Lawrence Berkeley National Laboratory

LBL Publications

Title

Assessment of multiple-based demand response actions for peak residential electricity

reduction in Ghana

Permalink

|https://escholarship.or&c/item/‘lg(ﬁltml

Authors

Diawuo, Felix Amankwah
Sakah, Marriette
du Can, Stephane de la Rue

Publication Date
2020-08-01

DOI
10.1016/.scs.2020.102235

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-

NonCommercial License, available at Ihttps://creativecommons.org/licenses/bv-nc/‘l.O/i

Peer reviewed

eScholarship.org Powered by the California Digital Library

University of California


https://escholarship.org/uc/item/4zg391tm
https://escholarship.org/uc/item/4zg391tm#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

Sustainable Cities and Society 59 (2020) 102235

Contents lists available at ScienceDirect

Sustainable Cities
and Society

Sustainable Cities and Society

journal homepage: www.elsevier.com/locate/scs

updates

Assessment of multiple-based demand response actions for peak residential = M)
electricity reduction in Ghana e for

Felix Amankwah Diawuo™”*, Marriette Sakah®, Stephane de la Rue du Can’, Patricia C. Baptista®,
Carlos A. Silva®

& Center for Innovation, Technology and Policy Research - IN+, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
Y School of Engineering, University of Energy and Natural Resources (UENR), P. O. Box 214, Sunyani, Ghana

© Darmstadt Graduate School of Energy Science and Engineering, TU Darmstadt, Germany

d Energy Analysis and Environmental Impacts Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90R2121, Berkeley, CA
94720, USA

ARTICLE INFO ABSTRACT

Demand-side management initiatives such as voluntary demand response provide significant energy savings in
the residential sector, which is a major peak demand contributor. The potential of such savings remains un-
explored in Ghanaian households due to insufficient electricity consumption data, lack of end-user behavior
information and knowledge about the cost-effectiveness of such programs. This research combines 80 household
survey information and energy use monitoring data of household appliances, to assess the residential demand
response potential of Ghana. A bottom-up approach based on modified end-use model is used to develop ag-
gregate hourly load curve. The estimated electricity consumption is categorized based on their degree of control
to determine peak demand reduction potential for the period 2018-2050. The average daily peak load reduction
ranged between 65-406 MW representing 2-14% for the considered scenarios by 2050. The results show ap-
preciable economic viability for investment in demand response with net present value varying between 28-645
million US$. We find that price, energy security and environment signals influence end-users’ electricity use
behavior. Authors observe that for energy and cost savings to be realized, utility providers and consumers need
effective cooperation on information delivery and feedbacks, and consumers should be incentivized to balance
the benefits.
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1. Introduction present supply capacity seems technically adequate to meet the peak

demand, pockets of power supply shortages frequently occur due pri-

Electricity use for delivery of modern services has increased im-
mensely in recent years. Its demand is anticipated to grow globally and
particularly swiftly in developing countries (Saidur, Masjuki,
Jamaluddin, & Ahmed, 2007). Global electricity demand is projected to
grow at 2.1% per year to 2040 and 4.5-8.5% across African countries
within the same period (2019a, IEA, 2019a). In Ghana, demand for
electricity has seen a constant rise with average yearly growth of 3.3%
between 1990 and 2013 (IEA, 2017), with an upward projection of 6%
per year until 2023 (GRIDCo, 2018). Installed supply capacity on the
other hand realized a 5.7% average annual growth between 2000 and
2015 (IEA, 2017). In 2017, the system recorded a peak demand of 2,192
MW (GRIDCo, 2018) and an installed capacity of 4,310 MW although
only 3,890 MW of this generation capacity was dependable and avail-
able for grid utilization (Energy Commission, 2018a). Therefore, while
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marily to fuel supply constraints (Diawuo, Sakah, Pina, Baptista, &
Silva, 2019). Hydropower plants in the generation mix are seasonally
faced with variable rainfall patterns while the exogenous nature of
fossil-based fuels used in Ghana’s thermal power plants poses financial
and fuel supply restraints (Sakah, Diawuo, Katzenbach, & Gyamfi,
2017). Historically, Ghana has faced perennial power rationing span-
ning within the periods 1994, 1997-98, 2006-07 and 2012-16 (Diawuo
et al., 2019). Future energy supply is likely to face challenges due to
demand growth, energy insecurity and climate change vulnerabilities.
Investment in conservative fuel sources and/or supply-side manage-
ment (SSM) strategies exclusively as a remedy to this challenge is un-
sustainable in the long run considering global energy market volatilities
and uncertainties. Investment and energy policy decisions in power
system planning strongly advocate for demand-side management (DSM)
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as a crucial option or supplement to amplify power generation im-
provement (De la Rue du Can, Pudleiner, & Pielli, 2018; Ouedraogo,
2017).

The purview of DSM when it was first introduced in the 1980s
comprised strategic conservation, customer generation, load manage-
ment, electrification, new uses and adjustments in market share
(Gyamfi, Diawuo, Nyarko Kumi, Sika, & Modjinou, 2018). Spinning
reserve, demand response (DR) and Energy efficiency (EE) projects
have in recent times received increasing attention as DSM programs
(Gyamfi et al., 2018). In fact, any program intended to sway the energy
use of a consumer can be classified as a DSM program. Several studies
have explored and assessed the potential benefits of DR, most of which
focused on the impact of price signals, price induced behavior change
and smart meters (Campillo, Dahlquist, Wallin, & Vassileva, 2016). In
such approaches, DR is designed to motivate or persuade energy con-
sumers to make short-term cuts in their energy demand in response to
price, financial incentive and hourly reliability signal from the elec-
tricity market or a trigger actuated by the electricity network operator
when system reliability is threatened (Haghifam, Dadashi, Zare, &
Seyedi, 2020; Shen, Ni, Ghatikar, & Price, 2012; Vivian, Chiodarelli,
Emmi, & Zarrella, 2020; Wohlfarth, Worrell, & Eichhammer, 2020;
Xiang, Cai, Gu, & Shen, 2020; Yahia & Pradhan, 2020). Vanthournout,
Dupont, Foubert, Stuckens, and Claessens, (2015)) examined the per-
formance of an experimental demand response based on day-ahead
dynamic pricing of 58 households in Belgium from September 2013 to
July 2014 using smart appliances such as domestic hot water buffers,
washing machines, dishwashers and tumble dryers. The results indicate
a significant shift of controllable share of the electricity consumption to
low price periods. Torriti (2012) assessed the impact of time-of-use
(TOU) tariff on electricity demand and load shifting at the sub-station
level in the Province of Trento in Northern Italy. Meter reading data
was collected for flat rate tariff for the period 1st July 2009 to 30th
June 2010 and for TOU tariff from 1st July 2010 to 30th June 2011.
Comparing the TOU to flat rate, the results indicate relatively higher
average consumer electricity consumption of 13.69% but with reduced
electricity spending of 2.21% while morning peak reduced through
shifting. Bartusch, Wallin, Odlare, Vassileva, and Wester, (2011)) con-
ducted an experimental study in Swedish households using semi-
structured interviews to assess consumers’ perception and experience
with TOU tariff. The findings show 11.1-14.2% total electricity con-
sumption reduction in 2005-2006 and shifting of loads to off-peak
periods. Carroll, Lyons, and Denny, (2014)) analyzed data collected
through randomized controlled smart metering trial in Ireland to un-
derstand the impact of smart meter use and TOU tariff in demand re-
duction. The study found 1.8% demand reduction as a result of smart
metering program participation with TOU tariffs. Others have tested
alternative means of administering feedback to consumers. Srivastava,
Van Passel, and Laes, (2019)) used a quantile regression model based
on survey data collected from 155 Belgian households to examine the
influence of consumers’ behavior and perception of smart appliances on
demand flexibility. The results indicate 44.2% variance in demand
flexibility due to consumers’ behavior. Indeed, consumer behavior
changes as a result of awareness creation. Adequate information on the
benefits of smart appliances has the tendency to influence their energy
use. It has been shown that depending on the building type and socio-
economic characteristics of households, as much as 20% of total energy
demand can effectively be managed by consumers if they become
sensitized of their energy use (Fulhu, Mohamed, & Krumdieck, 2019).
Ueno, Inada, Saeki, and Tsuji, (2006)) installed an on-line interactive
system in 10 houses in Osaka, Japan to raise the energy-saving con-
sciousness of household members through the provision of their energy
consumption information. Results indicate that 18% reduction of their
energy consumption was realized.

In recent years, the concept of voluntary demand response (VDR) is
gradually becoming pronounced. VDR essentially focuses on the con-
scious decision of consumers to collectively change their behavior
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patterns to influence change in the proportion of used energy. The in-
fluencing signal for participation is often motivated by shared com-
munity objectives that are not limited to price. The motivations might
include energy security concerns, environmental considerations,
avoidable future electricity price hikes, and electricity market vulner-
abilities (Fulhu et al., 2019). VDR is particularly pragmatic in regions
where the grid network and metering architecture does not support
time-dependent rates for electricity use or where low-income house-
holds consuming less electricity can be unfairly disadvantaged during
peak periods where prices are hiked (Fulhu et al., 2019; Gyamfi, 2010).
Gyamfi and Krumdieck (2011) conducted a study in Christchurch, New
Zealand using diversified demand modeling approach to assess the
impact of voluntary load shedding of residential household demand in
response to price, environment and security signals. The findings show
a potential reduction of 10% in peak demand for the total VDR. Fulhu
et al. (2019) modeled the impact of VDR in HOMER for Fenfushi Island,
Maldives with the objective of maintaining electric power for essential
energy services and displacing fossil fuel use for more renewables. The
results indicate reasonable renewables addition when consumers adjust
their energy use voluntarily. VDR allows shifting of loads by getting
consumers to put off appliances and larger industrial machines at peak
times and to run such machines at specific off-peak hours instead,
thereby changing the load profile to match the generation supply. This
is particularly important for renewables integration in that, net load
changes rapidly and VDR allows demand to be met flexibly and quickly
to avoid curtailment of solar and wind generation (Avila, Carvallo,
Shaw, & Kammen, 2017).

The presented reviews reveal that price-based DR exists mostly in
areas where the grid network and infrastructure are smart to support
such programs. VDR is an alternative that has the potential to provide
significant technical and economic benefits. Ghana is amongst the
Economic Community of West African States (ECOWAS) that is at the
forefront of enacting and enforcing DSM regulation for electrical ap-
pliances in Africa. The primary focus of most DSM policies in Ghana is
initiating regulations on energy efficiency standards and labeling (S&L).
So far, S&L regulations have been promulgated for air conditioners,
lighting (CFL), refrigerators and freezers (Diawuo, Pina, Baptista, &
Silva, 2018), but opportunities related to DR are seldom discussed. No
extensive model-based assessment of the economic and environmental
potential of DR exist for most African countries, to inform policy-ma-
kers on enacting regulations that can effectively exploit the currently
untapped DR ‘energy resource’. The absence of such policy and legis-
lation in the region has largely been attributed to lack of data and
understanding of household consumers' behavior in response to DR
requests and signals. This paper attempts to fill that knowledge gap by
generating and providing such data for Ghana. Within this context, the
study focuses on three main objectives;

e estimate and characterize the hourly variation of residential elec-
tricity load, and subsequently categorize flexible loads for potential
demand response action,

e assess the peak reduction potential, economic and emission savings
of shedding and/or curtailing controllable loads through voluntary
actions by consumers in response to signals about the security of
power supply, electricity prices and CO, emission concerns,

e identify barriers, discuss policy implications and suggest re-
commendations to incentivize voluntary demand response im-
plementation.

A bottom-up approach based on an end-use model called the
method of diversified demand is used. The model is calibrated using the
measured appliance energy use data and validated while scenarios are
created, and sensitivity analysis conducted to examine possible un-
certainties.

The study focuses on Ghana’s residential sector for 2 main reasons:
1) there is lack of data and proper understanding of household
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consumers' behavior to aid development of appropriate demand re-
sponse strategies and 2) it is the highest contributor to national peak
demand, and has the fastest sectoral growth in electricity consumption
(Sakah et al., 2019). Residential electricity demand in Ghana has wit-
nessed a rapid increase over time. The annual sectoral share hovers
around 39% with an average annual growth of 3.3% since 2000
(Diawuo et al., 2019). Deploying EE and VDR measures together in the
residential sector can provide combined benefits. VDR implementation
in Ghana could ensure the security of power supply through induced
energy conservation that could subsequently eliminate the need for
expansion of generating facilities, saving both capital and operational
cost (Lynch, Nolan, Devine, & O’Malley, 2019; Thakur & Chakraborty,
2016).

The originality and the main scientific contributions of the paper are
summarized as follows:

o This study combines both survey information and monitoring data
of hourly consumption for a wide range of household appliances to
generate and make available to the scientific community, hourly
load variation factors and diversified household peak demand of
household appliances and other household load data which rarely
exist in Ghana. To the authors’ knowledge, this is the first study to
publish disaggregated hourly residential electricity use that is based
on measured data for Ghana. The study additionally provides de-
tailed information on end-users’ responsiveness and economic via-
bility which is crucial in assessing the cost-effectiveness of different
DR programs.

e The approach used in modeling the appliance stock over time was
modified in comparison with similar studies to include the evolu-
tional dynamics of appliance penetration and saturation which
adequately captures consumers' choice and preferences. This
method gives good estimates of the evolutional behavior of domestic
electrical appliances and its ownership, thus, providing a better
understanding of the reality.

e The evidence for rebound effect is very weak in many developing
countries. Though the development and implementation of DSM
policies are still in the early stage for many developing countries,
the impact of rebound effect are lacking and largely unexplored. The
sensitivity analysis conducted in this study on rebound effect gives a
suggestion of some margin of uncertainty around the future con-
sumption if concerted efforts are not made to address consumer
behavior in the use of energy services. Indeed, these uncertainties
should provide the rationale for policy makers to enact policies to
match up and realign possible inactions even if the concept might be
overplayed.
Often the potential assessment of DSM strategies and its opportu-
nities in developing and less developed countries are seldom dis-
cussed because it is assumed that there is poor metering infra-
structure, sporadic load data, low investment support, low income,
etc. to support such initiatives and actions. This study has shown
that there exist significant potential and benefits from demand re-
sponse programs and therefore provides a learning curve and policy
direction for Ghana and other African countries that are in the initial
phase of developing DSM policies.

The remaining parts of the paper are structured as follows. Section 2
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presents the survey design approach, data collection, appliance mon-
itoring and methodological approach used in determining the impact of
demand response. Section 3 introduces the results of the developed
scenarios on peak demand and the impact of demand response on
emissions, cost-benefit analysis, and policy implications. Section 4
concludes the paper with limitations and future works.

2. Data and methods

This section provides details of the data collection and DR modeling
approach, as well as data assumptions and definitions of scenarios.

2.1. Data collection

The main source of information for the characterization of elec-
tricity use in Ghana was a household survey combined with metering of
household appliance usage conducted in the period from February to
July 2018. The questionnaires were performed by trained students and
guided by researchers. More detailed information on this survey is
presented in the next section.

2.1.1. Survey design

The survey method involved the deployment of a questionnaire with
in-person interviews and key members of the randomly selected
households across Ghana with a total sample of 80 households. A
guided oral interview was administered in households where illiteracy
was encountered. The respondents who provided responses to the
questionnaires were assumed to be a representative of the household
although the response to DR motivation factors is opinionated. The
content of the survey principally concentrated on 2 broad thematic
areas which included energy audit information and demand response
motivation signals. The energy audit section included household char-
acteristics, building features and electricity usage. The household
characteristics consisted of the household size, the average age of
household members, income levels, job status and educational level and
floor size. The building features included the building type, number of
rooms and floor size. The electricity usage included the type of appli-
ances, power ratings, electricity use activity pattern and electricity bills.
The DR motivation signal section included information related to ap-
pliance preferences for demand response action, type of demand re-
sponse action and motivation factor (electricity price, energy security
and environment) preferences.

The demographic and socioeconomic characteristics of the 80
sampled households are representative of the different types of
Ghanaian households because it spread across the entire country and
captures households with different electricity consumption patterns,
income levels, building types, ethnocultural dynamics, etc. The ques-
tionnaires were distributed over the entire country based on population
density with close to 40% administered in the northern belt and 60% in
the southern belt. A statistical package for social science (SPSS) tool
was used to conduct a simplified statistical analysis on the collected
data. Some selected descriptive statistics indicating the mean, fre-
quency, etc. on the data are presented in Table 1.

Fig. 1 presents a histogram of some selected household and building
characteristics parametric output data. A quite significant number of
respondents (94%) have a family size of between 2-6 persons. About

Table 1

Descriptive statistics for collected data.
Variable Count (N) Unit Mean Std. dev Min. Max Mode
Electricity consumption 80 kWh/yr 2939 2505 398 12890
Income level 80 US$/month 927 696 124 3654 567
Floor size 80 sq. meters 123 86 31 428 96
Household size 80 persons 4.2 1.4 1.0 7.0 4.0
Averaged age of household member 80 years 49 11 29 76 56
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Fig. 1. Percentage share (a) household size (b) income (c) average age of household members (d) floor area (e) electricity consumption and (f) number of appliance

types (N = 80).

75% of the respondents earn a monthly income of between 500-1500
US$. The majority of households representing 93% have a varying
average age of 40-70 years. Respondents representing 94% live in a
house having an average floor area of 50-300 m?. Annual electricity
consumption based on aggregate monthly electricity bills indicates that
most of the households (77%) consume electricity between 1000-4000
kWh/year and a significant share of the households (80%) possess be-
tween 2 and11 different types of appliances.

2.1.2. End-use monitoring and load profiles

Appliance energy use monitoring and energy meter reading was
conducted in all the 80 sampled households within the survey period to
secure power consumption data. Additionally, household activity pat-
terns such as cooking, eating, washing, etc. times were observed to
appreciate the reasons for appliance energy use variation patterns. The
power consumption data was gathered for 12 commonly used appli-
ances in the household and lighting. The selected appliances are con-
sidered to the most owned and used in many Ghanaian homes as re-
corded in the standard of living survey reports conducted by the Ghana
Statistical Service (Ghana Statistical Service (GSS) (1995), 2000, 2008,
2014). The 12 appliances include a personal computer, electric iron,

television, satellite receiver, electric kettle, washing machine, electric
boiler, microwave oven, refrigerator, rice cooker, electric fan and air
conditioner. Different measurement devices and power analyzer data
loggers with a time resolution of 30 minutes were used in the re-
presentative households to monitor appliance and lighting energy use
over 24 hours each day for the entire monitoring campaign period. To
ensure an accurate reading, the measuring devices were initially cali-
brated for comparable readings beforehand. A serial wattmeter was
used to measure the power consumption of some appliances (e.g. re-
frigerator, television, etc.). The device was plugged directly into wall
sockets and connected in series with the appliance through its trailing
socket. Other appliances that are hardwired to circuit breakers such as
air conditioners and washing machines were measured directly from
the distribution switchboard panel of the house. The energy detective
(TED)' device with a current rating of up to 200 Ampere was installed
in the circuit breaker to monitor energy use. Lamp meters were used to
measure the energy use of all lamps (fluorescent, CFL, LED, etc.) that
drew constant power. The billing meters were continuously monitored

! TED-The Energy Detective (brand)
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Fig. 2. Hourly variation factors for monitored appliances (a-1) and lighting (m).

to investigate and account for other possible loads not considered. The
recorded data were then averaged for an hourly period to acquire the
daily load profile for a typical day. The hourly load variation factors for
each appliance was estimated by dividing the hourly average load by
the peak load. The hourly variation factors show the activity periods
and the behavior characteristics in the usage of an appliance. This often
depends on the unique individualities and lifestyle of energy users in a
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specific location. The lifestyle is mostly influenced by several factors
including; the number of household occupants, income levels, type of
housing, education level, employment status, age, climate conditions,
etc. (Gyamfi & Krumdieck, 2011; Hamidi, Li, & Robinson, 2009). Fig. 2
shows the hourly load variation factors for all appliances and lighting
from the monitoring campaign.

2.1.3. Voluntary demand response (response from respondents/consumers)

Respondents were asked for their willingness to participate in de-
mand response action which would shift or/and curtail their load
during peak periods under a certain motivating signal (electricity price,
energy security and environment). Additionally, respondents were
asked to indicate which appliances they were willing for it to be part of
the DR program and which motivating signal will influence their de-
cision to engage in such a program. The motivating signals used in this
study is premised on some historical factors which have the tendency to
influence elasticity in electricity demand. Energy security is a major
concern as Ghana has a perennial record of load shedding due to supply
shortages. As a result of power shortage, a 2013 projection by the
Energy Commission of Ghana highlighted an unmet demand of 240-330
MW which influenced a stunt in economic out-turn with a drop in real
GDP from 8.8% in 2012 to 7.1% in 2013 (Energy Commission of Ghana,
2014). In relation to electricity price, the Grid operators, GridCo, in-
dicated that in December 2015, consumers responded to a 59% price
increment in electricity tariff with changes in their consumption pat-
terns which reduced demanded power significantly (GRIDCo, 2017;
Sakah, De la Rue du Can, Diawuo, Delight, & Kuhn, 2019). The en-
vironmental factor is borne out of the global direction toward energy
decarbonization and climate change considerations. To indicate will-
ingness to partake in DR for each appliance, a value of either 1 or O is
assigned where 1 indicates willingness and O represents unwillingness.
To determine the percentage of participation of DR for each appliance
with household ownership, the willingness value is summed for each
appliance and divided by the total sum of both willingness and un-
willingness to participation and multiplied by 100. The participation
percentage for each appliance is shown in Table 2. At this stage, a re-
sponse to a possible voluntary demand response participation for all
appliances is presented though not all are practically controllable.
Television, electric fan, electric iron and refrigerator showed the
highest participation willingness while electric kettle and rice cooker
were the lowest.

To determine the influence and percentage weight score of each
motivating factor, respondents had the liberty to tick more than one
factor for each appliance which could influence their participation. The
factors were assigned the same weight of 1. The number of ticks for
each factor is then summed across all the appliances under considera-
tion and divided by the total possible score and multiplied by 100.
Table 3 shows the weight score of the motivation factors and the

Table 2
Willingness of DR participation.

Appliance DR participation (%)
Personal computer 20%
Television 68%
Satellite 33%
Washing machine 23%
Electric iron 52%
Electric boiler 32%
Microwave oven 20%
Electric kettle 18%
Rice cooker 18%
Refrigerator 48%
Electric fan 58%
Air conditioner 25%
Lighting -

Note: Lighting was not included because of its necessity for vision.
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Table 3
Weight score of motivation factors.

Motivation factors

Appliances Prices Security Environment Total
Personal computer 5 7 0 12
Television 23 17 1 41
Satellite 14 6 0 20
Washing machine 8 6 0 14
Electric iron 19 12 0 31
Electric boiler 0 1 0 1
Microwave oven 9 3 0 12
Kettle 7 4 0 11
Rice cooker 5 6 0 11
Refrigerator 11 18 0 29
Electric fan 14 21 0 35
Air conditioner 9 5 1 15
Lighting - - - -
Maximum possible for each 124 106 2 232
Percentage weight score (%) 53% 46% 1%

Note: Lighting was not included because of its necessity for vision.

responses indicate a high percentage weight score for electricity prices
signal followed by energy security with the environment being the
lowest.

2.2. Methodology: Demand response model

A bottom-up approach based on an end-use model known as the
method of diversified demand (Gyamfi & Krumdieck, 2011; Turan,
2014) is used with energy audit data to estimate the peak load reduc-
tion potential from the DR programs. This method is effective and de-
livers high accuracy in modeling residential demand response because
it offers a component-by-component analysis of the electrical load
(Gyamfi & Krumdieck, 2012). The method relies on appliance usage
behavior and the fact that households might not be using all the elec-
trical appliances that constitute the connected load of the house at the
same time and/or to their full capacity (Gyamfi & Krumdieck, 2011). It
accounts for the diversity between similar loads and the noncoincidence
of the peaks of different types of loads. The method thus enables an
estimation of aggregate appliance-based load curve for residential
consumers from most predictable loads. To develop and determine the
residential end-users load curve and demand response impact, model
input information such as the diversified household peak demand, ap-
pliance ownership, number of households, hourly load variation fac-
tors, degree of appliance control and electricity consumer willingness
for demand response participation is required. Fig. 3 shows the flow-
chart for load curve estimation and DR model.

The appliance ownership is the average number of an appliance unit
in the household. A logistic function as presented in Egs. (1 and 2) is
used to model the appliance ownership as a sigmoid function of time as
it ably captures consumer preference which is influenced by appliance
saturation and penetration (Diawuo et al., 2018). The model accuracy is
ensured using the statistical metric, Root Mean Square Error (RSME)
which predicts the error between the actual and the modeled data
(Diawuo et al., 2019; McNeil & Letschert, 2010).

>
S=a><p;where{a_1

Sa p=< 1
yta = a/ 4
1 + eloge*fga-n=bt 5 _ ax b where{a =1
B D p<1 D

B logB(S“/ﬁa -1
B8() @
where 7’10 is the ownership of appliance, a at time t (unit/HH); S° is the

theoretical future (maximum) ownership of appliance, a at t = 60; $is
the initial ownership of appliance, a at t = 0; b is the scale parameter; t
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is the time in years (e.g. 0 for 1990); 9(t) is the abscissa inflection point;
p is the appliance penetration and « is the saturation level.

The appliance stock is the total number of appliances often used in
the households and it is estimated as the product of the appliance
ownership and the total number of households in a specified year as
presented in Eq. (3). The households number for a specific year is cal-
culated by dividing the total population by the average household size
of that year.

Stock® = HH X y* 3)

where Stock® is the number of appliance, a units; ;" is the ownership of
appliance, a at time t (unit/HH) and HH is the total number of house-
holds.

To calculate the average maximum diversified demand of an ap-
pliance type, the appliance stock is multiplied by the diversified
household peak demand as shown in Eq. (4). The diversified household
peak demand (DHPD), measured in kW is obtained by dividing the
coincident peak demand of each appliance by the number of households
(Konstantelos, Sun, & Strbac, 2014).

MDD, = DHPD® x Stock® )

where MDD, is the average maximum diversified demand of appliance,
a and DHPD* is the diversified household peak demand for appliance, a.

The hourly maximum diversified demand for a type of an appliance
is given by Eq. (5) and it is expressed as the product of the average
maximum diversified demand and the hourly variation factors of the
appliance used over the course of the day.

MDD¢ = MDDS, X ¢ 5)

where MDD/ is the maximum diversified demand of appliance a, at any

time, t of the day; A, is the hourly variation factors of appliance, a.
The hourly maximum demand for the total combined appliances

used in all the households at any hour of the day is presented in Eq. (6)

n n
MRL, = ), MDD{= ) y%x HH X DHPDxA{
a=1,... a=1,... (6)

where MRL, is the total combined maximum demand of all appliances
and lighting at any hour of the day.

2.2.1. Demand response behavior

When a proportion of households show willingness to participate in
DR program before the action is implemented (pre-event stage), the
combined hourly maximum demand is as expressed in Eq. (7).

n n
EfPR = ' MDD{ x DRP%+ Y, MDD{ X (1 — DRP9)
a=1,... a=1,... (7)

where EPPR is the maximum demand of consumers at any hour of the
day before DR action and DRP® — demand response participation is the
percentage of households participating in DR for a specific type of ap-
pliance, a.

The combined hourly maximum demand after a specific demand
response action (event stage) is implemented is given by Eq. (8).

n n
EfP® = %' MDD{ x DRP* x DRC{ + ), MDD x (1 — DRP%)
a=1,.. a=1,..

(8)
where E/PR is maximum demand of consumers at any hour of the day
after DR action implementation and DRC/ is the degree of control for a
specific type of controllable appliance, a at specific hour of the day.

The theoretical demand reduction or savings as a result of DR action
at peak hours in the day is given by Eq. (9) and it is expressed as the
difference between the maximum demand before and after DR action
implementation.

A EtDRS — EIBDR _ EtADR (9)



F.A. Diawuo, et al.

Sustainable Cities and Society 59 (2020) 102235

maximum
diversified
demand

Hourly maximum
diversified demand

Fig. 3. Flowchart of the modeling approach.

where AEPES is the theoretical peak demand reduction.
Percentage of demand reduction at peak hours is as presented in Eq.
(10)

DRS

%PDR = % X 100
E| (10)

2.2.2. Emission savings

The CO, emission saved through the implementation of DR action as
shown in Eq. (11) is a function of the peak demand reduction and the
electricity emission factor.

ES; = AEP®S x EEF, 11

where ES, is the emission savings and EEF, stands for the electricity
emission factor (kgCO,/kWh) which varies over time based on the
primary energy sources mix and the power generation.

2.2.3. Demand response cost

Net present value (NPV) is used to assess the economic viability and
cost-effectiveness of implementing DR action programs in households,
quantifying the value to be created for the utility providers. The NPV is
the sum of all the cash flows discounted to the present using the time
value of money (Crundwell, 2008). If the NPV is greater than zero, it is
anticipated that value will be created for the utility providers. If it is less
than zero, it shows the economic non-viability of the investment. The
NPV is formulated (Crundwell, 2008) as shown in Eq. (12).

n
CF,
NPV =) ———
Z:; Q+ k) (12)

where CF; is the cash flow at year i, n is the life or horizon of the in-
vestment of the DR program and k is the discount rate.

2.3. DR load classification

Residential appliances have different operating characteristics and
working cycles (Staats, de Boer-Meulman, & van Sark, 2017). The
flexibility in the usage patterns of some of the appliances can somehow
be managed to reduce their consumption during a certain time period.
Demand control is possible since some consumers' need for certain
energy services might not be coincident with consumption of electricity
(Soares, Gomes, & Antunes, 2014). In some circumstances, electricity
consumption can be altered with slight changes in the level of energy
service at some short periods with insignificant changes in energy ser-
vice quality. On the contrary, some appliances might be difficult to
control, not due to technical or technological constraints but because of
the high tendency to disrupt the quality of energy service and comfort
of energy users. Residential loads have been classified into 3 broad

categories based on the type or degree of control (Soares et al., 2014):

o Non-controllable loads: are the type of loads that are likely to cause
discomfort or disruption of activities to electricity consumers.
Examples of such loads or services include; lighting, cooking and
entertainment appliances, etc.

e Thermostatic controlled/interruptible loads: are types of loads
whose operations can be interrupted with a reset or adjustment of
the thermostat without generating discomfort or altering the quality
of energy service. Example of such loads or services include; re-
frigeration, air conditioning and water heating appliances)

o Shiftable loads: are the type of loads whose working operation can
be postponed or rescheduled to another time without discomforting
the consumer or decreasing energy service quality. Examples of such
loads or services include; water heating, ironing, dishwashers,
washing machines, clothes dryers, etc.

In this study, the monitored appliances have been classified as
shown in Table 4 and only thermostatic controlled and shiftable loads
were used in the DR control analysis even though in the DR motivation
survey responses, respondents indicated readiness and willingness to
voluntarily allow all appliances to partake in the DR programs under
certain signal sensitivities.

2.4. Scenarios and data assumptions

2.4.1. Scenarios definition

The scenarios developed were based on the demand response con-
trol strategy and the fraction of representative households that show the
willingness to participate in the DR program for the determined con-
trollable appliances. The uncertainties surrounding consumer behavior
and the level of participation in the implementation of DR programs
form the basis for the selection of these scenarios. Peak demand re-
duction through demand response action can only be successful if
consumer behavior and their willingness to partake in the program
becomes central. Without the support and co-operation of the con-
sumers, DR implementation can be redundant and unproductive
(Gyamfi & Krumdieck, 2012; Parrish, Heptonstall, Gross, & Sovacool,
2020). The DR control strategy has 3 levels; demand shifting, demand
curtailing through thermostatic control/interruption and the combina-
tion of the two (load shifting plus load curtailing) at end-users coin-
cident demand during peak periods. The DR participation has 2 levels;
Base which is the baseline percentage of participation by representative
respondents and High which represents a 50% increment in the Base
scenario. Six different scenario combinations (S1-S6) were formed as
shown in

Fig. 4 and its impact analyzed.
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Table 4
DR load categorization.
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Non-controllable load

Thermostatic controlled/interruptible load

Shiftable load

Personal computer, microwave oven, television, electric kettle, satellite receiver, rice
cooker and lighting.

Electric boiler, refrigerator, electric fan and air
conditioner.

Washing machine and electric
iron.

2.4.2. Data assumptions

This subsection presents the assumptions on population, household
size, appliance ownership, diversified household peak demand, emis-
sion factors, DR costs and degree of load control used in the study.

2.4.2.1. Population and household size. Using the single compound
amount method, dataset for population and household size were
estimated for the period between 2018 and 2050 based on data
reports sourced from the Statistical Service of Ghana (GSS) (Ghana
Statistical Service (GSS) (1995), 2000, 2008, 2014), World Bank (2017)
and United Nations (2015). The baselines used for the population,
household size and the number of households are presented in Table 5.
The population and household size for Ghana between 2018 and 2050
are estimated to grow at an average annual rate (AAGR) of 1.74%, and
-0.31% respectively (Ghana Statistical Service (GSS) (1995), 2000,
2008, 2014); United Nations, 2015; World Bank, 2017).

2.4.2.2. Appliance ownership. The appliance ownership is influenced by
many factors, including; income, urbanization, electrification rate,
lifestyle, climate, etc.(Diawuo et al., 2018, 2019; McNeil & Letschert,
2010; McNeil, Letschert, de la Rue du Can, & Ke, 2013). To model the
appliance ownership evolution, the initial (8% and future (5%
ownership parameters data are key and these data are sourced from
Diawuo et al. (2019). The actual data used for the statistical comparison
is sourced from the GSS through its living standard survey reports
(GLSS) (Ghana Statistical Service (GSS), 1995, 2000, 2008, 2014). The
appliance ownership evolution for considered appliances until 2050 is
shown in Fig. 5. Root Mean Square Error (RMSE) used to predict and
compare the errors between the modeled and actual data indicates
values varying between 0.002 and 2.468. The low values indicate a
better fit.

2.4.2.3. Diversified household peak demand (DHPD). The DHPD data is
obtained from the metering records conducted in the representative
households and it is presented in Table 6. In respect of the time horizons
analyzed, the DHPD for all appliances is assumed to be the same as the
measurement year 2018, although possible future policy initiatives and
consumer lifestyle situations like energy efficiency and conservation
improvements or the concept of rebound effect could have an
appreciable impact.

Table 5
Baseline assumptions for household indicators (Ghana Statistical Service (GSS),
1995, 2000, 2008, 2014; United Nations, 2015; World Bank, 2017).

Indicator 2018 2030 2050
Population (inhabitants) 28,862,700 35,485,869 50,071,000
Household size (number of people) 3.94 3.80 3.57
Number of households 7,327,428 9,347,360 14,025,490

Note: AAGR for number of households between 2018-2050 is 2.05%.

2.4.2.4. Load profiles. In analyzing the impact of DR, the hourly
variation factors of appliances were developed for both groups of
representative households who indicated their willingness to
participate in the DR program and those who showed an
unwillingness to participate using the measured data. The average
load factors between the 2 groups showed an absolute relative
difference of about 2%.

2.4.2.5. Emission factors. The emission factor is assumed based on the
fuel mix diversification in electricity generation. The choice of a power
plant in electricity generation varies in time depending on the
availability of power plant, demand (base, intermediate and peak),
cost of fuel and generation, etc. The medium-long term primary energy
sources for the power plants are hinged on hydro, non-conventional
renewables (solar) and ideally natural gas and/or crude oil which
feature in generation expansion projects as forecasted by the utility
providers (GRIDCo, 2018). Table 7 presents the emission factors used in
estimating the CO, saving relying on the reduced peak demand under
the DR programs.

2.4.2.6. DR costs and discount rate. The implementation and operation
of DR programs impose costs on both household DR participants and
utility providers. The participants cost spread across initial and event-
specific costs related to smart thermostats, energy management
systems, comfort/inconvenience costs, rescheduling costs, etc. (Aghaei
& Alizadeh, 2013; Bradley, Leach, & Torriti, 2011). The utility
providers cost in relation to the initial and ongoing program costs
include metering and communication infrastructure cost; software and
billing system upgrade costs; consumer education and administration
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Fig. 4. Definition of DR scenarios.
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Fig. 5. Modeled appliance ownership evolution.

costs; incentives and payments to participating consumers, etc. (Bradley
et al.,, 2011). This study assumes that participating consumers are
offered incentives in a form of free communicating thermostats through
which the utility provider controls devices remotely while on load
shifting, human intelligence is relied upon through education
campaigns and incentive support. Costs are assigned to utility
providers, but a zero cost is assumed for participating consumers. The
benefits in implementing DR programs are numerous, both the
participants and utility providers are beneficiaries. Some of the
avoided costs include; avoided energy costs, avoided capacity costs,
avoided transmission and distribution (T&D) costs, avoided
environmental compliance costs, avoided environmental externalities,
avoided ancillary service costs, etc. (Woolf, Malone, Schwartz, &
Shenot, 2013). The costs used in the economic analysis for the
scenarios created are as shown in Table 8. The cost component can
vary significantly from one utility provider to another because of
differences in cost drivers. A discount rate of 7.5% is assumed
(CBONDS, 2018) in line with the recent bond issued by Ghana and
used for the economic evaluation.

2.4.2.7. Degree of DR load control. Assumptions are made to control the
load classified in Section 2.3 in respect to their degree of control and
likely impact on the daily average load curve: thermostatic load reset
will have a 25% decrease in appliance electricity consumption during
peak hours (Conchado, Linares, Lago, & Santamaria, 2016; Malik,

Table 6

Diversified household peak demand (DHPD) of appliance.
Appliance DHPD (kW)
Personal computer 0.030
Television 0.049
Satellite 0.004
Washing machine 0.070
Electric iron 0.012
Electric boiler 0.040
Microwave oven 0.047
Kettle 0.010
Rice cooker 0.020
Refrigerator 0.087
Electric fan 0.060
Air conditioner 0.120
Lighting 0.010

Haghdadi, MacGill, & Ravishankar, 2019; Soares et al., 2014) while
for the load shifting, the total energy demand remains unchanged,
instead a 100% of the total load of each day-type is seen movable in
time to off-peak hours (Conchado et al., 2016). The possibility of the
“snapback” or “payback” effect in the thermostatic loads is not
accounted for because an increase in the average temperature
threshold of 1 °C over the DR event period is considered but tested as
a sensitivity analysis.

3. Results and discussions
3.1. Model validation and accuracy

To evaluate the model robustness, the estimated hourly maximum
demand curve of the households is compared to a typical national ag-
gregated multi-sectoral daily load profile measured by the grid operator
(GridCo) since disaggregated profile specific to the residential sector is
non-existent. The shape of the modeled demand curve compares very
well with the grid operator’s load profile as shown in Fig. 6 and shows
an RMSE of 0.288, indicating a good fit. The critical peak hours occur
between 6-10 pm. The magnitude of the average daily demand of the
model represents a weight share of 34% of that of the grid operator’s
load profile. The 34% is relatively close to the recorded 39% share of
the residential sector in annual sectoral electricity consumption
(Diawuo et al., 2019).

3.2. Load categorization

The share of the modeled residential demand to the national system
load peak demand is about 49% reflecting a significant contribution to
peak demand. About 90% of the average critical peak hour demand is
consumed by 4 appliances and lighting loads: refrigerator (32%),
electric fan (27%), television (22%), air conditioner (3%) and lighting
(6%) as shown in Fig. 7(a).The modeled hourly maximum demand is
disaggregated and categorized into the defined demand response load

Table 7
CO,, emission factors (estimates based on (Diawuo & Kaminski, 2017)).

Year 2018 2030 2050

Emission factor (kgCO»/kWh) 0.236 0.238 0.244
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Table 8
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DR costs components (adapted sources (Dranka & Ferreira, 2019; Gyamfi & Krumdieck, 2012; Mims, Eckman, & Schwartz, 2018; Piette, Schetrit, Kiliccote, Cheung, &

Li, 2015; Ruble & Karaki, 2013)).

Implementation/avoided costs Amount and unit

Thermostatic/
interruptible (B)

Shifting (A) Combined (A + B)

Implementation cost

Metering/communication & DR control devices
Education campaign

Administrative

Avoided cost at peak

Capacity cost

T&D cost

Emission cost

123.00 US$/consumer
2.46 US$/consumer
1.23 US$/consumer

71.50 US$/kW
80.00 US$/kW
10.00 US$/tCO,

- X X
X - X
X — —
X X X
X X X
X X X

Note: The time value of money is accounted for the costs over time based on the discount rate. The education campaign and administrative costs are assumed to be
2% and 1% of the metering/communication & DR control device cost. A tick of “X” indicates cost is included while “~ “shows non-inclusive of cost component.

control as represented in Fig. 7(b). The weighted share of the thermo-
static loads to the average daily demand is around 81% while shiftable
and uncontrollable loads represent 2% and 17% respectively. On
average, the contribution of thermostatic loads to critical peak demand
between 6-10 pm is about 59% while shiftable and uncontrollable loads
constitute 4% and 37% respectively. This shows that the contribution of
controllable loads to households’ peak demand is about 63% which is
quite significant and thereby creates a viable opportunity for demand
response implementation.

3.3. Scenario analysis

Fig. 8 and Fig. 9 show the daily demand curves for all scenarios
before the DR event and the comparative difference after DR event
respectively while Table 9 presents the average daily peak demand
reduction. For brevity,the results are presented at periodic time inter-
vals 2018, 2030 and 2050. The household demand curves show a small
morning peak around 6 am when most household members are awake
and involved in different preparatory activities before leaving for their
workplaces while the critical peak occurs between 6-10 pm when most
people are back home and engaging in different activities which require
energy end-use services such as lighting, cooking, entertainment,
laundry, air conditioning, etc.

In 2018, the maximum daily peak demand for all scenarios before
the DR event was 938 MW and occurred around 8 pm. During the event

period, the daily critical peak demand showed an average reduction
varying between 12-109 MW (percentage reduction of 2-13%). The
scenario with the highest peak reduction was S6 (Combined + High)
followed by S4 (Thermostatic + High), S5 (Combined + Base), S3
(Thermostatic + Base), S2 (Shiftable + High) and S1 (Shiftable +
Base) respectively. The contribution of appliances to the highest peak
demand reduction from the S6 scenario indicate a weight share of
washing machine (2%), electric iron (14%), electric boiler (nearly 0%),
refrigerator (47%), electric fan (35%) and air conditioner (2%). The
appliances with the lowest share have relatively lower household
ownership and use. The scenario with the lowest peak demand reduc-
tion, S1 (Shiftable + Base) has washing machine and electric iron
contributing 14% and 86% respectively. The shiftable loads which are
user-defined showed their use moving from the peak period to the off-
peak periods. The use of washing machines based on the model moved
from the evening critical peak hours, 8-10 pm to 5-7 am while the
electric iron moved from 8-10 pm to 1-3 pm.

By 2030, the maximum daily peak demand increased to 1807 MW,
almost doubling that of 2018. This reflects the increasing appliance
stock and its use during peak periods. The scenarios showed a critical
peak demand reduction ranging from 33-220 MW (percentage reduc-
tion of 2-14%). Scenario 6 had the highest peak demand reduction
while scenario 1 had the lowest. The weight share of appliances to the
contribution of reduced peak demand for all scenarios varied; washing
machine (0-47%), electric iron (0-53%), electric boiler (nearly 0%),

2000
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1800 JL—2—National grid system load (MW)-2013
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Fig. 6. Comparison of modeled and measured (national grid system load) daily demand.
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Fig. 7. (a) Average daily load curve by end-uses and (b) demand response load classification.
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Fig. 9. Percentage comparison before and after DR for (a) 2018, (b) 2030 and (c) 2050.

Table 9 refrigerator (0-58%), electric fan (0-36%) and air conditioner (0-6%).
Average daily peak demand reduction (MW). In 2050, the pre-event critical daily maximum peak demand is es-
timated to be 3208 MW, a 56% increase in 2030. The DR event period

Scenarios 2018 2030 2050 o ) )
caused an averaged critical peak demand reduction varying between 65
S1 (Shifting + Base) 12 33 65 MW and 406 MW (2-14%) for all scenarios. Scenario 6 was the highest
52 (shifting + High) . 18 50 98 while scenario 1 is the lowest. The contribution of appliances to the
S3 (Thermostatic/interruptible + Base) 60 113 205 d d Kk d d ied: hi hi 0-52% 1 ..
S4 (Thermostatic/interruptible + High) 91 170 308 reduced peak demand varied; washing machine (0-52%), electric iron
S5 (Combined + Base) 73 147 271 (0-48%), electric boiler (nearly 0%), refrigerator (0-60%), electric fan
S6 (Combined + High) 109 220 406 (0-33%) and air conditioner (0-7%).

In summary, the results show a substantial potential of evening peak

12
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Fig. 10. Annual emissions reduction.

load reduction on the grid network through households’ demand re-
sponse and the percentage demand reduction is comparable to a global
range of 0-14% (Carroll et al., 2014). With only load shifting as a DR
strategy and high household willingness in DR participation, a savings
of 98 MW could be realized by 2050 with the least of investment. This
strategy alone has the potential of postponing the construction of a
greenfield peak-based thermal plant with higher investment and op-
erational costs. The findings are similar to already existing studies and
further confirms the impact of voluntary demand response. A case study
conducted by Gyamfi and Krumdieck (2011) for the residents of
Christchurch, New Zealand indicated that through voluntary demand
response, load shifting or shedding reduced morning and evening peak
by 10% and 7% respectively. A related study by Fulhu et al. (2019)
demonstrated that a 2 hour voluntary demand response signal sent to
25% of the population of Fenfushi village island, Maldives resulted in
10% generator fuel savings during peak periods. To actualize this po-
tential, household electricity users need to be assisted with information
on supply security limitations while educating and incentivizing them
to reduce demand during peak hours especially in the evenings. The
timely delivery of information is key as it can help shape the opinion of
residential consumers (Gyamfi & Krumdieck, 2011). Even though, the
benefits of demand response to consumers are enormous including fi-
nancial but the environmental aspect in relation to emission reductions
should be communicated sufficiently. When consumers get more en-
gaged and become aware of the importance of living smart and in a
more sustainable way, general appeal for the purchase and use of smart
appliances could be upheld.

3.4. Emission analysis

Ghana like other parts of Africa are susceptible to the impact of
climate change like drought even though they contribute little
(<0.1%)” to global greenhouse gas emissions. Peak technologies that
run on fossil-based fuels contribute to emissions and any reduction in

2 https://en.wikipedia.org/wiki/
List_of_countries_by_greenhouse_gas_emissions
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peak demand has the tendency to reduce the aggregate national emis-
sion footprint. Fig. 10 shows the cumulative annual carbon dioxide
(CO,) emissions savings from all the scenarios as a result of the reduced
critical peak demand. In 2018, the emission savings varied between
0.0042 and 0.0380 million tons of CO, (mtCO,). Scenarios 1 and 6 had
respectively, the lowest and the highest emission reductions. For all
scenarios, the emission savings ranged, 0.0117-0.0770 mtCO, by 2030
while in 2050 it varied between 0.0233 and 0.1450 mtCO,. The savings
over the years are quite substantial and when emission restrictions are
applied, it can provide an opportunity for earning carbon credits for
Ghana.

3.5. Economic analysis

The net present value was used to measure the economic perfor-
mance and cost-effectiveness of the scenarios over the entire model
time span. The NPV of all scenarios was above zero, meaning invest-
ments in any of the demand response actions could fetch a reasonable
economic benefit over a period of time. The NPV ranged from 28-645
million US$ over the model period as shown in Fig. 11 with scenario 6
(S6) being the highest and followed in descending order with scenario 1
(S1) being the lowest, relatively. A cursory look at the cumulative free
cash flow shows that S1&S2 reaches a break-even point (payback
period) after 22 years of implementation of the DR program while S3&
S4 and S5&S6 are 15 and 13 years respectively. This suggests that the
model time span used for analyzing the economic viability of the DR
program is adequate as shorter time might skew the justification for the
investment in the DR infrastructure although an excessively long period
can have a potential of dismissing possible future risks (e.g. advance-
ment in DR programs and technologies). This finding is instructive as it
justifies the economic merit for utility providers to invest in demand
response programs as it delays the building of new peak technology
power plants and recuperates the returns that go with investment. Aside
from the continuous investments, inter alia, the initial capital required
to implement DR is relatively lower or more affordable than building
peak technology plants while the pace on the investment returns is
relatively quick. On the part of the consumers, a simple calculation
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Fig. 11. The net present value for the scenarios.

reveals that using a flat tariff rate of 0.175 US$/kWh (Energy
Commission, 2018b) with corresponding annual peak electricity con-
sumption reduction results in electricity bill savings ranging from 0-11
US$/household/year for all scenarios without any additions in financial
incentives from the utility providers. The zero bill savings are from the

800

load shifting scenario since there is no tariff difference between on and
off-peak period (flat tariff regime) and load shifting usually do not re-
sult in savings in electricity consumption. Economic savings can be fully
realized through effective cooperation between end-users and utility
providers while making efforts to balance the benefits between them.
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Fig. 12. Sensitivity analysis on NPV based on discount rate (DRate) and avoided emission cost (AECost).
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3.6. Sensitivity analysis

A sensitivity analysis is performed in relation to net present value,
rebound effect and the payback effect and discussed below.

3.6.1. Sensitivity analysis on the net present value

The sensitivity analysis evaluates how selected decision variables,
discount rate and avoided emission cost affects the NPV in the DR
economic analysis. The discount rate is chosen to analyze the impact
and account for the volatilities in the financial environment while the
emission cost is used to canvass the opportunity for decarbonization.
Each of the variables is changed between -20% and +20% of the base
value, and the effect of the change on the NPV is calculated as presented
in Fig. 12. The results indicate that changes in the variables cause
variations in the NPV. A decrease of 20% in the discount rate causes a
negative NPV for S1&S2, meaning at that rate, it is not economically
viable for investment. Aside from that, all the other scenarios show a
positive NPV. The difference in NPV from the base value with respect to
the discount rate for S1&S2 vary from -105% to 43%, S3&S4 is -7% to
5% while S5&S6 is -4% to 3%. For the avoided emission cost variable,
the base value varies for S1&S2 by -3% to 3%, S3&S4 by -1% to 1% and
S5&S6 by -1% to 1%. This indicates that a change in the value of the
selected variables causes a relative variance in the NPV with the dis-
count rate having the highest impact.

3.6.2. Sensitivity analysis on rebound effect

A sensitivity analysis on a possibility of rebound effect in the use of
the controllable appliances is evaluated assuming participating con-
sumers change their lifestyle and tend to purchase a much bigger high
performing appliance with relatively higher power utilization. A 10%
increase in the diversified household peak demand of each controllable
appliance for the year 2030 is assumed in the baseline scenario before
and after the DR event. The result for the aggregated hourly load curve
for the baseline scenario is compared with and without rebound effect
as presented in Fig. 13. The results on a comparative basis show that
with rebound effect, the average hourly demand is increased by 8%.
This suggests that negative changes in consumer behavior can have the
tendency to upsurge in demand for energy services, therefore, it needs
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to be taken seriously in policy appraisal. To sustainably recoup the
benefits of demand response, effective policies on the rebound effect
should be developed concurrently with demand side management po-
licies to avoid possible system peak hikes.

3.6.3. Sensitivity analysis on payback or snapback effect

The payback or snapback effect is the increase in the demanded
energy in the hours immediately after a demand response event. This
occurs usually in cooling and heating thermostatic appliances during
their cycling operations. The space temperature drifts up during a de-
mand response event and once the event ends, the system tries to return
the space temperature back to its original set point. A sensitivity ana-
lysis is conducted to assess its impact on the load demand curve after
the DR event. A 10% increase in the consumption of the thermostatic
appliances (electric boiler, refrigerator and air conditioner) during off-
peak hours is assumed to compensate for the payback effect. The
thermostatic controlled/interruptible DR strategy scenario is used and
the results compare the impact of payback effect and no payback effect
for the load demand for a typical day in 2018, 2030 and 2050 as pre-
sented in Fig. 14. There is a relative percentage difference in the hourly
energy consumption but the overall average daily energy consumption
for all years is increased by 0.13%.

3.7. Policy implications

There are continuous discussions and arguments about the role that
demand response is likely to play in the future. Many of such discus-
sions converge and broadly agree that DR is beneficial and comple-
ments the various solutions to the eminent energy policy challenges.
Though DR initiation is paramount, some challenges still exist in its
policy development framework and implementation which needs to be
tackled. Several reasons can be identified and associated with a specific
DR scheme challenge some of which are discussed next.

3.7.1. Lack of smart metering and ICT infrastructure

Within the smart grid environment, advanced metering, control
methods, information and communication technology infrastructure
are critical foundation for supporting the implementation and operation
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Fig. 13. Sensitivity analysis of rebound effect on aggregate load curve.
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of DR. The smart grid setup is anchored on four main components
which include the advanced metering infrastructure, asset management
system, advanced transmission and distribution systems (Zhou & Yang,
2015). The advanced metering infrastructure to a large extent supports
the implementation of demand response programs while enhancing the
interaction between the grid network and the consumers. The advanced
metering also aids in improving consumer service, power theft mon-
itoring, power quality and outage management, remote connection and
upgrade of meter firmware (Zhou & Yang, 2015). The use of ICT in the
control of electricity network systems often leads to the development of
an integrated electrical and communication system architecture in the
power industry which delivers both electricity and information that
controls it (Strbac, 2008). These sophisticated infrastructure costs and
its related technical issues are of a major challenge to the im-
plementation of DR programs. The technical challenges related to the
ICT side include information security, ICT interoperability, information
network management and algorithm stability (Zhou & Yang, 2015).
Gradual and sustained investments in the transmission and distribution
network will off-set some of the mentioned challenges which will pro-
vide the necessary information needed to adequately control remotely
flexible loads whenever needed to maintain grid stability

3.7.2. Lack of understanding of the benefits of DR

The involvement of consumers with different behavior, their ac-
ceptance and motivation are germane to the successful implementation
of DR. The understanding and opportunities of DR programs by con-
sumers during the initial phase is mostly not comprehensive and hence
becomes a barrier for their effective participation. Many types of

research in behavioral economics have indicated that simply providing
consumers with information is not enough to increase their engagement
in DSM programs. An example is found with the intervention in the
market transformation of compact fluorescent lamps (CFL) in Hungary
where a high level of consumer awareness did not necessarily translate
into market success. The decision-making process of people is influ-
enced by family, friends, neighbors and social norms. Dawnay & Shah,
(2011) in Warren (2015) argued that people are “bad at computation”
and are rather driven by other people’s behavior, habits, doing the
“right thing”, self-expectations of behavior, being loss-averse and
needing to feel involved in making a change. Ponnaganti, Pillai, and
Bak-Jensen, 2018) suggest that since consumers especially the re-
sidential ones usually are resistant to programs that require effort, fo-
cusing first, education and awareness programs on large consumers
allow other consumers to assess the rewards and costs associated in
participating in DR programs. In line with influencing the behavior of
consumers towards changing their energy consumption, behavioral
habits, lifestyle and cultural background should be taken into con-
sideration. The government and the utility companies could enhance
their advocacy efforts for energy users on the benefits of DR programs
in boosting energy efficiency, cost reduction, reliability of grid network,
emission reduction, etc.

3.7.3. Lack of market structure and incentives

In implementing DR, the government’s role is critical especially in
Ghana where the power industry is not fully and properly deregulated
particularly in the distribution sector. Deregulation is thus essential,
and more market-oriented policies are critical to stimulating the active
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participation of utilities and energy consumers in DR programs.
Electricity market liberalization sparks up incentive-based strategies for
DR implementation. Proper market liberalization ensures the privati-
zation of the power industry to create competition in the market.
Market liberalization helps move from vertically-integrated monopolies
to retail competition with the consumer having the choice to select their
energy supplier. Integrated Resource Planning (IRP) has been argued
that it is theoretically suitable and partly applicable in the open market
but it is gradually being established that other frameworks for devel-
oping DSM, such as energy services and energy efficiency goals are
more beneficial (Warren, 2015). IRP refers to a long-term planning
process that permits utility entities to compare invariably the cost-ef-
fectiveness of all resource alternatives on both the demand and supply
side, taking into account their different environmental, financial and
reliability characteristics (Al-enezi, 2010). An economic barrier to the
DR implementation is the limitation of incentives for utilities to invest
in DR especially in a market environment where revenues of utilities
traditionally rely on the quantity of electricity sold if there are no fi-
nancial returns (De la Rue du Can, Leventis, Phadke, & Gopal, 2014).
The government ought to play a regulatory role and financial support in
the early stage of DR implementation.

The Energy Commission of Ghana is the regulating body of the
government responsible for developing regulation, planning and setting
policy procedures that address energy issues in the country (Gyamfi
et al., 2018). As such, it is the starting point for developing legislation
to enhance and motivate efficient use of energy to address peak demand
challenges. The engagement of all stakeholders including; utility pro-
viders, appliance importers/manufacturers, consumers and policy-
makers is needed to develop strategies to address the bottlenecks that
limit the acceptance of demand response by these same actors.

4. Conclusions

Demand response is envisaged to play a critical role in balancing
electricity supply and demand in the face of fossil fuel resource scarcity
and climate change vulnerabilities. Opportunities from residential vo-
luntary demand response are largely unexploited in Ghana and most
African countries due to lack of relevant household electricity con-
sumption data, consumer behavior information and detailed economic
analysis for implementing such programs. This study combines a
questionnaire-based household survey information and measured
electricity consumption of household appliances to assess residential
demand response potential in Ghana. A bottom-up end-use model is
used to develop an aggregate hourly load curve. Electricity consump-
tion is subsequently characterized and categorized in relation to their
degree of control to determine peak demand reduction potential. The
estimated hourly maximum demand curve of the households is vali-
dated with typical national aggregate multi-sectoral daily load profile
measured by the grid operator.

Results show that in addition to price, motivating factors such as
energy security and environment signals can influence end-users elec-
tricity use behavior. It was found that about 90% of average peak de-
mand of the generated residential load curve is contributed by lighting
and 4 appliances namely; refrigerator, television, electric fan and air
conditioner. The expected average daily peak hour demand reduction
from the six scenarios ranged from 65 MW to 406 MW representing 2-
14% by 2050. The economic evaluation of the voluntary residential
demand response showed that for all scenarios, it was economically
viable to invest in DR programs as financial investment with NPV
varying between 28-645 million US$ could be recovered within a
payback period of 13-22 years of implementation. The study also shows
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that to actualize energy and cost savings, utility providers and con-
sumers need to cooperate effectively on information delivery and
feedbacks while efforts are made to incentivize consumers to balance
the benefits between them. Effective information delivery could support
consumers to analyze their electricity use, compare and manage their
consumption and optimize their use patterns. Residential energy policy
development should be innovatively designed to include voluntary
demand response and fiscal regimes that support the use of smart ap-
pliances and technologies. The sensitivity analysis on the rebound effect
shows a relative increase in the average hourly demand and therefore
indicates the need to establish tailored rebound mitigating policies.

This study is subject to some limitations. The hourly variation pat-
terns for appliance electricity use were assumed to be the same over the
model time horizon but this could change over time due to changes in
lifestyle, behavior and socio-economic dynamics. The evolution of ap-
pliance ownership could vary with changes in projected growth in ur-
banization rate, electrification rate and household income levels. The
diversified household peak demand is assumed to be the same over the
period but changes in appliance energy use regulation could present
some future changes. The cost data can vary from one utility provider to
another, therefore, cost variations can have a substantial impact on the
quantitative results. Future study is recommended to estimate the po-
tential of demand response on peak demand from the commercial and
industrial sectors, its impact on future generation expansion and grid
stability.
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