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Analytical model for the uncorrelated emittance evolution of externally
injected beams in plasma-based accelerators

Alexander Aschikhina, Timon Johannes Mehrlinga,b, Alberto Martinez de la Ossab, Jens Osterhoffa

aDeutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
bInstitut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany

Abstract

This article introduces an analytical formalism for the calculation of the evolution of beam moments and
the transverse emittance for beams which are externally injected into plasma wakefield accelerators. This
formalism is then applied to two scenarios with increasing complexity – a single beam slice without energy
gain and a single beam slice with energy gain, both propagating at a fixed co-moving position behind
the driver. The obtained results are then compared to particle-in-cell (PIC) simulations as well as results
obtained using an semi-analytic numerical approach (SANA) [1]. We find excellent agreement between
results from the analytical model and from SANA and PIC.

Keywords:
PACS: 29.20.Ej, 52.40.Mj, 41.75.Ht, 29.27.Bd, 52.65.Rr

1. Introduction

Plasma wakefield accelerators (PWFA), once a
novel concept promising a significant improvement
of acceleration parameters such as the energy gradi-
ent [2], are now considered as a potential core com-
ponent for the next generation of compact particle
accelerators, following a series of successful experi-
ments yielding highly promising results such as the
energy doubling of 42 GeV electrons [3] or the ac-
celeration of an electron bunch with a high energy-
transfer efficiency [4]. The acceleration process it-
self consists of a two-beam setup, involving a highly
relativistic, high current drive beam and a witness
beam propagating within a specific offset to each
other in a plasma environment. While the former
creates plasma density waves, the latter is acceler-
ated within the resulting wakefields. The driver is
provided by a preacceleration process ahead of the
plasma cell, while the witness can be injected either
externally or obtained from the electrons available
within the plasma, a process known as internal in-
jection.

A major aspect of plasma-based acceleration is
the unique ability of the plasma environment to
sustain accelerating gradients of 1–100 GV/m [5],
which is an increase of several orders of magnitude

compared to the conventional cavities used for par-
ticle acceleration today. Multiple design proposals
exist aiming to explore this potential, suggesting
applications ranging from compact X-ray sources
[6] to next-generation particle collider facilities [7].
The FLASHForward project, a plasma-wakefield
acceleration experiment at DESY [8], aims to ana-
lyze the potential of PWFA accelerated beams for
free-electron laser (FEL) gain. The stringent re-
quirements of FELs, however, severely limit the
range of acceptable beam quality parameters, ne-
cessitating extensive studies focusing on beam qual-
ity preservation during the multiple stages involved
– from the preacceleration stage in the FLASH ac-
celerator, to the vacuum-to-plasma transition re-
gions as well as beam extraction after the PWFA
stage.

As an essential beam quality parameter, e.g. for
FEL applications, the transverse phase space emit-
tance received extensive attention in several works
concerned with plasma-based acceleration processes
[9, 10]. Furthermore, it was shown that transitions
into and the propagation within multiple stages can
lead to significant emittance growth if the beams
are not matched and the vacuum-to-plasma and
plasma-to-vacuum transitions not tapered properly
[10, 11, 12, 13].
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In general, an emittance increase is related to a
change in the shape of the phase space volume oc-
cupied by the beam. This effect can be caused by
multiple factors, from an off-axis injection to non-
linear transverse forces or coupling effects in the
transverse-longitudinal beam particle motion. In
the context of the blowout regime considered in
this article, however, it is the mismatch between
the beam and the plasma environment, together
with significant correlated or uncorrelated energy
spreads or variations of the longitudinal fields over
the intra-bunch length, that most strongly con-
tribute to an emittance degradation.

The extensive analysis of such a critical compo-
nent and the corresponding processes typically in-
volves the use of particle-in-cell (PIC) simulations,
which offer valuable insights at the cost of time con-
suming computations, especially when performing
parameter scans. And while models such as the
semi-analytic numerical approach [1] provide a sig-
nificant increase in efficiency, the analytic model en-
compasses the advantage to not only immediately
deliver the relevant parameters and their evolution,
it could also offer direct insights on the impact of
the different components involved in the accelera-
tion process.

This article presents a set of analytic descriptions
of the evolution of beam moments in a PWFA pro-
cess for two different scenarios. The first scenario
involves a slice of the witness beam with a spe-
cific uncorrelated energy spread propagating in a
PWFA blowout regime without energy gain. The
second scenario considers the same situation, addi-
tionally taking into account an energy gain along
the propagation axis. Both scenarios are discussed
within their respective sections, which follow the
same structure – an initial introduction of the phys-
ical and mathematical basis for the consideration, a
description of the physical environment, as well as
a depiction and analysis of the resulting formulas
where appropriate, followed by a comparison with
PIC simulations and the aforementioned SANA cal-
culation results. The paper is finalized with a sum-
mary and conclusion.

2. Scenario I – beam slice without energy
gain

In general, the beam emittance is a six-
dimensional phase space volume with a conserved
density along any particle trajectory [14]. Usually,

however, two-dimensional projections into orthogo-
nal planes are considered (e.g. x-px), occupying an
area comprised of particle positions limited to a core
with a given distribution. In the following section,
we derive an analytic description for the evolution
of such a phase space area, starting with individ-
ual particle trajectories and considering their phase
space distribution to arrive at a description of their
beam moments and, consequently, the beam emit-
tance.

2.1. Mathematical Model

We begin by considering the differential equation
for the transverse position x of a single electron
exhibiting no change in energy within a linearly fo-
cusing ion-channel

d2x

dt2
+ ω2

βx = 0, (1)

with the betatron frequency ωβ = ωp/
√

2γ, the

Lorentz factor γ, and where ωp =
√

4πn0e2/m
is the plasma frequency, with the ambient plasma
density n0, the elementary charge e and the electron
rest mass m, thus constituting a harmonic oscilla-
tor. The solution for Equation (1) is given by

x(t) ' x0 cos[ϕ(t)] +
px,0

mγ0ωβ,0
sin[ϕ(t)], (2)

with the initial position x0, the initial trans-
verse particle momentum px,0 as well as the ini-
tial Lorentz factor γ0 and betatron frequency ωβ,0.
The phase advance, included as the argument in the
trigonometric functions, is defined as ϕ(t) =

∫
ωβ ,

with ϕ(t) = ωβ,0t in this consideration.
In the following, we transition away from a single-

particle picture towards a statistical approach in-
volving collective beam slice moments in order to
arrive at an analytic formulation of the normalized
transverse phase space emittance [14]

εn =
1

mec

√
〈x2〉 〈p2x〉 − 〈xpx〉

2
, (3)

with the phase space beam moments
〈
x2
〉
,
〈
p2x
〉
,

〈xpx〉2. We chose an ansatz to evaluate Equa-
tion (2) which relies on a separable beam distribu-
tion function (as outlined in [1]). We assume that
the beam particle slice possesses an initial phase
space distribution f0(x0, p0, γ0) (with the normal-
ization

∫
f0dxx,0dpx,0dγ0 = 1), where the initial
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transverse position x0 and the initial transverse mo-
mentum px,0 are not correlated with the energy.
This means that the beam distribution is separa-
ble f0 = f⊥(x0, px,0)fγ(γ0), thus allowing for the
retrieval of the phase space moments using

〈x2〉(t) =

∫ ∞
−∞

(x2(t))f0dx0dpx,0dγ0 (4)

〈p2x〉(t) =

∫ ∞
−∞

(p2x(t))f0dx0dpx,0dγ0 (5)

〈xpx〉(t) =

∫ ∞
−∞

(x(t)px(t)) f0dx0dpx,0dγ0, (6)

with an arbitrary f⊥(x0, px,0) only stipulating
f⊥ = 0 outside of the ion-channel and the en-
ergy distribution assumed to follow a Gaussian
form with fγ = (

√
2πσγ)−1 exp(−δγ2/2σ2

γ), where
δγ = γ − γ, describes a deviation of individual par-
ticles from the mean slice energy γ.

Assuming a small relative energy deviation of the
electrons, |δγ/γ| � 1, allows for an approximation
of the betatron frequency ωβ ' ωβ (1− δγ/2γ),
with the mean betatron frequency ωβ = ωp/

√
2γ.

Since we ignore energy variations in this scenario,
the betatron frequency remains constant ωβ = ωβ,0,
making it possible to provide the phase advance
as ϕ(t) = ωβ,0 (1− δγ/2γ0) t. Using this expres-
sion, together with the original solution for the
individual particle position, Equation (2) as well
as px(t) = mγdx/dt, we can obtain the transverse
beam moments and thus the transverse phase space
emittance, which can be written in the following an-
alytic expression

ε2n(t) =
1

4

((
γ0kβ

)2 〈
x20
〉2

+
1(

γ0kβ
)2 〈u2x,0〉2

)
×
(

1− e−bt
2
)

+
1

2

〈
x20
〉 〈
u2x,0

〉 (
1 + e−bt

2
)

− 〈x0ux,0〉2 e−bt
2

,

(7)

with the momentum given in ux = px/mec, the
mean betatron oscillation wave number kβ = ωβ/c,
together with a growth factor b = ωβ

2∆γ2 (us-
ing the common depiction of the energy spread
∆γ = σγ/γ). It is straightforward to recover
the initial normalized phase space emittance

ε0 =
√
〈x20〉

〈
u2x,0

〉
− 〈x0ux,0〉2 of the slice, by set-

ting t = 0. It can also be observed that the subse-
quent time-dependent change in emittance is driven
by the exponential terms and thus, through the
growth factor, the initial energy spread of the slice.
This betatron-phase mixing effect, owing to the fi-
nite energy spread in the slice and the correspond-
ing energy-dependent oscillations of the electrons,
is an example of the so-called betatron decoher-
ence. Its influence on the development of emit-
tance growth is reflected in the prominent role of
the betatron wave number (or frequency) in the first
term. It can be observed from Equation (7) that the
emittance growth reaches a saturation point once
the contribution from the exponential term is suffi-
ciently small, providing a time scale for the decoher-
ence as td � b−1/2 = 1/ (∆γωβ). Assuming t→∞,
we can then derive an expression for the final beam
emittance once full decoherence is reached,

ε2n =

(
γ0kβ

)2
4

〈
x20
〉2

+

〈
u2x,0

〉2
4
(
γ0kβ

)2 +
1

2

〈
x20
〉 〈
u2x,0

〉
.

(8)
It is relevant to note that the energy spread of
the beam slice does not play a role in this ex-
pression (reproducing previous results, see [10]).
While it is the driving factor behind the beta-
tron decoherence and determines the time-scale of
its progression, the final emittance is dictated by
the initial beam parameters. This means that a
beam not properly matched to the intrinsic be-
tatron motion in the plasma will exhibit emit-
tance growth [10]. This behavior can be avoided if
matching conditions are met, avoiding beam qual-
ity degradation. These conditions can be trans-
lated into quantities relevant for this formulation as
〈xux〉m = 0, kβ

〈
x2
〉
m

= ε0/γ0,
〈
u2x
〉
m
/kβ = ε0γ0.

Together with these expressions for matched beam
moments and Equation (7), we can find an emit-
tance growth factor,(

εn(t)

ε0

)2

=
1

4

( 〈
x20
〉

〈x2〉m

)2

+

(〈
u2x,0

〉
〈u2x〉m

)2


×
(

1− e−bt
2
)

+
1

2

〈
x20
〉

〈x2〉m

〈
u2x,0

〉
〈u2x〉m

(
1 + e−bt

2
)

− 〈x0ux,0〉
2

ε20
e−bt

2

.

(9)

It is evident from Equation (9) that following the
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matching requirements for the initial values results
in a growth factor of one, equivalent to a preserva-
tion of the initial transverse phase space emittance.

2.2. Physical Studies

In order to benchmark the analytic description
presented above, we run a Particle-in-Cell (PIC)
simulation, using the 3D quasi-static code HiPACE
[15]. The blowout regime, which allows us to
assume no radial dependence of the longitudinal
wakefield and thus decouple the radial and longi-
tudinal phase space distributions, was established
using a Gaussian drive beam with a peak cur-
rent Ib = 3kA, total charge Qb = 240pC, mean en-
ergy γ0 = 2000, energy spread σγ/γ0 = 0.1% and a
transverse phase space emittance εn = 2.0µm, mov-
ing through a homogeneous plasma of constant den-
sity (i.e. without a tapered vacuum-to-plasma tran-
sition) of np = 1023m−3 (with the local peak den-
sity of the beam nb/np = 28.5� 1.0). The wit-
ness beam was modeled as a slice of macropar-
ticles with a mean energy γ0 = 2000, an energy
spread of σγ/γ0 = 10%, a transverse phase space
emittance of ε0 = 2.0µm and initial root mean
square (rms) beam moments σx,0 =

√
〈x20〉 = 5µm,

〈x0ux,0〉 = 0, and the momentum spread thus given

by σpx,0 =
√〈

u2x,0
〉

= ε0/
√
〈x20〉. The particular

values reflect a commonly encountered parameter
range, for example at the FLASHForward experi-
ment [8].

Following the requirements of the analytic model,
the witness slice was placed behind the driver at the
zero-crossing of the electric field, avoiding changes
in its energy as much as possible. An additional
benchmark was provided by an implementation of
the semi-analytic numerical approach (SANA), us-
ing a calculation based on the parameters provided
for the PIC simulation.

The results are provided in Figures 1 to 4 de-
picted in SI units using a notation for the rms beam
moments where σx =

√
〈x2〉, σpx =

√
〈p2x〉. Addi-

tionally, we provide beam parameters dynamically
matched to the current emittance and energy, given

as σx,m =
√
ε/kp

√
2/γ and σpx,m =

√
εkp
√
γ/2.

This definition is reused for the physical studies of
the next section as well, when both the emittance
and the energy vary over the simulation length. Be-
cause of the mismatched initial beam parameters,
the emittance of the slice grows significantly during
the propagation, approaching the calculated final
emittance value. As mentioned above, this is due

0 5 10 15 20 25 30 35
z [mm]

1

2

3

4

5

σ x
 [μ
m
]

Analytic Model
SANA
PIC Simulation
σx,m

Figure 1: Evolution of the beam size σx and the instanta-
neously matched parameter σx,m.
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Figure 2: Evolution of the rms beam moment σpx and the
instantaneously matched parameter σpx,m.
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Figure 3: Evolution of the correlation beam moment 〈x · px〉
and the matched parameter 〈x · px〉m.
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Figure 4: Evolution of the transverse phase space emittance
εn together with the value for the final emittance obtained
from the analytic model according to Equation (8), and plot-
ted as an upper boundary.

to the energy-dependence of the betatron frequency,
causing its decoherence and thus an increase in the
emittance of the slice. The decoherence can be ob-
served as a damping effect on the beam moment os-
cillations, which ultimately approach their matched
values once complete decoherence is reached. Us-
ing the growth factor derived above, we can pro-
vide a time scale for full decoherence for the given
parameters as td � b−1/2 = 1/ (∆γωβ), transfer-
ring it into a distance to better match the plots,
zd � c/ (∆γωβ) ≈ 10.6mm. Over these lengths, no
significant drive beam head erosion can be observed
in the simulations, allowing us to assume Ez to
be constant for the simulation time and distance.
Since we are concerned with a single slice of elec-
trons without acceleration, we can ignore correlated
emittance growth due to an energy chirp for a wit-
ness beam of finite length (see [1, 10]) and focus
on the uncorrelated emittance growth. However,
while the macroparticle slice in the PIC simula-
tions was chosen to be as thin as possible in the
longitudinal direction (σζ � k−1p,0), it nevertheless
samples the electric field variation over its length
and around the zero-crossing of Ez, thus deviating
from the assumption of no energy variation for the
witness beam, potentially contributing to a slightly
higher emittance value than the one we calculated
using the analytic model. Otherwise, we find excel-
lent agreement between the analytic model and the
numerical results.

3. Scenario II – beam slice with energy gain

3.1. Mathematical Model

The second scenario exhibits an increase in com-
plexity, by incorporating a variation in energy,

while keeping the single slice picture, again allow-
ing to ignore the correlated emittance growth. In
more physical terms, translated into a PIC simula-
tion setup, it can be thought of as a thin layer of
macroparticles with a transverse distribution fol-
lowing a driver in the blowout regime at an offset
where a non-negligible longitudinal electric field is
providing an accelerating gradient.

The change in energy is reflected in an updated
differential equation for the transverse position of a
single particle,

d2x

dt2
+
γ̇

γ

dx

dt
+ ω2

β(t)x = 0, (10)

with γ̇ = dγ/dt and where the acceleration of the
electron leads to a damping of the particle oscilla-
tion through the term γ̇/γ (consequently, a loss in
energy would result in an amplification of the oscil-
lation amplitude). Equation (10) has the solution

x(t) ' x0A(t) cos[ϕ(t)] +
px,0

meγ0ωβ,0
A(t) sin[ϕ(t)],

(11)
with the newly introduced amplitude term
A(t) = [γ0/γ(t)]1/4. To arrive at this de-

scription, terms of the form
∣∣∣γ̇Ȧ/(ϕ̇γA)

∣∣∣� 1,∣∣∣Ä/ (ϕ̇2A
)∣∣∣� 1 and |γ̇/4γ0ωβ,0| � 1 were dropped,

resulting from the the assumption that energy vari-
ations happen on time scales much longer than the
betatron oscillations (compare [16]). The energy
of a single electron is given as γ(t) = γ0 + Et+ δγ,
again with the initial mean energy γ0, the uncorre-
lated energy spread δγ and a linear term incorporat-
ing a change in energy, where E = −eEz/mec and
Ez = Ez(ζ) is the longitudinal electric field. The
variation in energy also means a time dependent
electron betatron oscillation term ωβ(t) and the re-
sulting phase advance

ϕ(t) =

∫
ωβdt = ϕ

(
1− δγ

2γ0

ωβ
ωβ,0

)
, (12)

with the mean phase advance
ϕ = 2 (ωβ,0/ωβ − 1) /ε, ωβ(t) = ωβ,0/

√
εωβ,0t+ 1

and the finite relative energy change per betatron
cycle ε = −

√
2/γ0Ez/E0, with the cold nonrel-

ativistic wavebreaking field E0 = ωpmc/e [17].
Using the phase advance description together with
the term for energy development allows for the
evaluation of the beam moment equations and a
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calculation of the emittance. Unfortunately, the
resulting formula cannot be provided in a concise
form within the format of this publication. The
results from its application to an acceleration
setup, however, are presented in the following
section.

3.2. Physical Studies

The setup chosen for benchmarking the model
developed following the restrictions imposed by the
second scenario is similar to the one used for the
first scenario – a beam slice with an uncorrelated
energy spread following a driver at an offset, this
time with a non-zero longitudinal electric field re-
sulting in an energy gain. With the other val-
ues such as the transverse beam moments kept
the same, the slice placement was chosen so that
Ez(ζ) ≈ 0.3 · E0.
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Figure 5: Evolution of the beam size σx and the instanta-
neously matched parameter σx,m.
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Figure 6: Evolution the rms beam moment σpx and the
instantaneously matched parameter σpx,m.

Figures 5 to 8 show the evolution of the re-
spective beam parameters with energy gain, pro-
vided with the matched parameters for the varying

emittance and energy as introduced in the phys-
ical studies section of the first scenario. Again,
we observe oscillations of the beam moments for
the chosen, mismatched initial transverse beam pa-
rameters, eventually approaching the matched pa-
rameters after full decoherence due to the energy
variation in the slice. The subsequent propaga-
tion within the plasma shows a variation in the
rms beam moments σx and σpx , resulting from the
energy-dependency of the matched parameters σx,m
and σpx,m (or

〈
x2
〉
m

and
〈
p2x
〉
m

) – originating from
the amplitude term in Equation (11).
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Figure 7: Evolution of the correlation beam moment 〈x · px〉
and the matched parameter 〈x · px〉m.
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Figure 8: Evolution of the transverse phase space emittance
εn, together with a final emittance value obtained from the
analytic model according to Equation (8).

At the same time, the energy spread drives a
significant increase in emittance until the matched
values are reached. Since the mechanism for the
emittance growth is the decoherence effect caused
by the energy-dependent oscillations of particles,
we expect the subsequent acceleration within the
plasma to have no effect on the development of
the normalized emittance once the matched pa-
rameters are reached (see [9, 10]). Thus, we plot-
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ted the final value of the emittance obtained from
Equation (8) to observe that it can indeed be seen
as a target value for the evolution of the emit-
tance over the propagation length. Additionally,
it should be noted that the energy spread used for
benchmarking our results is assumed to be much
higher than expected for externally injected wit-
ness beams in proposed PWFA experiments [8],
with typical values of ∆γ0 = 0.1%. Using such
an energy spread while keeping all the other pa-
rameters to recalculate the decoherence time scale
using the growth factor b results in a distance on
the order of zd � c/ (∆γωβ) ≈ 1.06m. While be-
yond the plasma target dimensions proposed, it is
nevertheless on the order of the plasma cell length
and can thus play a role during the acceleration
process within.

The emittance plots again show a slightly higher
value for the PIC simulation, due to the finite beam
length and the resulting contribution from corre-
lated emittance growth, mirroring the observation
from the first scenario. Apart from these minor
deviations, we find a very high accuracy of the ana-
lytic model when describing the beam moment and
the emittance developments.

4. Summary and Conclusion

We present the development of an analytical
model for the calculation of the evolution of trans-
verse beam moments and the normalized phase
space emittance, together with an investigation of
the uncorrelated emittance growth of externally
injected beams in plasma wakefield accelerators.
The models allow for an immediate evaluation not
only of initial beam parameters with respect to
their matching conditions, but also of their devel-
opment over an acceleration length within a sec-
tion of homogeneous plasma, providing important
information such as typical length scales for emit-
tance growth and final emittance values. The va-
lidity of both models is presented by benchmark-
ing it against results obtained from two different
approaches – a standard Particle-in-Cell simula-
tion following the scenario restrictions as close as
possible, together with the semi-analytic numeri-
cal approach (SANA). We find excellent agreement
between the analytical model for the uncorrelated
emittance evolution and the numerical approaches.
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