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L-Estimator see Robustness

Ll Regression see Least Squares

remaining bias, so standard errors are usually based
on the precision of measurements; that is, the standard
deviation (sd) of repeat measurements made under
identical conditions. This is necessarily only a lower
bound on the true error standard deviation.

It \\ill hardly ever be the case that the error stan-
dard deviation is constant, independent of the level
measured. For large I:oncentrations of the analyte, the
standard de\iation will often be approximately a mul-
tiple of the concentration (more generally, this may
be a power functiion). If small concentrations (near
the limit of detection) are not of interest, then a lin-
ear equation desclibing the relationship between the
precision and the c:oncentration can be estimated from
a series of repeat measurements at several concen-
trations. by regre!;sing the standard deviation of the
repeats on the me:in of the repeats. This can often be
done during the rlrocess of producing a calibration
curve for the insfiument. ;;"'O""

If values near the limit of detection are of interest,
then a more comple~ method is called for. Rocke &
Lorenzato [10] prlcsent a model in which an additive
error and a mull:iplicative error are both present,
which allo\\.s for realistic behavior at both high and
low concentrations. This model can also be estimated
during the calibration process.

Lp Regression see Robust Regres-
SIon

Laboratory Quality
Control

Quality control, or more broadly quality assurance, is
an essential part of the conduct of an analytic labora-
tory. This is especially critical for clinical1aboratories
since errors in measurement can lead to inappro-
priate treatment of patients. A full treatment of the
many management, planning, record keeping, and
audit procedures is beyond the scope of this anicle
(see Garfield [I] for these concerns); we concentrate
on a few critical issues in statistical quality control
as they impact analytical laboratories.

Estimation of Precision Control Charts

There are many problems, systematic and sporadic,
that can interfere: 1/1ith the accurate detennination
of values in the analytic laboratory. Reagents may

An important issue in an analytic laboratory involves
the attachment of standard errors to measured
values. Althoul!h everY effort should be made to
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results, and operators may differ in their technique.
There are many methods of statistical quality control
that can be used to detect these problems; detailed
descriptions may be found in Wadswonh et al. [II]
and Montgomery [5]. Two of the mo~t imponant will
be described here. These are Shewhal1 chans. also
kno\rn as X and R chans, which are used to detect
genc~ral departure from a state of statistical control,
and CUSUM chans, which are used to detect a shift
in the mean.

The "state of statistical control' referred to above
is. in the context of laboratory errors, one in which
measurement errors have zero mean and a standard
deviation that does not change \\ith time (although
it may differ \\ith the concentration of the analyte),
and in which successive measurement errors are not
correlated.

some extra factor is an impt)113nt cau~e of variability.
then the group mean will more frequently lie outside
the control limits. v.'hen this e"ent occurs (a signal.
in quality control tem,inology). the cause of the
extra variability should be sought, and eliminated or
reduced.

Similarly, the group ranges are plotted on a chal1
that has a centerline at Rand control limits at multi-
ples DJ and D4 of R. calculated to be three standard
errors abo"e and below the centerline. Any values
outside these control limits also indic3te a probable
departure from a state of statistical control.

Q"er time. this attention to She,\hart charts, and
subsequent investigation of problems. should place
the measurement process in a state of statistical
control. Continued attention is required to detect later
departures from this desirable condition.

CUSUlvl Chal1sShell'hart Charts

Proficit
laborat
extern;)
date th(

involve

lytic pr
not kn,
lyst dot
and no
these i5

& Steir

Shew hart charts are designed to detect many kinds of
departure from a state of statistical control, and are
therefore not particularly sensiti,e to any given one
of these. A frequent concern is a shift in the process
mean, which would involve. in the laboratory context.
the development of a bias in the measurements.
Cumulative sum (CUSUM) charts are specifically
designed to detect this type of departure. which is
often of great concern in the anaJytic laboratory.
More details on this methodology may be found
in Wadsworth et al. [II] or in Hawkins & Olwell
{3]. Briefly, CUSUM charts achie,e their superior
detection ability by adding up successive deviations
of the group mean X from the correct value 11..
This allows a small difference to accumulate until ~
srrong signaJ can be obsef\'ed; howe,er. it would also--
allow extremely tiny signals to eventuaJly manifest
themselves even if the difference were of no practical
importance. The user must therefore specify a critical
shift ~ that may be of importance to detect. One then
dcfines the upper CfjSUM 5, and the lo\\'er CUSUM

T, recursively by

Periodically, a small group of repeat measurements is
taken on a standard solution. At time (. k replicates
are taken, denoted .'"il' where I ~ i ~ k. The mean
X, and the range R, are computed. If the process
is in a state of statistical control. and under the
additional assumption of normality, each \'alue of the
range is an estimate of a multiple of the standard
de\'iation, the value of the multiplier being gi\en in
standard tables (see, for example, Wads\\'orth et al.
[I I] or Montgomery [5]). After 10 or 20 groups have
bec~n accumulated. the mean of the ranges R, when
mlJJtiplied by a standardizing constant, is an estimate
of the process standard deviation. For example, if k =
3. then R/I.693 is an estimate u of the process sd 0'.

The group means are then plotted on a chan
which has a centerline equal either to the known
value for the rcference sQlution or to the average
of the group means, and which has t\\'O reference
lines above and below the centerline at a distance
of :i:3u / Jk (this whole quantity can bc compuled
as a multiple A2 of R). Since the estimate of the
pn)cess standard deviation is based on the variability
of repeats, any factor such as tempcraturc changes,
or operator technique, that varies from group 10
gPJUp but not within a group will generate extra
variability. If there are no such extra factors (called
special causes), and all the variability is caused by
the repeat variation (common cause), then the group
means will lie outside the two reference lines (called
control limits) only very rarely. If, on Ihe other hand,
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("(\l1Irl>! limits for the upper and lower CUSUMs
ar.: dcrivahlc from somewhat complicated numcrical
I.'al.:ulations and must be found in tables in one of
Ihe cited reference~. They are designed so that if
th.: process is in control, the renewal process that
\\"ould then describc the path of the CUSUM variables
\\'ould have an expected first passage time (called
tho: a\"era,~e run length) that would be sufficiently
large not to induce many false alarms. In the form in
\\hich we llave written the CUSUM, the control limits
\\ill be at multiples of the process standard deviation.
The originally developed form of the CUSUM chart
uses a different, but entirely equivalent, method of
do:termining control limits, called a V-mask. This
alternative formulation is described in Wadsworth
et al. [11] and Hawkins & Olwell [3].
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of which rcccive a ,;crics or s:lmplcs to :lnalyze. The

v:lri:lbility or a mc:lsured result then can be parti-

tioncd into within-labQr:ltory vari:lnce (repeatability

or precision) and between-laboratory variance. The

total variability. which is the sum of the within-

and bctween-laboratory variances, is called the repro-

ducibility and is a measure of accuracy.

Ideally, the bet\\"een-laboratory variance would be

small, but in practice it is often considerably larger

than the within-laboratory variance" This may be due

to inadequately described methods, or to the influ-

ence of identifiable factors that can be determined

with ruggedness testing and controlled in a re\lsed

procedure. Poorly performing laboratories may also

be identified in an interlaboratory study; Youden &

Steiner [12] gives a rank test for this purpose.
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OutliersProficiency Testing

Outliers can cause a significant disruption in quality
control procedures. as \\ell as inaccurate measure-
ment values. Especially. outliers in the initial samples
used to determine the control limits for Shewhart
charts or to estim:lte the process standard deviation
for CUSUM charts can reduce the effectiveness of
these tools. Outliers can also seriously distort the
analysis of an interlaboratory study. Robust proce-
dures are available for standard Shewhart charts (see
Rocke [7] for the technical details and Rocke [9] for
practical implementation). CUSUM charts [~]. and
interlaborator:-. studies [6. 8]. If outliers are frequent
in the check s:lmples used to produce the control
charts. it \\.ould be essential to discover and eliminate
the source of the outliers. since det~tio'l}{)f outliers
in routine samples would be difficult.

Proficiency testing is used internally by analytic
laboratories to evaluate their own performance and
externally to develop ne\v analytic methods or to vali-
date the performance of laboratories. This will usually
involve the submission of spiked samples to the ana-
lytic process which are blind (the amount present is
not known to the analyst) or double-blind (the ana-
lyst does not know that the sample is a check sample
and not a routine sample). Detailed discussion of
these issues may be found Garfield [I] and Youden
& Steiner [I~].
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These studies are used by laboratories to check them-
sel'"es or to improve operations. Blind or double-blind
~:1mples C:1n be rolltinely run and used as the input for
control ch:1rts or for examination of specific results.
Another useful method i~ Youden's ruggedness test-
ing [12]. in which a designed experiment is used
deliberately to vary the conditions of the analysis in
order to find out what factors influence the variability
of the results. An example of this .type of study for
immunoassays may be found in Jones et al. [4].
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When there are no subject effects (IIi = a). this model
can be fitted easily using the lagged dependent vari-
ables as covariates [3]. \Vhen IIi is fixed and Ui ,.. 0
the maximum likelihood estimates (mle) of y and fJ
are not consistent for fixed T \,'hen the total sample
size n -+- 00 [2]. To obtain consistent estimates. the
instrumental variable procedure can be used either
for fixed or random ui. To illustrate how this proce-
dure works we write model (1) as

Lack-of-Fit Sum of Squares see
Goodness of Fit Referei
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Lagged Cumulative Exposure see
Occupational Health and Medicine

[2]
= y(Yi,I-1 -Y;.1-2) + /3(Xjl -Xi

+eil-ei,1

,)
(3)

)'i/-Yi,/'

[3]

Lagged DependentVariab1.e-~~ ~~ ~ "'""~'"'
[4)

In longitudinal studies, several obsef\'3tions are
taken from each inJividual at different time points.
Often. an observation depends on previous obser-
vations; for example, in 3 crossover clinical trial,
observations in one period may depend on the obser-
vations in the previous periods. A simple model for
this scenario might include a lag-I dependent variable
as an explanatory variable [2):

Lagr~
see CI

Directly using (Yi.l-t -)'i,I-2) as a covariate may
lead to inconsistency, since it and eil -ei,l-t are
correlated. However, (Yi.I-2 -Yi.I-3) or )'i.I-2 is
independent of eil -ei.I-1 and can be used as an
instrumental variable. When assuming Ui -N (0. (1,;)
the log likelihood function is more complicated
than (2), but the mle can be obtained by the
Newton-Raphson method (see Optimization and
Nonlinear Equations). In this case the mle is

consistent for fixed T and n -.00.
Model (I) can be extended to include discrete

outcomes. One approach is to discretize Yij by let-
ting Yij = 1 if .vij > 0 and Yij = 0 otherwise. This
approach leads to the autoregressive probit model II ].
A more general approach is to use (I) as the linear
predictor in a generalized linear model. and a wide

+ Xi,fJ + Ui + eit (I))'il = YYi.1

Lagu(
mial ;

where Yil is the observation from subjel:t i in period
t. XiI is a vector of covariates. Ui is a subject effect.

and til is an error term, This model can be extended
to include multiple lagged \ariables by replacing
YJi,j-l by Lr= I YI,\';,I-I in (I), Model (I) is different
from a serially correlated model with the same
covariates. In the latter. ,\'i ,I depends on XiI only
(not Yi,l-l). while in the former it depends on all

XiI..,.. XiI [4].
Statistical inference based on model (I) inclu-

des model fitting. model checking and hypothesis
tests, In biostatistics. the number of subjects is often
large. but the number of obsenations from each
subject is small, In this situation \\'e should be careful
when using the asymptotic properties of the estimated
parameters. For n subjects and times I. 2. ' , , .T. and
conditional on Ui. the log likelihood function of this
model can be written as




