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1 Introduction

During the first run of the Large Hadron Collider (LHC), the ATLAS [1] and CMS [2]

Collaborations performed a wide range of searches for supersymmetry (SUSY) [3–11], using

proton-proton (pp) collision data at centre-of-mass energies (
√
s) of 7 and 8 TeV. SUSY,

a theoretically favoured framework for extending the Standard Model (SM), is able to

address some of its unanswered questions, particularly the hierarchy problem [12–15], which

is related to the fine-tuning needed to obtain the correct mass for the observed Higgs

boson. SUSY can also provide credible dark matter candidates [16, 17] and can improve

the unification of the electroweak and strong interactions [18–26].

The minimal supersymmetric extension of the Standard Model (MSSM) [27–31] pre-

dicts partners for each of the SM states. It predicts a pair of scalar partners — one for each

fermion chirality — for each of the SM quarks and leptons. These spin-zero partner particles

are known as squarks (q̃) and sleptons (˜̀) respectively. In the first two generations the pair

of chiral partners is largely unmixed, so the mass states can be labelled ẽL and ẽR, where the

L and R subscripts denote the scalar partners of the left- and right-handed Standard Model

fermion states respectively. In the third generation of quarks and leptons the mixing be-

tween the scalars is larger, and the mixed states are labelled by their mass indices e.g. t̃1 and

t̃2, where t̃1 is lighter by construction. Each state in the SM gluon colour octet has a spin-

half partner known as a gluino g̃. There are a total of eight spin-half partners of the elec-

troweak gauge and Higgs bosons: the neutral bino (superpartner of the U(1) gauge field);

the winos, which are a charged pair and a neutral particle (superpartners of the W bosons of

the SU(2)L gauge fields); and the Higgsinos, which are two neutral particles and a charged

pair (superpartners of the Higgs field’s degrees of freedom). The bino, winos and Higgsinos

mix to form four charged states called charginos χ̃±
1,2, and four neutral states known as

neutralinos χ̃0
i (where the index i lies in the range 1 to 4, ordered by increasing neutralino

mass). The charginos and neutralinos are collectively referred to as electroweakinos.

Since no statistically significant signals consistent with supersymmetry have yet been

observed at the LHC, searches have been used to constrain the allowed supersymmetric

model space. In the case of searches for supersymmetry, this typically results in setting

lower limits on the masses of the pertinent supersymmetric partner particles (sparticles).

– 1 –
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This paper presents the combined sensitivity and constraints from 22 separate ATLAS

analyses of the Run 1 LHC dataset, using centre-of-mass energies of 7 and 8 TeV and an

integrated luminosity of up to 20.3 fb−1. Direct searches for the decay products of the

sparticles listed above are considered together with searches for disappearing tracks, long-

lived charged particles, monojet signatures, and a dedicated search for the heavier neutral

Higgs bosons, also expected in the MSSM. More details about the searches can be found

in section 2.

The impact on the space of SUSY models has traditionally been presented in rather

constrained frameworks, which have particular limitations when considering large numbers

of analyses. One frequently used strategy for interpretation is in terms of models moti-

vated by a particular mechanism of SUSY-breaking, for example via gravitational or gauge

interactions. While such models can have theoretically appealing features, they assert re-

lationships between SUSY-breaking parameters that may not be realised in nature, and

they sample only a small part of the parameter space of the MSSM. SUSY searches at the

LHC have also been interpreted using ‘simplified’ models. Such models attempt to capture

the behaviour of a small number of kinematically accessible sparticles, assuming all others

play no role. The simplest case corresponds to one specific SUSY production process with

a fixed decay chain. Such models provide insight into the experimental constraints on the

individual sparticle and decay mode, but fail to capture the complex effects that can result

from large numbers of competing production and decay processes.

The MSSM has over a hundred parameters that describe the pattern of sparticle

masses and their decays. This parameter space is too large to be scanned exhaustively

and compared to ATLAS data. By applying a series of assumptions motivated by either

experimental constraints or general features of possible SUSY breaking mechanisms, the

number of parameters can be reduced to 19. This is known as the phenomenological MSSM

(pMSSM) [32–34]. This model is assumed to conserve R parity,1 which ensures that spar-

ticles are produced in pairs and the lightest supersymmetric particle (LSP) is stable. The

parameters are assumed to be real so that new CP violation does not occur in the sparticle

sector. Parameters that would give rise to additional flavour-changing neutral currents are

absent. The LSP provides a dark matter candidate if colourless and electrically neutral.

In this paper, the LSP is required to be the lightest neutralino. Its production at the LHC

gives rise to missing transverse momentum (whose magnitude is denoted Emiss
T ), which is

required by most of the ATLAS searches considered in this paper. There is no theoretical

upper bound on the parameters characterising the sparticle masses. However, since the ex-

periments have no sensitivity to sparticles with very large masses, the following additional

restriction is applied before a specific set of parameters is considered: all sparticle masses

must be less than 4 TeV. A specific set of the 19 parameters is referred to as a model point

in parameter space; 310,327 such model points, each consistent with a range of previous

experimental results, are considered. More details about the selection of pMSSM points

can be found in section 3.

1R = (−1)3B+L+2S where B is baryon number, L is lepton number and S is spin.
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Several groups have advocated the use of the pMSSM for interpretation of LHC re-

sults [33–52]. Most of these studies use estimated experimental efficiencies and acceptances

for pMSSM points, and compare them to the model-independent limits from a selection of

LHC searches to constrain the pMSSM parameter space. Previous ATLAS analyses have

also used the pMSSM for interpretation of individual searches [53–57] by fixing most of

the parameters, and varying just two or three: they therefore explore only a small part of

the parameter space. This paper makes full use of the ATLAS experimental simulation,

reconstruction and analysis tools. It represents the most comprehensive assessment of the

ATLAS constraints on supersymmetry models to date.

The paper is organised as follows. The relevant ATLAS Run 1 analyses are summarised

in section 2. A description of the pMSSM parameter space can be found in section 3, along

with the direct and indirect constraints applied prior to the generation of the 310,327 model

points. Monte Carlo simulation of those model points is described in section 4. The effect

of the ATLAS searches on this pMSSM space is described in section 5. Discussion and

conclusions can be found in section 6.

2 ATLAS searches

A total of 22 distinct ATLAS analyses are considered, spanning a wide range of different

search strategies and final states, as listed in table 1. Each analysis has several signal

regions — for example the analysis requiring events with zero isolated electrons and muons

and a minimum of 2–6 jets in association with large Emiss
T [58] has 15 different signal regions,

each with different requirements on kinematic parameters and/or multiplicities of jets. For

each of the 22 analyses, most of the signal regions from the original analysis are considered.

However, in some cases, for practical reasons it was necessary to leave out some specialised

signal regions or more complex combined fits. This leads to a slight underestimate of the

full reach of the search. In total, almost 200 distinct signal regions are considered.

The analyses are classified into the four broad categories shown in table 1. ‘Inclu-

sive’ searches are those primarily targeting decays, including cascade decays, initiated by

production of squarks of the first two generations or gluinos. ‘Third-generation’ searches

are those targeted particularly at the production of top and bottom squarks, known as

the stop (t̃) and sbottom (b̃). ‘Electroweak’ searches include those for direct production

of electroweakinos and sleptons. Since each search involves multiple signal regions, and

since different SUSY production and decay processes can contribute to each of those, this

categorisation can only be considered to be a rough guide when interpreting the type of

sparticles to which the analysis might show sensitivity. ‘Other’ searches are those for heavy,

long-lived particles (which are only considered for a small subset of the model points) and

the search for heavy Higgs bosons. The details of the analyses can be found in the corre-

sponding papers (listed in table 1) and a brief summary for each is given below.

In what follows the term ‘lepton’ (`) is used to refer specifically to the charged leptons

e± and µ± of the first two generations. Where τ± leptons are also included — for the

3-leptons and 4-leptons electroweak searches — this is indicated explicitly.

– 3 –
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Analysis Ref. Category

0-lepton + 2–6 jets + Emiss
T [58]

Inclusive

0-lepton + 7–10 jets + Emiss
T [59]

1-lepton + jets + Emiss
T [60]

τ(τ/`) + jets + Emiss
T [61]

SS/3-leptons + jets + Emiss
T [62]

0/1-lepton + 3b-jets + Emiss
T [63]

Monojet [64]

0-lepton stop [65]

Third generation

1-lepton stop [56]

2-leptons stop [66]

Monojet stop [67]

Stop with Z boson [68]

2b-jets + Emiss
T [69]

tb+Emiss
T , stop [57]

`h [70]

Electroweak

2-leptons [54]

2-τ [55]

3-leptons [53]

4-leptons [71]

Disappearing Track [72]

Long-lived particle [73, 74]
Other

H/A→ τ+τ− [75]

Table 1. The 22 different ATLAS searches considered in this summary. The term ‘lepton’ (`)

refers specifically to e± and µ± states, except in the cases of the electroweak 3-leptons and 4-

leptons analyses where τ leptons are also included.

2.1 Inclusive searches

The inclusive searches are designed to be sensitive to prompt decays of squarks, particularly

those of the first two generations, and gluinos. Strongly interacting sparticles may decay

directly to the LSP, via the decay q̃ → q + χ̃0
1 for the squark and via g̃ → q + q̄ +

χ̃0
1 for the gluino. Alternatively, cascade decays may also occur involving one or more

additional sparticles yielding final states with additional jets, large Emiss
T and possibly

leptons, including τ leptons. The ATLAS searches targeting these final states are classified

according to the different dominant signal signatures, as follows.

The 0-lepton + 2–6 jets + Emiss
T analysis [58] has wide-ranging sensitivity to strongly

interacting sparticle production. It vetoes events with leptons in order to suppress the back-

ground from W boson and tt̄ decays. Depending on the signal region, final states with a

minimum jet requirement of 2–6 jets with large transverse momenta (denoted pT in the fol-
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lowing) are considered, each in association with large Emiss
T . Signal regions with small num-

bers of jets provide sensitivity to the direct production and decay of squarks, while those

with higher jet multiplicities are sensitive to the production and direct decay of gluinos, and

various cascade decays. The original analysis has two signal regions specifically targeting

hadronic decays of high-pT W bosons. These signal regions are not considered in this paper.

The 0-lepton + 7–10 jets + Emiss
T analysis [59] selects events with significant Emiss

T

and with jet multiplicities ranging from 7 to 10 or more, depending on the signal region.

It was designed to target, amongst others, models where each gluino of a produced pair

decays through a (possibly virtual) top squark to t+ t̄+ χ̃0
1. The four top quarks produced

generally lead to large jet multiplicities in the final state. This search also has sensitivity

to other models in which cascade decays generate large numbers of jets. It has a looser

requirement on the Emiss
T than the 2–6 jet analysis described in the previous paragraph,

because the many possible intermediate stages of the cascade decay tend to reduce the

Emiss
T . Unlike the original analysis, where the disjoint signal regions could be statistically

combined to improve sensitivity, in this paper signal regions are considered individually

when determining whether or not a model point is excluded.

The 1-lepton + jets + Emiss
T analysis [60] explicitly requires one isolated lepton, several

jets and high Emiss
T in the selection. Two sets of signal regions are used from this analysis

— one set with relatively high pT leptons (sensitive to SUSY scenarios with larger mass

splittings between the produced sparticle and the LSP) and another set using low-pT leptons

(sensitive to smaller mass splittings). The signal regions requiring two leptons are not

considered. Overall, it is sensitive to decay chains where leptons can be produced through

the cascade decay of squarks and gluinos.

The τ(τ/`) + jets + Emiss
T search [61] targets final states arising from cascades pro-

ducing hadronically decaying τ leptons — with signal regions requiring either one or two

τ leptons, and including large Emiss
T , jets and either exactly zero or one additional light

lepton. This search can be sensitive to long decay chains in models with light staus.

Cascade decays of squark and gluino pairs can also lead to final states with multiple

leptons, or with two leptons of the same electric charge, known as same-sign (SS) leptons.

Those final states are addressed by the SS/3-leptons + jets + Emiss
T analysis [62], which

requires multiple jets in the final state, and either two SS leptons — with or without jets

containing b-hadrons (b-jets) in the final state — or at least three leptons.

For models where many b-jets are expected, the specially designed 0/1-lepton + 3b-jets

+ Emiss
T analysis [63] is sensitive. This analysis is designed around the definition of two sets

of signal regions: one set with no isolated leptons, and another with at least one isolated

lepton.

The Monojet analysis [64] selects events where the leading jet’s pT is as large as 50% of

the Emiss
T , and there is large Emiss

T and no leptons. The single jet can originate from initial-

state QCD radiation (ISR), providing sensitivity to collisions in which no decay products

from sparticle decays are observed. This can occur either for direct pair production of

invisible LSPs, or if the produced sparticles are only a little heavier than the LSP (up to

a few GeV) and their decays therefore produce SM particles of too low an energy to be

detected in the other searches.

– 5 –
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2.2 Third-generation searches

This set of analyses is focused on searches for direct production of third generation squarks.

Their masses are generally expected to be at the TeV scale or below if the Higgs boson(s)

are to be protected from large unnatural loop corrections. The decay of t̃ and b̃ squarks

also leads to distinctive experimental signatures, typically involving the production of t- or

b-quarks in association with large Emiss
T .

The 0-lepton stop search [65] is optimised for the direct production of pairs of top

squarks decaying directly to a top quark and neutralino, leading to an all-hadronic final

state with at least two b-jets and large Emiss
T . Most of the signal regions rely on variables

related to the reconstructed top quarks present in the final state and on lepton vetoes, but

there are also signal regions that target the case where one of the pair of top squarks decays

to a top quark and a neutralino and the other decays to a bottom quark and a chargino.

The 0-lepton stop search is complemented by the 1-lepton stop search [56], in which

all of the signal regions are characterised by exactly one isolated lepton, at least two jets

and large Emiss
T . The presence of a b-jet is used in both signal regions targeting t̃1 → bχ̃±

1

and those targeting t̃1 → tχ̃0
1, while the latter also use variables related to reconstructed

top quarks. The dedicated signal regions targeting top squark decays with soft leptons or

boosted top quarks are not included in this paper.

The 2-leptons stop search [66] is designed for final states containing two isolated leptons

and large Emiss
T , primarily targeting top squarks decaying through an intermediate chargino.

Only the so-called “leptonic mT2” signal regions, targeting charginos decaying through on-

shell W bosons, are included in this paper.

The Monojet stop analysis [67] looks for final states characterised by large Emiss
T , at

least one high-pT jet (vetoing events with more than three jets), and no leptons. The signal

regions of this search were designed in the context of a search for top squarks, each decaying

into an undetected charm quark and a neutralino which is relevant for cases where the LSP

mass is close to the top squark mass. The Emiss
T requirement is less stringent than that of

the Monojet analysis described in section 2.1. The signal regions targeting reconstructed

and tagged charm jets are not included in this paper.

The search for top squarks with a Z boson in the final state [68] is motivated by the

decay of t̃2 → t̃1Z, which can produce many leptons in the final state. The leptons are

required to form a pair with a mass consistent with the Z boson, with at least one b-jet

and large Emiss
T .

The 2b-jets + Emiss
T analysis [69] searches for SUSY scenarios that produce events

containing exactly two b-jets, significant Emiss
T and no isolated leptons, for example those

coming from decays of bottom squarks to a b-quark and the LSP and from top squark to

a b-quark and chargino.

The tb+Emiss
T , stop analysis [57] was designed for a mixed scenario: direct production

of pairs of top or bottom squarks each decaying (with various branching ratios) to neu-

tralinos or charginos, and yielding final states consisting of a top quark, bottom quark and

large Emiss
T .

– 6 –
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2.3 Electroweak searches

This section details the analyses considered in this paper which target sparticles produced

via electroweak interactions. This includes the production of pairs of sleptons or elec-

troweakinos which typically decay into final states containing several high-pT leptons and

significant Emiss
T .

The lepton plus Higgs boson (`h) analysis [70] is designed to search for direct pair

production of a chargino and a neutralino, which decay to final states with large Emiss
T ,

an isolated lepton, and a Higgs boson h which is identified by requiring either two b-jets,

or two photons, or a second lepton with the same electric charge (targeting h → WW

decays). Only the signal regions for Higgs boson decays to bottom quarks are considered

in this paper.

The 2-leptons analysis [54] targets electroweak production of charginos and/or neu-

tralinos, or sleptons in events with exactly two leptons, large Emiss
T and, for some signal

regions, two or more jets in the final state.

A complementary search targeting the third-generation leptons is the 2-τ analysis [55]

searching for SUSY in events with at least two hadronically decaying τ leptons, large Emiss
T

and a jet veto.

The 3-leptons analysis [53] is a search for the direct production of charginos and neu-

tralinos in final states with three leptons — which here may include up to two hadronically

decaying τ leptons — and large Emiss
T , which can come through the decays via sneutrinos,

sleptons or W , Z or Higgs bosons.

The 4-leptons analysis [71] looks for SUSY in events with four or more leptons, of

which at least two must be electrons or muons. The leptons may also include hadronically

decaying τ leptons in this case. Such high lepton multiplicity final states can occur if a

degenerate χ̃0
2 χ̃

0
3 pair is produced which subsequently decay via sleptons, staus or Z bosons

to χ̃0
1 and many leptons.

The Disappearing Track analysis [72] is motivated by scenarios with a wino-like LSP in

which the charged wino is typically only ∼ 160 MeV heavier than the LSP. In such models

the χ̃±
1 can have decay lengths of order a few tens of centimetres before it decays to a χ̃0

1

and a charged pion. The low-momentum pion track is typically not reconstructed, so the

distinctive signature is that of the high-pT chargino track apparently disappearing within

the detector volume.

2.4 Other searches

The long-lived particle searches [73, 74] are designed to detect heavy long-lived particles

by measuring their speed β using the time-of-flight to the calorimeters and muon detectors

and βγ (where γ is the relativistic Lorentz factor) from the specific ionisation energy loss

in the pixel detector. Only the direct production of pairs of long-lived top or bottom

squarks, gluinos, staus or charginos are considered in this paper. The search using 7 TeV

data from 2011 [73] considered sparticles as light as 200 GeV, whereas in most cases the

later analysis [74] only considered sparticles above 400 GeV. Both searches are therefore

included for maximal sensitivity.

– 7 –
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The H/A → τ+τ− search [75] is designed to detect the heavy, neutral Higgs bosons

predicted in the MSSM if they decay to τ -pairs.

3 pMSSM points and indirect constraints

An overview of the method of selecting signal model points is provided in this section.

A summary of the scan of the pMSSM parameter space, the software employed, and the

constraints applied to determine the final selection are described.

3.1 pMSSM points generation

The model set is generated by selecting model points within the pMSSM using methods

similar to those described in ref. [34], but with several important changes. The modifica-

tions are made after taking into account new experimental results, updated calculational

tools, knowledge gained from the study described in ref. [34], and the improved capabilities

of the ATLAS simulations. The full details of the method by which the model points are se-

lected, including the sampling procedure, the codes employed, and the constraints applied

to determine the final selection of ‘surviving’ model points may be found in the appendices.

The model points are selected after making the following assumptions about the MSSM.

They are motivated both by constraints from experimental observations and a desire for

theoretical simplicity:

(i) R-parity is exactly conserved.

(ii) The soft parameters are real, so that no new sources of CP violation exist beyond that

present in the CKM matrix.

(iii) Minimal Flavour Violation [76] is imposed at the electroweak scale.

(iv) The first two generations of squarks and sleptons with the same quantum numbers

are mass degenerate, and their Yukawa couplings are too small to affect sparticle

production or precision observables.

(v) The LSP is the lightest neutralino.

This approach remains agnostic about the presence of non-minimal particle content at

higher scales, the mechanism of SUSY breaking, and the unification of sparticle masses.

Assumptions ii–iv are motivated by the necessity of imposing some organising principle on

SUSY flavour-violating parameters to allow TeV-scale masses for the squarks and sleptons.

Combining assumptions i–v reduces the large MSSM parameter space to the 19-dimensional

subspace considered here. The parameters and the ranges used to sample them are listed

in table 2. The 4 TeV upper bound on most of the mass parameters is chosen to make

all states kinematically accessible at the LHC. As might be expected, decreasing the value

of this upper limit restricts the space, resulting in an increase in the apparent fraction of

the pMSSM space to which ATLAS analyses are sensitive. Further increasing any physical

mass above 4 TeV has little effect on the LHC phenomenology in most cases. An exception

– 8 –
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Parameter Min value Max value Note

mL̃1
(= mL̃2

) 90 GeV 4 TeV Left-handed slepton (first two gens.) mass

mẽ1(= mẽ2) 90 GeV 4 TeV Right-handed slepton (first two gens.) mass

mL̃3
90 GeV 4 TeV Left-handed stau doublet mass

mẽ3 90 GeV 4 TeV Right-handed stau mass

mQ̃1
(= mQ̃2

) 200 GeV 4 TeV Left-handed squark (first two gens.) mass

mũ1(= mũ2) 200 GeV 4 TeV Right-handed up-type squark (first two gens.) mass

md̃1
(= md̃2

) 200 GeV 4 TeV Right-handed down-type squark (first two gens.) mass

mQ̃3
100 GeV 4 TeV Left-handed squark (third gen.) mass

mũ3 100 GeV 4 TeV Right-handed top squark mass

md̃3
100 GeV 4 TeV Right-handed bottom squark mass

|M1| 0 GeV 4 TeV Bino mass parameter

|M2| 70 GeV 4 TeV Wino mass parameter

|µ| 80 GeV 4 TeV Bilinear Higgs mass parameter

M3 200 GeV 4 TeV Gluino mass parameter

|At| 0 GeV 8 TeV Trilinear top coupling

|Ab| 0 GeV 4 TeV Trilinear bottom coupling

|Aτ | 0 GeV 4 TeV Trilinear τ lepton coupling

MA 100 GeV 4 TeV Pseudoscalar Higgs boson mass

tanβ 1 60 Ratio of the Higgs vacuum expectation values

Table 2. Scan ranges used for each of the 19 pMSSM parameters. Where the parameter is written

with a modulus sign both the positive and negative values are permitted. In the above, “gen(s)”

refers to generation(s).

is when decays proceed via virtual heavy sparticles, when increasing that sparticle mass

would lead to further suppression of those decays. A larger range is permitted for |At|, a

parameter which affects loop corrections to the mass of the the Higgs boson. The larger

range increases the fraction of model points having the mass of the lightest Higgs boson

close to the measured value.

Given the large dimensionality of the pMSSM, a grid sampling technique at regular

intervals is impractical. The space is therefore sampled by choosing random values for each

parameter. It should be noted that in many cases only some of the parameters are relevant

for a given observable, in which case the scan is effectively more comprehensive within the

subspace of relevant parameters. The value of each parameter is chosen from a flat probabil-

ity distribution, with lower and upper bounds given in table 2. The lower and upper limits

of the parameter ranges are chosen to avoid experimental constraints and to give a high den-

sity of model points with masses at scales accessible by the LHC experiments, respectively.

Condition iv imposes the constraints that the soft mass terms for the second generation

are equal to those in the first, as shown in table 2. This means, for example, that ũL and

c̃L have the same soft mass term in the Lagrangian so that their physical masses are very

close. Furthermore the scalar partners of the left-handed fermions, such as ẽL and ν̃eL ,

have the same soft mass due to SU(2)L invariance, but D-terms related to electroweak

symmetry breaking split their mass-squared values by O(m2
W ).
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Parameter Minimum value Maximum value

∆ρ −0.0005 0.0017

∆(g − 2)µ −17.7× 10−10 43.8× 10−10

BR(b→ sγ) 2.69× 10−4 3.87× 10−4

BR(Bs → µ+µ−) 1.6× 10−9 4.2× 10−9

BR(B+ → τ+ντ ) 66× 10−6 161× 10−6

Ωχ̃0
1
h2 — 0.1208

Γinvisible(SUSY)(Z) — 2 MeV

Masses of charged sparticles 100 GeV —

m(χ̃±
1 ) 103 GeV —

m(ũ1,2, d̃1,2, c̃1,2, s̃1,2) 200 GeV —

m(h) 124 GeV 128 GeV

Table 3. Constraints on acceptable pMSSM points from considerations of precision electroweak

and flavour results, dark matter relic density, and other collider measurements. A long dash (—)

indicates that no requirement is made. Further details may be found in the text.

Once each of the 19 parameters has been chosen, a variety of publicly available soft-

ware packages are used to calculate the properties of each model point, as described in

appendix A. In some cases the software is modified to produce accurate results for the

wide range of models found in the pMSSM scan. The sparticle decays are calculated, again

using a variety of codes and analytical techniques, as described in appendix B.

3.2 pMSSM point selection

Acceptable model points are furthermore required to have consistent electroweak symmetry

breaking, a scalar potential that does not break colour or electric charge, and all particles’

mass-squared values must be positive. Model points with theoretical pathologies, described

in more detail in appendix C, are discarded. Further experimental constraints, shown in

table 3, which indirectly affect the parameter space are applied and described below.

3.2.1 Precision electroweak and flavour constraints

Unless specified otherwise, the relevant observables are calculated using micrOMEGAs

3.5.5 [77, 78]. The constraint on the electroweak parameter ∆ρ uses the limit on ∆T

(the parameter describing the radiative corrections to the total Z boson coupling strength,

the effective weak mixing angle, and the W boson mass) in ref. [79] and ∆ρ = α∆T with

α = 1/128. The allowed branching ratio (BR) of b→ sγ is the union of the two standard de-

viation (2σ) intervals around the theoretical prediction and the experimental measurement

from ref. [80]. For the branching ratio of Bs → µ+µ−, the value calculated by micrOMEGAs

is scaled by 1/(1 − 0.088) as proposed in ref. [81] for comparison with experiment. The
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scaled value is required to lie within the 2σ interval around the combined result from the

LHCb and CMS Collaborations [82]. The 2σ theoretical prediction for the SM (3.20 to

4.12)× 10−9 lies within this interval. The branching ratio B+ → τ+ντ is calculated using

ref. [83], which includes tan β-enhanced corrections. The allowed range is the union of the

2σ intervals around the experimental results [84–87] and the SM prediction [88]. Finally,

for the SUSY contribution to the anomalous magnetic moment of the muon, ∆(g − 2)µ, a

very large range is allowed. This range in ∆(g−2)µ is the union of the 3σ intervals around

the SM value, (0.0 ± 5.9) × 10−10 from combining [89] the results of refs. [90–92] and the

experimental measurement [93, 94] corrected to an updated value of the muon to proton

magnetic moment ratio [95, 96] giving ∆(g − 2)µ,exp = (24.9 ± 6.3) × 10−10. Three-sigma

intervals are used to obtain a continuous range from the union.

3.2.2 Dark matter constraints

Since R-parity is assumed to be exactly conserved, the LSP is stable and as a consequence

has a non-zero cosmological abundance. It is assumed that the LSP abundance is

determined thermally and is not diluted by other processes e.g. late-time entropy addition.

No assumption is made about whether the LSP is the sole constituent of dark matter.

As a result, the total cold dark matter energy density is used as an upper limit on the

LSP abundance. The limit is based on the latest combined measurement from the Planck

Collaboration of ΩCDMh
2 = 0.1188 ± 0.0010 (table 4 of ref. [97]).2 The upper limit is

set to the observed central value plus double the experimental uncertaintity. The limit

on the spin-independent cross-section is that for the interaction of a neutralino with

a nucleus derived by the LUX experiment [98]. In the case of the LSP mass versus

proton spin-dependent cross-section plane the limit is from the COUPP Collabora-

tion [99], while in the LSP mass versus neutron spin-dependent cross-section plane, the

XENON100 Collaboration [100] limit is applied. MicrOMEGAs 3.5.5 is used to calculate

the neutralino-nucleon cross-sections. These are scaled down by the ratio of the expected

relic density from the LSP to the observed relic density to obtain the effective dark

matter cross-sections, assuming the remaining non-LSP dark matter is invisible to the

direct detection experiments. When accepting or rejecting models, the calculated value is

allowed to be up to a factor of four higher than the limits obtained by the experiments,

to account for nucleon form-factor uncertainties [33].

3.2.3 Collider constraints

Finally, constraints from LEP and from the measurement of the Higgs boson mass at the

LHC are applied. To ensure consistency with LEP, model points are discarded if their ad-

ditional contribution to the invisible width of the Z boson is above 2 MeV [101], or where

any charged sparticle is lighter than 100 GeV. For charginos, the bound is increased to

103 GeV, provided that all sneutrinos are heavier than 160 GeV and the mass splitting be-

tween the chargino and the LSP is at least 2 GeV. This constraint comes from the combined

2It should be noted that in the context of the dark matter relic density the symbol h corresponds to the

normalised Hubble constant, rather than the Higgs boson.
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LSP type Definition Sampled
Simulated

Weight
Number Fraction

‘Bino-like’ N2
11 > max(N2

12, N
2
13 +N2

14) 480× 106 103,410 35% 1/24

‘Wino-like’ N2
12 > max(N2

11, N
2
13 +N2

14) }
20× 106

{ 80,233 26% 1

‘Higgsino-like’ (N2
13 +N2

14) > max(N2
11, N

2
12) 126,684 39% 1

Total 500× 106 310,327

Table 4. Categorisation of the 310,327 model points by the type of the LSP (assumed to be

the χ̃0
1) according to the neutralino mixing matrix parameters Nij , where the first index indicates

the neutralino mass eigenstate and the second indicates its nature in the lexicographical order

(B̃, W̃ , H̃1, H̃2). For example, N1,2 is the amplitude for the LSP to be W̃ . The final two columns

indicate the fraction of model points in that category that are sampled, and their weighted fraction

after importance sampling.

LEP search [102]. First- and second-generation squarks are required to be heavier than

200 GeV, although this has only a very small effect given the scan range and the assumption

of negligible first- and second-generation squark mixing. The lightest Higgs boson mass, as

calculated by FeynHiggs 2.10.0 [103, 104], is required to be in the range 124 to 128 GeV.

This range is set around the central value of the Higgs mass at the time of generation,

126 GeV, and with a 2 GeV window that mainly reflects the typical theoretical uncertainty

of the FeynHiggs calculation. The results are found not to depend on the exact value of

the Higgs mass within this interval (as shown later in section 5.4).

3.2.4 Importance sampling by LSP type

Since low-mass SUSY models typically over-produce dark matter, the relic density

constraint in table 3 sculpts the distribution of the allowed model points. The constraint

depends strongly on the nature of the LSP. Except where particularly effective neutralino

annihilation mechanisms are available, model points with a bino-like LSP generally tend to

produce too much dark matter [105], meaning that such models are infrequently sampled

and accepted in a random scan employing flat priors. The model points are therefore

partitioned into three categories, bino-like, wino-like and Higgsino-like. The categorisation

is made according to the dominant contribution to the LSP within the neutralino mixing

matrix Nij as shown in table 4. Model points are therefore selected, by importance

sampling, in such a way that approximately equal numbers are obtained for each LSP

type. In total 500 million model points are sampled randomly within the ranges listed

in table 2. From the first 20 million sampled, 206,917 model points had a wino-like or

Higgsino-like LSP and satisfied all of the constraints of table 3. To obtain a sufficiently

high number with bino-like LSP, the remaining 480 million model points are used to find

the 103,410 which had a bino-like LSP and satisfied the table 3 constraints. Generally

models have a LSP dominated by one particular type, with over 87% of models having a

LSP which is at least 90% pure. The phenomenology of each LSP type can be explored

separately due to the large number of model points in each category. In the following
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Figure 1. Distributions of the gluino and LSP masses, shown separately for models with a bino-like

(dotted red), wino-like (dashed blue) or Higgsino-like (solid green) LSP. The constraints listed in

table 3 have been applied, but not the constraints from the ATLAS searches. The distributions are

normalised to unit area. The inset in the plot on the right shows in more detail the region of low

neutralino mass for the models with bino-like LSP.
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Figure 2. Normalised distribution of sparticle masses for the lightest top (solid red), bottom

(dashed blue), first- or second-generation squark (dashed green) and stau (dot-dashed black) for all

LSP types combined. The constraints listed in table 3 have been applied, but not the constraints

from the ATLAS searches.

plots, where all LSP types are shown together the contribution from each LSP type is

scaled according to the weights shown in table 4.
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3.3 Properties of model points (before applying ATLAS constraints)

The distributions of the gluino and LSP masses for the model points satisfying the con-

straints from table 3 are shown in figure 1, separately for models with a bino-, wino- or

Higgsino-like LSP. Light gluinos are more common among model points with bino-like LSP.

Dark matter for model points with bino-like LSP is typically over-produced, so the presence

of a gluino state close in mass to the LSP enables them to act as coannihilators with the dark

matter in the early universe, reducing the relic density to a level that satisfies the constraint

on Ωχ̃0
1
h2. The neutralino mass distribution for the bino-like LSP model points shows

a sharp concentration of model points with m(χ̃0
1) . 100 GeV. This concentration corre-

sponds to model points in which the dark matter relic density constraint can be satisfied due

to enhanced neutralino pair annihilation via the Z or Higgs boson poles. A plot of the low-

mass region for bino-LSP model points (shown in the inset to figure 1(a)) confirms this inter-

pretation, showing two individual peaks corresponding to the separate Z and Higgs poles.

The identity of the next-to-lightest supersymmetric particle (NLSP) can be important

for the phenomenology of a model point, and is strongly influenced by the LSP type. The

NLSP is nearly always a chargino or neutralino for wino-like or Higgsino-like LSPs, as is

expected given the small splittings between the different components of the wino or Higgsino

multiplets. In particular, over 99% of wino-like LSP model points have a chargino NLSP.

The small mass difference between the χ̃±
1 and the χ̃0

1 can lead to long χ̃±
1 lifetimes for

wino-like and Higgsino-like LSPs, which result in the types of disappearing tracks searched

for in the analysis described in ref. [72].

Bino-like LSP model points, by contrast, exhibit a much wider range of NLSP types,

the distribution of which is determined by their effect on the LSP annihilation rate. Even

for models with a bino-like LSP, charginos and neutralinos are still the most common

NLSP type, since LSP-Higgsino mixing is important for many of the possible annihilation

mechanisms. The remaining NLSP types are generally ordered by their effectiveness as

coannihilators, with coloured NLSPs being the most prevalent and neutral NLSPs (sneu-

trinos) being the least so. The NLSP-LSP mass splitting for bino-like LSP model points is

frequently less than 50 GeV, supporting the assertion that light sparticles beyond the LSP

are typically required to avoid over-production of bino-like LSPs.

In cases where a squark, gluino or slepton is almost mass degenerate with the LSP, the

small available phase-space in the decay can lead to sparticles that are long-lived or even

stable on the time scale for traversal of the ATLAS detector. In total 3,427 model points

contain squarks, gluinos or sleptons with cτ > 1 mm. The sensitivity of the SUSY searches

targeting prompt decays (the first three categories in table 1, other than the Disappearing

Track analysis) to these model points is reduced and therefore only the long-lived particle

searches were considered for these model points.

The distributions of the mass of several other sparticles of phenomenological interest

at the LHC can be found in figure 2. Even before ATLAS analyses are considered, the

model set is depleted in light top squarks, and to a slightly lesser extent in light bottom

squarks, by the requirement (in table 3) that the lightest Higgs boson mass be close to the

experimentally observed value.
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Minimum cross Fraction of models generated

Production mode section [fb] Bino LSP Wino LSP Higgsino LSP

Strong 0.25 82.5% 74.9% 76.7%

Mixed 0.25 52.6% 42.1% 13.9%

Electroweak 7.5 38.3% 72.5% 75.0%

Slepton pair 0.75 9.6% 7.9% 9.5%

Table 5. Minimum cross-sections required to do particle-level event generation for the four different

production modes and the fraction of the models above this cross-section for each LSP type.

4 Signal simulation and evaluation of searches

For each of the 310,327 model points passing the preselection described in table 3 it has

to be determined which, if any, of the ATLAS searches are sensitive to it and whether it

can be excluded or not. Simulating and running the full set of ATLAS analyses on these

would be extremely time and resource consuming. Each model point is therefore evaluated

in three steps as described below. A special procedure is applied to evaluate the searches

for long-lived particles and heavy Higgs bosons as described in the following sub-sections.

4.1 Supersymmetry signals

First, each model point is categorised based on its production cross-sections for SUSY

particles, as calculated using Prospino 2.1 [106–110]. The production processes are split

into three separate groups: strong production, electroweak production (encompassing elec-

troweakino and slepton pair production) and finally mixed production (e.g. of an elec-

troweakino in association with a squark or gluino). Model points with cross sections for

any of those processes larger than the minimum values in table 5 are subsequently re-

tained, and any such processes are investigated in more detail as described below. For

strong and mixed production, the minimum cross-section corresponds to just five signal

events produced in the full
√
s = 8 TeV dataset. Sensitivity to such small cross-sections

occurs only for model points with a very high fraction of events with four leptons in the

final state, for which the 4-leptons analysis has a high acceptance (up to 50%). Produc-

tion of electroweakinos is most effectively observed by using decays to leptons, which are

often suppressed by the leptonic branching fractions of W , Z and h bosons, explaining the

higher cross-sections limits. ATLAS searches have a greater sensitivity to low cross-section

slepton pair production than to electroweakino production. Therefore, if the model point

does not satisfy the higher cross-section criterion of the electroweak production group, a

fourth group that allows for model points with lower cross-section slepton pair production

is considered. Fewer than 10% of the model points have no process passing this selection

and are thus not considered to be excludable.

For each of the model points satisfying one or more of the production mode cross-

section criteria, a large sample of events is generated using MadGraph5 1.5.12 [111] with
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the CTEQ 6L1 parton distribution functions (PDF) [112] and Pythia 6.427 [113] with the

AUET2B set of parameters [114]. MadGraph5 is used to generate the initial pair of sparticles

and up to one additional parton in the matrix element, while Pythia is used for all sparticle

decays and parton showering3 MLM matching [115] is used with up to one additional jet

in the MadGraph matrix element, a MadGraph kT measure of 100 GeV, and a Pythia jet

measure cut off of 120 GeV. Both Tauola 1.20 [116] and Photos 2.15 [117] are enabled

to handle the decays of τ leptons and final-state radiation of photons, respectively.

To reduce the amount of computationally expensive detector simulation and recon-

struction that is required, a Monte Carlo particle-level selection corresponding to each of

the SUSY searches in the first three categories in table 1 is used to process the generated

events. In this step, inefficiencies from the detector-level reconstruction are parameterised

using a single efficiency factor for each signal region, determined from previously simulated

signal samples. Exceptions to this are made for the τ reconstruction efficiency in the τ(τ/`)

+ jets + Emiss
T and 2-τ searches, for which pT-dependent efficiencies are applied for each

signal τ . Similarly, the Disappearing Track search applies the reconstruction efficiency for

decaying charginos as a function of the distance from the centre of the ATLAS detector

and the angular coordinates as published in ref. [72]. The expected event yield in each

signal region is calculated for each model point. For most analyses the categorisation is

performed by directly comparing the expected signal yield Nsig to the model-independent

95% confidence level (CL) upper bound on the number of beyond-the-SM events N95
max in

each signal region of that analysis. Model points are then partitioned into three categories,

on the basis of that particle-level simulation, using criteria determined to be appropriate

for each individual analysis. The first category comprised those already excluded at this

stage on the basis that Nsig is sufficiently larger than N95
max for at least one signal region of

one analysis. The expected sensitivity of all other analyses to such model points is calcu-

lated using particle-level yields, and using average reconstruction efficiencies. The second

category corresponds to those found not to be excludable, consisting of points with Nsig

materially smaller than N95
max for all analyses. The exact relationship between Nsig and

N95
max for the categorisation is determined separately for each signal region and depends on

the accuracy with which the particle-level evaluation reproduces the results of a full simu-

lation. In total 35.9% (44.7%) of the model points fall in the first (second) category and are

deemed to have been excluded (not excluded) at the 95% CL. The validity of this classifica-

tion was confirmed using the full simulation and reconstruction procedure described below

for approximately 5% of the model points in the first category for each analysis. A final

category of model points — those with Nsig close to N95
max (typically within a factor of a

few) for the most sensitive analyses — are subject to more detailed investigation, as follows.

For the 44,559 model points for which the overall exclusion is uncertain based on

the particle-level simulation described above, the final step is a fast, GEANT4-based [118]

simulation using a parameterisation of the performance of the ATLAS electromagnetic

and hadronic calorimeters [119] and full event reconstruction. The simulation includes

a realistic description of multiple pp interactions per bunch crossing, and is corrected

3Polarisation from the decay of the initial sparticles is not taken into account in this analysis.
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for identification efficiencies and resolution effects. For each such model point, signal

events are generated corresponding to four times the integrated luminosity recorded (i.e.

81.2 fb−1). The simulation is limited to those production modes which could contribute to

the analyses of interest. For these processes, the nominal cross-section and the uncertainty

are taken from an envelope of cross-section predictions using different parton distributions

and factorisation and renormalisation scales, as described in ref. [120]. The addition of the

resummation of soft gluon emission at next-to-leading-logarithm accuracy (NLL) [106, 121–

124] is performed in the case of strong production of sparticle pairs.

The status of each previously inconclusive model point is then determined for each

of the analyses using the same procedure [125] as used in the original analyses. In each

analysis the signal region with the best expected sensitivity is identified and the “CLs

method” [126] is used to determine if the model point is excluded or not at 95% CL. It

should be noted that for the exclusion fits, the nominal signal cross-sections are used,

without any theoretical uncertainties on the signal, except for the Monojet stop and

Monojet analyses. These two analyses are particularly sensitive to the modelling of ISR as

they rely on a high-pT ISR jet in their event selection. Therefore an additional 25% ISR

signal uncertainty is applied in those cases, based on the observed variance in acceptance

in signal samples with modified parameters for the ISR modelling [67]. For the 0-lepton

+ 7–10 jets + Emiss
T , 0/1-lepton + 3b-jets + Emiss

T and 2-leptons stop analyses, it is not

possible to apply the full combined fit procedure of the original analyses. Instead only the

individual signal regions are considered, resulting in somewhat conservative modelling of

the sensitivity for those three analyses. For the overall exclusion, no attempt is made to

combine the individual analyses. Instead the analysis with the best expected exclusion is

used for each model point to determine its status.

4.2 Long-lived particle search

Model points with heavy long-lived particles require special treatment since such particles

can traverse part or all of the ATLAS detector leaving rather distinct signatures. The

dominant types of long-lived particles in the model points are the χ̃+
1 and the χ̃0

2 when

they are almost mass-degenerate with the LSP. The decay of such long-lived particles is

included in the simulation procedure described above and model points with such long-lived

particles are considered using the same procedure.

Aside from the electroweakinos, 3,427 of the model points contain squarks, gluinos or

sleptons with cτ > 1 mm. These model points have not been simulated. Instead only the

results from the Long-lived particle searches are used to constrain these model points.

The long-lived particle searches in refs. [73] and [74] provide limits on the production

cross-section at 7 and 8 TeV, respectively, of bottom squarks, top squarks, gluinos, staus

and charginos in the case where these live long enough to traverse the complete detector.

Model points with bottom squarks, top squarks, gluinos, staus or charginos with a lifetime

above 85 ns and production cross-sections exceeding the corresponding cross section limit

from either the 7 or 8 TeV result are considered to be excluded. In all other cases —

where the lifetime is shorter or the production cross-sections lower — the model point is

considered not to be excluded.
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4.3 Heavy Higgs boson search

Cross sections and branching ratios for heavy Higgs bosons are calculated for gluon

fusion, or for production in association with b-quark(s) [127–129]. The high-mA category

(mA > 200 GeV) of the ATLAS search [75] is used since this regime is relevant to all the

model points in this study. It is assumed that b-quark associated production dominates

and this calculation is performed for each model point in the pMSSM parameter space

using the software SusHi 1.3.0 [103, 130–141]. The large value of mA in all the model

points has the effect that the A and H bosons are nearly mass degenerate, so both must

be simulated. The quantity σ(bbH)× BR(H → ττ) + σ(bbA)× BR(A→ ττ) is calculated

and is compared to the ATLAS 95% CL upper limits [75] for a scalar particle produced in

association with b-quark(s) and decaying to ττ . For the overall exclusion, this heavy Higgs

boson search is considered only if none of the SUSY searches are expected to exclude the

model point at the 95% CL.

5 ATLAS constraints from LHC Run 1

5.1 Impact of ATLAS searches on sparticle masses

The effect of the ATLAS search constraints are most easily presented as projections onto

one-dimensional or two-dimensional subspaces of the full 19 parameter pMSSM space.4 The

most relevant parameters onto which to project are typically the sparticle masses. Produc-

tion cross-sections for sparticles decrease rapidly when their masses are increased. When

those initial sparticles decay, the masses of other sparticles affect the types of visible decay

products and their kinematics. The mass of the LSP is particularly important since a decay

to a high-mass LSP results in less energy being available for the observable decay products.

The fraction of surviving model points in the projected space necessarily depends both

on the prior distribution of model points in the parameters that have been projected out,

and on experimental constraints on sparticle masses other than those plotted. Thus, some

care is needed in their interpretation. In particular the fractions of model points excluded

can depend, in some cases sensitively, on the non-collider constraints shown in table 3, the

choice of scan ranges shown in table 2, and on the choice of a flat prior. Nevertheless, some

general features of the impact of the ATLAS Run 1 searches are clear.

The simplified-model limits shown on the plots throughout this section are the observed

limits from the indicated analysis. In many cases there are several analyses interpreting

their results in the same simplified models, and in this paper the observed limits from the

most constraining analysis are shown. It should be noted that there is no minimum number

of model points required in each bin.

The results are shown first for squark masses (of the first two generations) and the

gluino mass in section 5.1.1, then for third-generation squark masses in section 5.1.2, and

for the electroweak sparticles in section 5.1.3. A small subset of the model points contain

long-lived squarks, gluinos or sleptons. These 3,427 model points are treated separately

4A full list of model parameters, observables and which analyses, if any, are excluding each model, are

available from the ATLAS Collaboration website [142].

– 18 –



J
H
E
P
1
0
(
2
0
1
5
)
1
3
4

F
ra

c
ti
o

n
 o

f 
 M

o
d

e
ls

 E
x
c
lu

d
e

d

0

0.2

0.4

0.6

0.8

1

) [GeV]g~m(

0 500 1000 1500 2000

) 
[G

e
V

]
0 1

χ∼
m

(

0

500

1000

 LSP
0

1
χ
∼pMSSM: 

1−=8 TeV, 20.3 fbs

 [1405.7875]
0

1
χ
∼ qq→ g~

ATLAS

(a) Gluino / LSP.

F
ra

c
ti
o

n
 o

f 
 M

o
d

e
ls

 E
x
c
lu

d
e

d

0

0.2

0.4

0.6

0.8

1

) [GeV]q~m(

0 500 1000 1500

) 
[G

e
V

]
0 1

χ∼
m

(

0

200

400

600

800

1000
 LSP

0

1
χ
∼pMSSM: 

1−=8 TeV, 20.3 fbs

 [1405.7875]
0

1
χ
∼ q→ q~

 [1405.7875]
0

1
χ
∼ q→/4 q~

ATLAS

(b) Lightest (1st/2nd gen) squark / LSP.

Figure 3. Fraction of pMSSM points excluded by the combination of 8 TeV ATLAS searches in

the (a) g̃-χ̃0
1 and (b) the q̃-χ̃0

1 mass planes. The colour scale indicates the fraction of pMSSM points

excluded in each mass bin, with black squares indicating 100% of model points being excluded. The

white regions indicate places where no model points were sampled which satisfied the constraints

of table 3. In both cases, the solid white lines overlaid are observed simplified-model limits from

the 0-lepton + 2–6 jets + Emiss
T search [58] at 95% CL. In the g̃-χ̃0

1 case, the simplified-model

limit is set assuming direct production of gluino pairs and that the squarks are decoupled, with

gluino decaying to quarks and a neutralino, g̃ → q + q + χ̃0
1. In the q̃-χ̃0

1 plane, both lines are

drawn assuming directly produced first/second-generation squark pairs, with each squark decaying

to a quark and a neutralino, q̃ → q + χ̃0
1. The solid line corresponds to the case where all eight

squarks from the first two generations are assumed to be degenerate. The dashed line has the

squark production cross-section scaled down by a factor of four to emulate the effect of only two of

those eight squarks being kinematically accessible.

in section 5.1.4 as only the long-lived particle search is considered for these model points.

Section 5.1.5 describes the effect of a search for the decay of heavy neutral Higgs bosons

to two τ leptons. The complementarity between the different ATLAS searches is described

in section 5.1.6.

5.1.1 Squarks and gluinos

Figure 3(a) shows the fraction of model points excluded by the ATLAS searches as projected

onto the two-dimensional space of the masses of the LSP and the gluino. As one would

expect, light gluinos are robustly constrained by the ATLAS searches, whereas at larger

gluino masses the fraction of model points excluded is reduced.

It is instructive to compare these observed pMSSM exclusions to the observed lim-

its previously presented for simplified low-scale models. Superimposed on figure 3(a) is a

line showing the 95% CL exclusion previously derived by the 0-lepton + 2–6 jets + Emiss
T

analysis from a simplified model in which only the gluino and the LSP are kinematically

accessible [58]. It can be seen that there is generally good congruence between the region
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(b) Bino-like LSPs.

Figure 4. Fraction of pMSSM points excluded in the g̃-q̃ plane, where q̃ represents the lightest

squark from the first two generations. The overlaid line shows a limit for a simplified model from

the 0-lepton + 2–6 jets + Emiss
T search [58] which assumes strong production of gluinos and eight-

fold degenerate first- and second-generation squarks, with direct decays to quarks and massless

neutralinos. The colour scale is as described in figure 3.

excluded in the two different scenarios, demonstrating that the simplified model is success-

fully capturing the main pMSSM phenomenology in this case. Nevertheless, the pMSSM

sensitivity does differ in detail from that of the simplified model. Not only is this because

multiple analyses are considered here but also because of residual dependence on the masses

of other sparticles. For example, the pMSSM permits the existence of additional particles

with masses lying in between those of the gluino and the LSP, which can lead to cascade

decays. In general such cascade decays can be expected to yield different jet pT and Emiss
T

spectra, and perhaps additional leptons, which have different experimental acceptances.

Close to the diagonal line where m(g̃) is only a little larger than m(χ̃0
1) (figure 3(a))

the simplified-model exclusion from ref. [58] underestimates the ATLAS sensitivity. The

g̃ → qq̄χ̃0
1 decays in this near-degenerate region produce low-energy quarks which typically

fail to meet the kinematic requirements on jets. That ATLAS does indeed show good

sensitivity in this region is instead due to the monojet analyses [64, 67]. These analyses

were designed to capture the recoil of LSPs (or other, slightly heavier, SUSY particles)

against initial-state QCD radiation.

Figure 3(b) shows a different projection, in this case to the mass of the LSP versus the

mass of the lightest squark of the first two generations, q̃L,R for q ∈ {u, d, s, c}, labelled

here and in what follows as q̃. It can be observed that there is good sensitivity at low

squark mass and no models with a squark mass below 250 GeV are allowed by the ATLAS

analyses. The solid line superimposed on figure 3(b) shows the 95% CL exclusion obtained

previously [58] for a simplified model in which the only kinematically accessible sparticles

are the LSP and the eight squark states of the first two generations, where these squarks

are all assumed to have the same mass. It can be seen that the region within the solid
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simplified-model exclusion curve is only partially excluded within the pMSSM. This is

primarily because the pMSSM-19 parameter space does not demand that the squarks be

eight-fold degenerate, reducing the cross-section. There is a closer correspondence between

the pMSSM sensitivity and that of an alternative simplified model (dashed line), in which

the cross-section for direct (anti-)squark production has been reduced by a factor of four,

to model the effect of only two of those eight squarks being mass degenerate.5

A noticeable excursion from the simplified-model lines, visible on both plots in figure 3

is a horizontal band of sensitivity to pMSSM points for LSP masses less than about 200 GeV

stretching up to large gluino (or q̃) masses. Since such high-mass strongly interacting

sparticles have small production cross-sections, one would not expect sensitivity to their

production. Indeed these constraints are not the result of gluino or squark searches, but

instead of searches for disappearing tracks from long-lived charginos. These long-lived

chargino states are common for models with wino-like LSPs with mass splittings between

the charged NLSP and the neutral LSP of less than about 200 MeV. The NLSP, when

it decays inside the detector volume, produces an invisible LSP and a low-energy charged

pion which itself often goes undetected. The search for such ‘disappearing’ charged-particle

tracks is sensitive even in the absence of direct squark or gluino production, and hence

sensitivity is observed for any mass of the strongly interacting sparticle.

Figure 4(a) shows the sensitivity as projected onto the plane of the gluino and squark

masses, where now the LSP mass may take any value. One observes near-total exclusion

by ATLAS analyses of gluinos with masses less than about 700 GeV, with a high fraction of

exclusion up to about 1.2 TeV, for all values of the lightest squark mass. Light squarks are

also strongly constrained, although those constraints weaken as the gluino mass increases,

due to suppression both of direct squark-pair production via t-channel gluino exchange and

of associated production of q̃ + g̃.

The simplified model superimposed onto the squark-gluino plane is one that assumes an

eight-fold degeneracy of squark masses in the first two generations and a massless LSP [58].

As one would expect, this simplified-model line lies close to the upper edge of the pMSSM

sensitivity, since the pMSSM permits non-degenerate squarks, and a non-zero LSP mass,

both of which reduce sensitivity, by reducing the signal cross-section and experimental

acceptance respectively. The reduction in sensitivity caused by a non-zero LSP mass is

more pronounced in the case of model points with a bino-like LSP, figure 4(b). These

model points often have a small mass difference between the squark and the LSP in order

to satisfy the dark matter relic constraint, as discussed earlier in section 3.3.

The pMSSM also allows one to explore how the sensitivity to direct squark production

depends on the nature of the lightest squark. Figure 5 shows that the search reach depends

on whether the squarks are left-handed or right-handed, and whether they are up-type or

down-type squarks. Thus the assumption of equivalent sensitivity for all such squarks,

common in presentation of LHC SUSY searches, is a simplification that is not justified in

the more general context of the pMSSM. The production of down squarks is suppressed

5Reference [58] emulates the effect of a single kinematically accessible squark by dividing the cross-section

by a factor of eight rather than four.
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(d) Right down squark.

Figure 5. Fraction of model points excluded in the planes of the masses of the left-handed and

right-handed squarks (of the first two generations) versus the neutralino mass. Both simplified-

model limit contours are taken from the 0-lepton + 2–6 jets + Emiss
T analysis (figure 10(c) of

ref. [58]); however, for the left (right) handed squarks the assumption of four (two) degenerate

squarks is emulated by dividing the cross-section for production of the eight degenerate squark

states by a factor of two (four). The colour scale is as described in figure 3.

relative to up squarks since there are fewer valence down quarks than up in the proton.

The results for left-handed squarks also differ from those for right-handed squarks. The

ũL and d̃L squarks form a SU(2) doublet and so are degenerate in mass up to electroweak

symmetry breaking effects. This means that if the lightest squark is a q̃L, there would be

another squark with similar mass — a statement not usually true for q̃R, which have no

similar constraint. For a particular value of the lightest squark mass, the presence of a

pair of left-handed squarks effectively increases the overall squark production cross-section,

leading to larger apparent sensitivity. The improved sensitivity to left-handed squarks is

further enhanced by the dominant squark decay modes. Right-handed squarks, which lack
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(c) Left handed t̃1, all searches.
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(d) Right handed t̃1, all searches.

Figure 6. Fraction of pMSSM points excluded in the t̃1-χ̃0
1 plane in various cases. The top two

plots show the full model set, with impact of all searches on the left and only the third-generation

searches on the right. The bottom row of plots separates the models according to whether the t̃1 is

either mostly (c) left handed or (d) right handed. There are relatively few pMSSM points at low

t̃1 mass for the reasons described in the text. The simplified-model limit overlaid [56, 57] is set

assuming directly produced top squark pairs, with each decaying to a top quark and neutralino,

t̃1 → tχ̃0
1. The colour scale is as described in figure 3.

weak couplings and have small Yukawa couplings, have suppressed decays to the wino-like

or Higgsino-like LSPs which dominate the model sample. Instead right-handed squarks

generally cascade decay via other electroweakino states resulting in events with smaller

Emiss
T , a greater number of lower-pT jets, and generally a smaller experimental sensitivity.

5.1.2 Third-generation squarks

The third-generation squarks are of particular phenomenological interest, since light top

squarks (and to a lesser extent bottom squarks) are usually required if SUSY is to solve the
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naturalness problem associated with the Higgs boson mass. They have been the subject of

several dedicated searches, listed as ‘third-generation’ in table 1. Within the 19-parameter

pMSSM the masses of these third-generation squarks are controlled by different parameters

than for the first two generations, allowing the t̃1,2 and b̃1,2 masses to differ substantially

both from one another and from the squarks of the first two generations.

Figure 6(a) shows the fractional exclusion of model points as projected onto the plane

of the mass of the lighter of the two top squarks and that of the LSP. As discussed in

section 3.3, there are relatively few model points at low top squark mass. This is because

a large m(t̃) (and/or a large trilinear coupling At) is required to obtain the large quantum

corrections needed to obtain the observed Higgs boson mass. Despite there being relatively

few points in the initial sample with small top squark masses, one observes that when m(t̃)

is below about 600 GeV, most points are excluded by ATLAS analyses.

The sensitivity to direct production of top squarks can be seen by considering the

ATLAS exclusion using only those analyses from table 1 that target direct production of

third-generation squarks. The results, presented in figure 6(b), show that when only these

third-generation ATLAS searches are considered, good sensitivity continues to be observed

for a lightest top squark mass up to about 700 GeV.

A reasonable correspondence is found between the sensitivity to the pMSSM points

and those of the simplified-model decay considered in ref. [57], in which the top squark

was assumed to decay with certainty to t+ χ̃0
1 (including off-shell top decays). For larger

top squark masses, in the range 600 GeV to 700 GeV, this example simplified-model line

extends into a region where the observed fraction of pMSSM points that are excluded is

less than 100%. This can be understood, since in ref. [57] it was shown that the sensitivity

of the t̃ search analyses depends on the branching ratio of the top squark to the LSP. When

the decay proceeds via the two-step process t̃1 → b+ χ̃±
1 followed by χ̃±

1 →W (∗) + χ̃0
1, with

the assumption that m(χ̃±
1 ) = m(χ̃0

1), the 95% CL exclusion limit did not extend beyond

m(t̃1) = 540 GeV. Since a range of such branching ratios is found in the pMSSM model

sample, it is to be expected that there is partial sensitivity in this intermediate region.

The lower two plots in figure 6 again show that the sensitivity of the ATLAS analyses

can depend in a non-trivial way on sparticle properties that are not captured by simplified

models. The dependence of the sensitivity on the left versus right chirality of the top squark

is caused in part by different branching ratios for decays both to and from that squark. The

branching ratios of decays involving wino-like gauginos are affected by the SU(2) coupling of

the top squark, resulting in significant differences in the sensitivity depending on whether

the t̃1 is dominantly left- or right-handed. Furthermore, if the t̃1 is mostly left-handed

then the top squark’s SU(2) partner, the b̃, would have a similar mass, allowing analyses

targeting sbottom production to become relevant in constraining the models.

Figure 7(a) shows the sensitivity of ATLAS analyses as projected onto the mass plane

of the lightest bottom squark versus the LSP. The sensitivity is generally well captured by

a simplified model containing only an additional bottom squark and the LSP [69]. When

searches for sparticles other than those of the third generation are omitted (figure 7(b)) the

similarity of the pMSSM with the simplified model becomes still clearer. The sensitivity

of the ATLAS searches was found to be similar regardless of whether the bottom squark

was dominantly left- or right-handed.
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Figure 7. The fraction of pMSSM points excluded by (a) all the listed ATLAS Run 1 searches and

(b) just the third-generation searches in the b̃-χ̃0
1 mass plane. The white line shows a simplified-

model limit [69] made assuming directly produced bottom squark pairs, with bottom squarks de-

caying to a bottom quark and a neutralino, b̃→ b+ χ̃0
1. The colour scale is as described in figure 3.

F
ra

c
ti
o
n
 o

f 
 M

o
d
e
ls

 E
x
c
lu

d
e
d

0

0.2

0.4

0.6

0.8

1

) [GeV]l
~

m(

0 200 400

) 
[G

e
V

]
0 1

χ∼
m

(

0

200

400

600
 LSP

0

1
χ
∼pMSSM: 

1−
=8 TeV, 20.3 fbs

 [1403.5294]
0

1
χ
∼

 l→ l
~

Electroweak searches

ATLAS

Figure 8. The fraction of pMSSM points excluded by just the electroweak ATLAS searches listed

in table 1, projected onto the ˜̀-χ̃0
1 mass plane, where ˜̀ is the lightest slepton of the first two

generations. The white line reflects one of the simplified-model limits (figure 8(c) of ref. [54]) made

for direct slepton pair production assuming that left- and right-handed selectrons (or smuons) are

mass-degenerate and that each decays via ˜̀± → `±+χ̃0
1. The colour scale is as described in figure 3.

5.1.3 Electroweak sparticles and sleptons

The sensitivity to selectrons, smuons, and their sneutrino counterparts (here denoted col-

lectively by ˜̀) is displayed in figure 8. It can be seen that the ATLAS searches have good

sensitivity to slepton masses up to about 200 GeV, particularly when the LSP mass is

lighter than about 75 GeV, where only bino-like LSPs survived the preselection of table 3.

Nevertheless, the reduced sensitivity in the near-degenerate region where the slepton decay

– 25 –



J
H
E
P
1
0
(
2
0
1
5
)
1
3
4

F
ra

c
ti
o

n
 o

f 
 M

o
d

e
ls

 E
x
c
lu

d
e

d

0

0.2

0.4

0.6

0.8

1

) [GeV]Ll
~

m(

0 200 400

) 
[G

e
V

]
0 1

χ∼
m

(

0

200

400

600
 LSP

0

1
χ
∼pMSSM: 

Electroweak searches

1−
=8 TeV, 20.3 fbs

 [1403.5294]
0

1
χ
∼

 l→ 
L
l
~

ATLAS

(a) All LSPs, ˜̀
L.

F
ra

c
ti
o

n
 o

f 
 M

o
d

e
ls

 E
x
c
lu

d
e

d

0

0.2

0.4

0.6

0.8

1

) [GeV]Rl
~

m(

0 200 400

) 
[G

e
V

]
0 1

χ∼
m

(

0

200

400

600
 LSP

0

1
χ
∼pMSSM: 

Electroweak searches

1−
=8 TeV, 20.3 fbs

 [1403.5294]
0

1
χ
∼

 l→ 
R
l
~

ATLAS

(b) All LSPs, ˜̀
R.

Figure 9. Impact of electroweak searches (as listed in table 1) in (a) the ˜̀
L-χ̃0

1 and (b) ˜̀
R-χ̃0

1

projections. It should be noted that in the 19-parameter pMSSM, the first- and second-generation

sleptons of each handedness are required to be degenerate. The simplified-model limit in the ˜̀
L

(˜̀
R) case is set assuming directly pair-produced left (right) handed selectrons/smuons, decaying to

an electron/muon and neutralino. The simplified-model limits are from figures 8(a) and 8(b) of

ref. [54]. The colour scale is as described in figure 3.

produces soft leptons and small Emiss
T means that existing ATLAS searches cannot place any

lower bound on the slepton mass. The region of sensitivity in the pMSSM projected plane is

found to have a degree of correspondence with one of the simplified models of ref. [54]. Gen-

erally, reduced sensitivity is found in the pMSSM when compared to the more-constrained

simplified model. This can be understood by recognising that this particular model presup-

poses that the left- and right-handed selectrons and smuons are all mass degenerate, and

that each has a 100% branching ratio to a lepton and a LSP. Breaking these assumptions

reduces the number of signal events, and hence allows more models to evade detection.

When the assumption of degenerate left- and right-handed states is dropped from the

simplified model, the resulting limits are similar to those of the pMSSM. This can be seen in

figure 9, showing the pMSSM space projected separately onto the mass of the left-handed

or right-handed slepton. The fraction of model points excluded is compared to simplified

models in which either only left- or right-handed sleptons (ẽ and µ̃) are produced. ATLAS

searches have more sensitivity to the production of left-handed sleptons since right-handed

states lack SU(2) couplings and so have a smaller ˜̀+ ˜̀− production cross-section.

Figure 10 shows the fraction of model points excluded by just the electroweak ATLAS

searches listed in table 1, projected onto the plane of LSP and lightest stau mass. It can

be seen that the Run 1 sensitivity to staus is limited, with large fractions of model points

surviving even at the lowest stau masses. This is largely because it is difficult to trigger on

events resulting from direct stau production, and backgrounds to stau searches are much

larger than for the equivalent search for sleptons of the first two generations. No definitive

lower bound can be placed on the stau mass by ATLAS after Run 1.
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Figure 10. Impact of electroweak searches (as listed in table 1) on the τ̃ -χ̃0
1 plane. The colour

scale is as described in figure 3.
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(b) Chargino-neutralino.

Figure 11. Impact of electroweak searches (as listed in table 1) (a) on the χ̃0
2-χ̃0

1 plane and (b) on

the χ̃±
1 -χ̃0

1 plane. The 95% CL observed exclusion limit from ref. [54] is for a simplified model that

assumes pure-wino χ̃±
1 + χ̃0

2 production, followed by the decays χ̃±
1 χ̃

0
2 → W ∗χ̃0

1Z
∗χ̃0

1. The colour

scale is as described in figure 3.

Figure 11(a) shows the fraction of models excluded by only the electroweak ATLAS

searches (see table 1), this time projected onto the plane of the masses of the lightest

two neutralinos. Two prominent features are visible. For χ̃0
1 masses lighter than about

200 GeV, a large fraction of models are excluded, particularly as m(χ̃0
2) becomes large.

The dominant exclusion mechanism for large m(χ̃0
2) is due to the Disappearing Track

analysis and is strongest when the LSP is wino-dominated. The gaugino mass difference

∆mχ = m(χ̃±
1 )−m(χ̃0

1) is typically less than a few hundred MeV for winos and of order a

few GeV for Higgsinos. As the χ̃0
2 mass decreases, approaching that of the χ̃0

1, there is more

neutralino mixing, leading to a larger ∆mχ, and a shorter χ̃±
1 lifetime, hence the Disap-

– 27 –



J
H
E
P
1
0
(
2
0
1
5
)
1
3
4

Long-lived Bino LSP Wino LSP Higgsino LSP

Particle Models Excluded Models Excluded Models Excluded

g̃ 899 (5.2%) 5.1% 58 (3.4%) 3.4% 9 (0.0%) 0.0%

b̃1 1252 (99.6%) 76.4% 51 (100.0%) 78.4% 67 (100.0%) 80.6%

t̃1 345 (56.8%) 36.5% 6 (100.0%) 66.7% 17 (82.4%) 47.1%

τ̃1 406 (100.0%) 37.4% 2 (100.0%) 0.0% 41 (100.0%) 14.6%

Table 6. Number of model points with long-lived particles and their exclusion fraction. The

percentages in parenthesis are the fractions of these model points where the long-lived particle has

a lifetime long enough to traverse the entire detector.

pearing Track analysis loses sensitivity. The figure 11(a) row in which m(χ̃0
1) ∼ 50 GeV has

lower sensitivity for the Disappearing Track analysis. This region is dominated by models

for which the relic density is controlled by the Z and h boson funnels, so has bino-like LSPs

with a Higgsino admixture. Such models do not typically feature long-lived charginos.

For m(χ̃0
2) . 400 GeV and m(χ̃0

1) . 200 GeV, direct production of χ̃0
2 (and/or χ̃±

1 )

states provides sensitivity via the 2-leptons, 3-leptons and 4-leptons analyses. The sensitive

region for these multi-lepton analyses is similar to that shown from the simplified model of

ref. [54]. Nevertheless there remain many viable pMSSM points within the region excluded

in the simplified-model scenario. For example, many points in the Z and h boson funnel

regions (m(χ̃0
1) ∼ 50 GeV) have little sensitivity in the multi-lepton analyses as the χ̃0

2 is

predominantly Higgsino-like, leading to a lower production cross-section.

The equivalent plot for the projection onto the plane of the lightest chargino and

the LSP is shown in figure 11(b), again showing the fraction excluded by the electroweak

ATLAS searches. In this figure the Disappearing Track analysis has sensitivity to models

with wino-like LSPs which lie close to the leading diagonal where m(χ̃±
1 ) is only a little

larger than m(χ̃0
1). Models with Higgsino-like LSPs also lie close to that diagonal, but

have larger mass splittings and so little sensitivity from the Disappearing Track analysis.

Away from that diagonal only bino-dominated LSPs are found. Here the best sensitivity

is from the multi-lepton electroweak search analyses (2-leptons, 3-leptons and 4-leptons),

particularly for m(χ̃±
1 ) . 400 GeV and m(χ̃0

1) . 200 GeV. The region with sensitivity to

the multi-lepton searches again shows some similarity with the simplified-model limit from

ref. [54], but again no region is totally excluded.

5.1.4 Long-lived squarks, gluinos and sleptons

As described in section 4.2, model points with long-lived squarks, gluinos and sleptons are

treated separately as the sensitivity to these models of the regular searches for prompt

decays is difficult to assess. Instead only the Long-lived particle searches [73, 74] are

considered. These analyses have very good sensitivity to these model points as can be seen

from table 6. Particularly good sensitivity is found in cases where the bottom squarks are

long lived. The sensitivity to gluinos is quite poor as these are usually too short-lived to

be picked up by the long-lived particle searches.
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Figure 12. The fraction of model points excluded by ATLAS Run 1 searches, including those for

heavy Higgs bosons, projected into the mA-tanβ plane. The white line overlaid is the observed

limit for the mmax
h scenario from the H/A→ ττ search of ref. [75] where the region above the line

is excluded.

5.1.5 Heavy neutral Higgs bosons

Figure 12 shows the fraction of model points excluded by the ATLAS Run 1 searches

(which include searches for heavy Higgs bosons) when projected into the mA-tanβ plane.

The white line overlaid is the observed limit from the ATLAS search [75] for heavy neutral

Higgs boson(s), H or A, decaying to ττ , as interpreted in the mmax
h scenario. A close

correspondence can be observed between the limit obtained in that scenario and the region

of the pMSSM space excluded by the Run 1 searches in the general pMSSM-19 space. The

mmax
h scenario is seen to give a slightly conservative limit compared to the pMSSM space

as it has light electroweakinos leading to a lower branching fraction for A/H → ττ than

for most pMSSM points with similar mA, tanβ values.

5.1.6 Complementarity of searches

The ATLAS searches are designed to be sensitive to different final states, or different

kinematic regions. Nevertheless it is often the case that a model which produces an excess

in one search can have a significant signal expectation in others, since related cascade

decays can lead to complementary final states. The degree of complementarity is explored

in figure 13, which shows the fraction of model points excluded (at 95% CL) by one analysis

that are also excluded by another. For example, one can observe that of the model points

that were excluded by the 1-lepton + jets + Emiss
T analysis (fourth row from bottom), 93%

were also excluded by the 0-lepton + 2–6 jets + Emiss
T analysis (first column).

Figure 13 demonstrates that there is a good complementarity — relatively small overlap

in sensitivity — between searches for strongly interacting particles, which are characterised

by final states with jets, and searches for electroweak production. Further study shows that,

for the sampling of pMSSM points made in this paper, the analyses with the largest regions

of unique sensitivity are the 0-lepton + 2–6 jets + Emiss
T analysis [58], and the Disappearing
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Figure 13. Complementarity of ATLAS searches: the figure shows the percentage of model points

excluded by the analysis on the y-axis that were also excluded by the analysis on the x-axis.

References for the individual analyses can be found in table 1. As none of the models considered

are excluded by the `h analysis, it has no overlap with any other search.
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Analysis All LSPs Bino-like Wino-like Higgsino-like

0-lepton + 2–6 jets + Emiss
T 32.1% 35.8% 29.7% 33.5%

0-lepton + 7–10 jets + Emiss
T 7.8% 5.5% 7.6% 8.0%

0/1-lepton + 3b-jets + Emiss
T 8.8% 5.4% 7.1% 10.1%

1-lepton + jets + Emiss
T 8.0% 5.4% 7.5% 8.4%

Monojet 9.9% 16.7% 9.1% 10.1%

SS/3-leptons + jets + Emiss
T 2.4% 1.6% 2.4% 2.5%

τ(τ/`) + jets + Emiss
T 3.0% 1.3% 2.9% 3.1%

0-lepton stop 9.4% 7.8% 8.2% 10.2%

1-lepton stop 6.2% 2.9% 5.4% 6.8%

2b-jets + Emiss
T 3.1% 3.3% 2.3% 3.6%

2-leptons stop 0.8% 1.1% 0.8% 0.7%

Monojet stop 3.5% 11.3% 2.8% 3.6%

Stop with Z boson 0.4% 1.0% 0.4% 0.5%

tb+Emiss
T , stop 4.2% 1.9% 3.1% 5.0%

`h, electroweak 0 0 0 0

2-leptons, electroweak 1.3% 2.2% 0.7% 1.6%

2-τ , electroweak 0.2% 0.3% 0.2% 0.2%

3-leptons, electroweak 0.8% 3.8% 1.1% 0.6%

4-leptons 0.5% 1.1% 0.6% 0.5%

Disappearing Track 11.4% 0.4% 29.9% 0.1%

Long-lived particle 0.1% 0.1% 0.0% 0.1%

H/A→ τ+τ− 1.8% 2.2% 0.9% 2.4%

Total 40.9% 40.2% 45.4% 38.1%

Table 7. Percentage of model points excluded by the individual analyses. It should be noted that

the fraction of model points that can be excluded will depend on the model employed and range of

input masses initially generated. The reader is reminded (table 2) that the sparticle mass terms in

this paper extend to 4 TeV. References for the individual analyses can be found in table 1.
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(a) Before ATLAS Run 1. (b) After ATLAS Run 1.

Figure 14. The density of pMSSM points projected onto the plane of dark matter relic density

versus LSP mass, before and after the constraints from the search analyses. The colours labelling

the different LSP types, as defined in table 4.

Track analysis [72]. Nevertheless some care is required in interpreting these results. The

degree of apparent overlap is subjective, in that it depends, in some cases sensitively, on the

metric used when sampling the pMSSM space. Even in cases where the apparent overlap

appears to be large, for example between the 0-lepton + 2–6 jets + Emiss
T and 0-lepton + 7–

10 jets + Emiss
T analyses, both searches are found to have regions of pMSSM space in which

they provide unique sensitivity. The Disappearing Track analysis is mostly sensitive to

model points with a wino-like LSP, so an alternative prior (or weighting by LSP type) of the

sample model points would directly affect the apparent relative sensitivity of this analysis.

The overall fraction of model points within the pMSSM space excluded by each analysis

for each of the LSP types is shown in table 7. Only the `h analysis is unable to constrain

the pMSSM set with the luminosity available. The lack of sensitivity for that analysis is

not unexpected since for simplified models it excludes only points with very light LSPs [70].

It should again be noted that the absolute values of the fractions of model points excluded

is strongly affected by the prior sampling, in particular by the upper mass bounds used

for the scan in selecting the pMSSM input parameters (see table 2). The relative fractions

of model points excluded by each analysis are a little more informative, but again care is

necessary in their interpretation since they too are sensitive to changes to the assumptions

or constraints applied to the initial model set. Nevertheless, the high sensitivity of the 0-

lepton + 2–6 jets + Emiss
T analysis for all LSP types, and the Disappearing Track analysis

for models with a wino-like LSP is unambiguous.

5.2 Impact of ATLAS searches on dark matter

The nature of the LSP has a strong influence on the expected dark matter relic density.

For the pMSSM points, the initial mass spectrum of the LSP — before applying any AT-

LAS SUSY search constraints — is sculpted by the requirement that the dark matter relic

density, as predicted from thermal production and annihilation calculations in the early uni-
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verse, should not be larger than that observed. As discussed in section 3.2.2, the LSP is not

required to account for all of the dark matter density, since other particles may contribute.

The effect of the relic density preselection can be seen in figure 14(a), which shows

the density of pMSSM points in the plane of the χ̃0
1 relic density (Ω(χ̃0

1)h2) versus the

mass of the χ̃0
1. The model points with a bino-like LSP are shown in red, while those

with wino-like and Higgsino-like LSPs are in blue and green respectively. The features at

low LSP mass are due to the effective annihilation of LSPs through s-channel Z or Higgs

bosons — the so-called Z-funnel and Higgs-funnel regions. There are few wino- or Higgsino-

dominated LSPs at low mass since in such cases the χ̃0
1 is expected to be accompanied by

an almost degenerate chargino, which would have been observed at LEP [102]. Most of the

models with wino- and Higgsino-dominated LSPs lie on bands which are almost straight

lines on the logarithmic plot, since the thermally averaged annihilation cross-section is

expected to be proportional to the inverse square of the LSP mass, resulting in almost

exact proportionality between Ω(χ̃0
1)h2 and m(χ̃0

1)2.

Figure 14(b) shows the distribution of model points in the same plane after applying

the constraints from the ATLAS SUSY searches. Considering first the bino-dominated

LSP model points, one observes that model points are excluded by the ATLAS searches

across a wide range of LSP masses (and expected relic densities). It is found that the

ATLAS searches have some sensitivity up to m(χ̃0
1) . 800 GeV, while at low bino mass

about two-thirds of the LSP model points in the Z- and Higgs-funnel regions are excluded.

For wino-dominated LSPs, the overall range of sensitivity in m(χ̃0
1) again extends up to

about 800 GeV. Model points with m(χ̃0
1) . 220 GeV are particularly depleted by the

ATLAS searches with about 80% of model points with wino-like LSPs in this mass range

being excluded, mostly by the sensitivity of the Disappearing Track analysis to the charged

wino. For Higgsino-dominated LSPs, the ATLAS sensitivity is smaller as the χ̃±
1 -χ̃0

1 mass

splittings are mostly too large to have an observable χ̃±
1 lifetime.

Focusing on model points with bino-dominated LSPs, figure 15 shows the model point

density before and after ATLAS Run 1 searches. In this figure the colour code now cor-

responds to the dominant annihilation mechanism of the dark matter — for example an

orange point has at least one squark of the first two generations, or the gluino, close in

mass to the LSP, allowing annihilation mechanisms such as q̃ + χ̃0
1 → q + γ to proceed

effectively. The vertical cut-offs for each coannihilator correspond to the preselection from

previous experimental constraints — for example charged sparticles lighter than 100 GeV

are forbidden. The different minima seen for the relic dark matter energy density for each

coannihilator correspond to the different coupling strengths.

The ATLAS searches are seen to be particularly sensitive to model points with light-

flavour squark or gluino coannihilators. One would expect such model points, which have

at least one coloured particle near-degenerate with the LSP, to produce events with missing

transverse momentum, and soft jets from the coloured sparticle decays. Such model points

are difficult to observe in the inclusive analyses, but when produced in association with

ISR can be observed through the monojet analyses [64, 67].

The limits from experiments searching for direct detection of dark matter were taken

into account when generating the pMSSM points. Figure 16 shows the corresponding
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(a) Before ATLAS Run 1. (b) After ATLAS Run 1.

Figure 15. The density of pMSSM points on the plane of relic density versus LSP mass, before

and after the ATLAS constraints, for the bino-like LSP models. The model points are colour

coded by annihilation mechanism as described in the text. “Gaugino” refers to electroweak gaugino

coannihilation, while “Light Flavour” refers to coannihilation either against squarks of the first two

generations or against gluinos.

predictions together with the limits set by the measurements of the spin-independent (SI)

and the proton spin-dependent (SD) cross-sections by the LUX [98] and COUPP [99]

experiments respectively. The direct detection limits include the additional uncertainties

described in section 3.2.2. In each case the interaction cross-section is scaled by a factor of

RΩ = Ω(χ̃0
1)h2/ΩPlanckh

2, since in this paper it is assumed that the LSP may be only one

of a range of possible contributors6 to the dark matter abundance, whereas direct detection

experiments interpret their results in a framework in which the LSP completely saturates

the relic density.

Figure 16(a) shows the model points projected onto the plane of the spin-independent

interaction cross-section versus the LSP mass. The direct detection limit from the LUX

experiment is shown, in which, as already mentioned, the relic density of the colliding

dark matter was assumed to saturate the value measured by the Planck Collaboration.

The only model points with LSP mass less than 100 GeV are those with bino-like LSPs

lying in the Higgs- or Z-funnel regions. Around 15% of the bino-like model points that

pass the preselection (table 3) would have been excluded by the nominal LUX limit had

the additional uncertainty scaling factor of four, as mentioned in section 3.2.2, not been

applied. Figure 16(b) shows the same space after removing model points excluded (at

95% CL) by the ATLAS Run 1 searches.

Figure 16(c) shows the spin-dependent cross-section, again as a function of the neu-

tralino mass. The plot also shows the corresponding direct detection exclusion limit, this

time from the COUPP experiment. The same plot is shown after ATLAS Run 1 search con-

straints in figure 16(d). Again one can see that sensitivity from LHC searches can stretch

to regions with cross-sections several orders of magnitude below those of the current best

direct detection experiments. Similar conclusions are found for spin-dependent neutron

cross-sections, in this case the best direct detection limit being from Xenon-100 [100].

6These other possible contributors are not described by the pMSSM points considered in this study.
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Figure 16. Left, the distribution of model points generated; right, the distribution of model points

not excluded by ATLAS Run 1 searches, as projected onto the scaled spin-independent (SI) inter-

action cross-section of nucleons with the neutralino versus the neutralino mass. The cross-sections

are scaled by a factor of RΩ = Ω(χ̃0
1)h2/ΩPlanckh

2. The calculated spin-independent interaction

cross-sections are a weighted average of the contributions from proton and neutron scattering, cor-

responding to the Xenon atom (the target nucleus of the LUX experiment) and normalised to one

nucleon. The 90% confidence limit [98] from the LUX direct detection experiment is overlaid, in

which it is assumed that the dark matter comprises only the LSP, with relic density as measured by

the Planck Collaboration [97]. For the spin-dependent cross-sections, the calculated proton cross-

section is shown. It is compared to the direct detection limit from the COUPP experiment [99].

Figure 16(b) shows a roughly rectangular region excluded by ATLAS searches, bounded

approximately by m(χ̃0
1) . 220 GeV and RΩ × σSI

N−χ̃0
1
. 10−48cm2. A similar region is ex-

cluded in the SD case (figure 16(d)), this time for RΩ × σSI
N−χ̃0

1
. 10−44cm2 for the same

LSP mass range. These regions are dominated by models with an LSP that is almost pure

wino. The winos, having only very small Higgsino admixtures and thus little interaction

with the Higgs boson, have small direct detection cross-sections. Such model points then

have small χ̃±
1 -χ̃0

1 mass splittings, and are tightly constrained by the Disappearing Track

analysis, since the lightest chargino (the charged wino) is sufficiently long-lived to be de-
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Figure 17. Distributions of pMSSM points before and after the constraints from the ATLAS

direct searches for observables related to the decays of the observed Higgs boson. (a) Higgs-b-quark

coupling ratio κb, for all LSP types. (b) Branching ratio of the Higgs boson to the LSP, only for

those pMSSM points with bino-like LSPs and m(χ̃0
1) < 65 GeV. The dashed lines show the observed

and expected upper bounds of the 95% confidence limits on those parameters. The subplots show

the fraction of model points excluded by the ATLAS direct searches.

tectable in that analysis. As the degree of Higgsino mixing increases, the direct detection

cross-sections increase, and so does the LSP-NLSP mass splitting. This results in a more

rapid NLSP decay, and lack of sensitivity by ATLAS.

As one would expect, the direct detection and LHC search techniques are found to be

very complementary. The ATLAS searches have sensitivity for m(χ̃0
1) up to about 800 GeV,

and are particularly effective in constraining low-mass LSPs. ATLAS shows sensitivity to

many SUSY models with direct detection cross-sections several orders of magnitude below

current direct detection limits. On the other hand, direct detection experiments rule out

large RΩ × σ up to higher LSP masses than the LHC can access.

5.3 Effect of ATLAS Higgs boson coupling measurements

Direct searches for SUSY particles are complemented by indirect searches for the effects of

new particles and fields. In SUSY models the presence of the second Higgs doublet generally

results in light Higgs boson couplings that are modified with respect to their SM values. For

example, enhancements to the couplings to down-type quarks and charged leptons are pre-

dicted at large tan β. In addition, loop contributions from virtual SUSY particles can pro-

duce an observable effect on lower-energy observables, including Higgs boson decay rates.

Combined fits by ATLAS to the measured Higgs boson production and decay rates

provide a sensitive probe for such additional Higgs fields and for SUSY particles contribut-

ing either through loop effects or through invisible decays of the Higgs boson to unobserved

neutralinos. The relevant ATLAS analyses, statistical methods, and systematic uncertain-
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ties are described in refs. [143, 144]. These measurements are based on up to 4.8 fb−1 of

pp collision data at
√
s = 7 TeV and up to 20.3 fb−1 at

√
s = 8 TeV. They are used to

constrain coupling scale factors

κi =

√
Γh

Γh,SM
× BR(h→ i+ i)

BR(h→ i+ i)SM
,

where Γh represents the total width of the observed Higgs boson, BR indicates its branching

ratio, and a SM subscript indicates the Standard Model prediction. The measurements of

these scale factors were derived using the observed Higgs boson’s visible decay channels as

reported in ref. [144]. The upper limit on the invisible branching ratio, taking account of

both visible and invisible Higgs boson decay channels is reported in ref. [145].7 Most of the

coupling parameters are not yet sufficiently well measured to have an effect on the SUSY

parameter space. The exceptions — those two parameters which are already sufficiently

well measured to constrain the pMSSM — are discussed below.

The parameter κb corresponds to the coupling of the Higgs field to b-quarks. Measuring

a value of κb differing significantly from unity would be a clear indication of physics beyond

the SM, and an important constraint on the allowed pMSSM parameter space. For the

current ATLAS fit, the expected 95% CL range is |κb| < 1.8. This expected region contains

almost all the pMSSM points not excluded by the direct searches, so the expected constraint

from κb is negligible. The current ATLAS observed fitted value for κb is 0.62±0.28 at 68%

CL [145]. This value is lower than, but consistent with, the SM value. The corresponding

observed 95% CL spans the range |κb| < 1.2, and is more restrictive than the expected

range. As a result the observed fit disfavours those pMSSM points (see figure 17(a)) with

κb > 1.2, which typically are those with large tan β. Those models that are disfavoured at

the 95% CL represent a weighted fraction of 3.1% of all the pMSSM points. This fraction

is rather similar before and after the ATLAS Run 1 direct searches are considered.

The observed Higgs boson can decay to a pair of LSPs if those LSPs are sufficiently

light. This can lead to an enhanced branching ratio of the h to the invisible final state. The

expected branching ratio for decay of a light Higgs boson via ZZ∗ to neutrinos is O(10−3),

much smaller than the present experimental uncertainties, and so is negligible in this con-

text. No models with a sufficiently light wino- or Higgsino-like LSP satisfied the initial

constraints of section 3.2, so only models with a bino-dominated LSP need be considered

in this context. All such LSPs have some wino and Higgsino admixture, allowing them to

couple to the Higgs boson. Figure 17(b) shows the calculated distribution of the lightest

Higgs boson’s invisible branching ratio for those pMSSM points with bino-like LSPs and

having m(χ̃0
1) < 65 GeV. To account for finite-width effects, this selection allows for mod-

els with LSP masses a little above m(h)/2. These light-LSP models represent 4.5% of the

model points with bino-like LSPs that survive the ATLAS searches in table 1. The observed

ATLAS bound on the h invisible branching ratio is BR(h → χ̃0
1 + χ̃0

1) < 0.23 at the 95%

CL [145]. This observed value is close to the expected upper limit of 0.24. Considering only

7These constraints are based directly on the log-likelihood test statistic, rather than a calculation of CLs,

hence these particular limits are not protected against disfavouring models where there is little sensitivity.
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those pMSSM points with a bino-like LSP lighter than 65 GeV, and which were not excluded

by the direct searches, the fraction disfavoured at the 95% CL by the invisible branching

ratio fit is 6.4%. The disfavoured points correspond to a weighted fraction of 0.0056% of all

the pMSSM points (with any LSP type) not excluded by the ATLAS direct searches. The

corresponding expected fractions are 6.1% (of those surviving models having bino-like LSPs

with mass less than 65 GeV) and 0.0053% (weighted by LSP type) of all surviving models.

There is no overlap between the models disfavoured by the κb measurement and those

disfavoured by the Higgs boson invisible branching ratio. This demonstrates that these

indirect searches for new physics complement the direct searches in different ways by con-

straining different parts of the pMSSM space.

5.4 Impact of ATLAS searches on precision observables

Loop contributions from SUSY particles can also affect lower-energy observables. The

measured values of several precision observables were taken as prior constraints on the

pMSSM space sampled, as explained in section 3.2.1.

The effect of the ATLAS Run 1 searches on the distribution of pMSSM points as pro-

jected onto the expected values of these precision observables is shown in figure 18. In each

case the most noticeable feature is that the ATLAS direct searches remove pMSSM points

rather uniformly across the space of each precision variable, demonstrating the comple-

mentarity of the searches. The direct searches from Run 1 have placed tight constraints on

the strongly interacting sector of the pMSSM, whereas the precision variables depend on

other sparticles, for example the smuon and electroweakino masses, which are less tightly

constrained by direct searches so far.

Figure 18 supports the statement in section 3.2.3 that the exclusion power of the

ATLAS searches does not depend significantly on the mass range used for the light (SM-

like) Higgs boson, the fraction of excluded model points being remarkably flat. The other

three distributions: BR(Bs → µµ), BR(b → sγ), and the ∆(g − 2)µ also show good

exclusion by ATLAS for all values of the observables. It is noticeable that the majority

of the pMSSM points have only small SUSY contributions to these observables, so those

model points would not be expected to be discoverable by using those measurements in

the near future. Nevertheless there exists, for each precision measurement, a small number

of model points with SUSY contributions large enough to be discovered by each. One

observes that ATLAS also tends to have slightly larger sensitivity to these ‘tail’ model

points. This increased sensitivity is not surprising since these model points are generally

those with some lighter SUSY particles contributing to the precision measurements via

loop diagrams. This correlation becomes more clear in figure 19, which shows the number

of generated model points in the plane of the ∆(g− 2)µ versus the mass of the lighter left-

or right-handed smuon (min(m(µ̃L),m(µ̃R))). The experimentally measured value [89],

represented by the hatched band, only overlaps a region where m(µ̃) < 1 TeV. As noted

previously in section 3.2.1, the allowed range used for ∆(g − 2)µ in this paper is the

union of the 3σ intervals around the SM value and the experimental measurement. The

experimentally measured value, if confirmed, would be a powerful constraint on the space.
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Figure 18. Distributions of model points before and after applying ATLAS searches for various

precision observables. Figure (a) shows the mass of the light (SM-like) Higgs boson, m(h), (b)

shows the branching ratio of Bs → µ + µ, (c) is the branching ratio of b → s + γ and (d) is the

difference between the predicted value of g − 2 and the SM value, ∆(g − 2)µ. The subplots show

the fraction of model points excluded by ATLAS as a function of the observables.
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smuon versus ∆(g − 2)µ. The experimental measurement is overlaid as the hatched band [89].

5.5 Fine-tuning

The naturalness of pMSSM points is not considered in their generation, but it is inter-

esting to see just how fine-tuned the model points are after the ATLAS exclusion. The

fine-tuning parameter adopted here is the one defined by Barbieri and Giudice [146]. Fig-

ure 20 illustrates the prediction of the fine-tuning before and after ATLAS exclusion, for

all LSP types (a), and for each LSP-type separately (b)–(d). The shapes of the distribu-

tions are determined by the ranges of the pMSSM parameters considered. The dominant

contributions to the fine-tuning come from µ and At. It can also be observed that the

ATLAS Run 1 searches exclude pMSSM points with a wide range of different fine-tuning

values. A decrease in sensitivity is observed with increasing fine-tuning for models with

a Higgsino-like LSP. This is an artifact caused by the fact that the Higgsino is the LSP,

that its mass is driven by the µ parameter, and so by requiring large fine-tuning, one is

indirectly requiring that there be a heavy LSP, reducing ATLAS sensitivity.

The lowest fine-tuning parameter value for a surviving model point is 56. A represen-

tation of the sparticle spectrum of this point can be found in figure 21(a). As expected for a

generic model point with low fine-tuning, the top squarks have sub-TeV masses. The model

point has a wino-dominated LSP with a mass of 107 GeV, which is lighter by 1.6 GeV than

its charged partner. This mass difference is sufficient to ensure that the chargino lifetime

is short enough (< 1 ps) to evade the Disappearing Track analysis. The lower part of the

mass spectrum includes a Higgsino-dominated {χ̃0
2, χ̃

0
3, χ̃

±
2 } multiplet with masses around

230 GeV which are mixed with the winos at about the 10% level. Most strongly interacting

sparticles, particularly the gluino and left-squark doublet, have large masses of around 3

TeV, which is beyond the Run 1 search reach. The heavy Higgs bosons are also beyond

the Run 1 search reach.
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Figure 20. Distribution of fine-tuning (as defined in ref. [146]), before and after ATLAS exclusion.

The subplots show the fractions of model points excluded by the ATLAS Run 1 searches.

Similar model points survive with a Higgsino-like LSP, for example as shown in fig-

ure 21(b), which has a fine-tuning of 57. Model points such as those in both figure 21(a)

and figure 21(b) would be expected to produce observable signals at LHC Run 2 through a

variety of channels. In particular in both cases the lighter top squark, with mass of about

800 GeV is not far from the current ATLAS Run 1 sensitivity.

Aside from model points with a wino-dominated or a Higgsino-dominated LSP there

also remain model points with low fine-tuning and a mixed LSP. For example, figure 21(c)

shows a model point with a mixed bino-Higgsino LSP a so-called ‘well-tempered’ neutralino

case [105]. This model has a bottom squark with mass of about 650 GeV, not far above

the Run 1 direct search sensitivity.
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ũL
d̃L

t̃1

b̃1
t̃2

ν̃L
ℓ̃L

τ̃1

ν̃τ
τ̃2

g̃
d̃R

χ̃0
1

χ̃0
2 χ̃±

1

χ̃0
3

χ̃0
4

χ̃±
2

ũR
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Figure 21. The sparticle spectra for some of the pMSSM-19 model points with the smallest fine-

tuning not to have been excluded by the ATLAS Run 1 searches. The dashed lines indicate the

dominant decay modes. For more details see the text.

Models with a small number of low-mass squarks of the first two generations also

survive. For example, figure 21(d) shows a spectrum of a model point with a ũR squark

with a mass around 800 GeV, which again would be likely to be discoverable at LHC Run 2.

6 Conclusion

The ATLAS Collaboration has performed a wide range of direct searches for supersymmetry

during the first run of the LHC, using pp collisions with centre-of-mass energy up to 8 TeV

and an integrated luminosity of up to 20.3 fb−1. The interpretation of those results within

the wider framework of the pMSSM gives insights into the breadth of sensitivity of those

searches.
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From an initial random sampling of 500 million pMSSM points, generated from the

19-parameter pMSSM, a total of 310,327 model points with χ̃0
1 LSP are selected each of

which satisfies constraints from previous collider searches, precision measurements, cold

dark matter energy density measurements and direct dark matter searches. The models

are importance-sampled so that there are roughly equal numbers of models with a bino-

like, wino-like or Higgsino-like LSP. For these model points, more than 30 billion signal

events are generated, of which more than 600 million events from 44,559 different model

points are passed through a GEANT4-based fast detector simulation and full reconstruction

to accurately determine which have been excluded (at 95% CL) by ATLAS searches.

The impact of the ATLAS Run 1 searches on this space is presented, showing their

overall effect in constraining such supersymmetric models. The results are particularly

clear when considering the fraction of model points surviving, after projection into two-

dimensional spaces of sparticle masses. The constraints on the masses of squarks (includ-

ing third generation squarks), gluinos, electroweakinos, sleptons and heavy neutral Higgs

bosons are all presented.

For the energy and luminosity achieved in LHC Run 1 the ATLAS constraints are most

effective for strongly interacting sparticles, with weaker constraints on electroweakinos and

sleptons. A general congruence is observed between the pMSSM points excluded and the

limits determined previously in the context of simplified models. Nevertheless, significant

differences are observed depending, for example, on the number of kinematically accessible

squarks, and on their flavour and couplings, particularly for direct sleptons production.

The most constraining ATLAS analyses — for the model points generated — were

the 0-lepton + 2–6 jets + Emiss
T analysis, and the Disappearing Track analysis, the latter

being especially powerful in the case of model points with a light wino-like LSP. Good

complementarity is observed between different ATLAS analyses, with almost all showing

regions of unique sensitivity.

When considering dark matter predictions, the LHC experiments are very complemen-

tary to the direct detection experiments. The two techniques have different sensitivities

across the pMSSM-19 parameter space, with the ATLAS searches having more sensitiv-

ity at lower LSP mass (with significant sensitivity for m(χ̃0
1) . 800 GeV) and the direct

detection experiments providing bounds at larger LSP-nucleon scattering cross-section.

Similarly, the ATLAS experiment provides constraints which are complementary to those

of precision measurements of BR(Bs → µµ), BR(b→ sγ), and ∆(g − 2)µ.

Model points with relatively low fine-tuning (of order 50) remain viable after LHC

Run 1. Those with the lowest fine-tuning have relatively light top squarks, which indicates

that one would expect them to be accessible by ATLAS searches with the LHC Run 2

dataset.
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A Model point calculation

The calculation of model point properties proceeds as follows. First, SoftSUSY 3.4.0 [147]

is used, embedded in micrOMEGAs 3.5.5 [77, 78], to calculate the sparticle spectrum.

This spectrum is used as an input to FeynHiggs 2.10.0 [103, 104], which recalculates

the light CP-even Higgs boson mass including important 3-loop corrections not present

in SoftSUSY. For sparticle decay tables, a modified version of the program SUSY-HIT

1.3 [148] is used, updated to use HDECAY 5.11 [149] for the Higgs decays. In some cases,

where relevant or even dominant decay modes are not included in the SUSY-HIT output,

MadGraph5 aMC@NLO 2.1.1 [150] is instead used to recalculate those decays as described

in detail below. MicrOMEGAs 3.5.5 is used to calculate the dark matter relic abundance

along with the spin-independent and spin-dependent scattering cross-sections in direct de-

tection experiments. MicrOMEGAs is also used to calculate the following flavour physics

and precision electroweak observables: ∆ρ, ∆(g − 2)µ, BR(b→ sγ) and BR(Bs → µ+µ−).

Finally, analytic formulas are used to calculate BR(B+ → τ+ντ ) and the Z boson invisible

width, and to check the stability of the vacuum.
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B Sparticle decay calculation

The calculation of sparticle decays is performed as follows. First, the publicly available

version of SUSY-HIT is modified by: (i) Incorporating light quark and lepton masses in the

calculation of branching ratios and lifetimes for the various sparticles. Two-body decays

implement the full mass corrections, while three-body decays only include a modified phase-

space cut-off. The mass of the lightest meson of the appropriate type is included in the

relevant phase space calculations to account for hadronisation effects. (ii) Employing full

analytic expressions from ref. [151] for chargino decays when the chargino-neutralino mass

splitting is . 1 GeV, in which case a careful treatment of hadronisation is important and can

significantly affect the model phenomenology. (iii) Removing QCD corrections to decays

involving top and bottom squarks due to their tendency to result in negative decay widths.

(iv) Separating the Higgs decays to τ sneutrinos from those to electron and muon sneutrinos

(the public version of HDECAY calculates them separately but then averages them).

Several cases have been identified in which SUSY-HIT does not calculate important

decay channels or predicts a value that differs significantly from the full matrix element

prediction, which are detailed in the following.

B.1 Right-handed sfermion decays

For right-handed sfermions, SUSY-HIT only calculates two-body decays of the form f̃R →
fχ̃0 (and f̃R → fg̃ for right-handed squarks). If the bino component of the kinematically

accessible neutralinos is very small, these decays can be highly suppressed. As a result,

it is common for three-body decays of the form f̃R → fχ̃B, where B is an electroweak

gauge boson, to dominate over the two-body decays. In cases where the splitting between

f̃R and the LSP is small, the three-body decay modes can be forbidden and a four-body

decay (with B off-shell) can potentially be dominant, although numerically this turns out

to be uncommon. Therefore MadGraph5 aMC@NLO is employed to calculate the decays of

any right-handed sfermion satisfying the following selection criteria (designed to select all

model points for which the multi-body decays would be significant while minimising the

number of model points selected):

1) The bino content of the LSP is less than 10%.

2) Any accessible neutralinos with a bino content above 10% have a mass splitting with

f̃R that is less than 100 GeV or below 20% of the f̃R-LSP mass splitting.

3) For squarks, if the gluino is accessible it must have a mass splitting with f̃R that is less

than 100 GeV or below 10% of the f̃R-LSP mass splitting.

For model points with a f̃R — LSP mass splitting above 100 GeV, all possible three-

body decays are calculated with MadGraph5 aMC@NLO and added to the existing two-body

decays. This can lead to double-counting when three-body decay diagrams contain in-

termediate particles which can go on shell. In this case, the on-shell component of the

three-body decay is already included in the two-body decay width (as a tree-level two-

body decay in which the SUSY decay product also undergoes a tree-level two-body decay).
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This is resolved by selectively removing redundant decays. First, the sum of the combined

three-body decay modes is compared with the sum of tree-level two-body decays for which

the SUSY decay product has tree-level two-body decays (the “on-shell component”). In

the case where the on-shell component comprised over 80% of the total three-body width,

the three-body decays are discarded and only the two-body decays kept, since the sequen-

tial two-body decays give a more accurate representation of the decay kinematics. If the

on-shell component is less than 80% of the total three-body width, the off-shell component

of the three-body decays is deemed significant and the redundant on-shell component (the

selected two-body decays) is discarded.

For model points with a f̃R-LSP mass splitting below 100 GeV, four-body decays could

be important. Here use was made of the MadWidth package in MadGraph5 aMC@NLO [150]

by calling the compute widths function; this function automatically determines whether

three-body and four-body decays are required and includes an automatic mechanism for

removing the degeneracy. It is found that MadWidth reproduces the results obtained using

the procedure described above for several test cases with three-body decays.

In total the three-body decays are recalculated for at least 1 sparticle decay in 160482

model points. For 86109 model points, ũR decays are recalculated, while for 86791 model

points the d̃R decays are recalculated and for 122127 model points the ẽR decays are

recalculated. The four-body decays are calculated for 11633 model points, although this

ends up making a significant contribution only for a few model points.

B.2 Wino and Higgsino decays to sfermions

Although SUSY-HIT normally calculates three-body decays of neutralinos and charginos

that have mass splittings with the LSP below the Z or W boson masses, it does not

calculate these decays when other two-body decay modes are available (to avoid the sort

of double-counting described above). This can be a problem when the available two-body

decays are suppressed by a small mixing angle (which can occur if the decaying gaugino

is a neutral wino or Higgsino and the two-body decay is to a right-handed sfermion) or

by kinematics. For this reason MadGraph5 aMC@NLO was employed to calculate the full

three-body decays in cases where the decaying gaugino has a bino content below 10% and

a right-handed sfermion is accessible, or has an accessible decay to any sfermion where the

sfermion-gaugino splitting is below 20% of the gaugino-LSP splitting. This occurs in 716

model points with wino or Higgsino LSP and 2080 model points with bino LSP. Once again

the issue with double-counting between the two-body and three-body decays is resolved;

in this case any tree-level two-body decays where the product has a tree-level two-body

decay are removed, since the off-shell three-body decays are expected to be important in

nearly all of the selected scenarios.

B.3 Four-body top squark decays

Although SUSY-HIT includes a calculation of the four-body top squark decays, a significant

discrepancy is observed between the SUSY-HIT results and the decay width calculated by

CalcHEP in a previous model set. Therefore MadGraph5 aMC@NLO is used to recalculate the

top squark decays for any model point in which SUSY-HIT predicts a non-zero four-body
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decay rate for the light top squark. In this case, there are no concerns about overlap with

other top squark decay modes. This procedure is employed for 15 model points with wino

or Higgsino LSP and 5127 model points with bino LSP.

C Calculational pathologies

To ensure that the spectrum is calculable, any model point with the following SOFTSUSY er-

rors is discarded: “No acceptable solution found”, “Non-perturbative”, “No convergence”,

“Inaccurate Higgs mass”, “Numerical problemThrown”, and “Not achieved desired accu-

racy”. Additionally the accuracy of the spectrum generation is tested by re-generating the

spectrum with SuSpect [32] and ensuring that SuSpect does not produce any fatal errors

or predict any sparticle masses to differ by more than 50% from the SoftSUSY prediction.

Since FeynHiggs is used for the light CP-even Higgs boson mass, any model point for which

FeynHiggs indicates an error or fails to write an output file, is discarded. Additionally it is

required that m(h) be within 5 GeV of the SOFTSUSY prediction, since a small tail of model

points is observed for which this deviation is extremely large, suggesting that the calcula-

tion may have been unreliable. FeynHiggs also gives its own estimate of the uncertainty in

the Higgs boson mass calculation. When this uncertainty is larger than 5 GeV the model

points are discarded as being unreliable. Finally, the reliability of the SUSY-HIT decays is

asserted by discarding model points for which any particle has a width larger than 1 TeV

or a negative branching ratio.

C.1 Theoretical constraints

In addition to the numerical pathologies described above, model points that produced the

following SoftSUSY errors are discarded as being theoretically inconsistent: “tachyon”,

“MuSqWrongsign”, “m3sq-problem”, and “Higgs potential ufb”. Additionally it is checked

that the scalar potential does not break colour or charge, using Equation (6) of ref. [152] for

At and analogous formulas for Ab and Aτ . It should be noted that Equation (6) of ref. [152]

uses m(tL) and m(tR), while this paper uses the Lagrangian parameters m(Q3) and m(u3).

D Importance sampling by LSP type

As described in section 3.3, the model points generated are categorised according to LSP

type (see table 4), and importance sampled so that approximately equal numbers of model

points are available for each LSP type.

There are various ways in which over-production of dark matter can be achieved. A

neutralino LSP can annihilate through s-channel exchange of a Z or Higgs boson or through

t-channel exchange of a chargino or sfermion. If another sparticle is nearly degenerate with

the LSP, that sparticle can also enhance the effective LSP annihilation rate through coan-

nihilation. In general, sparticles with the strongest self-interactions (particularly coloured

sparticles) make the most effective coannihilators. Supersymmetric models with a wino-like

LSP or Higgsino-like LSP (see table 4) have a chargino that is nearly degenerate with the

LSP, resulting in a sizeable annihilation rate through chargino exchange; the degenerate
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chargino also serves as a coannihilator. The relic density constraint is therefore satisfied as

long as the wino (Higgsino) mass is below 2.7 TeV (1 TeV) [153–155]. On the other hand,

bino-like LSPs (N2
11 > max(N2

12, N
2
13 +N2

14)) have no guaranteed annihilation mechanism.

One possibility is for the LSP to mix with the Higgsino [156], giving couplings to the Z and

Higgs bosons and to the charginos. In order for the annihilation rate to be large enough,

the Higgsino must be somewhat degenerate with the LSP (resulting in a large mixing angle)

or the LSP must be approximately half the mass of the Z or MSSM Higgs bosons (termed

a “funnel” region), producing a resonantly enhanced annihilation rate that compensates

for the mixing-angle-suppressed couplings. Alternatively, a chargino or sfermion can be

nearly degenerate with the LSP, resulting in a sizeable t-channel annihilation rate and/or

significant coannihilation [157].

Correcting the undersampling of model points with bino-like LSPs is important for two

reasons. First, they are the only model points in which the observed relic abundance can be

obtained with an LSP light enough to be seen at the 8 TeV LHC, making them particularly

interesting from the dark matter perspective. Second, the absence of an associated chargino

can significantly alter the available decay modes. As an example, top squark decays to

W+bχ̃0
1 only occur in models with bino-like LSPs, since the top squark can simply decay

to bχ̃+ in wino or Higgsino LSP models.
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[22] W.J. Marciano and G. Senjanović, Predictions of supersymmetric Grand Unified Theories,

Phys. Rev. D 25 (1982) 3092 [INSPIRE].

[23] C. Giunti, C.W. Kim and U.W. Lee, Running coupling constants and grand unification

models, Mod. Phys. Lett. A 6 (1991) 1745 [INSPIRE].

[24] J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling

unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].

[25] U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with

electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447

[INSPIRE].

[26] P. Langacker and M.-X. Luo, Implications of precision electroweak experiments for Mt, ρ0,

sin2 θW and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].

[27] P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Phys. Lett. B

64 (1976) 159 [INSPIRE].

[28] P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong

interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].

[29] G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new

hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].

[30] P. Fayet, Relations between the masses of the superpartners of leptons and quarks, the

Goldstino couplings and the neutral currents, Phys. Lett. B 84 (1979) 416 [INSPIRE].

– 49 –

http://dx.doi.org/10.1016/0370-2693(74)90578-4
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B49,52"
http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B70,39"
http://dx.doi.org/10.1103/PhysRevD.13.974
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D13,974"
http://dx.doi.org/10.1103/PhysRevD.14.1667
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D14,1667"
http://dx.doi.org/10.1103/PhysRevD.19.1277
http://dx.doi.org/10.1103/PhysRevD.19.1277
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D19,1277"
http://dx.doi.org/10.1103/PhysRevD.20.2619
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D20,2619"
http://dx.doi.org/10.1103/PhysRevLett.50.1419
http://dx.doi.org/10.1103/PhysRevLett.50.1419
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,50,1419"
http://dx.doi.org/10.1016/0550-3213(84)90461-9
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B238,453"
http://dx.doi.org/10.1103/PhysRevD.24.1681
http://dx.doi.org/10.1103/PhysRevD.24.1681
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D24,1681"
http://dx.doi.org/10.1007/BF01573998
http://inspirehep.net/search?p=find+J+"Z.Physik,C11,153"
http://dx.doi.org/10.1016/0370-2693(81)91200-4
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B105,439"
http://dx.doi.org/10.1016/0550-3213(82)90502-8
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B196,475"
http://dx.doi.org/10.1103/PhysRevD.25.3092
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D25,3092"
http://dx.doi.org/10.1142/S0217732391001883
http://inspirehep.net/search?p=find+J+"Mod.Phys.Lett.,A6,1745"
http://dx.doi.org/10.1016/0370-2693(91)90980-5
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B260,131"
http://dx.doi.org/10.1016/0370-2693(91)91641-8
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B260,447"
http://dx.doi.org/10.1103/PhysRevD.44.817
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D44,817"
http://dx.doi.org/10.1016/0370-2693(76)90319-1
http://dx.doi.org/10.1016/0370-2693(76)90319-1
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B64,159"
http://dx.doi.org/10.1016/0370-2693(77)90852-8
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B69,489"
http://dx.doi.org/10.1016/0370-2693(78)90858-4
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B76,575"
http://dx.doi.org/10.1016/0370-2693(79)91229-2
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B84,416"


J
H
E
P
1
0
(
2
0
1
5
)
1
3
4

[31] S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193

(1981) 150 [INSPIRE].

[32] A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a fortran code for the supersymmetric

and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426

[hep-ph/0211331] [INSPIRE].

[33] C.F. Berger, J.S. Gainer, J.L. Hewett and T.G. Rizzo, Supersymmetry without prejudice,

JHEP 02 (2009) 023 [arXiv:0812.0980] [INSPIRE].

[34] M.W. Cahill-Rowley, J.L. Hewett, S. Hoeche, A. Ismail and T.G. Rizzo, The new look

pMSSM with neutralino and gravitino LSPs, Eur. Phys. J. C 72 (2012) 2156

[arXiv:1206.4321] [INSPIRE].

[35] K.J. de Vries et al., The pMSSM10 after LHC Run 1, Eur. Phys. J. C 75 (2015) 422

[arXiv:1504.03260] [INSPIRE].

[36] C. Strege et al., Profile likelihood maps of a 15-dimensional MSSM, JHEP 09 (2014) 081

[arXiv:1405.0622] [INSPIRE].
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[107] W. Beenakker, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron

colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].
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F. Crescioli80, W.A. Cribbs146a,146b, M. Crispin Ortuzar120, M. Cristinziani21, V. Croft106,

G. Crosetti37a,37b, T. Cuhadar Donszelmann139, J. Cummings176, M. Curatolo47, J. Cúth83,
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133 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor
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Roma, Italy
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