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Abstract

How does our understanding of number develop?  There is
evidence suggesting that even infants have primitive concepts
of “more”, “less”, and “the same”.  Some researchers have
concluded that humans have an innate number sense, present
from birth.  In this paper, we present a two-part model which
explains these results in terms of continuous amount.  The first
part is a quantitative model addressing the results of infant
habituation studies.  The second, more tentative part of the
model addresses object individuation, subitizing, and number
estimation.

Amount vs Number
In this paper, we use the word amount to refer to the total
area of the objects in view;  this is a continuous quantity.
Number, a discrete quantity, refers to how many objects are
present.  As shown in Table 1, these two aspects can be var-
ied independently.

A complete model would have to take into account other
features, such as total contour length (edge length), shape,
and color.  Except where otherwise stated, we disregard
these details.

Habituation Studies on
Infant Numerical Abilities

Three studies are addressed directly by the first part of our
model:   Starkey & Cooper (1980), Antell & Keating (1983),
and Clearfield & Mix (1999).  All three studies use the same
habituation paradigm, described below.

An infant is shown a series of images of black circles or
squares on a white background, such as those in Table 1.

The infant is shown several more images.  They may differ
in arrangement, but they are the same on some critical
dimension, such as the number of dots.  If the infant habitu-
ates (stops looking at new images as long), this is taken as
evidence that the infant detected the invariant property and
became bored with it.

After habituation, the infant is shown a test image which
differs on the critical dimension.  If the infant dishabituates

Table 1: Amount vs Number.  Both pictures in each column have the same total area.
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(spends significantly more time looking at the test image), he
or she presumably noticed that the property changed—the
test image is new and exciting.  If the infant does not disha-
bituate, he or she presumably did not notice anything special
about the test image.

In Starkey & Cooper’s study, 22-week-old infants who had
been habituated on images of 2 dots dishabituated when
tested on images of 3 dots (and vice versa).  Infants, it
appeared, can tell the difference between 2 and 3.

To discount the possibility that the infants were simply
reacting to amount, Starkey & Cooper tried 4 vs 6 dots.  The
relative difference between the images in this condition is
the same as in the 2 vs 3 condition:  the larger number has
1.5 times as much area as the smaller one.  If infants are
using amount of area, they should be at least as likely to dis-
habituate in the 4 vs 6 condition.

On the other hand, older children and adults have a much
easier time enumerating sets of up to 3 or 4 objects than
larger sets.  Enumerating large sets requires use of an
explicit, learned counting procedure;  smaller sets can be
enumerated quickly and subconsciously, through a process
called “subitizing”.  The nature of subitizing remains contro-
versial.  In any case, if infants are subitizing, the 2 vs 3 con-
dition should be more likely to produce dishabituation.

In fact, Starkey & Cooper’s subjects did not dishabituate
in the 4 vs 6 condition.  It was therefore suggested that sub-
itizing may be innate.

Antell & Keating replicated these results in newborns (less
than a week old).

Clearfield & Mix’s study reexamined the amount hypothe-
sis.  By changing the sizes of the objects (squares) in their
displays, they were able to independently vary the number of
objects and the total amount of area and contour length.
(This study used 6- to 8-month-old infants, and only the 2 vs
3 condition was considered.)

They found that if the number remained the same, but the
total area and contour length changed significantly, the
infants dishabituated.  Moreover, the infants did not dishabit-
uate if the test image had approximately the same total area
and contour length as the habituation image, even if the num-
ber of objects was different.  In other words, infants do not
appear to distinguish between 2 large objects and 3 small
ones.

One problem remains:  if infants are using amount to dis-
criminate quantities, why don’t they dishabituate in the 4 vs
6 condition?

Clearfield & Mix proposed that the 4 vs 6 displays might
simply contain too much visual complexity.  There is no
question of comparison;  the infants are overwhelmed by the
displays.

The current model focuses instead on the way amount is
represented internally1 by the infants.

If the perceived magnitude grows linearly with the actual
amount, then the 4 vs 6 condition should be more likely to
produce dishabituation than the 2 vs 3 condition, because the

1 By “represented internally”, we mean “represented as a pattern
of neural activation”.  We do not mean to imply that infants are
deliberately manipulating abstract, symbolic representations of
amount.

absolute difference in amount of stuff is larger in the former
condition.

Fechner (1860) suggested that the perceived amount
grows as the logarithm of the actual amount.  This almost
does the trick, but not quite:  whenever ratios are the same
(as in the 2 vs 3 and 4 vs 6 conditions), differences of loga-
rithms are equal.  This would make the two conditions
equally likely to produce dishabituation.

To explain the greater difficulty of the 4 vs 6 condition, we
need a perception function which grows more slowly than a
logarithm.  One such function is the sigmoidal “squashing”
activation function commonly used in connectionist “neural
network” models (Rumelhart, McClelland, et al., 1986).

A Quantitative Model
We presume that the photoreceptors (rods and cones) in the
retina provide (indirect) input to a neuron (or, more likely, a
group of neurons) which codes for the total area of the
objects in view.  If the total area is larger, this area unit is
more active;  if the area is smaller, it is less active.

This does not require that the image be individuated into
objects or preprocessed in any other way.  The area unit is
actually recording the total amount of light (or lack thereof)
received by the retina.  For the studies mentioned in the pre-
vious section, which use simple, black objects on a white
background, this is equivalent to the total area.

The activity of the area unit does not vary linearly with its
input.  Instead, it varies according to a function of the form:

In this equation, x is the total input to the area unit, and α
is a parameter of the model.

The consequence of all this is that the same difference is
perceived as being smaller if the absolute amounts involved
are larger.  This is the well-known magnitude effect, and is
shown in Figure 1.

Figure 1:  The magnitude effect as a result of a squashing
function.  Differences are perceived as smaller if the absolute
magnitudes involved are larger.
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In the context of the infant studies, our model predicts that
the infant dishabituates if the perceived difference in area
(between the habituation and test images) exceeds some
threshold.

Just as the total activity of photoreceptors reflects the total
visible area, the total activity of center-surround “edge
detector” retina cells (ganglion cells) reflects the total visible
contour length.  A contour unit, analogous to the area unit,
takes input from these neurons.  A sufficiently large per-
ceived difference here also induces dishabituation.

In order to make predictions, the model must be defined
formally.  Let AREAhab be the total area (in square radians of
visual angle) in the habituation images, and AREAtest be the
total area in the test image.  Similarly, let CONThab be the
total contour length (in radians) in the habituation image,
and CONTtest be the total contour length in the test image.

The model predicts that the infant will dishabituate if and
only if

OR

where

is the activation function for the area unit and

is the activation function for the contour unit.
The model has four parameters:  the thresholds τAREA and

τCONT and the activation function sharpnesses αAREA and
αCONT.

Setting the Parameters
We begin by calculating the total area and contour length of
the stimuli from each study.  The distance from the infants to
the screen was different in each study, so we first convert all
lengths into radians of visual angle.  The data are shown in
Table 2.

We were able to find parameters for which the model gives
the correct predictions for all of these studies.  In other
words, at least one of the thresholds is exceeded in each dis-
habituation condition, and neither are exceeded in any no-
dishabituation condition.

One satisfactory set of parameters is:

Admittedly, there is some degree of coincidence involved

in our being able to find parameters consistent will all three
studies.  Variables such as lighting level, size of the card on
which the object appear, and subject age may affect these
values.  Still, it is satisfying that none of the studies disagree
qualitatively with the model, and intriguing that the same
value can be used for both thresholds.

Problems With the Quantitative Model
In addition to the variables just mentioned, we have some
reservations about the quantitative model.

The model assumes that each image is registered in a sin-
gle eye fixation.  In fact, infants move their eyes around
quite a bit while looking at an image.  There are two ways
this may not matter.  First, if the infant is keeping a running
average of the area and contour length in the image, minor
eye movements should have little effect.  Second, the infant

f AREAtest( ) f AREAhab( )– τAREA>

g CONTtest( ) g CONThab( )– τCONT>

f x( ) 1

1 e
αAREAx–

+
----------------------------=

g x( ) 1

1 e
αCONTx–

+
----------------------------=

Table 2: Data from habituation studies.  Areas are in square radians of visual angle;  contour lengths are in radians.  The test
image is assumed to be larger (in terms of area and/or contour length) than the habituation image;  because of the absolute
value in the formula, the model would make identical predictions for the converse condition.

Dishabituation Condition No Dishabituation Condition

Habituation Test Habituation Test

Study Area Contour Area Contour Area Contour Area Contour

Starkey & Cooper 0.00044 0.10 0.00065 0.16 0.00087 0.21 0.0013 0.31

Antell & Keating 0.0031 0.28 0.0046 0.42 0.0062 0.56 0.0093 0.84

Clearfield & Mix 0.0089 0.53 0.020 0.80 0.0089 0.53 0.0059 0.53

αAREA 3000=

τAREA 0.075=

αCONT 3.5=

τCONT 0.075=



may be building an internal map of the image, and then
extracting area and contour information from this “mind’s
eye” view.

Another problem arises from studies on visual complexity.
Karmel (1969) has given evidence that infants prefer to look
at pictures with a certain amount (varying with age) of con-
tour length.  The total contour lengths in question are so
huge (tens of radians) that, after passing through the activa-
tion function in our model, they would be indistinguishable.
If, as our model predicts, these images are indistinguishable,
how could infants have a preference?  Karmel’s data come
from a significantly different paradigm, and additional fac-
tors such as visual frequency may be coming into play.  Still,
these results will eventually have to be addressed.

Estimation and Subitizing
The model presented thus far may go a long way to explain-
ing infant habituation data, but it can’t be the whole story for
adults.  In addition to the explicit, sequential counting proce-
dure, we are able to estimate number.  This estimation ability
appears to operate in parallel—unlike counting, it doesn’t
take twice as long when the number of objects is twice as
large.  The magnitude effect appears here, too:  estimation of
large numbers is less accurate.  Estimation is only precise
within the subitizing range, up to 3 or 4 objects.

Before number can even be estimated, it is necessary to
individuate objects.  In this section, we propose a model of
object individuation which can underlie the estimation abil-
ity.

Temporal Synchrony
Animal studies (Eckhorn et al, 1988) have suggested an
intriguing hypothesis about the visual system:  in certain
parts of the brain, cells which are responding to the same
object fire at the same time.  This is shown in Figure 2.

Because the neural hardware is inherently noisy, there is a
limit to the number of synchronized phases that can be kept

distinct.  This has implications regarding parallel vs sequen-
tial visual search, attention, variable binding, short-term
memory capacity (the magical number 7 +/– 2), and other
areas of cognitive science.  In the rest of this section, we
explore how temporal synchrony may aid in number estima-
tion.

Subitizing
Temporal synchrony provides a simple explanation for the
subitizing phenomenon.  Suppose there is a unit which fires
whenever any other unit fires.  This subitizing unit repolar-
izes faster than the other units, but not so fast that it fires
more than once in response to a synchronized pulse.  This is
shown in Figure 3.

The frequency with which the subitizing unit fires encodes
the number of objects visible.  Beyond 3 or 4 objects, the
phases begin to blur together;  the subitizing unit fires at its
maximum rate and the subject perceives “many” objects.

Estimation
Numbers beyond the subitizing range can still be estimated
with the help of temporal synchrony.  If a unit accepts input
only from others firing at a particular phase, it only receives
input regarding one object.  Even if there are too many
objects to subitize, this can provide some useful information:
the size of a typical object.  If this amount is used to scale the
total amount of area visible (effectively dividing the total by
the size of one object), a continuous representation of the
number of objects is produced.  This is not a terribly accurate
mechanism (it suffers from the magnitude effect), but it is
much faster than counting.

Figure 2:  Temporal synchrony.  Three cells are responding
to the first object, two to the second.  Cells responding to the
same object fire at the same time.
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Figure 3:  Subitizing with temporal synchrony.  The subitiz-
ing unit fires whenever any other unit fires.
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Related Work
An alternative model of nonverbal numerical abilities is the
accumulator model proposed by Meck & Church (1983; Gal-
listel & Gelman, 1992).  This model proposes an accumula-
tor which integrates over time.  As each object is perceived,
the activity of the accumulator increases by a fixed amount.
The accumulator’s activity then serves as a representation of
number.

The imprecision of larger numbers is explained as vari-
ability in the pulses passed to the accumulator.  The more
pulses there have been, the less accurate the resulting value
in the accumulator.

Our model differs in two ways.  First, we explain the lower
precision of larger amounts with the squashing function.  We
have difficulty conceiving of a neurally plausible accumula-
tor which is capable of both taking on very large values and
providing precision for small values.

A second difference is that our model is strictly parallel,
while the accumulator model is sequential:  the stimuli are
“fed into” the accumulator one after another.  In a static
image, this would require a pointing strategy, with the infant
carefully “counting” each item exactly once.  Since this is
not a trivial task even for 3-year-olds (Fuson, 1988), it is dif-
ficult to believe that infants would have this ability.  Our
model does not ask so much;  indeed, the quantitative model
does not even require the infant to break the image down into
separate objects.

Conclusions and Future Work
We have presented a two-part model of protonumerical abili-
ties.  The model reproduces human data on numerical per-
ception without any explicit counting.  The abilities granted
by the model may provide useful grounding to children as
they learn conventional counting.

The quantitative model predicts that infants will dishabitu-
ate to a sufficiently large change in either total area or total
contour length.  The exact meaning of “sufficiently large”
depends on four parameters, and we have found values for
these parameters which are consistent with several existing
studies.

The quantitative model makes an interesting, counterintui-
tive prediction:  infants will not dishabituate in Starkey &
Cooper’s 2 vs 3 condition with dots of certain sizes (e.g.,
extremely large ones).  Conversely, the model predicts that
infants will  dishabituate in the 4 vs 6 condition for other dot
sizes.

More specific predictions can be cautiously made based on
the particular parameter values we found.  The perceived dif-
ference between images is graphed as a function of stimulus
size in Figure 4.  Where this magnitude exceeds the thresh-
old, habituation is predicted.  Specific predictions are given
in Table 3.  We have begun empirical studies to test these
predictions.

The second, more tentative part of the model accepts the
temporal synchrony hypothesis of object individuation.
Each visible object (or some of them, if there are too many)
is bound to a particular phase.  Within the subitizing range,
the density of the phases indicates the number of objects.
Beyond this range, the amount of area present at a particular

phase indicates the size of an individual object, which can in
turn be used to estimate the number of objects.

The second part of the model makes a less surprising pre-
diction:  estimating the number of objects visible should be
difficult if the objects vary greatly in size.

We are now working on a connectionist implementation of
our model, based on Gasser and Colunga’s (1997) Playpen
model of object individuation and spatial relations.
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Figure 4:  Perceived difference between images as a function of circular stimulus diameter.  The M-shaped curves result from
taking the maximum of the perceived area difference and the perceived contour difference.  The marked points are the data
from Starkey & Cooper (around 0.017 radians) and Antell & Keating (around 0.044 radians).

Table 3: Predictions of the model.

Circle Diameter Dishabituation?

radians cm @ 60cm 2 vs 3 4 vs 6

< 0.0088 < 0.53 no no

0.0099 - 0.012 0.53 - 0.72 no yes

0.012 - 0.014 0.72 - 0.84 yes yes

0.014 - 0.017 (includes
Starkey & Cooper)

0.84 - 1.0 yes no

0.017 - 0.020 1.0 - 1.2 yes yes

0.020 - 0.034 1.2 - 2.0 no yes

0.034 - 0.043 2.0 - 2.6 yes yes

0.043 - 0.087 (includes
Antell & Keating)

2.6 - 5.2 yes no

> 0.087 > 5.2 no no

Table 3: Predictions of the model.

Circle Diameter Dishabituation?

radians cm @ 60cm 2 vs 3 4 vs 6




