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L-Estimator see Robustness

L Regression see Least Squares

L, Regression see Robust Regres-
sion

Laboratory Quality
Control

Quality control, or more broadly quality assurance, is
an essential part of the conduct of an analytic labora-
tory. This is especially critical for clinical laboratories
since errors in measurement can lead to inappro-
priate treatment of patients. A full treatment of the
many management, planning, record keeping, and
audit procedures is beyond the scope of this article
(see Garfield [1] for these concerns); we concentrate
on a few critical issues in statistical quality control
as they impact analytical laboratories.

Estimation of Precision

An important issue in an analytic laboratory involves
the attachment of standard errors to measured
values. Although every effort should be made to
avoid biass, it may be difficult to estimate the

remaining bias, so standard errors are usually based
on the precision of measurements; that is, the standard
deviation (sd) of repeat measurements made under
identical conditions. This is necessarily only a lower
bound on the true error standard deviation.

It will hardly ever be the case that the error stan-
dard deviation is constant, independent of the level
measured. For large concentrations of the analyte, the
standard deviation will often be approximately a mul-
tiple of the concentration (more generally, this may
be a power function). If small concentrations (near
the limit of detection) are not of interest, then a lin-
ear equation describing the relationship between the
precision and the concentration can be estimated from
a series of repeat measurements at several concen-
trations. by regressing the standard deviation of the
repeats on the mean of the repeats. This can often be
done during the process of producmg a calibration

-curve for the instrument. S

If values near the limit of detccuon are of interest,
then a more complex method is called for. Rocke &
Lorenzato [10] present a model in which an additive
error and a multiplicative error are both present,
which allows for realistic behavior at both high and
low concentrations. This model can also be estimated
during the calibration process.

Control Charts

There are many problems, systematic and sporadic,
that can interfere with the accurate determination
of values in the analytic laboratory. Reagents may
lose potency, temperature or humidity may affect the
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results, and operators may differ in their technique.
There are many methods of statistical quality control
that can be used to detect these problems; detailed
descriptions may be found in Wadsworth et al. {11]
and Montgomery {5]. Two of the most important will
be described here. These are Shewhart charts, also
known as X and R charts, which are used to detect
general departure from a state of statistical control,
and CUSUM charts, which are used to detect a shift
in the mean.

The “state of statistical control™ referred to above
is, in the context of laboratory errors. one in which
measurement errors have zero mean and a standard
deviation that does not change with time (although
it may differ with the concentration of the analyte),
and in which successive measurement errors are not
correlated.

Shevhart Charts

Periodically, a small group of repeat measurements is
taken on a standard solution. At time r. k replicates
are taken, denoted x;;, where 1 <i < k. The mean
X, and the range R, are computed. If the process
is in a state of statistical control, and under the
additional assumption of normality, each value of the
range is an estimate of a multiple of the standard
deviation, the value of the multiplier being given in
standard tables (see, for example, Wadsworth et al.
{11] or Montgomery [5]). After 10 or 20 groups have
been accumulated, the mean of the ranges R, when
multiplied by a standardizing constant, is an estimate
of the process standard deviation. For example, if k =
3, then R/1.693 is an estimate & of the process sd o.

The group means are then plotted on a chart
which has a centerline equal either to the known
value for the reference solution or to the average
of the group means, and which has two reference
lines above and below the centerline at a distance
of +3&/k (this whole quantity can be computed
as a multiple Ay of R). Since the estimate of the
process standard deviation is based on the variability
of repeats, any factor such as temperature changes,
or operator technique, that varies from group to
group but not within a group will generate extra
variability. If there are no such extra factors (called
special causes), and all the variability is caused by
the repeat variation (common cause), then the group
means will lie outside the two reference lines (called
control limits) only very rarely. If, on the other hand,

some extra factor is an important cause of variability.
then the group mean will more frequently lie outside
the control limits. When this event occurs (a signal,
in quality control terminology). the cause of the
extra variability should be sought, and eliminated or
reduced.

Similarly, the group ranges are plotted on a chart
that has a centerline at R and control limits at multi-
ples D3 and Dy of R. calculated to be three standard
errors above and below the centerline. Any values
outside these control limits also indicate a probable
departure from a state of statistical control.

Over time. this attention to Shewhart charts, and
subsequent investigation of problems. shouid place
the measurement process in a state of statistical
control. Continued attention is required to detect later
departures from this desirable condition.

CUSUM Charts

Shewhart charts are designed to detect many kinds of
departure from a state of statistical control, and are
therefore not particularly sensitive to any given one
of these. A frequent concern is a shift in the process
mean, which would involve. in the laboratory context,
the development of a bias in the measurements.
Cumulative sum (CUSUM) charts are specifically
designed to detect this type of departure, which is
often of great concern in the analytic laboratory.
More details on this methodology may be found
in Wadsworth et al. [I1] or in Hawkins & Olwell
{3]. Briefly, CUSUM charts achieve their superior
detection ability by adding up successive deviations
of the group mean X from the correct value u.
This allows a small difference to accumulate until &
strong signal can be observed; however, it would also™
allow extremely tiny signals to eventually manifest
themselves even if the difference were of no practical
importance. The user must therefore specify a critical
shift A that may be of importance to detect. One then
defines the upper CUSUM S, and the lower CUSUM
T, recursively by

S, =max(0, S,—; + X, ~ F).
T, =min(0, Ty + X, + F),

where F is usually taken to be approximately A/2. If
the mean has shifted by as much as A, then the upper
(respectively lower) CUSUM will exhibit a trend
that will eventually pass any fixed control limits.
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Control limits for the upper and lower CUSUMs
are derivable from somewhat complicated numerical
calculations and must be found in tables in one of
the cited references. They are designed so that if
the process is in control, the renewal process that
would then describe the path of the CUSUM variables
would have an expected first passage time (called
the average run lengih) that would be sufficiently
large not to induce many false alarms. In the form in
which we have written the CUSUM, the control limits
will be at multiples of the process standard deviation.
The originally developed form of the CUSUM chart
uses a different, but entirely equivalent, method of
determining control limits, called a V-mask. This
alternative formulation is described in Wadsworth
et al. [11] and Hawkins & Olwell [3].

Proficiency Testing

Proficiency testing is used internally by analytic
laboratories to evaluate their own performance and
externally to develop new analytic methods or to vali-
date the performance of laboratories. This will usually
involve the submission of spiked samples to the ana-
Iytic process which are blind (the amount present is
not known to the analyst) or double-blind (the ana-
lyst does not know that the sample is a check sample
and not a routine sample). Detailed discussion of
these issues may be found Garfield [1] and Youden
& Steiner {12].

Intralaboratory Studies

These studies are used by laboratories to check them-
selves or to improve operations. Blind or double-blind
samples can be routinely run and used as the input for
control charts or for examination of specific results.
Another useful method is Youden's ruggedness test-
ing [12]. in which a designed experiment is used
deliberately to vary the conditions of the analysis in
order to find out what factors influence the variability
of the results. An example of this type of study for
immunoassays may be found in Jones et al. [4].
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of which rcceive a series of samples to analyze. The
variability of a measured result then can be parti-
tioned into within-laboratory variance (repeatability
or precision) and between-laboratory variance. The
total variability. which is the sum of the within-
and between-laboratory variances, is called the repro-
ducibility and is a measure of accuracy.

Ideally, the between-laboratory variance would be
small, but in practice it is often considerably larger
than the within-laboratory variance. This may be due
to inadequately described methods, or to the influ-
ence of identifiable factors that can be determined
with ruggedness testing and controlled in a revised
procedure. Poorly performing laboratories may also
be identificd in an interlaboratory study; Youden &
Steiner [12] gives a rank test for this purpose.

Outliers

Outliers can cause a significant disruption in quality
control procedures. as well as inaccurate measure-
ment values. Especially. outliers in the initial samples
used to determine the control limits for Shewhart
charts or to estimate the process standard deviation
for CUSUM charts can reduce the effectiveness of
these tools. Outliers can also seriously distort the
analysis of an interlaboratory study. Robust proce-
dures are available for standard Shewhart charts (see
Rocke [7] for the technical details and Rocke [9] for
practical implementation), CUSUM charts {2]. and
interlaboratory studies [6. 8]. If outliers are frequent
in the check samples used to produce the control
charts. it would be essential to discover and eliminate
the source of the outliers, since detectioit 6f outliers
in routine samples would be difficult.
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Lack-of-Fit Sum of Squares see
Goodness of Fit

Lagged Cumulative Exposure see
Occupational Health and Medicine

Lagged Dependent
Variable = '

In longitudinal studies, several observations are
taken from each individual at different time points.
Often. an observation depends on previous obser-
vations; for example, in a crossover clinical trial,
observations in one period may depend on the obser-
vations in the previous periods. A simple model for
this scenario might include a lag-1 dependent variable
as an explanatory variable [2]:

yie = yyig- +XaP +ui +ei 4D

where yj; is the observation from subject i in period
t, x;; is a vector of covariates, u; is a subject effect,

and e;; is an error term. This model can be extended
to include multiple lagged variables by replacing
yYi.j-1by Z;;, ¥ ¥i 1~y in(1). Model (1) is different
from a serially correlated model with the same
covariates. In the latter, v;, depends on x;; only
(not y;j,—1), while in the former it depends on all
Xi1, .., Xir [4).

Statistical inference based on mode! (1) inclu-
des model fitting, model checking and hypothesis
tests. In biostatistics, the number of subjects is often
large, but the number of observations from each
subject is small. In this situation we should be careful
when using the asymptotic properties of the estimated
parameters. For n subjects and times 1, 2, ..., T. and
conditional on u;, the log likelihood function of this
model can be written as

n T
1B vow) =3 > loglp(rialvis=1. B y. u)]. (2)

i=] j=I

When there are no subject effects (1; = 0), this model
can be fitted easily using the lagged dependent vari-
ables as covariates [3]. When u; is fixed and u; # 0
the maximum likelihood estimates (mle) of y and f
are not consistent for fixed T when the total sample
size n — oo [2]. To obtain consistent estimates, the
instrumental variable procedure can be used either
for fixed or random ;. To illustrate how this proce-
dure works we write model (1) as

Yit = Yig = ¥YOia-t = Yir-2) + Bxie — %i. 1)
+eir — e, 3)

Directly using (yis—1 — ¥i;—2) as a covariate may
lead to inconsistency, since it and e;; —e; ;-1 are
correlated. However, (¥j,-3 — ¥i;-3) OF ¥j ;-2 1S
independent of e;; — e;,—; and can be used as an
instrumental variable. When assuming u; ~ N(O, a,,)
the log likelihood function is more complicated
than (2), but the mle can be obtained by the
Newton-Raphson method (see Optimization and
Nonlinear Equations). In this case the mle is
consistent for fixed T and n — o0,

Model (1) can be extended to include discrete
outcomes. One approach is to discretize yj; by let-
ting yj; = 1 if vij > 0 and )7; = 0 otherwise. This
appro’xch leads to the autoregressxvc probit modet [1].
A more general approach is to use (1) as the lincar
predictor in a generalized linear model, and a wide
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