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ABSTRACT 

Two simple models including pairing in the dynamical equations 

governing the motion of the nucleus are presented. They correspond 

to the constant pairing strength and the constant gap approximations. 

Their relation to the Landau-Zener type of coupling is investigated. 

The qualitative differences between the two pairing couplings have been 

studied in the particular case of the two crossing levels. 
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1. Introduction 

The microscopic description of the dynamics of a many nucleon 

. 1 
system has been extensively investigated during recent years. 
, 

Significant progress has been achieved recently with the time dependent 

Hartree-Fock (T.D.H.F.) method that allows for a self-consistent 

2-4 description of the dynamics of the nucleus. However, in this method, 

the residual interactions are neglected. This together with the symmetries 

imposed in the calculations, leads to the unpleasant feature that a 

system even moving infinitely slowly could not end up in its ground 

state. This will appear each time two single particle levels with 

different quantum numbers (and, therefore, no possibility of transition 

between them) cross. Such ~ limitation of the T.D.H.F. method could 

for example decrease noticeably the calculated cross section of the 

compound nucleus formation in heavy ion collisions and it is likely to 

have a more serious effect for a slower collective motion like the 

one undergone by the nucleus during the fission process. 

In order to avoid all these difficulties one could either lift 

all the symmetries imposed on the system which leads to a big 

computational problem or introduce in a way as simple as possible a 

residual interaction that allows for transitions between levels with 

different quantum numbers. 

It is the aim of this paper to show that the second alternative 

can be achieved by using the pairing residual interaction. In the 

following section we use a variational principle to derive sets of 

coupled equations which contain the T.D.H.F. equations as a particular 

case p~us simple equations governing the occupation probabilities of 



-2-

each single particle level. In Section 3 we apply these equations to 

the particular case of the two level model, we discuss the solutions 

5-7 and we make a comparison with a Landau-Zener type coupling. 

Section 4 contains our conclusions. Finally, in Appendix A, we present 

a suggestion for a numerical treatment of the equations derived in 

Section 2. 
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2. Derivation of the Equations 

2.1. Choice of the Wave Function and Lagrangian 

We assume that at all times the wave function of the nucleus can 

be described by a Bogoliubov state I¢>, which in the canonical 

representation
8 

can be written* as 

(1) 

1
++ where 0> denotes.the vacuum state, d
k 

and d_ are the creation operators 
k 

of the coupled states k and k and ~k and v
k 

satisfy the relation 

2 
+~ 1 

Writing formula (2) we made us~ of the well known fact that only the 

relative phase between ~ and vk matters and decided .to take ~ as 

a real quantity. In the rest of this paper we shall also use the 

following standard notation 

We shall start from the variational principle
9 

oT o with 

* The notation k > 0 means that only one of the coupled states k and 

k is involved. 

(2) 

(3a) 

(3b) 

(3c) 

(4) 
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and take as a Lagrangian £ 

.(5) 

* * * In the equations (4) and (5) the vk ' vk ' ~k' ~k' ~_ and ~_ are 
k k 

the independent variational quantities and H the many body Hamiltonian. 

From definition(l) the term (¢I~tl~) in expression (5) can easily 

be calculated. One obtains 

(6) 

The dots in Eq. (6) denote as usual the time derivatives. 

The energy E = (¢IHI~) is separated into two parts: The field 

part Ep and the pairing one Ep: 

(i) The field energy EF is the part of the total energy E that is 

'""".:j:"""' +'"'+'"' associated with the contractions of the type d dand d d d d when one 

makes use of the Wick theorem. When the wave function I~) reduces to a 

Slater determinant, EF becomes equal to E. The equations of motion, which 

shall be presented in Section 2.3 are valid for a field energy EF derived 

for any two body interaction. However, we shall consider field energies 

of the following local functional type: 

(7) 

where JC is a functional of the density p and kinetic energy density T 

(8a) 
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T(r) = ~ p~ IV¢~(~)12 + IV¢_(r) 12 
~>O ~ 

(8b) 

Such field energies are typical for the Skyrme or skyrme-like
lO 

type 

effective interactions, and the success of these interactions in reproducing 

the nuclear ground state properties indicates that the restriction implied 

by formula (7) is not very serious. Anyway as mentioned before the 

equations of motion will not depend on this restriction, which is used 

here only to simplify our presentation. 

(ii) The pairing energy E is the part of the total energy E associated 
p r--; 

with the contractions of the type d+d+ ~. The aim of this paper is to 

investigate the qualitative dynamic properties of the coupling between 

nucleons introduced by the pa~ring interaction. Such an investigation can 

be more easily done with a schematic model rather than with the more general 

form of the pairing energy E. We have selected two models, which have been 
p 

of great use in the static calculations including pairing: the constant 

gap ~ model and the constant pairing strength G model. Different pairing 

energies E correspond to' each of these models: the constant gap pairing 
p 

model leads to the pairing ~nergy 

(9) 

and the constant pairing strength model to 

E = - G I ~ K \2 (10) 
P2 . L..J ~ 

~>O 

In the formulas (9) and (10), ~ and G are real constants. In the 

following sections we shall study the differences between these two 

types of pairing coupling. 
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2.2. Constraints 

Before performing the variation of the Lagrangian £, we shall add 

to it two Lagrange constraints Cl and C
2

. The first constraint will 

be on the total number of particles 

with 

C = - AN 
1 

N 2 :E PQ, 

Q,>O 

const 

The second constraint ensures the conservation of the norm of the 

particle wave functions 

with 

The ~Q, and A are the Lagrange parameters. 

2.3. Equations of Motion 

(11) 

(12) 

(13) 

(14) 

In this subsection we shall present and discuss the general features 

of the Euler-Lagrange equations applied to £ + C
l 

+ C2 for the two 

different pairing energies E 
.. . PI 

and E 
P2 

2.3.1. Constant pairing strength (G) interaction 

The Euler-Lagrange equations in this case are: 

. A 

ih¢Q, = (JC(p) - EQ,) ¢ Q, 

ihpQ, * * 11 KQ, I1KQ, 

(ISa) 

(ISh) 
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where i(p) is the one-body Hamiltonian governing the motion of the 

single particle states ¢Q,' and £Q, is a single particle energy 

Several choices can be made for £Q,. One possibility is 

The orie body Hamiltonian X has the same physical meaning as the 

Hartree-Fock one body Hamiltonian. The equation (lSa) appears then 

as a direct generalization of the usual TDHF equations. It is only 

(1Sc) 

(lSd) 

(16) 

coupled to, the equations (1Sb)-(lSd) through the dependence of p and T 

on PQ, (equation 8). Definition (16) of the energy £Q, ensures not only 

the conservation of the norm nQ, but also the more strict condition 

(17) 

This property does not bear any physical information and simply means 

that we have made a particular choice for the phase factor in the wave 

functions ¢Q,. 

The equations (lSb)-(lSd) are the·dynamical pairing equations 

(they were already derived in Ref. 1, except for an additional term in 

equation (lSc».They are coupled to equation (lSa) only through the 

single particle energies £Q,. Let us now study their properties: 
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(i) The summation over the index £ in equation (lSb) gives 

o (18) 

which shows that the number of particles is conserved. 

(ii) There is no equation to determine the time evolution of the Lagrange 

parameter A. In fact, the analysis of equation (lSc) shows that adding to 

A any arbitrary function of the time simply amounts to a change of the K£ 

(and thus the v£) by an overall phase factor, without any physical change. 

Therefore, one can use the freedom in t):le choice of A to simplify the 

equations, as we shall do in the next section. 

(iii) The time derivative of the total energy E is: 

(19) 

Equation (lSa) ensures that the first term in equation (19) ;is 

equal to zero. Using the equations (lSb)-(lSd) one obtains: 

(20) 

which, because of equation (18) ensures the conservation of the energy. 

2.3.2. Constant gap (6) pairing interaction 

The gap 6 is chosen to be a real constant. Then the Euler-Lagrange 

equations become 

· A 

il1ct>£ = (JC( p) - £2,) ct>£ (2la) 

· * il1p£ 6(K£ - K£) (2lb) 

· ·I1K 
1. £ = 2K£ (E£ - A) + M2p - 1) 

.£ 
(2lc) 

Formally these equations are very similar to the equations (lSa)-(lSd), 

the only difference is that now 6 is not determined self consistently 

as it was before (equation lSd). The fact that 6 is now a real 
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constant has several consequences. The most important one is that 
, '.' 

the conservation of the number of particles is not automatically 

ensured by eq. (2Ib). Therefore, one should choose A in a way to 

keep the number of particles constant. Since one can again prove 
• 'i ' 

the relation (20), the conservation of the energy will be a direct 

consequence of the conservation of the number of particles. 

It is also possible to write the equations (2la)-(2Ic) in a 

different way by introducing the following three real variables: 

which satisfy the relation 

2 2 i 2 . 
M~ + K~ + K~ = 

1 
4 

and 

ih 

with 

0 0 
-., 

J(~ = i 0 , 0 

-2b. , -2(E -A) 
~ 

2b. 

, 0 

(22) 

(23) 

(24) 

(25) 
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It is shown in Appendix A that the numerical treatment of.the 

time dependent equations (21b) and (21c) is noticeably simplified by 

switching to the equivalent formulation (23)-(25). 

The only remaining problem is to choose A, so that the number of particles 

is conserved. To realize this we must have 

LK~ = 0 (26) 

£>0 

since we shall assume that at the initial time this condition is fulfilled 

we need only to impose 

LK~ 0 (27) 

£>0 

IfD is the dimension of the space 

D (28) 

one finds that A must satisfy 

2LK~ 
(29) 

£>0 

It should be noted that the equations (15b)-(15d) can be put into a 

form similar to eqs. (23)-(25). Indeed we can take advantage of the 

freedom we have in the choice of the Lagrange parameter A to ensure that 

!1 (eq.(15d) is a real quantity. One then finds that A satisfies 

equation (29) with the only difference that ~ is not a constant but 

equal to: 

~ = G L: K~ (30) 

£>0 



0 0 11 v i.f 5 U 6:j J 7 9 

-11-

It is then possible to reformulate the complex equations (15b)-(15d) into 

the set of real equations (23)-(25), but now the matrix elements of j( 

proportional to /::, are calculated according to eq. (30). The numerical 

technique described in the Appe~dix A could .thus also be applied to the 

equations of motion corresponding to a constant pairing strength 

interaction. 

2.4. Relation with the TDHF Equations 

The sets of equations (15a)-(15d) and (2la)-(2lc) contain as a 

particular case the TDHF equations. However, in the case of constant 

pairing strength C;; the TDHF equations are solutions of the system 

* (15a)-(15d) for any value of G , while one has to set /::, = 0 to reduce 

the system (2la)-(2lc) to TDHF equations. Indeed, if the starting 

conditions for the system (15a)-(15d) are such that the Bogoliubov 

state degenerates into a Slater determinant (K~ = 0), the solution 

will always remain a Slater determinant no matter how large G is. This 

is because a Slater determinant is always solution of the static 

pairing equations with a constant pairing strength. On the other 

hand, if the constant gap /::, is different from zero, there does not 

exist any time. dependent Hartree-Fock solution that can satisfy the 

set of equations (2la)-(2lc). 

* It is true even if one uses a more general pairing interaction. 
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3. Two Levels Model 

In order to investigate the qualitative effects of the pairing 

coupling we apply the equations (15) and (21) to the particular case 

of the two levels model. One can question the validity of using 

constant G interaction in such a simplified system since pairing is 

a collective phenomenon. However, the situation in nuclear physics is 

not quite comparable to that in solid state physics. Indeed, the 

number of nucleons that contribute significantly to the pairing is 

always small (and not much larger than two) as compared to the total 

number of nucleons. As we shall see in this section the main. difference 

between the cases t1 = constant and G = constant comes from the fact 

that in the latter case the gap is dependent on the relative phase 

between the coefficients v .• This dependence is probably more pronounced 
l. 

in the two levels model with constant G (making in this way the difference 

with the constant t1 case even more clear), as compared to the more 

realistic case studied in Ref. 1, where pairing effects were created 

essentially by a dozen interacting levels. It is likely, however, 

that many qualitative features will remain the same. In this section 

we also investigate the relation between the coupling introduced by the 

pairing interaction and the Landau-Zener one. 

The one-nucleon two levels model, that we shall study is in fact 

a four levels model with one pair of nucleons, where one takes into 

account the fact that the energies of paired levels are equal. From 

now on, we shall work only with one of each pair of levels. The 

difference between the energies of two distinct levels will be a 

function of time, and in the two cases we shall study, this function 
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is either a constant or linearly dependent on time. 

3.1. Equations with the Constant Gap 

In the two levels model the quantities defined by (22) satisfy: 

where the indices 1 and 2 refer to the two distinct levels, and 

equation (29) reduces to: 

A = 

where £1 and £2' are the energies of these two levels.· Therefore, 

the equations (24) and (25) which in principle should be written for 

(31) 

(32) 

the indices 1 and 2, lead to one independent set of coupled equations: 

with 

iii d 
dt = (~ ~ -~~) 

-2f:.. O£ 0 

The problem of solving these equations can be greatly simplified by 

noting their analogy with the Landau-Zener type of coupling, where 

(33) 

(34) 

the equations for the time evolution of the coefficients of expansion 

C
l 

and C2 of a state on the two unperturbed levels satisfy: 

iii d 
dt 

(35) 
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* Here H is the coupling matrix element. By making the correspondence 

M1 ~ Icl 1
2 -1 

K~ ~ Re (c;c
1

) 

K~ ~ 1m (C;C1) 

/1 ~ -H 

(36) 

one obtains exactly equation (33). This correspondence shows that the 

gap is the analogue of the coupling coefficient H. This is not too 

surprising since in a microscopic calculation using a two body interaction, 

H has the meaning of a matrix element of the Hartree-Fock field, namely 

the convolution of the two-body interaction with the one body density, 

while /1 results from the convolution of the interaction with the 

pairing tensor. 

In fact the analogy between the pairing equations (24) and (25) 

and the Landau-Zener equations can be slightly extended. Indeed one 

can interpret the equations (24) and (25) in the case of a many levels 

problem by saying that each. level with energy E~ undergoes a Landau-Zener 

transition (with coupling strength /1) to a fictitious level with an 

energy E~ satisfying 

This is because the only coupling between the equations (24) for 

* We call (35) the Landau-Zener equation for the two types of variation 
OE with time, although generally this name is used only when OE depends 
linearly on time. 
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different levels is due to A and the analogue of what we call OE in 

eq. (34) is 2(A - E.). 
1. 

Because of the identity between the constant gap two levels 

model equations and Landau-Zener equations, we can immediately obtain 

the solutions for the two time dependences of OE considered here . 

. When OE does not depend on time one finds that the probability of 

the level occupation PI = IVl12 oscillates as a sine (or cosine) 

function with a period 

If one chooses the initial time such that PI is equal to zero arid 

PI = t + Mo :: Po' the amplitude of the oscillations is 

(37) 

Op = 

2)1/2 
4M 

o (38) 

From eq. (37) one can see that the period of oscillation depends only 

on ~ and OE and not on the initial density p. Equation (38) shows 
o 

that the amplitude of the oscillations is zero only when the initial 

density is equal to its static equilibrium value 

One can also notice that the amplitude of oscillations op is exactly 

the same whether the initial density is zero or one. 

(39) 
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The case when <SE is .a linear function of time has been investigated 

5-7 by Landau and Zener. We shall assume the following variation for 

* OE. 

OE = -2at 

Applying the Landau-Zener results to the case ~ = constant, one can 

compute the final density P
f 

::: Pl(t = +00) for the unperturbed first 

level, knowing the initial density Pi ::: Pl(t = _00) for this level. 

(40) 

The result is generally dependent on the initial relative phase between 

ul and vI (phase of K
l
). The only two exceptions are when the level 

is either totally filled or totally empty at t = _00. The results can 

be summarized in the following way. The average final density P
f 

is 

equal to 

P. (1 - 2w) + w 
1 

and the dispersion 0 of the values of Pf is given by 

2 o 

where w is the well known Landau-Zener probability of transition 

w = 1 - exp (- TI~~) 

(41) 

(42) 

(43) 

These results exhibit a symmetry under the transformation p. *" 1 - p:. 
1 1 

Indeed, eq. (42) is evidently invariant under this transformation, as 

well as the absolute value of the transition amplitude iPf - Pii. This 

*. 
From now on we shall call a - velocity, although it has a dimension 

MeV· sec-I. 
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symmetry is commonly expressed by saying that the probability of 

jump from one unperturbed level to the other one is identical whether 

it is the upper or lower level' which is occupied at minus infinity. 

In other words, the Landau-Zener coupling does not take lnto account 

the fact that once the. perturbation is introduced one of the static 

perturbed levels is always more bound than the other one. 

Before going to the next section we shall present two different 

ways of formulating eq. (33) only for the purpose of comparison with 

the constant G interaction. By calling e the phase between u
l 

'and VI' 

eq. (33) can be replaced by the first orde~ differential system 

(44) 

or a second order differential equation 

(45) 

3.2. Equations with the Constant G Interaction 

Formally most of the results that have been obtained in the case 

b. = constant remain valid. Indeed if one wants the gap b. to remain real, 

the Fermi level A should satisfy equation (32). The relations (31) 

and eq. (33) are still valid. The only difference is that now the 
I 

gap b. should be calculated self consistently as 

R ( 2)1/2 
b. = 2GKI =G 1 - 4Ml cose (46) 
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8 represents here, as in eq. (44) the phase of K
l

• The already noted 

analogy between the eq. (33) and the Landau-Zener equations shows 

again that the quantity corresponding to the Landau-Zener coupling 

parameter H is the gap 6 .. 

We shall now see how the self-consistency (or nonlinearity) 

introduced by the formula (46) modifies the results obtained in 

section 3.1. In the particular case of the two levels model it appeared 

to be easier not to solve the equations of motion in the form indicated 

by formula (33) but rather to use the first order differential system. 

h8 2 
4GMlcos 8 

which corresponds to the system (44). In fact one can note that 

(47) 

eq. (47) can be obtained from eq. (44) by simply inserting expression (46) 

for 6. The analogue of the second order differential equation (45) is: 

(48) 

3.3. Results and Comparison of the Two Models 

When the difference between energies of the two levels QE does not 

depend on time, equation (48) can be easily integrated. We shall 

. 
study the solutions, which at time t = 0 satisfy PI = o and 

PI = 1/2 -+ M == P •.. Equation (48) leads to the following first order 
o 0 

differential equation for ,M
l 

(49) 
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with 

.(OE _ 2~ ) 
2G 0 

G "( _ 4M02) a 2 = 20e: 1 (50) 

Tbe solution of equation (49) can be expressed in terms of the elliptic 

functions and the results are summarized in Table 1. 

In Fig. 1 we show the results for the period an amplitude of the 

motion for the two cases: OE = 1.5 MeV and oe: = 3 MeV, as a function 

of the initial occupation Po - 1/2 +M at t = O. The first case 
0 

(OE = 1. 5 MeV) is an example of the situation where a static pairing 

solution exists (loEI ~ 2G). One can notice the strong dependence of 

the period on Po to be compared with the constant f:.. case, where period 

is completely independent of .p. When OE becomes larger than 2G 
o 

(case: OE = 3 MeV) there does not exist any stati,c pairing solution. 

From the results shown in Fig. 1b, one can see that then the period 

varies smoothly with p. In this case the amplitude (shown in the 
, 0 

lower part of Fig. 1) is a symmetric function of p , going to zero 
o 

when p goes to zero. or one. However, when 8E: becomes smaller than 
o 

2G (Fig. 1a) one can see, that the amplitude still goes to zero with 

p , but has a nonzero value at p equal one. Finally, one can note 
o 0 

that when Po is exactly zero or one there is no motion at all either 

because the amplitude of oscillations is zero or the period is infinite. 

We shall see how these results can help us to understand some 

of the features appearing in the situation when two levels cross. 

In the case of two crossing levels, which is of much more interest, 

we were not able to solve the equations analytically. Therefore, we 

solved the system (47) by using the fourth order Runge-Kutta method. l2 



-20-

As a check the Adams-Moulton-Bashforth
I3 

predictor corrector method 

was used too. In Figs. 2 and 3 some of the results are presented 

and compared with the results obtained in the constant ~ calculations. 

To make a reasonable comparison between the constant G and ~ calculations 

it seemed to us necessary to ensure that in both cases the average 

value of the gap is the same. Indeed our comparison with the Landau-

Zener case showed that the gap is the quantity responsible for the 

transition. According to formula (46) when G is constant the average 

value of ~2 is G2/4. Therefore, we choose a value of Gbwice as large 

as the value of the constant~. Finally we choose ~ equal to 0.5 MeV, 

which is a reasonable value for real nuclei and, therefore, should 

give us a good idea about what the transition would be in realistic 

situations. 

. 22 MeV In Fig. 2, we plot for a given veloc1ty a = 0.4·10 -- (see 
sec 

formula (40» the final density P
f 

(t= +00) for the unperturbed level 

1 as a function of the initial density Pi (t =_oo) for the same level. 

According to our definitions when a is positive, the unperturbed level 

1 is close to the lower perturbed level at minus infinity and close to 

the upper one at plus infinity. 

One can see that with a constant G interaction there is no 

transition when the initial filling is zero or one. Again this is 

due to the fact that the Hartree-Fock solution is always a solution 

of the pairing equation. We assume that some kind of measure of the 

strength of the transition is given by the deviation of the average 

curve Pf from the diagonal indicated by a dashed line in Fig. 2(a) or 2(b). 

These diagonals correspond to the infinite-velocity case. Now one can 
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see that the absolute value of the deviation is on the average larger in 

the constant 6 case. 

In Fig. 3 we present the probability of the transitions as a 

-function of the velocity a. The quantity P
f 

that we plot is ·in fact 

the average occupation of the upper perturbed level at plus infinity. 

For the constant 6 case we present the results when the occupation 

probabilities of the lower perturbed level at minus infinity equal zero 

or one. According to formula (41) the sum of two curves is equal 

one for any value of the velocity. In the constant G coupling there 

is no point to studying the cases when initial filling is zero or one, 

because as it was noted in section 2.4 there is no transition for 

these fillings. So, we made calculations for the initial fillings 

which are close, but not equal to zero and one, namely 0.01 and 0.99. 

The comparison with the constant gap case shows that for a given 

velocity the strength of the transition in the G coupling is much 

less. One can also note a difference in the behavior of the ,two 

curves with initial fillings Pi = 0.99 and 0.01. This difference is 

particularly important for the lowest velocities that we have studied 

(log(a) < -1.5). For these velocities we find an almost complete 

transition when the initial filling of the lower level is equal 0.99 

(Fig. 3b). This means that after the crossing the probability of 

occupation of the lower perturbed level is close to 1. But when the 

lower level is almost empty at t = _00 the probability of occupation 

of the lower perturbed level after crossing is larger than 0.5 (Fig. 3a). 

Therefore, one can say, that the constant G coupling takes into account 

the fact that one of the perturbed levels is more bound than the other 
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one and on the average it is more filled after crossing. This 

"asymmetry" between the results for the initial fillings 0.01 and 0.99 

can be understood from static results. Assuming that the velocity is 

sufficiently small, so that one can extract some information from the 

results with constant OE, it comes out (Fig. 1) that when the initial 

filling is close to zero the amplitude of the oscillations will remain 

very small untiloE becomes negative. Therefore, during half of the 

crossing time no transition can occur. On the contrary when the initial 

filling is close to 1, as soon as OE becomes less than 2G the amplitude 

of the oscillations is increasing very fast and, therefore, the over~ll 

time available for the transition is much larger than in the previous 

case. 
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4. Conclusions 

In this paper we have presented two different sets' of equations 

which lead to a simple self' consistent model for a dynamical description 

including the pairing residual interaction. These two sets correspond 

to the constant gap and constant pairing strength approximation models. 

The TDHF equations are always contained as a particular case of the 

complete sets and we have shown that the pure TDHF solutions are 

always solutions of the complete set of equations with constant G 

no matter how large Gis. 

By applying the equations to a simple two levels model it was possible 

to show the connection with the Landau-Zener theory. Going to the 

many levels problem we have shown that each level undergoes a Landau-

Zener type transition to a fictitious level symmetric with respect to 

the Fermi level and with a coupling strength determined by the 

magnitude of the gap. Formally, the only difference between the two 

pairing models lies in the fact that the gap is calculated self 

consistently from the pairing tensor solution when one is working with 

the constant G interaction. 

From the solutions of the two levels model it was also possible to 

extract the qualitative features of the transitions induced by the 

two pairing models. It has been shown that using the constant G 

interaction the transition between two unperturbed levels is weaker 

(it requires a slower motion) and also that it is easier to populate the 

lower perturbed level contrary to the Landau-Zener type (and constant 

gap) coupling which gives equal probabilities of a jump from either 

perturbed level to the other one. 
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Both pairing residual interaction models can be used as a phenomenological 

way to allow for the interactions between levels with different quantum 

numbers; however, the constant gap formulation is much simpler. In this 

case the gap should be partly in~erpreted as a symmetry breaking matrix 

element of the field. 
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Appendix A. Numerical Treatment of the Pairing Time 
Evolution Equations 

A d · h d f" "" 22,25 d h "(23)· d· (24) ccor ~ng to tee ~n~t~ons an t e equat~ons an 

the time evolution of the occupation probabilities and of the pairing 

tensor for a D/2 level system is equivalent to the evolution of a set 

of D/2 three dimensional normalized vectors. The evolution of each 

"" 
vector is determined by the Hamiltonian operator ~£ defined by formula (25). 

The vectors are coupled only through the Fermi level A.. A well known 

numerical method which preserves exactly the norm of a vector in a 

calculation with a finite time step consists in using the Crank Nicholson 

unitary propagator 

(n) 

In the above equation (n) refers to a given time step and dt is the 

magnitude of the time step. Due to the simplicity of the operator 

~£ the propagator can be written in a closed form and one obtains 

(n+l) 

( 
2 2 )-1 

l+a +b£ 

where 

and 

-2ab£ 

2 2 
l+a -b£ 

-2b£ 

. (A.l) 

(A.2) 

(A.3) 
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The only remaining problem is to ensure the exact conservation of the 

particle number. This is done by choosing the Fermi level A such 

that the quantity 

A(A}= (A.4) 

vanishes. The zero of A (A) is easily obtained by using a Newtdn-Raphson 

method. Indeed the derivative of A (A) can be calculated' in a closed 

form and one knows a good approximation of the solution 

(A.5) 

14 In a subsequent paper we shall indicate how one should choose the 

energies £~, the gap A (when one works with the constant G interaction) 

and the one body Hartree-Fock Hamiltonian X(p) (formulae (15) and (21», 

to ensure exact conservation of the total energy in a finite time 

step calculation. 
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Table 1. Solutions of the constant G model for o£ = constant. 

O£ Range of 0 = -
G 

o ~ 0 ~ 4M 
0 

4M ~ 0 < 1 + 2M 
0 

o = 1 + 2M o 

o > 1 + 2M 
o 

* 

0 

. . * 
Solution for (Ml - M) 

' 0 

I - Sd
2 (nf) .. 

- Sn2 (n !'\ 

(
1 ) 2(G( 2 1/2 ) 2' - Mo th h 1 - 4Mo} t 

- Sn
2 (n f) 

I 

I 
i 

-
m 

. 0(4M - 0) 
0 

1 - (2M _ 0)2 
0 

0(0 - 4M ) 
- 0 

1 

1 -

0(0 

-

o 

4M2 
o 

4M ) 
o 

I~ 
I 

i I 2h· 

2h 
G 

** Period T 

K(m) 

(1 - (2M _ 0)2)1/2 
o . 

( 
K(m) 

- 1/2 
0) 

ape~iodic 

motion 

K(m) 

(0(0 _ 4M ))1/2 
o 

", 

I 

I 

Amplitude of the 
O!?cillations op 

0 2M 
0 2 

.. 

0 - - 2M 
2 0 

l-M 
2 0 

1 - 4M2 
o 

20 

For the definitions of the functions Sd and Sn see Ref. 11. The solutions are only given for the positive 
values of 0 since the results for the couples of parameters (o,Mo) and (-o,-Mo) are identical (interchange 
of the role of levels 1 and 2). 

**The quantity K(m) is the complete elliptic integral of the first kind K(m) = f n/2 (1 - m· sin28) -1/2 d8. 
o 

I 
N 
\0 
I 

o 
o 

.-.<"-"'0.,-." 
\.owl 

k 

U'i 

~~'''''' 
'1..-' 

(;.,t. 

(jg 

co· 
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Figure Captions 

Fig. 1. The dependence of the period T (in 10-
22 

sec) and the amplitude 

of oscillations op on the initial filling P in the case of two 
o 

parallel levels distant by: oE = 1. 5 MeV (case a) and oE 3 MeV 

(case b). The solid lines correspond to the constant G = 1 MeV 

coupling. The dashed lines to the constant ~ = 1 MeV coupling. 

Fig. 2. The dependence of the final filling P
f 

on the initial one Pi 

for two considered couplings: constant ~ = 0.5 MeV (case a) 

and constant G = 1 MeV (case b). The velocity in both cases 

22 -1 
is equal a = 0.4-10 MeV sec The hatched areas correspond 

to the dispersion zones: P
f 

± o. The solid lines correspond 

to the average values P
f

. 

Fig. 3.· The dependence of the final filling P
f 

on the velocity a for 

constant G = 1 MeV coupling (solid lines) and constant ~ = 0.5 'MeV 

coupling (dashed lines). The initial fillings P. are: 
1. 

0.01 in 

G coupling and 0 in ~ coupling (case a) and correspondingly 

0.99 and 1 (case b). The dots indicate the average values P
f 

and the error bars the dispersion ±o. 
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..--_______ LEGAL NOTICE-----------, 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned rights. 
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