracellular transport (GO:0032388) 4.07 2.46 

positive regulation of kinase activity (GO:0033674) 62.9 7.45E-03 

positive regulation of leukocyte cell-cell adhesion (GO:1903039) 28.7 3.15 

positive regulation of leukocyte differentiation (GO:1902107) 99.3 0.978 

positive regulation of leukocyte mediated immunity (GO:0002705) 5.53 2.7 

positive regulation of leukocyte proliferation (GO:0070665) 21.7 4.39 

positive regulation of locomotion (GO:0040017) 100 0.0891 

positive regulation of lymphocyte differentiation (GO:0045621) 100 4.16 

positive regulation of lymphocyte mediated immunity (GO:0002708) 7.7 4.15 

positive regulation of macromolecule biosynthetic process 

(GO:0010557) 

0.0137 6.16E-03 

positive regulation of macromolecule metabolic process (GO:0010604) 1.21E-04 7.39E-09 

positive regulation of MAP kinase activity (GO:0043406) 100 1.91 

positive regulation of MAPK cascade (GO:0043410) 95.7 9.55E-03 

positive regulation of mesenchymal cell proliferation (GO:0002053) 100 1.91 

positive regulation of metabolic process (GO:0009893) 1.82E-06 1.03E-08 

positive regulation of mitotic cell cycle (GO:0045931) 0.138 2.41 

positive regulation of mitotic nuclear division (GO:0045840) 6.74 0.716 

positive regulation of molecular function (GO:0044093) 0.0529 1.77E-08 

positive regulation of morphogenesis of an epithelium (GO:1905332) 100 1.44 

positive regulation of multicellular organismal process (GO:0051240) 3.21 0.298 

positive regulation of myeloid cell differentiation (GO:0045639) 55.9 0.301 

positive regulation of neural precursor cell proliferation (GO:2000179) 5.55 1.86 

positive regulation of neuroblast proliferation (GO:0002052) 0.576 6.96 

positive regulation of neuron apoptotic process (GO:0043525) 100 0.652 

positive regulation of neuron death (GO:1901216) 55.8 0.0209 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

positive regulation of NF-kappaB transcription factor activity 

(GO:0051092) 

27.1 3.15 

positive regulation of nitric oxide biosynthetic process (GO:0045429) 55.4 2.75 

positive regulation of nitric oxide metabolic process (GO:1904407) 55.2 2.99 

positive regulation of nitrogen compound metabolic process 
(GO:0051173) 

5.52E-03 7.63E-08 

positive regulation of nuclear division (GO:0051785) 11 2.09 

positive regulation of nucleic acid-templated transcription 

(GO:1903508) 

9.6 2.07 

positive regulation of nucleobase-containing compound metabolic 

process (GO:0045935) 

0.26 0.591 

positive regulation of nucleocytoplasmic transport (GO:0046824) 0.359 1.62 

positive regulation of organelle organization (GO:0010638) 5.50E-03 6.69E-04 

positive regulation of ossification (GO:0045778) 100 1.81 

positive regulation of osteoblast differentiation (GO:0045669) 100 2.84 

positive regulation of phosphate metabolic process (GO:0045937) 0.445 1.41E-03 

positive regulation of phosphorus metabolic process (GO:0010562) 0.447 1.41E-03 

positive regulation of phosphorylation (GO:0042327) 0.3 2.58E-03 

positive regulation of programmed cell death (GO:0043068) 1.48 8.28E-11 

positive regulation of prostaglandin biosynthetic process (GO:0031394) 100 3.28 

positive regulation of protein import (GO:1904591) 3.67 31.8 

positive regulation of protein import into nucleus (GO:0042307) 3.08 28 

positive regulation of protein kinase activity (GO:0045860) 38 2.63E-03 

positive regulation of protein kinase B signaling (GO:0051897) 11 4.1 

positive regulation of protein localization to Cajal body (GO:1904871) 1.22 35.1 

positive regulation of protein localization to chromosome, telomeric 

region (GO:1904816) 

1.67 38.8 

positive regulation of protein localization to nucleus (GO:1900182) 2.28E-03 3.97 

positive regulation of protein metabolic process (GO:0051247) 0.0327 6.58E-10 

positive regulation of protein modification process (GO:0031401) 3.31 3.13E-04 

positive regulation of protein phosphorylation (GO:0001934) 1.8 2.13E-04 

positive regulation of protein serine/threonine kinase activity 

(GO:0071902) 

100 0.724 

positive regulation of protein transport (GO:0051222) 3.3 0.467 

positive regulation of reactive oxygen species biosynthetic process 

(GO:1903428) 

24.9 2 

positive regulation of reactive oxygen species metabolic process 

(GO:2000379) 

57.3 0.372 

positive regulation of receptor clustering (GO:1903911) 59.5 3.27 

positive regulation of response to external stimulus (GO:0032103) 14.7 0.41 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

positive regulation of response to stimulus (GO:0048584) 0.494 2.27E-06 

positive regulation of RNA biosynthetic process (GO:1902680) 9.63 2.08 

positive regulation of RNA metabolic process (GO:0051254) 6.26 2.59 

positive regulation of signal transduction (GO:0009967) 6.75 1.54E-05 

positive regulation of signaling (GO:0023056) 1.25 3.52E-05 

positive regulation of smooth muscle cell proliferation (GO:0048661) 48.8 0.154 

positive regulation of stem cell proliferation (GO:2000648) 0.436 10 

positive regulation of substrate adhesion-dependent cell spreading 
(GO:1900026) 

50.7 0.0754 

positive regulation of T cell activation (GO:0050870) 23.7 1.72 

positive regulation of T cell mediated immunity (GO:0002711) 4.54 4.78 

positive regulation of tau-protein kinase activity (GO:1902949) 7.49 0.346 

positive regulation of telomerase activity (GO:0051973) 1.88 19.5 

positive regulation of telomerase RNA localization to Cajal body 

(GO:1904874) 

2.19 45.1 

positive regulation of telomere maintenance (GO:0032206) 0.736 15 

positive regulation of telomere maintenance via telomerase 

(GO:0032212) 

1.63 44.6 

positive regulation of telomere maintenance via telomere lengthening 

(GO:1904358) 

2.04 46.7 

positive regulation of transcription by RNA polymerase II 

(GO:0045944) 

21.6 4.4 

positive regulation of transcription, DNA-templated (GO:0045893) 5.9 3.26 

positive regulation of transferase activity (GO:0051347) 33.1 6.77E-04 

positive regulation of translation (GO:0045727) 0.33 0.0333 

positive regulation of transport (GO:0051050) 0.137 4.70E-04 

positive regulation of type I interferon production (GO:0032481) 0.66 21.2 

positive regulation of vasculature development (GO:1904018) 100 0.218 

positive regulation of viral entry into host cell (GO:0046598) 100 1.11 

positive regulation of viral life cycle (GO:1903902) 28.8 0.218 

positive regulation of viral process (GO:0048524) 27.7 0.162 

posttranscriptional regulation of gene expression (GO:0010608) 0.109 3.02E-04 

post-translational protein modification (GO:0043687) 46.8 0.0596 

primary metabolic process (GO:0044238) 8.62 2.11E-08 

programmed cell death (GO:0012501) 1.23 2.29E-03 

protein folding (GO:0006457) 1.23 9.75E-06 

protein insertion into mitochondrial outer membrane (GO:0045040) 4.19 59.9 

protein localization (GO:0008104) 0.157 1.59E-06 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

protein localization to endoplasmic reticulum (GO:0070972) 100 1.51E-09 

protein localization to membrane (GO:0072657) 100 6.93E-04 

protein localization to organelle (GO:0033365) 7.13 3.15E-06 

protein metabolic process (GO:0019538) 20.9 2.10E-04 

protein refolding (GO:0042026) 3.52 4.33 

protein stabilization (GO:0050821) 5.57 6.42E-03 

protein targeting (GO:0006605) 92.7 4.24E-08 

protein targeting to ER (GO:0045047) 100 1.09E-10 

protein targeting to membrane (GO:0006612) 100 8.61E-07 

protein transport (GO:0015031) 18.9 1.98E-03 

protein-containing complex assembly (GO:0065003) 3.50E-04 1.43E-06 

protein-containing complex disassembly (GO:0032984) 89.9 2.4 

protein-containing complex subunit organization (GO:0043933) 6.19E-04 2.78E-08 

protein-DNA complex assembly (GO:0065004) 0.682 1.31E-03 

protein-DNA complex subunit organization (GO:0071824) 0.55 4.68E-04 

purinergic nucleotide receptor signaling pathway (GO:0035590) 100 3.79 

regeneration (GO:0031099) 55.6 3.15 

regulated exocytosis (GO:0045055) 4.32E-05 1.76E-12 

regulation of actin cytoskeleton organization (GO:0032956) 12.4 0.0666 

regulation of actin cytoskeleton reorganization (GO:2000249) 100 0.0989 

regulation of actin filament bundle assembly (GO:0032231) 57.2 3.56 

regulation of actin filament organization (GO:0110053) 23.6 0.557 

regulation of actin filament-based process (GO:0032970) 4.15 0.0572 

regulation of adaptive immune response (GO:0002819) 27.4 3.65 

regulation of adaptive immune response based on somatic 

recombination of immune receptors built from immunoglobulin 

superfamily domains (GO:0002822) 

22.9 4.93 

regulation of anatomical structure morphogenesis (GO:0022603) 72.1 0.815 

regulation of angiogenesis (GO:0045765) 100 0.261 

regulation of apoptotic process (GO:0042981) 0.216 1.75E-16 

regulation of apoptotic signaling pathway (GO:2001233) 4.22 5.44E-05 

regulation of ATPase activity (GO:0043462) 3.34 42 

regulation of binding (GO:0051098) 2.53 7.53E-04 

regulation of biological process (GO:0050789) 3.44E-05 6.62E-14 

regulation of biological quality (GO:0065008) 5.08E-03 1.75E-08 

regulation of biosynthetic process (GO:0009889) 0.0346 5.22E-06 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

regulation of blood coagulation, extrinsic pathway (GO:2000263) 4.17 12.3 

regulation of body fluid levels (GO:0050878) 2.7 0.589 

regulation of bone mineralization (GO:0030500) 100 2.52 

regulation of branching involved in lung morphogenesis (GO:0061046) 54.5 2.52 

regulation of catabolic process (GO:0009894) 3.92 0.038 

regulation of catalytic activity (GO:0050790) 0.269 3.25E-09 

regulation of cell activation (GO:0050865) 7.16 0.0755 

regulation of cell adhesion (GO:0030155) 14.3 2.85E-04 

regulation of cell aging (GO:0090342) 0.739 38.1 

regulation of cell communication (GO:0010646) 1.74 1.57E-08 

regulation of cell cycle (GO:0051726) 3.08E-05 7.54E-04 

regulation of cell cycle G2/M phase transition (GO:1902749) 23.6 1.66 

regulation of cell cycle phase transition (GO:1901987) 0.459 0.287 

regulation of cell cycle process (GO:0010564) 2.11E-05 6.64E-03 

regulation of cell death (GO:0010941) 6.80E-03 3.04E-17 

regulation of cell differentiation (GO:0045595) 2.79 4.87E-03 

regulation of cell division (GO:0051302) 28.2 0.215 

regulation of cell killing (GO:0031341) 1.71 3.37 

regulation of cell migration (GO:0030334) 58.4 2.62E-03 

regulation of cell motility (GO:2000145) 51.9 1.41E-03 

regulation of cell population proliferation (GO:0042127) 4.48E-04 9.34E-09 

regulation of cell-cell adhesion (GO:0022407) 12.2 9.34E-03 

regulation of cell-matrix adhesion (GO:0001952) 100 3.27 

regulation of cell-substrate adhesion (GO:0010810) 82.9 1.61 

regulation of cellular amide metabolic process (GO:0034248) 0.969 0.0308 

regulation of cellular biosynthetic process (GO:0031326) 0.137 5.77E-06 

regulation of cellular catabolic process (GO:0031329) 1.56 0.0333 

regulation of cellular component biogenesis (GO:0044087) 0.071 2.07 

regulation of cellular component movement (GO:0051270) 55.3 2.19E-03 

regulation of cellular component organization (GO:0051128) 2.04E-07 3.30E-07 

regulation of cellular localization (GO:0060341) 6.59E-03 0.0219 

regulation of cellular macromolecule biosynthetic process 
(GO:2000112) 

0.0382 3.04E-05 

regulation of cellular metabolic process (GO:0031323) 2.66E-05 1.11E-10 

regulation of cellular process (GO:0050794) 7.82E-07 8.25E-10 

regulation of cellular protein catabolic process (GO:1903362) 100 0.666 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

regulation of cellular protein localization (GO:1903827) 3.09E-04 5.26E-04 

regulation of cellular protein metabolic process (GO:0032268) 3.08E-04 2.18E-13 

regulation of cellular response to growth factor stimulus (GO:0090287) 81.4 4.61 

regulation of cellular response to stress (GO:0080135) 0.325 0.195 

regulation of cellular response to transforming growth factor beta 

stimulus (GO:1903844) 

100 1.21 

regulation of cellular senescence (GO:2000772) 3.08 28 

regulation of chromatin organization (GO:1902275) 0.879 7.23 

regulation of chromatin silencing (GO:0031935) 3.54 19.1 

regulation of chromosome organization (GO:0033044) 9.96E-04 0.53 

regulation of chromosome segregation (GO:0051983) 0.0112 4.53 

regulation of collagen biosynthetic process (GO:0032965) 11.8 1.62 

regulation of collagen metabolic process (GO:0010712) 2.88 2.52 

regulation of complement-dependent cytotoxicity (GO:1903659) 8.6 4.14 

regulation of cyclin-dependent protein kinase activity (GO:1904029) 7.52 3.94 

regulation of cysteine-type endopeptidase activity (GO:2000116) 14.2 1.97 

regulation of cysteine-type endopeptidase activity involved in apoptotic 
process (GO:0043281) 

9.5 1.97 

regulation of cytokine production (GO:0001817) 0.0296 7.53E-05 

regulation of cytoskeleton organization (GO:0051493) 0.0375 0.0498 

regulation of defense response (GO:0031347) 11.3 3.05 

regulation of developmental process (GO:0050793) 0.0268 8.93E-04 

regulation of DNA binding (GO:0051101) 14.1 0.194 

regulation of DNA biosynthetic process (GO:2000278) 0.0152 13.6 

regulation of DNA metabolic process (GO:0051052) 9.73E-05 0.7 

regulation of DNA recombination (GO:0000018) 4.13 37.6 

regulation of DNA replication (GO:0006275) 2.65 2.28 

regulation of DNA-binding transcription factor activity (GO:0051090) 6.44 0.0144 

regulation of DNA-templated transcription in response to stress 

(GO:0043620) 

100 2.85 

regulation of endopeptidase activity (GO:0052548) 0.806 0.143 

regulation of endoribonuclease activity (GO:0060699) 4.15 12.2 

regulation of endothelial cell differentiation (GO:0045601) 100 1.13 

regulation of endothelial cell migration (GO:0010594) 54.8 0.484 

regulation of endothelial cell proliferation (GO:0001936) 15.7 0.825 

regulation of epithelial cell differentiation (GO:0030856) 100 4.76 

regulation of epithelial cell migration (GO:0010632) 90.7 0.0593 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

regulation of epithelial cell proliferation (GO:0050678) 1.48 0.18 

regulation of ERK1 and ERK2 cascade (GO:0070372) 49.1 0.16 

regulation of establishment of protein localization (GO:0070201) 0.961 1.40E-04 

regulation of establishment of protein localization to chromosome 

(GO:0070202) 

1.44 38.6 

regulation of establishment of protein localization to telomere 

(GO:0070203) 

1.22 35.1 

regulation of extrinsic apoptotic signaling pathway (GO:2001236) 100 2.81 

regulation of fibroblast proliferation (GO:0048145) 0.0169 0.0856 

regulation of G2/M transition of mitotic cell cycle (GO:0010389) 40.3 2.06 

regulation of gene expression (GO:0010468) 0.0133 2.73E-13 

regulation of gene expression, epigenetic (GO:0040029) 0.0879 5.73 

regulation of gene silencing (GO:0060968) 2.55 13.5 

regulation of generation of precursor metabolites and energy 
(GO:0043467) 

0.807 78.9 

regulation of glycoprotein biosynthetic process (GO:0010559) 15.8 2.75 

regulation of glycoprotein metabolic process (GO:1903018) 4.13 1.1 

regulation of growth (GO:0040008) 19.9 2.85 

regulation of heart morphogenesis (GO:2000826) 100 2.53 

regulation of hemopoiesis (GO:1903706) 19.3 2.99E-03 

regulation of hydrolase activity (GO:0051336) 0.606 0.0178 

regulation of immune effector process (GO:0002697) 4.33 3.91 

regulation of immune response (GO:0050776) 0.719 0.0602 

regulation of immune system process (GO:0002682) 1.82 6.32E-04 

regulation of innate immune response (GO:0045088) 2.04 3.13 

regulation of integrin-mediated signaling pathway (GO:2001044) 19.1 2.42 

regulation of interleukin-6 production (GO:0032675) 1.42 0.976 

regulation of intracellular protein transport (GO:0033157) 8.37 0.159 

regulation of intracellular signal transduction (GO:1902531) 6.74 2.47E-06 

regulation of intracellular transport (GO:0032386) 5.5 0.5 

regulation of intrinsic apoptotic signaling pathway (GO:2001242) 9.31 0.436 

regulation of kinase activity (GO:0043549) 28 4.76E-04 

regulation of leukocyte activation (GO:0002694) 24 0.115 

regulation of leukocyte cell-cell adhesion (GO:1903037) 34.5 0.179 

regulation of leukocyte differentiation (GO:1902105) 46.5 0.129 

regulation of leukocyte proliferation (GO:0070663) 13.8 0.0436 

regulation of localization (GO:0032879) 5.06E-03 9.95E-09 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

regulation of locomotion (GO:0040012) 64.2 5.69E-03 

regulation of lymphocyte activation (GO:0051249) 17.3 0.313 

regulation of lymphocyte differentiation (GO:0045619) 100 2.53 

regulation of lymphocyte proliferation (GO:0050670) 26 0.0485 

regulation of macromolecule biosynthetic process (GO:0010556) 0.0316 8.55E-05 

regulation of macromolecule metabolic process (GO:0060255) 3.20E-05 2.05E-17 

regulation of MAP kinase activity (GO:0043405) 100 2.25 

regulation of MAPK cascade (GO:0043408) 100 1.19E-03 

regulation of mesenchymal cell proliferation (GO:0010464) 100 1.01 

regulation of metabolic process (GO:0019222) 2.09E-05 1.25E-15 

regulation of microtubule cytoskeleton organization (GO:0070507) 0.516 55.1 

regulation of microtubule-based process (GO:0032886) 2.12 69.8 

regulation of mitochondrion organization (GO:0010821) 16.9 1.78 

regulation of mitotic cell cycle (GO:0007346) 1.41E-03 9.02E-03 

regulation of mitotic cell cycle phase transition (GO:1901990) 0.7 0.227 

regulation of mitotic nuclear division (GO:0007088) 0.0388 0.0601 

regulation of mitotic sister chromatid segregation (GO:0033047) 2.59 6.3 

regulation of mitotic spindle organization (GO:0060236) 0.2 46.2 

regulation of molecular function (GO:0065009) 0.0232 4.42E-08 

regulation of monocyte differentiation (GO:0045655) 100 4.93 

regulation of mononuclear cell proliferation (GO:0032944) 26.5 0.0533 

regulation of morphogenesis of an epithelium (GO:1905330) 100 2.63 

regulation of mRNA catabolic process (GO:0061013) 0.838 0.0741 

regulation of mRNA metabolic process (GO:1903311) 1.62 0.0141 

regulation of mRNA stability (GO:0043488) 1.67 0.0219 

regulation of multicellular organismal development (GO:2000026) 6.26 0.275 

regulation of multicellular organismal process (GO:0051239) 0.0131 4.69E-04 

regulation of muscle cell differentiation (GO:0051147) 99.2 2.51 

regulation of myeloid cell differentiation (GO:0045637) 5.11 0.0983 

regulation of neuroblast proliferation (GO:1902692) 1.64 4.88 

regulation of neuron apoptotic process (GO:0043523) 23.5 0.246 

regulation of neuron death (GO:1901214) 17.3 0.0816 

regulation of nitric oxide biosynthetic process (GO:0045428) 74 2.84 

regulation of nitrogen compound metabolic process (GO:0051171) 3.09E-04 2.17E-10 

regulation of nuclear division (GO:0051783) 0.112 0.24 

regulation of nucleic acid-templated transcription (GO:1903506) 9.28 0.171 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

regulation of nucleobase-containing compound metabolic process 

(GO:0019219) 

0.226 0.0734 

regulation of nucleocytoplasmic transport (GO:0046822) 0.127 0.297 

regulation of organelle organization (GO:0033043) 8.43E-08 7.10E-07 

regulation of ossification (GO:0030278) 40.8 0.0122 

regulation of osteoblast differentiation (GO:0045667) 100 0.978 

regulation of oxidative stress-induced cell death (GO:1903201) 9.25 4.79 

regulation of peptidase activity (GO:0052547) 1.28 0.0736 

regulation of peptide secretion (GO:0002791) 100 3.43 

regulation of peptide transport (GO:0090087) 21.8 7.89E-04 

regulation of phosphate metabolic process (GO:0019220) 0.27 1.73E-06 

regulation of phosphorus metabolic process (GO:0051174) 0.27 1.76E-06 

regulation of phosphorylation (GO:0042325) 0.182 3.91E-06 

regulation of polysome binding (GO:1905696) 2.08 46.6 

regulation of primary metabolic process (GO:0080090) 1.29E-04 6.57E-10 

regulation of programmed cell death (GO:0043067) 0.0904 5.61E-17 

regulation of protein binding (GO:0043393) 82.9 3.49 

regulation of protein catabolic process (GO:0042176) 100 0.178 

regulation of protein export from nucleus (GO:0046825) 2.89 2.53 

regulation of protein kinase activity (GO:0045859) 28.1 2.02E-04 

regulation of protein kinase B signaling (GO:0051896) 11.1 2.61 

regulation of protein kinase C signaling (GO:0090036) 97.8 4.34 

regulation of protein localization (GO:0032880) 1.36E-03 6.83E-06 

regulation of protein localization to Cajal body (GO:1904869) 1.21 35.1 

regulation of protein localization to chromosome, telomeric region 

(GO:1904814) 

2.18 45.1 

regulation of protein localization to nucleus (GO:1900180) 0.0462 2.19 

regulation of protein metabolic process (GO:0051246) 6.51E-04 5.36E-14 

regulation of protein modification by small protein conjugation or 

removal (GO:1903320) 

30.8 0.111 

regulation of protein modification process (GO:0031399) 5.57 3.61E-07 

regulation of protein phosphorylation (GO:0001932) 1.29 2.81E-07 

regulation of protein secretion (GO:0050708) 97.4 3.48 

regulation of protein serine/threonine kinase activity (GO:0071900) 92.4 0.0527 

regulation of protein stability (GO:0031647) 12.7 1.24E-03 

regulation of protein transport (GO:0051223) 18.6 6.54E-04 

regulation of protein ubiquitination (GO:0031396) 44.8 0.197 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

regulation of protein-containing complex assembly (GO:0043254) 7.56 0.756 

regulation of proteolysis (GO:0030162) 1.74 3.29E-03 

regulation of reactive oxygen species biosynthetic process 

(GO:1903426) 

20.4 2.39 

regulation of reactive oxygen species metabolic process (GO:2000377) 5.42 0.502 

regulation of receptor clustering (GO:1903909) 79.8 1.72 

regulation of receptor-mediated endocytosis (GO:0048259) 100 4.33 

regulation of response to biotic stimulus (GO:0002831) 0.604 0.37 

regulation of response to external stimulus (GO:0032101) 4.56 0.533 

regulation of response to stimulus (GO:0048583) 0.0309 1.30E-08 

regulation of response to stress (GO:0080134) 0.0151 2.22E-03 

regulation of RNA biosynthetic process (GO:2001141) 9.32 0.21 

regulation of RNA metabolic process (GO:0051252) 1.23 0.0364 

regulation of RNA stability (GO:0043487) 2.08 0.0373 

regulation of secretion (GO:0051046) 74.8 2.79 

regulation of signal transduction (GO:0009966) 1.86 9.44E-09 

regulation of signaling (GO:0023051) 1.88 1.85E-08 

regulation of sister chromatid segregation (GO:0033045) 0.881 4.19 

regulation of small molecule metabolic process (GO:0062012) 30.8 1.41 

regulation of smooth muscle cell proliferation (GO:0048660) 17.2 0.104 

regulation of spindle organization (GO:0090224) 0.3 50.7 

regulation of stem cell proliferation (GO:0072091) 2.22 5.35 

regulation of substrate adhesion-dependent cell spreading 

(GO:1900024) 

67.5 0.44 

regulation of supramolecular fiber organization (GO:1902903) 28.9 0.0436 

regulation of symbiotic process (GO:0043903) 12.1 0.0813 

regulation of T cell activation (GO:0050863) 20 0.123 

regulation of T cell proliferation (GO:0042129) 28 0.204 

regulation of tau-protein kinase activity (GO:1902947) 15.7 1.72 

regulation of telomerase activity (GO:0051972) 4.56 38.1 

regulation of telomerase RNA localization to Cajal body (GO:1904872) 3.17 51.2 

regulation of telomere maintenance (GO:0032204) 0.112 9.64 

regulation of telomere maintenance via telomerase (GO:0032210) 0.963 40.7 

regulation of telomere maintenance via telomere lengthening 

(GO:1904356) 

0.227 25.5 

regulation of transcription by RNA polymerase II (GO:0006357) 11.9 0.286 

regulation of transcription from RNA polymerase II promoter in 

response to hypoxia (GO:0061418) 

100 2.82 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

regulation of transcription from RNA polymerase II promoter in 

response to stress (GO:0043618) 

100 2.16 

regulation of transcription, DNA-templated (GO:0006355) 7.04 0.0752 

regulation of transferase activity (GO:0051338) 25.8 2.65E-05 

regulation of transforming growth factor beta receptor signaling 
pathway (GO:0017015) 

100 1.1 

regulation of translation (GO:0006417) 0.313 0.116 

regulation of translational initiation (GO:0006446) 3.64 9.66 

regulation of transmembrane receptor protein serine/threonine kinase 

signaling pathway (GO:0090092) 

100 1.11 

regulation of transport (GO:0051049) 6.91 1.62E-04 

regulation of type I interferon production (GO:0032479) 4.21 21.7 

regulation of type I interferon-mediated signaling pathway 

(GO:0060338) 

1.63 44.6 

regulation of vascular endothelial growth factor production 

(GO:0010574) 

100 4.42 

regulation of vasculature development (GO:1901342) 86.1 0.156 

regulation of vesicle-mediated transport (GO:0060627) 100 2.41 

regulation of viral entry into host cell (GO:0046596) 100 2.33 

regulation of viral genome replication (GO:0045069) 1.59 0.3 

regulation of viral life cycle (GO:1903900) 8.09 0.0305 

regulation of viral process (GO:0050792) 9.23 0.0368 

reproduction (GO:0000003) 1.26 42.3 

reproductive process (GO:0022414) 1.23 42.2 

reproductive structure development (GO:0048608) 0.922 12.2 

reproductive system development (GO:0061458) 0.987 12.3 

respiratory tube development (GO:0030323) 100 2.29 

response to abiotic stimulus (GO:0009628) 7.16E-03 3.28E-05 

response to biotic stimulus (GO:0009607) 0.707 0.246 

response to chemical (GO:0042221) 7.47E-05 1.67E-09 

response to cocaine (GO:0042220) 4.81 39.2 

response to cold (GO:0009409) 4.12 1.1 

response to corticosteroid (GO:0031960) 0.179 1.3 

response to cytokine (GO:0034097) 6.92E-05 4.33E-10 

response to decreased oxygen levels (GO:0036293) 0.681 3.01E-03 

response to defenses of other organism (GO:0052173) 73.9 1.11 

response to drug (GO:0042493) 0.15 1.7 

response to endogenous stimulus (GO:0009719) 0.0542 1.39E-05 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

response to endoplasmic reticulum stress (GO:0034976) 35 0.0827 

response to estradiol (GO:0032355) 1.81 3.59 

response to external biotic stimulus (GO:0043207) 0.602 0.218 

response to external stimulus (GO:0009605) 14 1.6 

response to gamma radiation (GO:0010332) 1.1 43.6 

response to growth factor (GO:0070848) 36.3 4.46E-03 

response to hormone (GO:0009725) 0.13 3.31E-03 

response to host (GO:0075136) 73.5 1.11 

response to host defenses (GO:0052200) 73.9 1.11 

response to hydrogen peroxide (GO:0042542) 3.23 17 

response to hypoxia (GO:0001666) 1.56 4.57E-03 

response to inorganic substance (GO:0010035) 7.54E-03 2.07 

response to interferon-gamma (GO:0034341) 14.7 0.481 

response to interleukin-1 (GO:0070555) 19 0.0139 

response to interleukin-7 (GO:0098760) 100 0.787 

response to iron ion (GO:0010039) 1.51 100 

response to lipid (GO:0033993) 0.449 0.0129 

response to lipopolysaccharide (GO:0032496) 6.84 1.36 

response to mechanical stimulus (GO:0009612) 47 3.85 

response to metal ion (GO:0010038) 0.887 28.7 

response to mineralocorticoid (GO:0051385) 1.4 15.1 

response to molecule of bacterial origin (GO:0002237) 8.57 1.02 

response to nitrogen compound (GO:1901698) 0.018 4.06E-03 

response to organic cyclic compound (GO:0014070) 0.0512 0.057 

response to organic substance (GO:0010033) 3.15E-04 5.00E-16 

response to organonitrogen compound (GO:0010243) 0.0378 4.16E-03 

response to other organism (GO:0051707) 0.604 0.215 

response to oxidative stress (GO:0006979) 9.27E-03 0.0143 

response to oxygen levels (GO:0070482) 1.1 9.37E-03 

response to oxygen-containing compound (GO:1901700) 0.0239 1.36E-04 

response to peptide (GO:1901652) 0.788 1.95E-03 

response to peptide hormone (GO:0043434) 0.54 0.0531 

response to reactive oxygen species (GO:0000302) 0.123 1.92 

response to redox state (GO:0051775) 86 2.42 

response to steroid hormone (GO:0048545) 1.47 0.298 

response to stimulus (GO:0050896) 8.30E-04 8.55E-10 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

response to stress (GO:0006950) 4.35E-06 5.44E-12 

response to temperature stimulus (GO:0009266) 3.44 1.56 

response to topologically incorrect protein (GO:0035966) 1.63 1.12E-04 

response to transforming growth factor beta (GO:0071559) 100 0.11 

response to tumor necrosis factor (GO:0034612) 71.8 2.27 

response to type I interferon (GO:0034340) 2.84 2.38 

response to unfolded protein (GO:0006986) 0.881 3.06E-04 

response to wounding (GO:0009611) 0.0234 8.56E-03 

ribonucleoprotein complex assembly (GO:0022618) 17.2 1.98E-04 

ribonucleoprotein complex biogenesis (GO:0022613) 8.59 5.12E-07 

ribonucleoprotein complex subunit organization (GO:0071826) 19.4 8.53E-05 

ribosomal large subunit assembly (GO:0000027) 100 0.115 

ribosomal large subunit biogenesis (GO:0042273) 100 1.59E-03 

ribosomal subunit export from nucleus (GO:0000054) 2.17 12.8 

ribosome assembly (GO:0042255) 34.2 0.0194 

ribosome biogenesis (GO:0042254) 63.9 3.03E-04 

ribosome localization (GO:0033750) 2.2 12.9 

RNA catabolic process (GO:0006401) 35.1 4.81E-11 

RNA localization (GO:0006403) 0.314 38.7 

RNA metabolic process (GO:0016070) 12.5 2.57E-05 

RNA processing (GO:0006396) 73.2 0.0524 

RNA splicing, via transesterification reactions (GO:0000375) 5.81 3.25 

RNA splicing, via transesterification reactions with bulged adenosine as 

nucleophile (GO:0000377) 

5.56 3.07 

RNA transport (GO:0050658) 0.146 23.1 

rRNA metabolic process (GO:0016072) 100 2.11E-04 

rRNA processing (GO:0006364) 100 3.59E-04 

rRNA-containing ribonucleoprotein complex export from nucleus 

(GO:0071428) 

2.52 14.3 

salivary gland development (GO:0007431) 100 4.89 

salivary gland morphogenesis (GO:0007435) 100 3.3 

secretion (GO:0046903) 3.29E-04 1.84E-08 

secretion by cell (GO:0032940) 1.20E-03 4.65E-10 

sensory perception (GO:0007600) 50.2 0.137 

sensory perception of chemical stimulus (GO:0007606) 100 0.119 

sensory perception of smell (GO:0007608) 42.7 0.639 

signal transduction (GO:0007165) 1.83 4.24E-03 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

signaling (GO:0023052) 3.07 0.0913 

skin epidermis development (GO:0098773) 94.3 2.67 

somatic cell DNA recombination (GO:0016444) 9.97 4.87 

somatic diversification of immune receptors via germline recombination 

within a single locus (GO:0002562) 

10 4.89 

spindle organization (GO:0007051) 1.22 20.6 

SRP-dependent cotranslational protein targeting to membrane 

(GO:0006614) 

100 4.53E-10 

stress granule assembly (GO:0034063) 3.93 21 

supramolecular fiber organization (GO:0097435) 0.325 4.42 

symbiotic process (GO:0044403) 1.23E-07 9.34E-18 

system development (GO:0048731) 0.458 0.0977 

T cell activation (GO:0042110) 60.1 2.03 

T cell differentiation (GO:0030217) 89.7 3.59 

telomerase holoenzyme complex assembly (GO:1905323) 4.16 12.2 

tissue development (GO:0009888) 4.56 0.159 

tissue homeostasis (GO:0001894) 1.23 78.6 

tissue migration (GO:0090130) 100 2.78 

tissue morphogenesis (GO:0048729) 100 3.34 

trachea development (GO:0060438) 98.4 4.35 

trachea formation (GO:0060440) 55.9 2.53 

transforming growth factor beta receptor signaling pathway 

(GO:0007179) 

100 0.0892 

translation (GO:0006412) 34.2 2.71E-11 

translational initiation (GO:0006413) 19.4 3.71E-13 

transmembrane receptor protein serine/threonine kinase signaling 

pathway (GO:0007178) 

100 0.319 

transport (GO:0006810) 3.84E-03 1.09E-10 

trans-synaptic signaling (GO:0099537) 100 4.89 

TRIF-dependent toll-like receptor signaling pathway (GO:0035666) 100 3.29 

tube development (GO:0035295) 100 0.37 

tube morphogenesis (GO:0035239) 70.6 0.0468 

type I interferon signaling pathway (GO:0060337) 2.22 1.73 

Unclassified (UNCLASSIFIED) 7.25E-03 1.27E-12 

vasculature development (GO:0001944) 52.1 0.0128 

ventricular system development (GO:0021591) 42.2 4.43 

vesicle-mediated transport (GO:0016192) 0.101 8.63E-07 

viral entry into host cell (GO:0046718) 55.8 3.07 
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Table S2.2. GO enrichment analysis using DEGs from supervised analysis and unsupervised DEGs. A 

positive log (fold change) indicates higher expression in the network subpopulation, while a negative log (fold 

change) indicates higher expression in the spheroid subpopulation. Highlighted genes were identified exclusively 

by using phenotypic labels, Continued. 

GO biological process complete 

FDR % 

(Supervised 
Analysis) 

FDR % 

(Unsupervised 
Analysis) 

viral gene expression (GO:0019080) 100 6.04E-11 

viral life cycle (GO:0019058) 0.287 0.0148 

viral process (GO:0016032) 1.03E-07 1.13E-17 

viral transcription (GO:0019083) 100 2.41E-10 

viral translation (GO:0019081) 100 3.78 

wound healing (GO:0042060) 0.11 0.0354 
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Chapter 3: Supervised bioinformatics enables guided detection of 

invasive potential within non-invasive phenotypes 

3.1 Introduction 

Collective migration is a process where multiple cells coordinate their movement(17–20). 

This contrasts with single cell migration, where cells move individually. Despite having long been 

observed in events such as morphogenesis and wound healing, only recently has attention been 

paid on this phenomena with respect to cancer(16). Studies have demonstrated the possibility for 

metastatic seeding of cells in cancer progression, and evidence suggests that this more efficient 

manner of transport is the dominant means by which metastatic lesions form(21, 34, 48).  

Our lab generated a 3D cancer model capable of producing collectively migrating cancer 

phenotypes(21). In previous publications, we demonstrated that these phenotypes contain gene 

signatures that are prognostic of patient survival across many different cancer types(21). In my 

work, I more closely dissect the different phenotypes we observe. In the previous chapter, I 

demonstrated that phenotypes differ in invasive potential, which are associated with stress 

responses, immune processes, and proliferation. However, clinical implications of these 

heterogeneous phenotypes have not yet been evaluated. Furthermore, the transcriptomic landscape 

of our phenotypes displays further intricacies that remain unexplored, such as the 

intraheterogeneity present within the collectively non-invasive cells. 

Here, we use further bioinformatics approaches to evaluate the gene signatures I extracted 

and attempt to add translational value to our platform. To establish clinical relevance, I utilize our 

gene signatures to cluster patient data on public databases to determine if patients with profiles 

associated with our collective phenotypes display biases in survival and disease progression. To 
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elucidate within-subtype-heterogeneity, we use cell cycle analysis, trajectory analysis, and gene 

pattern expression analysis to dissect our phenotypes on different biological and temporal scales 

to establish novel relationships. Our results provide preliminary evidence linking our phenotypes 

to histopathological subtypes, and computational results point to a 3-state spectrum consisting of 

a collectively invasive, collectively non-invasive, and an intermediate state. By possessing 

phenotypic metadata, we are able to comprehend bioinformatic analyses through additional lenses, 

which adds to the power of these approaches. 

3.2 Results 

3.2.1 Collective migration signatures bias towards specific histopathological 

subtypes 

Since we previously demonstrated that the collective phenotype as a whole contained 

signatures that predicted patient outcome(50), I first evaluated whether the gene expression 

signatures that differentiated the collective phenotypes we observed could be prognostic. After 

collecting breast cancer patient transcriptomic data from TCGA, I filtered for the genes we 

obtained that were differentially regulated between the collectively invasive and non-invasive 

phenotypes, stratified the patient population according to the expression of these genes, and 

evaluated the survival of the top and bottom scoring patients. Since this metagene contained 

markers of cell migration, I hypothesized that patient survival would segregate based on a signature 

that contained elements of migratory potential. Surprisingly, I did not find a difference in overall 

survival, progression-free interval, or disease-specific survival (Figure 3.1). I then explored other 

clinical metadata that could be correlated with our gene signature. I found that patients with 

transcriptomes that corresponded more with the collectively invasive cells were more associated 
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with the ductal carcinoma (IDC) subtype, while patients with transcriptomes that corresponded 

more with the collectively non-invasive cells were more associated with the luminal carcinoma 

(ILC) subtype (Figure 3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Signatures describing collective migration heterogeneity do not predict patient survival. (A) 

Clustermap of the 178 DEGs that describe collective migration heterogeneity applied to breast cancer patient data 

from TCGA after z-score normalization. Kaplan-Meier plots of patients clustered according to their gene expression 

according to (B) Overall Survival, (C) Progression-Free Interval, and (D) Disease-Specific Survival. Log-rank tests 

for all comparisons did not show statistically significant differences. 
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Figure 3.2. Histopathological subtypes of breast cancer patients according to cluster groups. Clinical metadata 

was used to identify the assigned subtype for each patient in each cluster identified by the clustermap. Patients in 

cluster 2, which were transcriptionally more similar to the collectively invasive cells, were biased more towards the 

IDC subtype while patients in cluster 1, which were transcriptionally more similar to the collectively non-invasive 

cells, were biased more towards the ILC subtype (Fisher’s exact test: p-value: 2.49 x 10-16). Numbers within the 

column represent the number of patients in each subtype within each cluster. 

3.2.2 The invasive phenotype is associated with cancer stem cell markers 

Since cells that were labeled as belonging to the spheroid phenotype fell into two distinct 

transcriptional clusters based on unsupervised analysis, I hypothesized that the spheroid cells may 

be phenotypically unstable. Clinically, plasticity is a factor that is detrimental to patient survival. 

To determine the phenotypic stability of MDAs that formed spheroids, we labeled, sorted, and re-

embedded spheroid cells as single cells (Fig. 3.3A). This resulted in ~75% of the spheroid cells 

converting into network cells (Fig. 3.3C). Conversely, sorting and re-embedding invasive network 

cells as single cells resulted in near 100% invasive network formation (Fig. 3.3B, C). This suggests 

that spheroid cells retain the capacity to switch into a proliferative and invasive state, but network 

cells are less capable of reverting into a non-proliferative, non-invasive state. To assess whether 

one of these states represented a more cancer stem cell-like state, we immunostained for CD24 

and CD44. Both phenotypes display a CD44+ profile (Figure 3.3C, D). However, CD24 staining 

was negative for the network cells (Figure 3.3C) and mixed for the spheroid cells (Figure 3.3D, 



95 

 

E). A positive control was done for CD24 on Nalm6 cells to confirm the absence of CD24 staining 

(Figure S3.1). When comparing the spheroid population in the smaller lone cluster to the ones in 

the larger cluster, we found a list of surface markers that could potentially be used to sort the two 

subpopulations in future experiments (Table S3.1). 
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Figure 3.3. Phenotypic sorting enables analysis of phenotype stability. (A) Representative brightfield image of 

reseeded spheroid cells after 7 days of culture in 3D type I collagen. Scale bar 50 µm. (B) Representative brightfield 

image of reseeded network cells after 7 days of culture in 3D type I collagen. (C) Quantification of the phenotypes 

that arise after reseeding from sorted populations. Invasive network cells largely reform network structures, while 

non-invasive spheroids may either form network or spheroid structures. (D) CD44 immunostaining of network cells. 

(E) CD44 staining of spheroid cells that are CD24 negative. (F) CD44 staining of spheroid cells that are CD24 positive. 
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3.2.3 Phenotypically non-invasive cells can occupy a transitory state    

As shown before, transcriptomic differences do not fully explain the phenotypic difference 

we observe in vitro (Figure 3.4A-B). To address the heterogeneity present within the non-invasive 

cells, we looked more closely at the expression of cell cycle markers (Figure 3.4C). In an 

unsupervised approach, cells in cluster 0 appear to be more actively proliferative (Figure 3.4D). 

However, applying phenotypic labels, we see that some non-invasive cells, namely those that 

occupy transcriptomic space near the invasive cells, display intermediate cell cycle activity (Figure 

3.4E). Regressing the expression of these markers do not disturb the overall segregation of the 

cells into two large clusters, with separation between invasive cells (network), non-invasive cells 

(spheroid), and an intermediate state (spheroid in cluster 0) (Figure 3.4F-H). 
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Figure 3.4. Comparative analysis of unsupervised clusters versus phenotypic labels. (A-C) UMAP plots colored 

by (A) unsupervised clusters, (B) phenotypic labels, and (C) cell cycle phases. (D-E) Cell cycle phase distribution in 

(D) (unsupervised clusters) or in (E) (network vs. spheroid phenotypically labelled cells). Odds ratios (OR) and 95% 

confidence intervals of each cell cycle phase (G1, S and G2M) to be prevalent in (D) (unsupervised clusters 0 vs. 1) 

or in (E) (network vs. spheroid labelled cells) using Fisher’s exact test are shown (*p<0.05). For (D) OR>1 means 

cells in cluster 0 are more prevalent in the indicated cell cycle phase compared to cells in cluster 1, and for (E) OR>1 

means network cells are more prevalent in the indicated cell cycle phase compared to spheroid cells. (F-H) UMAP 

plots colored by (F) unsupervised clusters, (G) phenotypic labels, and (H) cell cycle phases. 

3.2.4 Pseudotime trajectory analysis highlights potential phenotype regulators   

In development, cells transition from one state to another. In order to track changes of the 

cells over time, we analyzed them as a function of pseudotime, which is a measure of how far a 

cell has moved through biological progress(51). Pseudotime progresses along the trajectory of gene 

expression changes present in the underlying data starting from a root representing the beginning 

of the biological process. Choosing midpoint of cells in G1 cell cycle phase as the root (Figure 

3.5A), we analyzed the cells along the pseudotime trajectory (Figure 3.5B), which displayed the 
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switching of the transitory spheroid cells to network cells (Figure 3.5C) as they progressed through 

the cell cycle phases, from G1, to S, to G2M (Figure 3.5A). For this analysis, we used the 

expression data without regressing out cell cycle effects as the pseudotime trajectory should reflect 

the natural biological progress cells go through including cell cycle progression. We also 

demonstrated the expression changes of 3 differentially expressed genes along the pseudotime 

trajectory: SPANXB1 which is highly expressed in spheroid cells in cluster 1 (Figure 3.5D), 

S100A4 which displays a higher expression in the transitory spheroid cells compared to the rest of 

the spheroid or the network cells (Figure 3.5E), and HIST1H1E which has a higher expression in 

network cells (Figure 3.5F), specifically compared to the transitory spheroid cells. 

 

 
 

Figure 3.5. Pseudotime trajectory analysis. (A-C) UMAP plots with pseudotime trajectories of cells colored by (A) 

cell cycle phase, (B) pseudotime, and (C) phenotypically supervised cell groups. (D-F) UMAP plots with pseudotime 

trajectories of cells and the expression of genes (D) SPANXB1, (E) S100A4, and (F) HIST1H1E. 

3.2.4 Gene expression pattern analysis identifies potential phenotypic markers   

As unsupervised clustering of the expression data did not separate the transcriptionally 

similar transitory spheroid cells and network cells from each other (Figure 2.2, 3.4), we explored 
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other methods to see if this differentiation could be achieved through an unsupervised technique 

as opposed to the supervised phenotypic labeling. We applied a nonnegative matrix factorization 

algorithm on the expression data to discover the gene expression patterns underlying the functional 

phenotypes(33). Among seven patterns that were discovered, three patterns best explained the 

expression profiles of spheroid vs. intermediate vs. network phenotypes. Pattern 4 detected 

spheroid cells (Kruskal-Wallis rank-sum test p-value=9.34e-203) (Figure 3.6A), pattern 7 detected 

network cells (Kruskal-Wallis rank-sum test p-value=1.96e-141) (Figure 3.6B), and pattern 3 

detected intermediate cells (Kruskal-Wallis rank-sum test p-value=2.433659e-115) (Figure 3.6C). 

A heatmap of pattern weights further demonstrated the enrichment of pattern 4 for spheroid cells, 

pattern 7 for network cells and pattern 3 for intermediate cells (Figure 3.6D). 

 
 
Figure 3.6. Unsupervised detection of gene expression patterns. (a-c) UMAP plots overlaid with pattern weights 
for each cell for (a) pattern 4, (b) pattern 7, and (c) pattern 3. Cell cycle phase effects are regressed out. (d) Heatmap 

of pattern weights by cells. Hierarchical clustering is performed between rows and between columns within and 

between phenotypes. 
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3.3 Discussion 

Our evaluation of the clinical relevance of our gene set describing heterogeneity in 

collective migration suggests that the collective invasion phenotype is not associated with poorer 

clinical outcomes. Here, my analysis utilized data from TCGA, which only contained bulk 

sequencing transcriptomic data and may not possess the data resolution required to appropriately 

assess our single cell sequencing results, since population level signals may drown out single cell 

signals(21). While the preliminary analyses are presented here, future work will focus on 

comprehensively assessing the clinical relevance of our gene signature. Matching our gene 

signature to single cell patient data may provide more informative results, as we can better match 

patient profiles to our phenotypes and perhaps evaluate the percentage of cells associated with 

particular collective migration phenotypes. Given that the signatures corresponding to collective 

migration as a whole was prognostic(53–56), it is possible that a particular mixture of phenotypes 

may enhance the metastatic process, and is thus more detrimental to patient health. Though not 

prognostic, it is interesting to note that the transcriptomic signatures of each phenotype were biased 

towards particular histopathological subtypes. Our results correspond to that of another study 

which found that the top pathways that were significantly enriched in ILC were related to immune 

response(57).  Further investigation is required to understand the implications of this bias, though 

perhaps this indicates potential exploitation of immunotherapy in patients with ILC. 

I hypothesize that the reason our gene signature is not predictive of patient outcome may 

stem from the internal heterogeneity present within collectively non-invasive cells. As 

demonstrated through our omics data, phenotypically non-invasive cells may lie in a transitory 

state that carries invasive potential. Though we initially hypothesized that patient profiles 

corresponding to the invasive phenotype should have worse clinical outcomes, perhaps this plastic 
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phenotype is more detrimental. This phenotype is reminiscent of the phenomena of cancer 

dormancy, where tumor growth and progression is arrested but can reactivate(53–56) . Studies 

have shown that cancer cells can progress through phases of active carcinogenesis, quiescence, 

and resurgence. In our cancer model, these cells could potentially be represented by the non-

invasive cells that can become invasive upon reseeding. These cells may also correspond to the 

non-invasive cells that are CD44+/CD24-, which is the profile of classic breast cancer stem 

cells(57). Further validation experiments involving these subgroups are warranted to confirm if 

our culture model recapitulates more specific aspects of cancer dormancy and resurgence. 

Our use of various bioinformatic tools enabled us to more closely inspect our datasets 

describing heterogeneous collective cancer migration. However, these guided analyses were only 

possible because we possessed phenotypic metadata. We demonstrate that cell cycle, pseudotime 

trajectory, and gene pattern expression analysis were able to isolate patterns and signatures that 

described specific transcriptomic subgroups, but we were only able to assign these patterns to 

particular phenotypes because of our phenotypic sorting platform. Our methodology illustrates the 

power behind a supervised, functionally informed computational analysis and presents an 

opportunity towards more direct approaches at investigating heterogeneity.  

3.4 Methods 

3.4.1 Cell Culture  

MDA-MB-231 cells were a gift from Adam Engler (UCSD Bioengineering) and 4T1 

cells were obtained from ATCC (Manassas, VA). All cells were cultured in high glucose 

Dulbecco’s modified Eagle’s medium supplemented with 10% (v/v) fetal bovine serum (FBS, 

Corning, Corning, NY) and 0.1% gentamicin (Gibco Thermofisher, Waltham, MA) and 
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maintained at 37oC and 5% CO2 in a humidified environment during culture and imaging. The 

cells were passaged every 2-3 days. Cells were tested for mycoplasma contamination using the 

Mycoalert kit (Lonza, Basel, Switzerland). 

To generate MDA-MB-231 cells that express Dendra2, we generated viral particles by 

cloning a Dendra2-Lifeact-7 plasmid (Addgene #54694, Watertown, MA) into a lentiviral vector. 

We then transfected the plasmid into lentiX293 T cells (Clonetech, Mountain View, CA. Cat 

#632180) along with packaging expressing plasmid (psPAX2, Addgene #12260) and envelope 

expressing plasmid (pMD2.G, Addgene #12259). Viral particles were collected at 48 h after 

transfection and they were purified by filtering through a 0.45 μm filter. MDA-MB-231 cells were 

then transduced with the viral particles in the presence of polybrene (Allele Biotechnology, San 

Diego, CA).  

3.4.2 3D culture in type I collagen hydrogels 

Cells embedded in 3D collagen matrices were prepared by mixing cells suspended in 

culture medium and 10× reconstitution buffer, 1:1 (v/v). Polyethylene glycol (PEG, Sigma-

Aldrich, St. Louis, MO) was diluted in phosphate buffered saline (PBS, Gibco Thermofisher, 

Waltham, MA) and added to achieve a final concentration of 10 mg/mL. Soluble rat tail type I 

collagen in acetic acid (Corning, Corning, NY) was added to achieve a final concentration of 2.5 

mg/mL. 6.25% of 1 M NaOH (volume of NaOH / volume of type I collagen) was used to 

normalize pH and the mixture was polymerized at 37 °C. 

3.4.3 Phenotypic cell sorting 

Collagen gels containing MDA Dendra cells were transferred to a microscope stage top 

incubator. Collective cell structures were identified using a Nikon TiE fluorescent microscope 
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(Nikon Instruments Inc., Melville, NY). Regions of interest were outlined using NIS-Elements 

software, and a Galvo Miniscanner (Nikon Instruments Inc.) was used to control the exposure of 

405 nm laser from a Nikon LUnA power source (Nikon Instruments Inc.) to the outlined region 

to photoconvert the selected cells.  25% laser power with a 300 us dwell time were used to 

photoconvert the cells. This results in less than 1mJ of energy delivered to each multicellular 

structure. To ensure fidelity of converting only the desired phenotype, we did not photoconvert 

overlapping cell structures. The collagen gel was then digested using collagenase for 15 minutes 

at 37oC (Sigma-Aldrich) and the cells were resuspended in FACS buffer (1% BSA, 0.5 mM 

EDTA in PBS). A gel with cells that were not photoconverted was used as a sorting control. Cells 

were sorted at the stem cell core of Sanford Consortium of Regenerative Medicine (La Jolla, CA) 

using a BD Influx cell sorter (BD, Franklin lakes, NJ). The cells from the control gel were used 

to establish a negative gate, and cells expressing red fluorescence above that gate were collected 

for re-culture or sequencing.  

3.4.4 Single cell sequencing and analysis 

RNA extraction and library construction were performed using the Chromium Single 

Cell 3’ v3 kit (10x genomics, Pleasanton, CA). At least 700 cells were extracted for the network 

and spheroid cells, with one independent experiment each. These two experiments were pooled 

together for sequencing. The non-sorted MDA cells and the 4T1s were also extracted from one 

independent experiment each, and these were pooled together for sequencing. RNA integrity was 

verified using RNA Analysis ScreenTape (Agilent Technologies, La Jolla, CA) before 

sequencing. The RNA was sequenced on the Illumina HiSeq 4000 at a depth of > 20,000 reads 

per cell. The cellRanger analysis pipeline was used to construct the human reference genome 

GRCh38 and align reads. Differential gene expression analysis was performed using Seurat(46). 
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Cell expression data was filtered, log-normalized, and scaled prior to differential expression 

analysis using the non-parametric Wilcoxon rank sum test. Differentially expressed genes were 

filtered for those that had an absolute log-fold change of > 0.25 and expressed in at least 10% of 

either subpopulation with an adjusted P < 0.05 (Bonferroni).  

3.4.5 Phenotypic analysis 

Phenotype quantification for the reseeding experiments were performed in NIS-Elements 

using at least three independent experiments performed on different days with different cell 

passages.  

3.4.6 Immunofluorescence and cell imaging 

For cell imaging after 7 days of culture to visualize collective phenotypes, collagen gels 

were fixed with 4% PFA for 30 min at room temperature. F-actin was stained using AlexaFluor® 

488 Phalloidin (Cell Signaling Technology, Danvers, MA) and the nuclei were counterstained with 

DAPI. For immunofluorescence staining the gels were incubated with the primary antibody for 24 

hrs at 4oC. The antibodies used were anti-CD24 (1:200 dilution, NB120-6586, Novus Biologicals, 

Littleton, CO), anti-CD44(1:200 dilution, MAB19562, Millipore Sigma). 

3.4.7   TCGA data analysis 

 Breast cancer patient transcriptomic data and corresponding clinical metadata were 

obtained from the TCGA data portal. Patients were scored with respect to the 178 DEGs that were 

expressed differentially between the collectively invasive and non-invasive cells. A summation of 

the z-scores for the expression of each gene, aligned to whether the expression was correlated to 

the invasive or non-invasive phenotype, was used to score each patient. Survival analysis was 
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conducted using Kaplan-Meier plots, and the log-rank test was used to determine significance of 

survival differences between groups. 
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3.5 Supplementary Material 

 
 

Figure S3.1. CD24 staining of Nalm6 cells as a positive control for the antibody used to stain for CD24. Scale 

bar 100 µm. 

 

Table S3.1. Surface Markers That Are Differentially Expressed Between the Spheroid Populations. 
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