
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Learning governing equations for stochastic dynamical systems

Permalink
https://escholarship.org/uc/item/4zj533b9

Author
Rawat, Shagun

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4zj533b9
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Learning Governing Equations

for Stochastic Dynamical Systems

by

SHAGUN RAWAT

A dissertation submitted to the
UNIVERSITY OF CALIFORNIA, MERCED

in partial fulfillment of the requirements for
the degree of DOCTOR OF PHILOSOPHY.

UNIVERSITY OF CALIFORNIA, MERCED

2018

ii

UNIVERSITY OF CALIFORNIA, MERCED

Graduate Division

This is to certify that I have examined a copy of a dissertation by

Shagun Rawat

and found it satisfactory in all respects, and that any and all revisions
required by the examining committee have been made.

Faculty Advisor:

Committee Members:

Applied Mathematics Graduate Chair:

Professor Harish S. Bhat

Professor Noémi Petra

Professor Roummel F. Marcia

Professor Harish S. Bhat

Date

iii

ABSTRACT OF THE DISSERTATION

Learning Governing Equations for Stochastic Dynamical Systems

by

Shagun Rawat

University of California, Merced, 2018

Professor Harish S. Bhat, Chair

In this dissertation, we present our work on automating discovery of governing equa-
tions for stochastic dynamical systems from noisy, vector-valued time series. By discovery,
we mean learning both a drift vector field and a diffusion matrix for an Itô stochastic dif-
ferential equation (SDE) in Rd . In particular, we develop, test, and compare numerical
methods for the computation of likelihoods for SDE models. We focus on likelihood com-
putation as it is intractable with no closed form solution in most cases. Thus it forms the
bottleneck for both the frequentist and Bayesian methods for inference of stochastic sys-
tems.

In the first part of the dissertation, we develop an iterative algorithm using expectation
maximization (EM) combined with data augmentation using diffusion bridge sampling.
We focus on nonparametric models for high-dimensional SDEs in the low-data, high-noise
regime. To our knowledge, this is the most general EM approach to learning an SDE with
multidimensional drift vector field and diffusion matrix. Data augmentation has a two-
fold advantage; the expectation of log likelihood in the E step reduces to summation and
the optimization in the M step reduces to a batch-wise least-squares problem.

In the second part of the dissertation, we consider the problem of Bayesian filtering
and inference for lower-dimensional parametric SDE models in the low-data, high-noise
regime. Our goal is to be able to infer the model parameters (the inference problem) and
the true states of the processes (the filtering problem). We develop a numerical approxi-
mation for the likelihood of the SDE using an innovative density tracking by quadrature
(DTQ) method. The posterior can be deterministically tracked, as it evolves between each
time interval, through a temporal and spatial grid. We focus on generating accurate esti-
mates of the likelihood function, which allows accurate maximum likelihood estimation
(MLE) and maximum a posteriori (MAP) estimates, and for vanilla Monte Carlo samplers
to explore the distribution.

iv

Learning Governing Equations for Stochastic Dynamical Systems

Copyright 2018
by

Shagun Rawat

v

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Prof. Harish Bhat, without whose
guidance this work would not have been possible. He has been patient while explaining
new concepts and diligent in helping me master them. His encouragement helped me be
unafraid to explore new research avenues and take it in exciting directions. He taught me
far more than technical knowledge and I am truly grateful for the experience.

I would also like to thank my committee members, Prof. Roummel Marcia and Prof.
Noémi Petra for their guidance and support through the process, as well as the time and
effort they spent to serve as my committee members.

I would like to thank the Applied Mathematics Graduate Program for the Summer
2016 USAP fellowship, Summer 2016 travel fellowship and the Spring 2018 GSR support.
I would also like to acknowledge the NSF Grant (DMS-1723272) which helped partially
fund my research for Spring 2018. I gratefully acknowledge computational time on the
MERCED cluster; MERCED is supported by the National Science Foundation (Grant No.
ACI-1429783).

I had the opportunity to learn from and work with some incredible professors. I am
grateful to Prof. Boaz Ilan, Prof. Mayya Tokman, Prof. Juan Meza, Prof. Shilpa Khatri
and Prof. Miguel Carreira-Perpiñán. I am especially thankful to Prof. Tokman for taking
time out after lectures to help me navigate graduate school when I was at my lowest. The
combined effort of these teachers provided me with a strong base to build my research on.

I greatly cherish the time I spent with some amazing friends and peers at Merced.
Christine Hoffman, Som Sarang, Mathew Jian, Rafay Qureshi, Li-Hsuan Huang, and the
many more friends in Applied Mathematics group and the UC Merced research commu-
nity at large gave me a strong sense of community and helped me thrive even during the
testing times of my graduate life. I consider myself lucky to have forged friendships that
endured throughout my PhD journey and will so beyond.

Now to the family that I left back home! My brother, Bhagawat, has been a guiding
light for my academic journey, sharing his experiences, from which I had plenty to learn. I
can not thank my parents – Geeta and Bharat – enough for their hard work and dedication
towards my education. I will never be able to fully comprehend the struggles you faced to
raise me, but I do hope that I made you proud!

Finally, I owe special gratitude to Suril Shah for taking on so many roles in my life; for
being my partner, best friend, critique, motivator, mentor, and for his unwavering support
in everything I do. No matter how challenging the journey has been, no day was a bad
day, because of you. And to the lovely Shah family – Mr. Rakesh, Mrs. Sangita and Rahil –
you have added so much richness to my life. Thank you for being more supportive, loving
and hilarious than what I could have ever hoped for!

vi

Contents

Abstract iii

Acknowledgment v

Contents vii

List of Figures ix

List of Tables xv

1 Introduction 1
1.1 Bridge EM Introduction . 3

1.1.1 Summary . 4
1.1.2 Related Work . 4

1.2 DTQ Introduction . 5
1.2.1 Summary . 5
1.2.2 Related Work . 6

1.3 Outline . 6

2 EM via Diffusion Bridge 9
2.1 Problem Setup . 9

2.1.1 Parameterization . 9
2.1.2 Data . 10
2.1.3 Diffusion Bridge . 11
2.1.4 Expectation Maximization (EM) . 13

2.2 Experiments . 14
2.2.1 Experiment 1: Varying Number of Time Series 18
2.2.2 Experiment 2: Varying Length of Time Series 21
2.2.3 Experiment 3: Varying Noise Strength . 24
2.2.4 Experiment 4: Varying Data Augmentation 26

2.3 Discussion . 28

3 Density Tracking by Quadrature 29
3.1 Statistical Model . 29
3.2 DTQ method . 30

3.2.1 Likelihood Computation . 32
3.2.2 Gradient Computation . 34

vii

viii CONTENTS

3.3 Two-dimensional Coupled SDE . 35
3.4 Results . 38

3.4.1 Linear SDE (Ornstein-Uhlenbeck process) 38
3.4.2 Nonlinear SDE (Double Well Potential) 40
3.4.3 Generic Polynomial Drift and Diffusion Functions 42
3.4.4 Coupled SDEs . 43

3.5 Discussion . 52

4 SDE Filtering 53
4.1 Introduction . 53
4.2 Statistical Method . 55

4.2.1 Inference Problem . 55
4.2.2 Metropolis Algorithm . 56

4.3 Scalable Implementation . 57
4.3.1 Scala/Breeze . 57
4.3.2 Spark . 59

4.4 Results . 60
4.4.1 Equispaced Time Series . 61
4.4.2 Non-equispaced Time Series . 62
4.4.3 Scaling . 64

4.5 Discussion . 65

References 67

Appendices 73

A Derivation of DTQ method 75
A.1 Likelihood Computation . 75
A.2 Gradient Computation . 77
A.3 Multiple sample paths . 80

A.3.1 Likelihood Computation . 80
A.3.2 Gradient Computation . 81

A.4 Adjoint based Gradient Computation . 81

List of Figures

2.1 Illustration of 1000 Brownian bridge sample paths, post burnin, in 1D (left)
and 2D (right) from a fixed initial to final point over a time interval. The
blue dots represent the observed data. The grey curves represent the Brow-
nian bridge sample paths between the two observed points and the red line
represents the mean of the sample paths. 11

2.2 On the left, we plot 10 time series observed 21 times over the time inter-
val [0,10]. On the right, we plot 100 Brownian bridge paths between each
observed data point for the solid blue series in the left plot. The blue dots
represent the observed data. The grey curves represent the Brownian bridge
sample paths between the initial and final observed data point for each in-
terval. The red line represents the mean of the Brownian bridge path samples. 12

2.3 From left to right, top to bottom, we plot 10 sample paths for the 1D, 2D, 3D
and 4D systems where the initial condition is normally distributed N (0,2).
The initial time t = 0 and final time t = 10, with 100 time points observed
over the interval. The plots are of the observations of the x components
versus time. 17

2.4 As we increase the number S of time series used to learn the drift, the esti-
mated drift more closely approximates the ground truth. From top to bot-
tom, left to right, we have plotted estimated and true drifts for the 1D, 2D,
3D and 4D systems. For the 4D system, we have plotted the X1, X2 and X3

components, keeping the X0 component constant. 18

2.5 As we increase the number S of time series used to learn the drift, the Frobe-
nius norm error between estimated and true drifts—see (2.15)—decreases
significantly. In the first column, from top to bottom, we have plotted re-
sults for the 1D, 2D, 3D and 4D systems, with varying threshold from 0.5 to
0.01. The recall and F1 score, on the other hand, increases significantly as
we increase the number S of time series. The effect of thresholding is more
evident for classification error metrics as a threshold of 0.05 shows much
better results for recall compared to the no thresholding case. In the second
and third column, from top to bottom, we have plotted recall and F1 score
for the 1D, 2D, 3D and 4D systems, respectively. 19

ix

x LIST OF FIGURES

2.6 As we increase the length L of each time series used for learning, the L2

regression error between estimated and true drifts—see (2.15)—decreases
significantly. Recall and F1 score increase with increasing length, L, of time
series. As in Experiment 1, applying a hard threshold of λ = 0.05 helps in
improving the classification errors without increasing the regression errors
significantly. From left to right, top to bottom, we have plotted the L2 error,
recall and F1 score for 1D, 2D, 3D and 4D systems, respectively. 21

2.7 We plot true and estimated drifts for the 1D, 2D, 3D and 4D systems as a
function of increasing time series length L. The last three components of the
vector field for the 4D system are plotted as in Figure 2.4. The results show
that randomization of observation times compensates for a small value of L,
enabling accurate estimation. 23

2.8 We plot true and estimated drifts for the 1D, 2D, 3D and 4D systems as a
function of varying noise strength, γ. As in Figure 2.7, the last three com-
ponents of the vector field for the 4D system are plotted. The results show
that estimation is accurate even for large noise strength values and the error
goes to zero with the noise strength. 23

2.9 Varying the noise strength in simulated data alters the quality of estimated
drift coefficients, quantified using the L2 error (2.15), recall (2.18) and F1
score (2.19). 24

2.10 As we increase the length F of the diffusion bridge interleaving observed
data points, the quality of estimated drifts improves considerably. From left
to right, top to bottom, we have plotted the Frobenius errors (2.15), recall
(2.18) and F1 score (2.19) between true and estimated coefficients, for the
1D, 2D, 3D and 4D systems. 26

2.11 As in the previous experiments, the estimated drift functions lie close to the
true drift function. We find that introducing diffusion bridge samples helps
estimating the drift function more accurately. 27

3.1 Illustration of a sample path with discrete model observations x0, . . . , xM at
times t0, . . . , tM in red. Our goal is to infer the parameters of the model using
these observations. 29

3.2 Illustration of the temporal grid between a time interval (tm , tm+1). We take
{τi }n

i=0 to be the temporal grid such that τ0 = tm , τn = tm+1, and h = (tm+1 −
tm)/n > 0. The observed value is constrained by the data point, thus xm =
Xτ0 = X tm . 30

3.3 Illustration of the truncated spatial grid, {z j }L
j=−L , for each discretized time

point in the interval (tm , tm+1). The estimated probability at any given point,
p(x̃i), is represented by a vector, q i such that the j−th component of q i is
q j

i = p(x̃i = z j). 31

3.4 Illustration of the first step of DTQ, propagation of probability from a Dirac-
delta function at τ0 to a vector over the spatial grid at τ1. 32

3.5 Illustration of the forward propagation of probabilities as matrix-vector mul-
tiplications, q n−1 = An−2q 1. 33

LIST OF FIGURES xi

3.6 Illustration of the last step of the DTQ algorithm over one time interval.
Since the data point at final time τn is an observed value, this is a vector to
Dirac-delta conversion. 33

3.7 Diagram illustrating motion of runner and chaser. At any instant of time,
the chaser’s velocity vector points toward the runner’s current position. . . . 36

3.8 Illustration of sample paths generated for Ornstein-Uhlenbeck process for
the same initial conditions. The plot on the left is the deterministic (ODE)
version with no additive noise. The plot on the right is the stochastic (SDE)
version with noise. 39

3.9 Illustration of sample paths generated for the double well potential process
with same initial conditions. The plot on the left is the deterministic (ODE)
version with no additive noise. The plot on the right is the stochastic (SDE)
version with noise. 40

3.10 Illustration of the sample path generated by an LC circuit. The dependent
variables X1,t and X2,t represent, respectively, the current and voltage of the
circuit at time t . 43

3.11 We plot kernel density estimates of posterior densities p(θ2
1|x). We use sim-

ulated data with ∆t = 0.04, generated as described above. Each posterior
density corresponds to a finer DTQ step h. As we take a finer DTQ step (i.e.,
as h decreases), the posterior mode approaches the true value indicated by
the solid vertical line at 1/L = 2π. 45

3.12 We plot the probability density for DTQ using a naïve MH-sampler and
POMP using an adaptive MH-sampler, for varying intermediate time steps
h. The blue, red and black curves are the posterior distributions for h =
∆t/2,∆t/4, and ∆t/8 respectively. The solid black line is the value of the true
parameter, and the dotted black line represents the MAP estimate. 46

3.13 We plot the estimated likelihood surfaces to get an insight on the approx-
imation of the likelihood, `(θ) for DTQ and POMP. The plots are on the
θ2 vs θ3 grid using 100 intervals and varying intermediate time steps (h =
∆t/2,∆t/8 and ∆t/16). The plots show that the DTQ method produces a
smoother approximation of the likelihood as compared to the particle filter. . 47

3.14 We plot simulated data for the runner and chaser on the standard basketball
court of dimensions 94ft. × 50 ft. The plot on the left creates the runner’s
trajectory as y r = 5log(xr). The chaser’s speed is γ(t) = 1+2t and we consider
10 points along the trajectory. For the plot on the right, we consider 50 points
on both the trajectories. The runner’s trajectory in this case is randomized.
y r = ((xr)2)/100+ (xr /20)+N (µ= 0,σ= 2). 49

3.15 As the number of DTQ steps increase (h =∆t ,∆t/2,∆t/3,∆t/4), the L2 norm
error between the estimated and the true parameters decrease, for ∆t =
0.1,0.2 and 0.4. 50

3.16 The agreement between the black curve (mean of simulated stochastic pur-
suit trajectories using MAP estimated parameters) and the red curve (chaser’s
trajectory) shows that the stochastic pursuit model is appropriate. The run-
ner’s trajectory is given in blue. 51

xii LIST OF FIGURES

3.17 For the fast break tracking data described in the text, we plot the MAP esti-
mate of the chaser’s speed γ(t) in black. Note that the inferred speed differs
greatly from the mean speed across the entire trajectory, plotted as a hori-
zontal red line. 51

4.1 In order to implement the matrix-vector multiplication in (4.7) in a scalable
way, we make use of the structure of the propagator matrix G . Instead of
computing all entries of this matrix, we compute and store only those en-
tries that are close to the diagonal—the pink rectangles in the upper half
of the diagram. The blue rectangles in the lower half of the diagram corre-
spond to windowed versions of the pdf vector pi . In both cases, there is one
windowed vector per row; the row numbers go from −M to M as labeled.
Both the pink and blue rectangles correspond to vectors of length 2γ+1, with
γ¿ M . The matrix-vector multiplication G pi then corresponds to a collec-
tion of 2M +1 vector-vector dot products. This representation of (4.7) makes
efficient use of Scala, Breeze, and the Intel MKL. For more details, see the
description in Section 4.3.1. 58

4.2 We use Spark to parallelize the computation of the likelihood (3.2). We ac-
complish this by converting the original time series (for states x, not obser-
vations y) from a vector of pairs to an array where each element is a vector
of consecutive pairs. The original vector of pairs is labeled as −→

t x, and the
Scala Array of consecutive pairs is tslices. This latter object can be eas-
ily converted into a Spark RDD; subsequent map operations on this RDD are
executed in parallel. 60

4.3 Illustration of sample paths generated for Ornstein-Uhlenbeck process in
the deterministic (left), stochastic (center) and measurement noise (right)
setups with the same initial conditions. 61

4.4 Posterior densities for the inference/filtering problem with equispaced time
series (t,y). Each density is calculated on the basis of 9900 post-burn-in
Metropolis samples computed using the indicated value of the internal DTQ
time step parameter h. Overall, we see reasonable agreement between the
ground truth values (indicated by red vertical lines) and the posterior den-
sities. 62

4.5 Posterior densities for the inference/filtering problem with non-equispaced
time series (t,y). Each density is calculated on the basis of 9900 post-burn-
in Metropolis samples computed using the indicated value of the internal
DTQ time step parameter h. Overall, we see reasonable agreement between
the ground truth values (indicated by red vertical lines) and the posterior
densities. 63

4.6 We plot the observations (in red) together with each of the samples of the
state series x. Each such sample is a grey curve, and the mean of all such
grey curves is plotted in black. We refer to the black curve as the mean
inferred state series. 63

LIST OF FIGURES xiii

4.7 We plot the observations (in red) together with the mean inferred state se-
ries (in black). The error bars (grey) are computed by adding/subtracting
the mean inferred value of σε to/from the observation series y. Note that
the mean inferred state is typically within one σε of the corresponding ob-
servation. 64

4.8 Left panel: For each indicated value of L, we have generated a time series
of length L, run our inference/filtering code, and recorded the amount of
time T required to generate 1000 Metropolis samples of the posterior. We
fit lines to logT as a function of logL—both the lines and the original data
are plotted on log-transformed axes. The slopes of the lines are less than 1,
consistent with O(L) temporal scaling. Right panel: For a non-equispaced
time series of length 2501, we ran our code with ν Spark processors where
ν ∈ {3,6,12,24}. We recorded T , the time required to generate 10 Metropolis
samples of the posterior. We fit lines to logT as a function of logν—both the
lines and the original data are plotted on log-transformed axes. The slopes
of the lines are close to −0.5, suggesting O(ν−1/2) scaling. 65

xiv LIST OF FIGURES

List of Tables

2.1 As the maximum allowed degree of Hermite polynomials (M) increase, the
number of parameters (M̃) indicating the multi-index also increase. 10

2.2 Results for average compute time (in seconds) per EM iteration for varying
number of time series S. As we increase the number of time series used to
learn the drift, the average compute time increases for the 1D, 2D, 3D and
4D systems. The time taken for each EM iteration also increases with the
dimensions of the system. 20

2.3 Results for average acceptance percentage for Metropolis-Hastings sampler
for varying number of time series S. The acceptance rate decreases as the
dimensionality and complexity of the system increases. We suspect that the
nonlinearity of the 3D damped Duffing system causes the acceptance rate to
be lower than that of the linear 4D system. 20

2.4 Results for number of EM iterations required to converge for varying num-
ber of time series S. A threshold of 0.01, 0.05, 0.1 and 0.1 is selected for the
1D, 2D, 3D and 4D systems respectively. If a single time series observation is
used for training, then either the relative error in estimated β̃ can not be re-
duced below the threshold (as marked by *), or requires considerably higher
number of iterations to become less than the threshold. 20

2.5 Results for average compute time (in seconds) per EM iteration for varying
length of time series L. As in Experiment 1 (Section 2.2.1), longer time se-
ries implies an increase in the time required to compute one step of the EM
algorithm. The average compute time also increases with increasing dimen-
sionality of the system. 22

2.6 Results for average acceptance percentage for Metropolis-Hastings sampler
as we increase the length of time series L. As in Experiment 1 (Section 2.2.1),
an increase in L results in higher acceptance percentage for the sampler. The
acceptance rate decreases with increase in dimensionality and complexity
of the system. 22

2.7 Results for number of EM iterations required to converge for varying length
of time series L. As in Experiment 1, a threshold of 0.01, 0.05, 0.1 and 0.1
is set for 1D, 2D, 3D and 4D systems respectively. Unlike Experiment 1
(Section 2.2.1), the number of iterations does not change considerably with
the length of time series. 22

xv

xvi LIST OF TABLES

2.8 Results for average compute time (in seconds) per EM iteration for varying
levels of noise strength γ. The time required for EM iterations does not vary
with varying noise strength, but it increases as the complexity of the system
increases. 25

2.9 Results for average acceptance percentage for Metropolis-Hasting sampler
for varying noise strength γ. The acceptance percentage decreases with de-
crease in γ. As the system becomes more determinstic, it becomes harder to
generate Brownian bridge sample paths between the observed data points.
The acceptance percentage also decreases with increased complexity of the
system. 25

2.10 Results for number of EM iterations required to converge. As in Experiment
1 and 2 (Section 2.2.1, 2.2.2) a threshold of 0.01, 0.05, 0.1 and 0.1 are set for the
1D, 2D, 3D and 4D systems respectively. The number of iterations decrease,
in general, with a decrease in the noise strength. In a few cases the relative
error between β̃ iterates does not reduce below the specified threshold (as
marked by *). It is important to note here that the relative error does not
reduce below the threshold, but on inspecting the estimated β̃ parameter,
the estimated value is close to the true value and the relative error is still
small. 25

2.11 Results for average compute time (in seconds) per EM iteration for varying
amount of data augmentation. As the Brownian bridge is created explicitly
using the discretized version of (2.9), increasing the amount of data aug-
mentation does not cause significant increase in the compute time. The time
required to compute each EM iteration increases with an increase in the di-
mensionality of the system. 27

2.12 Results for average acceptance rate for Metropolis-Hastings sampler for vary-
ing amount of data augmentation, F . For F = 1, no diffusion bridge has been
created and thus the acceptance probability is 1. The algorithm in this case
reduces to solving a least squares using only the observed time series. As
we increase data augmentation, the acceptance probability decreases as it
becomes more difficult to create a bridge between the observed values. The
acceptance probability also decreases with an increase in the dimensionality
and complexity of the system. 28

2.13 Results for number of EM iterations required to converge. As in the previous
experiments (Section 2.2.1, 2.2.2, 2.2.3) we consider a threshold of 0.01, 0.05,
0.1 and 0.1 for the 1D, 2D, 3D and 4D systems respectively. The number
of EM iterations does not vary significantly with varying amount of data
augmentation F . 28

3.1 Results for Case 1. Using either 300 or 100 sample paths produced by Euler-
Maruyama simulation with time step ξ= 10−4, we study the effect of reduc-
ing h, the internal DTQ time step. 39

3.2 Results for Case 1. Using either 300 or 100 sample paths produced by Euler-
Maruyama simulation with time step ξ= 10−6, we study the effect of reduc-
ing h, DTQ’s internal time step. 40

LIST OF TABLES xvii

3.3 Results for Case 2. We study a collection of problems involving different
true θ values and different initial guesses θ0. 41

3.4 Results for Case 2. We study the effect of decreasing h, keeping all other
parameters fixed. 41

3.5 Results for Case 2. We compare spatial grid laws k = h0.75 and k = h. 42
3.6 Results for Case 2. We examine the effect of increasing the number of sample

paths in the data set, keeping all other parameters fixed. 42
3.7 Results for Case 3. We perform inference using model (3.31), which has a

higher-dimensional parameter space than (3.30), the model used to generate
the data. 43

3.8 Comparison of the mean and standard deviation of inferred parameters,
θ1,θ2 and θ3, for DTQ and POMP, for varying intermediate time steps, h =
∆t ,∆t/2,∆t/4 and ∆t/8. 47

3.9 Comparing difference in mean and modes for the estimated parameters
from the true parameters for POMP and DTQ methods. 48

xviii LIST OF TABLES

Chapter 1

Introduction

Traditional mathematical modeling in the sciences and engineering often has as its goal the
development of equations of motion that describe observed phenomena. Classically, these
equations of motion took the form of deterministic systems of ordinary or partial differen-
tial equations (ODE or PDE, respectively). Especially in systems of contemporary interest
in biology and finance where intrinsic noise must be modeled, we find SDEs used instead
of the deterministic versions. The popularity of stochastic differential equations (SDEs) for
dynamical systems appears to be for many reasons. They provide a flexible framework
for modeling steady-state, transient and oscillatory behavior. Solutions of SDEs follow
the strong Markov property which allows for scalable computation. They allow physical
interpretation of stochastic dynamics, as a counterpart to deterministic modeling using
ODEs.

The models presented here have been extensively used for understanding continuous-
time phenomena in many scientific fields. An indicative list of applications includes fi-
nance and economics (Cox et al. (2005); Merton (1976)), biology (Bressloff (2014)), chemistry
(Van Kampen (1992)), ecology (Lande et al. (2003)), genetics (Shiga (1981)), neuroscience
(Lynch and Houghton (2015)) and political analysis (Cobb (1981)).

Recent years have seen a surge of interest in using data to automate discovery of ODE,
PDE, and SDE models. Still, these models are often built from first principles or from
empirical observations, after which the model’s predictions (obtained, for instance, by nu-
merical simulation) are compared against observed data. In modern applications such as
climate science and neuroscience, the dynamics are only partially known and difficult to
model. Advances in machine learning approaches complement traditional modeling ef-
forts, using available data to constrain the space of plausible models, and shortening the
feedback loop linking model development to prediction and comparison to real observa-
tions.

We posit two additional reasons to develop algorithms to learn SDE models. First, SDE
models—including the models considered here—have the capacity to model highly non-
linear, coupled stochastic systems, including systems whose equilibria are non-Gaussian
and/or multimodal. Second, SDE models often allow for interpretability. Especially if the
terms on the right-hand side of the SDE are expressed in terms of commonly used func-
tions (such as polynomials), we can obtain a qualitative understanding of how the system’s
variables influence, regulate, and/or mediate one other.

In our work, we explore methods for learning SDE models, using time series data, in an

1

2 CHAPTER 1. INTRODUCTION

interpretable form. We consider dynamics driven by an Itô stochastic differential equation

dXt = f(Xt)dt +g(Xt)dWt , Xt0 = X0 (1.1)

where Xt is a stochastic process taking values in Rd . For rigorous definitions of Brownian
motion and SDE, see Bhattacharya and Waymire (2009); Øksendal (2003). Let ti ,0 ≤ i ≤ N ,
be the times at which Xt is observed, and let t0 be the initial time. Wt is the Brownian
motion in Rd , also known as the Wiener process. Then dWt is an infinitesimal increment of
Brownian motion; we think of dWt as a multivariate Gaussian random variable with mean
vector 0 and covariance matrix Idt . The functions f and g are called the drift and diffusion
functions, respectively. The drift f : Rd → Rd is a vector field and the diffusion function
g :Rd →Rd×d is matrix-valued.

We focus on approximating the likelihood, which is the bottleneck for inference and
filtering problems in both the frequentist and Bayesian methods. The drift and diffusion
functions can be parametrized as f(Xt ;θ) and g(Xt ;θ). The nonparametric estimation prob-
lem of finding f and g from data is infinite-dimensional. To finite-dimensionalize the prob-
lem, we represent each component of f as a linear combination of M basis functions:

fi (Xt) =
M∑

m=0
θi ,mφm(Xt) (1.2)

Once θ is specified, we can compute the drift and diffusion. A time series, ξ, consists
of N sample observations, x, of the stochastic process X:

ξ= (x0,x1, · · · ,xN). (1.3)

Our goal is to use a collection of S such time series Ξ = (ξ(0),ξ(1), · · · ,ξ(S)) to estimate
the drift and diffusion parameters, θ, i.e., the posterior distribution, p(θ |Ξ). Using Bayes’
theorem, this can be defined as

p(θ |Ξ) = p(Ξ |θ)p(θ)

p(Ξ)
, (1.4)

where p(θ) is the prior belief about the parameters. Since the observed data remains fixed,
its probability, p(Ξ), remains fixed and is seen as a normalization constant. The quantity
of importance is the likelihood, p(Ξ |θ), which is the probability of observed data given a
particular parameter vector:

L(θ) = p(Ξ |θ). (1.5)

A frequentist method to estimate θ is to find the value of θ that maximizes L(θ), also known
as maximum likelihood estimation (MLE). Bayesian methods focus on the posterior p(θ|Ξ).
To maximize the posterior, we need to maximize L(θ)× p(θ). Thus both frequentist and
Bayesian methods require the likelihood function.

Although typically intractable, the transition density has various representations which
suggest different approaches for its approximation. First, it can be expressed in various
ways as an expectation, and these expressions lend themselves to Monte Carlo approxi-
mation. These methods are largely stochastic in nature as they focus on approximating
probabilities and generating samples from these approximated models. Second, the tran-

1.1. BRIDGE EM INTRODUCTION 3

sition density is approximated using linearization techniques, series expansions, path inte-
gration, finite difference methods or numerical solutions to the Fokker-Planck equation —
see Hurn et al. (2007). These methods provide solutions which are deterministic in nature.

We present two methods in this dissertation, developed to generate interpretable SDE
models via the two approaches mentioned above. In Section 1.1 and subsequently in Chap-
ter 2, we introduce a Monte Carlo approximation algorithm we developed using diffusion
bridge simulation. In Section 1.2, and subsequently in Chapters 3 and 4, we introduce an
algorithm based on density approximation.

1.1 SDE Model Discovery using Expectation Maximization (EM)
via Bridge Sampling

In Chapter 2, we develop an algorithm to learn SDE models from high-dimensional time
series. Our approach relies on the expectation maximization (EM) algorithm (Dempster
et al. (1977)) along with data augmentation using diffusion bridge sampling (Roberts and
Stramer (2001)).

EM is an iterative method to find maximum likelihood (MLE) or maximum a posteriori
(MAP) estimates of parameters in statistical models, where the model depends on unob-
served latent variables. The EM iteration alternates between performing an expectation
(E) step, which creates a function for the expectation of the log likelihood evaluated using
the current estimate for the parameters, and a maximization (M) step, which computes
parameters maximizing the expected log likelihood found in the E step.

In the absence of high-frequency data, simulation of diffusion bridges plays a funda-
mental role in computing the E step for discretely sampled diffusion processes, by pro-
ducing time series observed at a higher frequency than the original data. In missing data
problems, data augmentation via diffusion bridge sampling takes advantage of the fact
that the resulting optimization of the expected log likelihood in the M step, of the com-
plete data, reduces to a least squares problem.

Diffusion bridge simulation is a highly non-trivial problem as the diffusion bridge is
an infinite-dimensional random variable. It is the process obtained by conditioning a dif-
fusion to start and finish at specific values at two consecutive times, t0 < t1. Simulating a
strong solution of the diffusion bridge corresponds to jointly constructing X and W , while
simulating a weak solution only asks for simulating X according to the probability law
implied by (1.1). At a fundamental level, simulation of unconditional diffusion is difficult
since the transition distribution of the diffusion is intractable. The diffusion bridge, how-
ever, solves an SDE whose drift is intractable, hence even approximate simulation using
density approximating methods as described above, is infeasible (Papaspiliopoulos and
Roberts (2012)). This leads to the use of Monte Carlo methods for simulating diffusion
bridges.

It was previously thought impossible to simulate diffusion bridges by means of simple
procedures. A rejection sampler that tries to hit the prescribed end-point for the bridge
will have an excessively high rejection probability. We use a Markov Chain Monte Carlo
(MCMC) diffusion bridge sampler similar to those proposed by Roberts and Stramer (2001);
Bladt et al. (2014). These samplers achieve reasonable acceptance rates by trying to hit a
sample path rather than a point.

4 CHAPTER 1. INTRODUCTION

1.1.1 Summary

To briefly introduce our EM with bridge sampling approach, we describe the four main
steps in the process:

1. For each time interval [ti , ti+1], generate an ensemble of diffusion bridge sample
paths, Ψ, conditioned on the initial value, xti , and final value, xti+1 , in the interval.

2. Numerically approximate the Girsanov likelihood of the proposal. Iterate through a
MCMC algorithm to accept/reject the proposal using the ratio of the likelihoods of
the current iterate and the proposal.

3. Approximate the expected likelihood, p(Ξ |θ), using the complete data likelihood,
p(Ξ,Ψ |θ), for the observed data Ξ and augmented data Ψ.

4. To maximize the expected likelihood, solve the batch-wise least squares problem it-
eratively, alternating between the drift and diffusion parameters

In our current work, we parameterize the drift vector field using tensor products of
Hermite polynomials, enabling the model to capture highly nonlinear and/or coupled
dynamics. Please note that the method itself only requires the drift and diffusion functions
to be sufficiently smooth for the Girsanov theorem to hold (Rogers and Williams (1994)).
The functions can also be expressed in terms of other basis functions or, in general, an
additive model of a dictionary of user-defined functions.

Through experiments on systems with dimensions one through four, we show that this
EM approach enables accurate estimation for multiple time series with possibly irregular
observation times. We study how the EM method performs as a function of the noise level
in the data, the volume of data, and the amount of data augmentation performed.

The current limitation of our work lies in the scalability of diffusion bridge sampling. It
becomes increasingly difficult to create a diffusion bridge sampler with reasonable accep-
tance rate as the dimension increases. The sampler also has low sampling rate when the
diffusion coefficient g vanishes and the resulting system becomes a completely determin-
istic process. The loss of stochasticity is inconsistent with the diffusion bridge formulation.

1.1.2 Related Work

As mentioned, differential equation discovery problems have attracted considerable recent
interest. A variety of methods have been developed to learn ODE (Brunton et al. (2016);
Schön et al. (2018); Chen et al. (2017b); Tran and Ward (2017); Schaeffer et al. (2017); Schaeffer
(2017); Quade et al. (2018)) as well as PDE (Schaeffer et al. (2013); Raissi et al. (2017); Rudy
et al. (2017); Raissi and Karniadakis (2018)). Recently, there has been work on the stochastic
counterpart by (Boninsegna et al. (2017)), that focuses on high-frequency stochastic data.
Unlike many of these works, we do not focus on model selection through cross-validation
and/or regularization; if needed, our methods can be combined with model selection pro-
cedures developed in the ODE context (Mangan et al. (2016, 2017)).

Many other techniques explored in the statistical literature focus on scalar SDE (Nico-
lau (2007); Müller et al. (2010); Verzelen et al. (2012); Bhat and Madushani (2016)). Prior
EM approaches were restricted to one-dimensional SDE (Ghahramani and Roweis (1999)),

1.2. DTQ INTRODUCTION 5

or used a Gaussian process approximation, linear drift approximation, and approximate
maximization (Ruttor et al. (2013)).

In the literature, variational Bayesian methods are another class of well-known SDE
learning methods that have been tested on high-dimensional problems (Vrettas et al. 2015).
These methods use approximations consisting of linear SDE with time-varying coefficients
(Archambeau et al. 2008), kernel density estimates (Batz et al. 2016), or Gaussian processes
(Batz et al. 2017). In contrast, we parameterize the drift vector field using tensor products
of Hermite polynomials; as mentioned above, the resulting SDE has much higher capacity
for nonlinear expression than linear and/or Gaussian process models.

1.2 Scalable inference and filtering using Density Tracking by
Quadrature (DTQ)

In Chapters 3 and 4, we present our work on parameter inference and filtering for SDEs,
respectively. Our approach relies on the theory of Markov diffusion processes. The justi-
fication of using this theory lies in the fact that if the drift and diffusion functions are suf-
ficiently regular, the SDE (1.1) has a unique strong solution for each initial condition, and
this solution is a time-homogeneous strong Markov process (Rogers and Williams (1994)).
In our work, we develop a convergent numerical method to approximate the transition
density, p(Ξ, t), using temporal and spatial discretization, thus the name, density tracking
by quadrature (DTQ).

1.2.1 Summary

To briefly introduce DTQ, we describe the three main steps in the derivation:

1. Discretize the SDE (1.1) in time using a time-integrator

2. Interpret the time-discretized equations as a discrete-time Markov chain with density
p̃.

3. Write the Chapman-Kolmogorov equations for the time-evolution of p̃. Discretize
both the Chapman-Kolmogorov equation and p̃ in space to compute the discrete-
space density approximation p̂.

In our current work, we use the explicit Euler-Maruyama method in step 1 and the
trapezoidal rule for numerical quadrature in step 3. Note that the above steps constitute a
general framework for numerical density computation. With different choices of time in-
tegrator and quadrature rules, variations of the DTQ method can be derived for improved
performance. The DTQ method is provably O (h) convergent, where h > 0 denotes the tem-
poral step size (Bhat and Madushani (2016)). The convergence of p̂ → p̃ is exponential in h,
while the p̃ → p convergence is of order 1 (Bally and Talay (1996)). Thus the convergence
of the time integrator dictates the convergence of the DTQ method. Many higher-order
schemes exist based on the Itô-Taylor expansion, implicit methods and split-step methods
(Kloeden and Platen (1992)), which can be used for improved convergence.

To study the properties of our algorithm, we run a series of preliminary tests involving
both inference and filtering models. We show that our algorithm is capable of accurate

6 CHAPTER 1. INTRODUCTION

inference, and that its performance depends in a logical way on problem and algorithm
parameters.

1.2.2 Related Work

The problem of estimating solutions of SDEs and the underlying likelihood has been a de-
manding challenge for several decades because of intractability of the likelihood. A thor-
ough review of past work on this problem is contained in Sørensen (2004); Iacus (2009);
Fuchs (2013); Chen (2003); Hurn et al. (2007). Here we focus on past work that is particu-
larly relevant to our approach.

Methodology similar to DTQ has previously appeared in literature as numerical path
integration (NPI). Early efforts of using a path integration method for numerically estimat-
ing the probability density of a stochastic process have been focused on solving the Fokker-
Planck equation as it provides analogies between quantum mechanics and nonequilibrium
thermodynamics (Zambrini and Yasue (1980)). The numerical path integration scheme
proposed by Wehner and Wolfer (1983) uses the midpoint rule for numerical quadra-
ture and a short-term propagator computed by Wissel (1979) for the time evolution. The
method has achieved accurate results for long-term evolution and extreme response statis-
tics on a variety of problems in, e.g., nonlinear mechanics and finance — see Næss and
Johnsen (1993); Linetsky (1997); Yu et al. (1997); Rosa-Clot and Taddei (2002); Skaug and
Næss (2007); Chen et al. (2017a).

The transition density of the Fokker-Planck equation can be approximated analyti-
cally using orthogonal polynomials (Cukier et al. (1973)), closed-form approximations (Aït-
Sahalia (2002)) and eigenfunction expansions (Schenzle and Brand (1979)), and numer-
ically integrated using Monte Carlo methods (Kikuchi et al. (1991)) and finite element
schemes (Di Paola and Sofi (2002)). The Chapman-Kolmogorov equation that is at the cen-
ter of our approach has appeared in Pedersen (1995); Santa-Clara (1997). In these works,
the right-hand side of the Chapman-Kolmogorov equation is interpreted as an expected
value computed using Monte Carlo methods. Cai (2002) has used a similar approach in
the context of nonlinear autoregressive time series model. The Bayesian approach to the
intractability of the likelihood function focuses on introducing auxiliary points to create a
high-frequency dataset (Fuchs (2013)).

1.3 Outline

The dissertation is structured in the following way. In Chapter 2, we focus on nonpara-
metric drift estimation. In Section 2.1.3, we describe the diffusion bridge sampling com-
putation, followed by the Expectation Maximization steps in Section 2.1.4. To study the
properties of our algorithm, we run a series of experiments with 1D, 2D, 3D and 4D sys-
tems in Section 2.2. We record the error in the estimated and true parameters by varying
the number of time series used, the length of each time series, the level of noise strength
and the amount of data augmentation. In Section 2.3, we discuss future work for non-
constant diffusion matrices and exploring regularization to induce sparsity.

In Chapter 3, we propose the DTQ method. In Section 3.2.1 and 3.2.2, we derive the
likelihood and gradient computations, respectively, as simple vector-matrix and matrix-
matrix multiplications. In Section 3.3 we extend the scalar model to a two-dimensional

1.3. OUTLINE 7

coupled system and derive the likelihood and gradient, as a generalization of the compu-
tations in Section 3.2. In Section 3.4, we present the results for parameter inference for the
Ornstein-Uhlenbeck process (linear), double well potential (nonlinear) and a generic poly-
nomial drift and diffusion function. We record the estimated parameters and the number
of iterations vs RMS error for varying temporal and spatial grid spacing. In Section 3.4.4,
we further present our results for the coupled system, using two cases: an electrical oscilla-
tor, and a pursuit model using basketball player tracking data. We also provide a compari-
son study between a particle filtering approach (pomp) and DTQ to highlight strengths and
weaknesses of both methods. In Section 3.5, we discuss future improvements for scalable
implementation of the DTQ method in the high noise regime. The work from this Chapter
has been published (Bhat et al. (2015, 2016a)).

In Chapter 4, we extend our work on DTQ to infer both state and system parameters
from time series data. This problem is known as filtering, since the observed variables
have measurement noise and this noise is filtered out to recover the true system variable
observations. In Section 4.2, we introduce the measurement noise model and the associ-
ated inference problem in the Bayesian setup. DTQ proves to be a natural extension for the
likelihood computation as the bottleneck for both the models is the same. In Section 4.2.2,
we enumerate the steps for an MCMC sampler which samples from the posterior. As the
inferred parameters scale linearly with the length of the time series, we provide a scalable
implementation of our method on the Scala/Breeze platform, the first of its kind in Chap-
ter 4.3. In Chapter 4.4, we report the results of our method for inferred state and system
parameters for the Ornstein-Uhlenbeck process for equispaced and non-equispaced time
series. In Section 4.4.3, we conduct tests to explore the relationship between running time
and the length of observation series. In Chapter 4.5, we discuss future work in the direc-
tion of batch filtering and adjoint-based DTQ method for faster gradient computation. The
work presented in this Chapter has been published (Bhat et al. (2016b)).

8 CHAPTER 1. INTRODUCTION

Chapter 2

SDE Model Discovery via Bridge
Sampling

In this chapter, we develop an algorithm to learn SDE models from high-dimensional time
series. To our knowledge, this is the most general expectation maximization (EM) ap-
proach to learning an SDE with multidimensional drift vector field and diagonal diffusion
matrix. Prior EM approaches were restricted to one-dimensional SDE (Ghahramani and
Roweis (1999)), or used a Gaussian process approximation, linear drift approximation, and
approximate maximization (Ruttor et al. (2013)). To develop our method, we use diffusion
bridge sampling as in van der Meulen et al. (2014, 2017), which focused on Bayesian non-
parametric methods for SDE in R1. After augmenting the data using bridge sampling, we
are left with a least-squares problem, generalizing the work of Brunton et al. (2016) from
the ODE to the SDE context.

2.1 Problem Setup

Let Wt denote Brownian motion in Rd —informally, an increment dWt of this process has a
multivariate normal distribution with zero mean vector and covariance matrix I dt . Let X t

denote an Rd -valued stochastic process that evolves according to the Itô SDE

dX t = f (X t)dt +ΓdWt . (2.1)

For rigorous definitions of Brownian motion and SDE, see Bhattacharya and Waymire
(2009); Øksendal (2003). The nonlinear vector field f : Ω ⊂ Rd → Rd is the drift function,
and the d ×d matrix Γ is the diffusion matrix. To reduce the number of model parameters,
we assume Γ= diagγ.

Our goal is to develop an algorithm that accurately estimates the functional form of f and the
vector γ from time series data.

2.1.1 Parameterization

We parameterize f using Hermite polynomials. The n-th Hermite polynomial takes the
form

Hn(x) = (
p

2πn!)−1/2(−1)nex2/2 dn

dxn e−x2/2 (2.2)

9

10 CHAPTER 2. EM VIA DIFFUSION BRIDGE

Let 〈 f , g 〉w = ∫
R f (x)g (x)exp(−x2/2)dx denote a weighted L2 inner product. Then, 〈Hi , H j 〉w =

δi j , i.e., the Hermite polynomials are orthonormal with respect to the weighted inner prod-
uct. In fact, with respect to this inner product, the Hermite polynomials form an orthonor-
mal basis of L2

w (R) = { f 〈 f , f 〉w <∞}.
Now let α= (α1, . . . ,αd) ∈Zd+ denote a multi-index. We use the notation |α| =∑

j α j and
xα =∏

j (x j)α j for x = (x1, . . . , xd) ∈Rd . For x ∈Rd and a multi-index α, we also define

Hα(x) =
d∏

j=1
Hα j (x j). (2.3)

We write f (x) = (f1(x), . . . fd (x)) and then parameterize each component

f j (x) =
M∑

m=0

∑
|α|=m

β
j
αHα(x). (2.4)

We see that the maximum degree of Hα(x) is |α|. Hence we think of the double sum in (2.4)
as first summing over degrees and then summing over all terms with a fixed maximum
degree. We say maximum degree because, for instance, H2(z) = (z2 −1)/(2

p
2π)1/2 contains

both degree 2 and degree 0 terms.

dim (d) Max degree of Hermite polynomial (M)

0 1 2 3 4 5 6

1 1 2 3 4 5 6 7
2 1 3 6 10 15 21 28
3 1 4 10 20 35 56 84
4 1 5 15 35 70 126 210
5 1 6 21 56 126 252 462
6 1 7 28 84 210 462 924

Table 2.1: As the maximum allowed degree of Hermite polynomials (M) increase, the num-
ber of parameters (M̃) indicating the multi-index also increase.

There are
(m+d−1

d−1

)
possibilities for a d-dimensional multi-index α such that |α| = m.

Summing this from m = 0 to M , there are M̃ = (M+d
d

)
total multi-indices in the double sum

in (2.4). Let (i) denote the i -th multi-index according to some ordering. Then we can write

f j (x) =
M̃∑

i=1
β

j
(i)H(i)(x). (2.5)

Essentially, we parameterize f using tensor products of Hermite polynomials.

2.1.2 Data

We consider our data x = {x j }L
j=0 to be direct observations of X t at discrete points in time

t = {t j }L
t=0. Note that these time points do not need to be equispaced. In the derivation

2.1. PROBLEM SETUP 11

that follows, we will consider the data (t,x) to be one time series. Later, we indicate how
our methods generalize naturally to multiple time series, i.e., repeated observations of the
same system.

To achieve our estimation goal, we apply expectation maximization (EM). We regard x
as the incomplete data. Let ∆t = max j (t j −t j−1) be the maximum inter-observation spacing.
We think of the missing data z as data collected at a time scale h ¿ ∆t fine enough such
that the transition density of (2.1) is approximately Gaussian. To see how this works, let
N (µ,Σ) denote a multivariate normal with mean vector µ and covariance matrix Σ. Now
discretize (2.1) in time via the Euler-Maruyama method with time step h > 0; the result is

X̃n+1 = X̃n + f (X̃n)h +h1/2ΓZn+1, (2.6)

where Zn+1 ∼ N (0, I) is a standard multivariate normal, independent of Xn . This implies
that

(X̃n+1|X̃n = v) ∼N (v + f (v)h,hΓ2). (2.7)

As h decreases, X̃n+1|X̃n = v—a Gaussian approximation—will converge to the true transi-
tion density X(n+1)h |Xnh = v , where X t refers to the solution of (2.1).

2.1.3 Diffusion Bridge

To augment or complete the data, we employ diffusion bridge sampling, using a Markov
chain Monte Carlo (MCMC) method that goes back to Roberts and Stramer (2001); Pa-
paspiliopoulos et al. (2013). Let us describe our version here. We suppose our current
estimate of θ = (β,γ) is given. Define the diffusion bridge process to be (2.1) conditioned
on both the initial value xi at time ti , and the final value xi+1 at time ti+1. The goal is
to generate sample paths of this diffusion bridge. By a sample path, we mean F −1 new
samples {zi , j }F−1

j=1 at times ti + j h with h = (ti+1 − ti)/F .

Figure 2.1: Illustration of 1000 Brownian bridge sample paths, post burnin, in 1D (left) and
2D (right) from a fixed initial to final point over a time interval. The blue dots represent
the observed data. The grey curves represent the Brownian bridge sample paths between
the two observed points and the red line represents the mean of the sample paths.

To generate such a path, we start by drawing a sample from a Brownian bridge with

12 CHAPTER 2. EM VIA DIFFUSION BRIDGE

the same diffusion as (2.1). That is, we sample from the SDE

dX̂ t = ΓdWt (2.8)

conditioned on X̂ ti = xi and X̂ ti+1 = xi+1. This Brownian bridge can be described explicitly

X̂ t = Γ(Wt −Wti)+xi − t − ti

ti+1 − ti
(Γ(Wti+1 −Wti)+xi −xi+1) (2.9)

Here W0 = 0 (almost surely), and Wt −Ws ∼N (0, (t − s)I) for t > s ≥ 0.
Let P denote the law of the diffusion bridge process, and let Q denote the law of the

Brownian bridge (2.9). Using Girsanov’s theorem (Papaspiliopoulos and Roberts (2012)),
we can show that

dP

dQ
=C exp

(∫ ti+1

ti

f (X̂s)TΓ−2 d X̂s − 1

2

∫ ti+1

ti

f (X̂s)TΓ−2 f (X̂s)d s

)
, (2.10)

where the constant C depends only on xi and xi+1. The left-hand side is a Radon-Nikodym
derivative, equivalent to a density or likelihood; the ratio of two such likelihoods is the
accept/reject ratio in the Metropolis algorithm (Stuart (2010)).

Figure 2.2: On the left, we plot 10 time series observed 21 times over the time interval
[0,10]. On the right, we plot 100 Brownian bridge paths between each observed data point
for the solid blue series in the left plot. The blue dots represent the observed data. The grey
curves represent the Brownian bridge sample paths between the initial and final observed
data point for each interval. The red line represents the mean of the Brownian bridge path
samples.

Putting the above pieces together yields the following Metropolis algorithm to generate
diffusion bridge sample paths. Fix F ≥ 2 and i ∈ {0, . . . ,L −1}. Assume we have stored the
previous Metropolis step, i.e., a path z(`) = {z(`)

i , j }F−1
j=1 .

1. Use (2.9) to generate samples of X̂ t at times ti + j h, for j = 1,2, . . . ,F −1 and h = (ti+1 −
ti)/F . This is the proposal z∗ = {z∗

i , j }F−1
j=1 .

2. Numerically approximate the integrals in (2.10) to compute the likelihood of the pro-

2.1. PROBLEM SETUP 13

posal. Specifically, we compute

p(z∗)

C
=

F−1∑
j=0

f (z∗
i , j)TΓ−2(z∗

i , j+1 − z∗
i , j)− h

4

F−1∑
j=0

[
f (z∗

i , j)TΓ−2 f (z∗
i , j)+ f (z∗

i , j+1)TΓ−2 f (z∗
i , j+1)

]
We have discretized the stochastic dX̂s integral using Itô’s definition, and we have
discretized the ordinary ds integral using the trapezoidal rule.

3. Accept the proposal with probability p(z∗)/p(z(`))—note the factors of C cancel. If the
proposal is accepted, then set z(`+1) = z∗. Else set z(`+1) = z(`).

We initialize this MCMC algorithm with a Brownian bridge path and use post-burn-in
steps as the diffusion bridge samples we seek.

2.1.4 Expectation Maximization (EM)

Let us now give details to justify the intuition expressed above, that employing the diffu-
sion bridge to augment the data on a fine scale will enable estimation. Let z(r) = {z(r)

i , j }F−1
j=1 be

the r -th diffusion bridge sample path. We interleave this sampled data together with the
observed data x to create the completed time series

y(r) = {y (r)
j }N

j=1,

where N = LF + 1. By interleaving, we mean that y (r)
1+i F = xi for i = 0,1, . . . ,L, and that

y (r)
1+ j+i F = zi , j for j = 1,2, . . . ,F − 1 and i = 0,1, . . . ,L − 1. With this notation, we can more

easily express the EM algorithm. Let us assume that we currently have access to θ(k), our
estimate of the parameters after k iterations. If k = 0, we set θ(0) equal to an initial guess.
Then we follow two steps:

1. For the expectation (E) step, we first generate an ensemble of R diffusion bridge
sample paths. Interleaving as above, this yields R completed time series y(r) for r =
1, . . . ,R. In what follows, we will use an average over this ensemble to approximate
the expected value. Let h j denote the elapsed time between observations y j and y j+1.
Using the completed data, the temporal discretization (2.6) of the SDE, the Markov
property, and property (2.7), we have:

Q(θ,θ(k)) = Ez|x,θ(k) [log p(x,z | θ)] (2.11)

≈ 1

R

R∑
r=1

log p(y(r) | θ)

= 1

R

R∑
r=1

N−1∑
n=1

log p(y (r)
n+1 | y (r)

n ,θ)

=− 1

R

R∑
r=1

N−1∑
n=1

[d∑
j=1

1

2
log(2πhnγ

2
j)+ 1

2hn

∥∥∥Γ−1
(

y (r)
n+1 − y (r)

n −hn

M̃∑
`=1

β(`)H(`)
(
y (r)

n

))∥∥∥2

2

]
.

2. For the maximization (M) step, we carry out:

θ(k+1) = argmax
θ

Q(θ,θ(k))

14 CHAPTER 2. EM VIA DIFFUSION BRIDGE

Note that y (r)
j ∈Rd —we denote the i -th component by y (r),i

j . We find β(k+1) by solving
Mβ= ρ where M is the M̃ × M̃ matrix

Mk,` =
1

R

R∑
r=1

N−1∑
n=1

hn H(k)(y (r)
n)H(`)(y (r)

n), (2.12)

and ρ is the M̃ ×d matrix

ρk,i =
1

R

R∑
r=1

N−1∑
n=1

H(k)(y (r)
n)(y (r),i

n+1 − y (r),i
n). (2.13)

We find γ(k+1) by computing

γ2
i =

1

R(N −1)

R∑
r=1

N−1∑
n=1

h−1
n (y (r),i

n+1 − y (r),i
n −hn

M̃∑
`=1

βi
(`)H(`)(y (r)

n))2. (2.14)

Here βi
(`) denotes the `-th row and i -th column of the β(k+1) matrix. We then set

θ(k+1) = (β(k+1),γ(k+1)).

We iterate the above two steps until ‖θ(k+1) −θ(k)‖/‖θ(k)‖ < δ for some tolerance δ> 0.
When the data consists of multiple time series {t(i),x(i)}S

i=1, everything scales accord-
ingly. For instance, we create an ensemble of R diffusion bridge samples for each of the
S time series. If we index the resulting completed time series appropriately, we simply
replace R by RS in (2.12), (2.13), and (2.14) and keep everything else the same.

There are three sources of error in the above algorithm. The first relates to replacing the
expectation by a sample average; the induced error should, by the law of large numbers,
decrease as R−1/2. The second stems from the approximate nature of the computed diffu-
sion bridge samples—as indicated above, we use numerical integration to approximate the
Girsanov likelihood. The third source of error is in using the Gaussian transition density
to approximate the true transition density of the SDE. Both the second and third sources
of error vanish in the F →∞ limit (Kloeden and Platen (2011)).

2.2 Experiments

We present a series of increasingly higher-dimensional experiments with synthetic data.
To generate this data, we start with a known stochastic dynamical system of the form (2.1).
Using Euler-Maruyama time stepping starting from a randomly chosen initial condition,
we march forward in time from t = 0 to a final time t = 10.

In all examples, we step forward internally at a time step of h = 0.0001, but for the
purposes of estimation, we only use data sampled every 0.1 units of time, discarding 99.9%
of the simulated trajectory. We use a fine internal time step to reduce, to the extent possible,
numerical error in the simulated data. We save the data on a coarse time scale to test the
proposed EM algorithm.

To study how the EM method performs as a function of noise strength, data volume,
and data augmentation, we perform four sets of experiments. When we run EM, we ran-
domly generate the initial guess β(0) ∼N (µ= 0,σ2 = 0.5). We set the EM tolerance parame-
ter δ= 0.01. The only regularization we include is to threshold β—values less than 0.01 in

2.2. EXPERIMENTS 15

absolute value are reset to zero. Finally, in the MCMC diffusion bridge sampler, we use 10
burn-in steps and then create an ensemble of size R = 100.

To quantify the error between the estimated β̃ and the true β, we use the Frobenius
norm as the regression error metric. Since drift function is represented as an additive
model of Hermite functions, the error reduces to L2 error in the respective coefficients:

ε= ∥∥ ftrue − festimated
∥∥

2 =
√∑

i

∥∥β(i) − β̃(i)
∥∥2

. (2.15)

We also define classification metrics which quantifies the number of active and inac-
tive polynomial terms correctly identified. Most physical systems have only a few rel-
evant terms that define the dynamics, making the governing equations sparse in a high-
dimensional function space. We use hard thresholding to investigate the reasonable amount
of thresholding, λ, for meaningful classification tasks in different scenarios:

β̃= (| β̃ | −λ)+ (2.16)

To define the classification metrics, we define four intermediate terms. These terms
focus on if the entries have been identified correctly as zero/non-zero:

β̃(i) = 0 β̃(i) 6= 0
β(i) = 0 True Positive (TP) False Negative (FN)
β(i) 6= 0 False Positive (FP) True Negative (TN)

Using these definitions, we compute the classification error using the following metrics:

• Precision is the proportion of positive identifications that are correct, i.e., out of all
the polynomial terms rejected by the estimated system, how many do not contribute
in the true system:

Precision= TP
TP + FP

=∑
i

β(i) = 0∧ β̃(i) = 0

β̃(i) = 0
. (2.17)

• Recall is the proportion of actual positives correctly identified, i.e., out of all the in-
active terms in the true system, how many have been estimated correctly as inactive:

Recall= TP
TP + FN

=∑
i

β(i) = 0∧ β̃(i) = 0

β(i) = 0
. (2.18)

• F-measure or balanced F1-score combines precision and recall using the harmonic
mean:

F1 score= 2 · precision · recall
precision + recall

. (2.19)

The β̃ coefficients are the Hermite coefficients of the estimated drift vector field f . For
each example system, we compute the true Hermite coefficients β by multiplying the true
ordinary polynomial coefficients by a change-of-basis matrix that is easily computed by

16 CHAPTER 2. EM VIA DIFFUSION BRIDGE

solving the system of equations for the equivalent conversion. We provide the calculations
for a general 1D system with the maximum degree M = 3. The coefficients of the ordinary
polynomial terms are represented as B .

B(0) +B(1)x +B(2)x2 +B(3)x3 =β(0)H(0)(x)+β(1)H(1)(x)+β(2)H(2)(x)+β(3)H(3)(x)

= (β(0)H0 −β(2)H2)+ (β(1) −3β(3)H3)x + (β(2)H2)x2 + (β(3)H3)x3

This results in a transformation matrix from Hermite space to ordinary polynomial space
as Hβ= B and from ordinary polynomial space to Hermite space as β= H

−1
B :

H0 −H2

H1 −3H3

H2

H3

β(0)

β(1)

β(2)

β(3)

=

B(0)

B(1)

B(2)

B(3)

This system can be generalized to a d−dimensional system and H can be represented

as an M̃ × M̃ matrix. We provide the transformation matrix for the 2D system to illustrate
how this works:

H 2
0 −H0H2 −H0H2

H0H1 −3H0H3 −H1H2

H0H1 −H1H2 −3H0H3

H0H2

H 2
1

H0H2

H0H3

H1H2

H1H2

H0H3

β(0,0)

β(1,0)

β(0,1)

β(2,0)

β(1,1)

β(0,2)

β(3,0)

β(2,1)

β(1,2)

β(0,3)

=

B(0,0)

B(1,0)

B(0,1)

B(2,0)

B(1,1)

B(0,2)

B(3,0)

B(2,1)

B(1,2)

B(0,3)

We test the method using stochastic systems in dimensions d = 1,2,3 and 4. In what

follows, we call these systems as 1D, 2D, 3D and 4D. We plot the observed data in the
form of 10 time series used for learning. The initial conditions are drawn from a Gaussian
random distribution. Each time series has initial time = 0 and final time = 10, and 100 time
points are observed over the interval. The additive noise is set at 0.05 for each case.

• In 1D, we use: dX t = (1+X t −X 2
t)dt +γdWt .

• In 2D, we use a stochastic Duffing oscillator with no damping or driving:

dX0,t = X1,t dt +γ0dW0,t

dX1,t = (−X0,t −X 3
0,t)dt +γ1dW1,t

• In 3D, we consider the stochastic, damped, driven Duffing oscillator:

dX0,t = X1,t dt +γ0dW0,t

dX1,t = (X0,t −X 3
0,t −0.3X1,t +0.5cos(X2,t))dt +γ1dW1,t

dX2,t = 1.2dt +γ2dW2,t

2.2. EXPERIMENTS 17

Figure 2.3: From left to right, top to bottom, we plot 10 sample paths for the 1D, 2D, 3D
and 4D systems where the initial condition is normally distributed N (0,2). The initial time
t = 0 and final time t = 10, with 100 time points observed over the interval. The plots are of
the observations of the x components versus time.

18 CHAPTER 2. EM VIA DIFFUSION BRIDGE

• For the 4D case, we consider the coupled spring system with two masses:

dX0,t = X1,t dt +γ0dW0,t

dX1,t =−5X0,t −3.5(X0,t −X2,t)dt +γ1dW1,t

dX2,t = X3,t dt +γ2dW2,t

dX3,t =−2.33(X2,t −X0,t)−2X2,t dt +γ3dW3,t

2.2.1 Experiment 1: Varying Number of Time Series

Here we vary data volume by stepping the number S of time series from S = 1 to S = 10.
Each time series has length L +1 = 101. As plotted in Figure 2.4, the approximation of the
true drift function gets better with increasing number of time series S for the 1D, 2D, 3D
and 4D systems, respectively. The regression and classification error results, as plotted in
Figure 2.5, show that increasing S leads to much better estimates of β. Hard thresholding
is useful to improve classification error metrics. As a rule of thumb, the results indicate
that at least S ≥ 4 time series are needed for accurate estimation.

Figure 2.4: As we increase the number S of time series used to learn the drift, the estimated
drift more closely approximates the ground truth. From top to bottom, left to right, we
have plotted estimated and true drifts for the 1D, 2D, 3D and 4D systems. For the 4D sys-
tem, we have plotted the X1, X2 and X3 components, keeping the X0 component constant.

2.2. EXPERIMENTS 19

Figure 2.5: As we increase the number S of time series used to learn the drift, the Frobenius
norm error between estimated and true drifts—see (2.15)—decreases significantly. In the
first column, from top to bottom, we have plotted results for the 1D, 2D, 3D and 4D sys-
tems, with varying threshold from 0.5 to 0.01. The recall and F1 score, on the other hand,
increases significantly as we increase the number S of time series. The effect of threshold-
ing is more evident for classification error metrics as a threshold of 0.05 shows much better
results for recall compared to the no thresholding case. In the second and third column,
from top to bottom, we have plotted recall and F1 score for the 1D, 2D, 3D and 4D systems,
respectively.

20 CHAPTER 2. EM VIA DIFFUSION BRIDGE

S
System 1 2 3 4 5 6 7 8 9 10

1D 0.84 1.26 1.84 2.18 2.88 3.27 3.90 4.38 4.88 5.25

2D 0.97 1.74 2.54 3.28 3.88 4.58 5.38 6.25 6.77 7.85

3D 1.49 2.75 3.92 5.22 6.46 7.49 8.63 10.46 11.76 13.06

4D 2.65 5.62 7.36 9.76 12.08 14.11 16.22 20.11 22.59 23.14

Table 2.2: Results for average compute time (in seconds) per EM iteration for varying
number of time series S. As we increase the number of time series used to learn the drift,
the average compute time increases for the 1D, 2D, 3D and 4D systems. The time taken for
each EM iteration also increases with the dimensions of the system.

S
System 1 2 3 4 5 6 7 8 9 10

1D 72.91 80.23 79.22 79.62 81.07 80.97 79.43 79.42 78.74 79.33

2D 13.88 17.43 25.57 22.33 18.12 29.46 19.46 4.16 12.15 28.32

3D 2.19 3.22 5.06 4.12 4.34 4.05 4.20 3.61 4.12 4.08

4D 3.51 2.92 12.01 14.50 11.81 11.09 11.86 13.65 14.37 11.08

Table 2.3: Results for average acceptance percentage for Metropolis-Hastings sampler for
varying number of time series S. The acceptance rate decreases as the dimensionality and
complexity of the system increases. We suspect that the nonlinearity of the 3D damped
Duffing system causes the acceptance rate to be lower than that of the linear 4D system.

S
System 1 2 3 4 5 6 7 8 9 10

1D 4 4 3 3 3 3 4 3 3 3

2D 4 3 3 3 3 3 3 43 6 3

3D 501* 3 3 3 3 3 3 6 3 5

4D 26 59 3 3 3 3 2 2 2 2

Table 2.4: Results for number of EM iterations required to converge for varying number of
time series S. A threshold of 0.01, 0.05, 0.1 and 0.1 is selected for the 1D, 2D, 3D and 4D
systems respectively. If a single time series observation is used for training, then either the
relative error in estimated β̃ can not be reduced below the threshold (as marked by *), or
requires considerably higher number of iterations to become less than the threshold.

2.2. EXPERIMENTS 21

2.2.2 Experiment 2: Varying Length of Time Series

Here we vary data volume by stepping the length L + 1 of the time series from L + 1 =
11 to L + 1 = 101, keeping the number of time series fixed at S = 10. Also note that in
this experiment, observation times strictly between the initial and final times are chosen
randomly. In Figure 2.4, we have plotted the estimated and true drifts for the 1D, 2D,
3D and 4D systems, respectively. In Figure 2.6, we have plotted the regression (2.15) and
classification error (2.18, 2.19) metrics for the systems. Comparing with Experiment 1, we
see that randomization of the observation times improves estimation. That is, even with
L + 1 = 11 data points per time series, we obtain accurate estimates. On the other hand,
since the points are chosen randomly, the L2 error does not decrease monotonically and is
dependent on the time points selected.

Figure 2.6: As we increase the length L of each time series used for learning, the L2 regres-
sion error between estimated and true drifts—see (2.15)—decreases significantly. Recall
and F1 score increase with increasing length, L, of time series. As in Experiment 1, ap-
plying a hard threshold of λ = 0.05 helps in improving the classification errors without
increasing the regression errors significantly. From left to right, top to bottom, we have
plotted the L2 error, recall and F1 score for 1D, 2D, 3D and 4D systems, respectively.

22 CHAPTER 2. EM VIA DIFFUSION BRIDGE

L
System 11 21 31 41 51 61 71 81 91 101

1D 0.82 1.50 2.12 2.32 2.84 3.23 3.97 4.45 5.06 5.99

2D 1.04 1.74 2.42 3.14 3.91 4.78 5.61 6.08 6.78 7.68

3D 1.55 2.79 3.98 5.43 6.46 7.89 8.63 10.18 11.80 12.87

4D 2.85 4.80 7.41 10.21 12.31 14.22 16.57 21.23 22.16 23.94

Table 2.5: Results for average compute time (in seconds) per EM iteration for varying
length of time series L. As in Experiment 1 (Section 2.2.1), longer time series implies an in-
crease in the time required to compute one step of the EM algorithm. The average compute
time also increases with increasing dimensionality of the system.

L
System 11 21 31 41 51 61 71 81 91 101

1D 56.02 64.31 71.96 67.38 74.73 76.42 76.88 83.32 83.36 83.22

2D 4.54 8.96 15.10 23.09 27.72 23.42 27.01 30.38 34.24 35.80

3D 10.21 4.59 4.09 8.04 7.42 10.85 9.65 12.21 13.80 12.33

4D 8.18 5.95 8.35 9.51 16.18 14.16 19.51 18.16 20.76 23.03

Table 2.6: Results for average acceptance percentage for Metropolis-Hastings sampler as
we increase the length of time series L. As in Experiment 1 (Section 2.2.1), an increase in
L results in higher acceptance percentage for the sampler. The acceptance rate decreases
with increase in dimensionality and complexity of the system.

L
System 11 21 31 41 51 61 71 81 91 101

1D 3 3 3 3 3 3 3 3 3 3

2D 4 4 3 3 3 3 3 3 3 3

3D 4 4 3 3 3 4 3 3 5 4

4D 2 2 2 2 2 2 2 2 2 2

Table 2.7: Results for number of EM iterations required to converge for varying length of
time series L. As in Experiment 1, a threshold of 0.01, 0.05, 0.1 and 0.1 is set for 1D, 2D, 3D
and 4D systems respectively. Unlike Experiment 1 (Section 2.2.1), the number of iterations
does not change considerably with the length of time series.

2.2. EXPERIMENTS 23

Figure 2.7: We plot true and estimated drifts for the 1D, 2D, 3D and 4D systems as a
function of increasing time series length L. The last three components of the vector field
for the 4D system are plotted as in Figure 2.4. The results show that randomization of
observation times compensates for a small value of L, enabling accurate estimation.

Figure 2.8: We plot true and estimated drifts for the 1D, 2D, 3D and 4D systems as a
function of varying noise strength, γ. As in Figure 2.7, the last three components of the
vector field for the 4D system are plotted. The results show that estimation is accurate
even for large noise strength values and the error goes to zero with the noise strength.

24 CHAPTER 2. EM VIA DIFFUSION BRIDGE

2.2.3 Experiment 3: Varying Noise Strength

Here we vary the noise strength γ, stepping from 0.5 to 0.0001 while keeping other param-
eters constant. Specifically, we take S = 10 time series each of length L +1 = 101. In Figure
2.9, we have plotted regression and classification errors for all systems. As in the previous
experiments, the estimated and true drift functions are close—see Figure 2.8. There is an
increase in the L2 error when the maximum noise strength is close to the drift coefficients.
For all systems, as the noise strength goes to zero, the error drops close to zero. The effect
of thresholding is more pronounced in the 3D system. Many non-zero components are
present in the 3D system, thus excessive thresholding results in an drastic increase of the
L2 error. As in the previous experiments, λ= 0.05, is a reasonable threshold which greatly
improves classification without drastically increasing the L2 error.

Figure 2.9: Varying the noise strength in simulated data alters the quality of estimated drift
coefficients, quantified using the L2 error (2.15), recall (2.18) and F1 score (2.19).

2.2. EXPERIMENTS 25

γ
System 0.5 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

1D 5.57 5.37 5.55 5.66 5.74 5.28 6.43 6.04

2D 7.78 7.57 7.65 8.05 7.86 7.41 7.51 7.66

3D 12.84 12.58 12.71 12.38 13.51 12.81 12.21 12.11

4D 24.07 23.86 24.12 23.62 23.16 24.19 23.58 26.39

Table 2.8: Results for average compute time (in seconds) per EM iteration for varying levels
of noise strength γ. The time required for EM iterations does not vary with varying noise
strength, but it increases as the complexity of the system increases.

γ
System 0.5 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

1D 87.91 86.28 86.72 79.42 76.49 70.90 67.02 65.06

2D 38.18 46.12 31.27 24.21 2.49 7.76 2.47 2.29

3D 28.99 34.78 17.06 3.74 3.06 2.34 2.42 2.22

4D 15.39 27.22 18.51 12.28 4.08 2.46 2.24 2.36

Table 2.9: Results for average acceptance percentage for Metropolis-Hasting sampler for
varying noise strength γ. The acceptance percentage decreases with decrease in γ. As the
system becomes more determinstic, it becomes harder to generate Brownian bridge sample
paths between the observed data points. The acceptance percentage also decreases with
increased complexity of the system.

γ
System 0.5 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

1D 15 4 4 4 3 3 3 2

2D 5 6 4 3 501* 2 2 2

3D 501* 5 7 3 501* 2 2 2

4D 3 3 3 2 2 2 2 2

Table 2.10: Results for number of EM iterations required to converge. As in Experiment 1
and 2 (Section 2.2.1, 2.2.2) a threshold of 0.01, 0.05, 0.1 and 0.1 are set for the 1D, 2D, 3D and
4D systems respectively. The number of iterations decrease, in general, with a decrease in
the noise strength. In a few cases the relative error between β̃ iterates does not reduce
below the specified threshold (as marked by *). It is important to note here that the relative
error does not reduce below the threshold, but on inspecting the estimated β̃ parameter,
the estimated value is close to the true value and the relative error is still small.

26 CHAPTER 2. EM VIA DIFFUSION BRIDGE

2.2.4 Experiment 4: Varying Data Augmentation

We start with S = 1 time series with L + 1 = 51 points each. Here we vary the number
of interleaved diffusion bridge samples: F = 1, . . . ,10. For F = 1, no diffusion bridge is
created; the likelihood is computed by applying the Gaussian transition density directly to
the observed data. The results, plotted in Figures 2.10 and 2.11, show that increased data
augmentation dramatically improves the quality of estimated drifts.

Figure 2.10: As we increase the length F of the diffusion bridge interleaving observed
data points, the quality of estimated drifts improves considerably. From left to right, top
to bottom, we have plotted the Frobenius errors (2.15), recall (2.18) and F1 score (2.19)
between true and estimated coefficients, for the 1D, 2D, 3D and 4D systems.

We have not plotted results for the other scarce data regime where we have S = 10 time
series with L = 11 points each. In this regime, data augmentation enables highly accurate
estimation for all the systems as well.

2.2. EXPERIMENTS 27

Figure 2.11: As in the previous experiments, the estimated drift functions lie close to the
true drift function. We find that introducing diffusion bridge samples helps estimating the
drift function more accurately.

F
System 1 2 3 4 5 6 7 8 9 10

1D 0.59 0.54 0.54 0.54 1.00 0.57 0.58 0.57 0.85 0.55

2D 0.65 0.57 0.58 0.57 0.57 0.57 0.57 0.62 0.56 0.57

3D 6.51 9.58 6.29 6.55 6.46 6.82 6.47 6.36 6.69 6.59

4D 24.08 24.34 23.94 23.98 24.93 25.65 23.99 23.17 25.64 24.54

Table 2.11: Results for average compute time (in seconds) per EM iteration for varying
amount of data augmentation. As the Brownian bridge is created explicitly using the
discretized version of (2.9), increasing the amount of data augmentation does not cause
significant increase in the compute time. The time required to compute each EM iteration
increases with an increase in the dimensionality of the system.

28 CHAPTER 2. EM VIA DIFFUSION BRIDGE

F
System 1 2 3 4 5 6 7 8 9 10

1D 100 75.04 67.08 61.78 61.23 58.71 55.22 53.57 52.58 49.52

2D 100 13.17 9.04 6.54 4.75 4.35 4.11 4.94 2.87 4.02

3D 100 6.07 3.20 2.82 2.74 2.54 2.48 2.27 2.51 2.41

4D 100 25.69 19.22 13.69 11.63 7.81 6.88 5.83 4.10 4.04

Table 2.12: Results for average acceptance rate for Metropolis-Hastings sampler for vary-
ing amount of data augmentation, F . For F = 1, no diffusion bridge has been created and
thus the acceptance probability is 1. The algorithm in this case reduces to solving a least
squares using only the observed time series. As we increase data augmentation, the ac-
ceptance probability decreases as it becomes more difficult to create a bridge between the
observed values. The acceptance probability also decreases with an increase in the dimen-
sionality and complexity of the system.

F
System 1 2 3 4 5 6 7 8 9 10

1D 2 3 3 3 3 3 3 3 3 3

2D 2 8 5 7 6 8 8 4 9 6

3D 2 3 3 3 3 3 9 3 3 3

4D 2 2 2 2 2 2 2 2 2 2

Table 2.13: Results for number of EM iterations required to converge. As in the previous
experiments (Section 2.2.1, 2.2.2, 2.2.3) we consider a threshold of 0.01, 0.05, 0.1 and 0.1 for
the 1D, 2D, 3D and 4D systems respectively. The number of EM iterations does not vary
significantly with varying amount of data augmentation F .

2.3 Discussion

We have developed an EM algorithm for estimation of drift functions and diffusion ma-
trices for SDE. We have demonstrated the conditions under which the algorithm suc-
ceeds in estimating SDE. Specifically, our tests show that with enough data volume and
data augmentation, the EM algorithm produces highly accurate results. In future work,
we seek to further test our method on high-dimensional, nonlinear problems, problems
with non-constant diffusion matrices, and real experimental data. As we move to higher-
dimensional problems, we will also explore regularization and model selection techniques.

Chapter 3

Parameter Inference for SDEs via
Density Tracking by Quadrature

3.1 Statistical Model

The fundamental model considered in this section is

dX t = f (X t ;θ)dt + g (X t ;θ)dWt , X t0 = x0 (3.1)

where X = (X t)t≥0 is a scalar stochastic process, θ ∈ RN is a vector of parameters, and W =
(Wt)t≥0 is standard Brownian motion. Here f and g are referred to, respectively, as the
drift and diffusion functions. They are assumed to be known in parametric form. Suppose
we have collected data x = (x0, x1, . . . , xM) as shown in Figure 3.1. For the current model, we
assume that all observations are complete, i.e. there are no missing observations. Based on
this data, we would like to infer θ. The parameter space for inference in this case is RN .

Figure 3.1: Illustration of a sample path with discrete model observations x0, . . . , xM at times
t0, . . . , tM in red. Our goal is to infer the parameters of the model using these observations.

One way to carry out this inference is through numerical maximization of the likeli-
hood function p(x |θ). Alternatively, we can view this problem as a Bayesian inference
problem, and our goal is to sample from the posterior. The posterior density of the param-
eter vector given the observations is p(θ |x) ∝ p(x |θ) p(θ), where p(x |θ) is the likelihood
and p(θ) is the prior. This shows the need for a method to compute the likelihood func-
tion, which we derive in Section 3.2.

29

30 CHAPTER 3. DENSITY TRACKING BY QUADRATURE

3.2 DTQ method

Here we describe how to compute the likelihood p(x |θ) under the fundamental model
(3.1). Our first step is to apply a Markov property satisfied by (3.1): the random variable
X tm+1 , given X tm , is conditionally independent of all random variables X tm−k for k ≥ 1. With
this property, the likelihood factors:

L(θ) = p(x |θ) = p(x0 |θ)
M−1∏
m=0

p(xm+1 |xm ;θ) (3.2)

Each term in the product can be interpreted as follows: we start the SDE (3.1) with the
initial condition X tm = xm and fixed parameter vector θ. We then solve for the probability
density function (pdf) of X tm+1 , and evaluate that pdf at xm+1. By following these steps, we
have calculated p(xm+1 |xm ;θ).

We now outline a convergent method to compute the aforementioned pdf (Bhat and
Madushani (2016)). Because this method computes an approximation to the density via
iterated quadrature, we refer to the method as DTQ (density tracking by quadrature). The
first step of the method consists of discretizing (3.1) via the Euler-Maruyama discretization.
When describing this discretization, we specialize to the case where we seek p(xm+1 |xm ,θ).
That is, we take {τi }n

i=0 to be a temporal grid such that τ0 = tm , τn = tm+1, and h = (tm+1 −
tm)/n > 0. Then, for i = 1,2, . . . ,n, we have τi = tm + i h. On this temporal grid, the Euler-
Maruyama discretization of (3.1) is:

x̃i+1 = x̃i + f (x̃i ;θ)h + g (x̃i ;θ)
p

hZi+1 (3.3)

where {Zi }n
i=1 is an i.i.d. family of Gaussian random variables, each with mean 0 and vari-

ance 1. We think of x̃i as a numerical approximation to Xτi . Note that x̃0 = Xτ0 = X tm which
is constrained to equal the data point xm in this calculation.

Figure 3.2: Illustration of the temporal grid between a time interval (tm , tm+1). We take
{τi }n

i=0 to be the temporal grid such that τ0 = tm , τn = tm+1, and h = (tm+1 − tm)/n > 0. The
observed value is constrained by the data point, thus xm = Xτ0 = X tm

3.2. DTQ METHOD 31

The next step in deriving the DTQ method is to write down the Chapman-Kolmogorov
equation corresponding to (3.3). Let p(x̃i) denote the pdf of x̃i given the initial condition
x̃0 = xm . Then purely based on the laws of probability we can write:

p(x̃i+1) =
∫

x̃i

p(x̃i+1 | x̃i) p(x̃i)d x̃i . (3.4)

Inspecting (3.3), we see that conditional on x̃i , the pdf of x̃i+1 is Gaussian with mean x̃i +
f (x̃i ;θ)h and variance g 2(x̃i ;θ)h. Let us define the function

Gh
θ (a,b) = 1√

2πg 2(b ;θ)h
exp

(
− (a −b − f (b ;θ)h)2

2g 2(b;θ)h

)
. (3.5)

Then (3.4) becomes

p(x̃i+1) =
∫

x̃i

Gh
θ (x̃i+1, x̃i) p(x̃i)d x̃i . (3.6)

The last step is to spatially discretize the pdfs and the integration over x̃i . Let k > 0 be
constant; then z j = j k with j ∈ Z is an equispaced grid with spacing k. We represent the
function p(x̃i) by a vector q i such that the j -th component of q i is q j

i = p(x̃i = z j). We then
apply the trapezoidal rule to (3.6), resulting in

q j ′

i+1 =
∑

j
kGh

θ (z j ′ , z j)q j
i . (3.7)

Figure 3.3: Illustration of the truncated spatial grid, {z j }L
j=−L , for each discretized time point

in the interval (tm , tm+1). The estimated probability at any given point, p(x̃i), is represented
by a vector, q i such that the j−th component of q i is q j

i = p(x̃i = z j).

We think of kGh
θ

(z j ′ , z j) as the (j ′, j) element of a matrix A. In this way, the above for-
mula reduces to repeated matrix-vector multiplication.

q i+1 = A q i . (3.8)

In practice, we evaluate these sums on a finite subset of Z. Therefore, we truncate the

32 CHAPTER 3. DENSITY TRACKING BY QUADRATURE

spatial domain. Let L > 0 be an integer. We take both j , j ′ ∈ {−L, . . . ,0, . . . ,L}; this means that
each vector q i has dimension 2L+1.

3.2.1 Likelihood Computation

Now that we have a method to compute the required intermediate pdfs, here is how we
compute p(xm+1 |xm ,θ):

1. We know that x̃0 = xm , so we define p(x̃0) = δ(x̃0 − xm). Then keeping xm fixed and
evaluating the right-hand side with x̃1 equal to each point in the spatial grid {z j }L

j=−L ,
we obtain q 1 with dimension 2L+1:

q 1 = p(x̃1) =Gh
θ (x̃1 = {z j } j=L

j=−L , xm). (3.9)

Figure 3.4: Illustration of the first step of DTQ, propagation of probability from a Dirac-
delta function at τ0 to a vector over the spatial grid at τ1.

2. With q 1 in hand, multiplication by the matrix A corresponds to stepping forward in
time by h, i.e.,

q 2 = Aq 1.

We iterate (3.7) a total of n −2 times to step forward to i = n −1. This takes us to

q n−1 = An−2q 1. (3.10)

3.2. DTQ METHOD 33

Figure 3.5: Illustration of the forward propagation of probabilities as matrix-vector multi-
plications, q n−1 = An−2q 1.

3. Finally, noting that xm+1 is a known data point, let us define a 2L + 1 dimensional
vector Γn−1 by keeping xm+1 fixed and evaluating on the spatial grid {z j } j=L

j=−L for
each point x̃n−1:

Γn−1 = kGh
θ (xm+1, x̃n−1 = {z j } j=L

j=−L). (3.11)

Then we have that the density of x̃n evaluated at the data point xm+1 is

p X̃m+1
(xm+1 | X̃m = xm ;θ) =Γᵀn−1 An−2 q 1. (3.12)

Figure 3.6: Illustration of the last step of the DTQ algorithm over one time interval. Since
the data point at final time τn is an observed value, this is a vector to Dirac-delta conver-
sion.

This computation is done for individual intervals (tm , tm+1). As shown above, the
vectors q 1 and Γn−1 depend on the spatial gird and the observation values xm and
xm+1, respectively. They do not depend on the temporal grid. Thus for the general
case, given a spatial grid for the DTQ method, we have the first vector q m := q 1 and
the final vector Γm+1 :=Γn−1.

34 CHAPTER 3. DENSITY TRACKING BY QUADRATURE

We insert this computation into (3.2) to obtain the expression for the likelihood function
using the DTQ method,

L(θ) ≈ p(x0 |θ)
M−1∏
m=0

[Γm+1]ᵀ An−2 q m . (3.13)

The log likelihood used for numerical optimization procedures is

L (θ) = logL(θ) ≈ log p(x0 |θ)+
M−1∑
m=0

[logΓm+1]ᵀ An−2 q m . (3.14)

3.2.2 Gradient Computation

Next, we compute the gradient of the log likelihood with respect to θ. This gradient is
an important ingredient for numerical optimization procedures. The complete derivation
of the gradients is similar to the derivation of the likelihood function and is given in the
Appendix (A.1). We start with the component-wise gradient of the log likelihood L (θ)
given by (3.2). We factor the likelihood and evaluate the gradients of the transition density
on the discretized spatial grid iteratively.

∂

∂θ`
L (θ) = ∂

∂θ`
log

[
p(x0 |θ)

M−1∏
m=0

p(xm+1 |xm ;θ)

]

= ∂

∂θ`
log p(x0 |θ)+

M−1∑
m=0

∂

∂θ`
log p(xm+1 |xm ;θ)

≈ ∂

∂θ`
log p(x0 |θ)+

M−1∑
m=0

1

p(xm+1 |xm ;θ)

∂

∂θ`
p(xm+1 |xm ;θ). (3.15)

Here, we give the algorithm used to compute ∇p(xm+1 |xm ;θ), the gradient of the transition
density:

1. We begin with the initial condition, p(x̃0) = δ(x̃0 − xm) and get the `-th component of
the gradient

q 1,` =
∂q 1

∂θ`
= ∂

∂θ`
Gh
θ (x̃1 = {z j } j=L

j=−L , xm). (3.16)

2. We then define the (z j ′ , z j)-th element of the matrix A` on the spatial grid with j ′, j ∈
{−L, . . . ,0, . . . ,L} by

A` =
∂A

∂θ`
= k

∂

∂θ`
Gh
θ (z j ′ , z j). (3.17)

Using (3.16) and (3.17), we iteratively define the time evolution equation of the gra-
dient as

q i+1,` = A` q i +A q i ,`. (3.18)

3. Similarly, we define the gradient of the final time point, Γn−1 vector, as

Γn−1,` =
∂Γn−1

∂θ`
= k

∂

∂θ`
Gh
θ (xm+1, x̃n−1 = {z j } j=L

j=−L). (3.19)

3.3. TWO-DIMENSIONAL COUPLED SDE 35

We finish with

∂

∂θ`
p X̃m+1

(xm+1|X̃m = xm ;θ) ≈ [
Γn−1,`

]ᵀ q n−1 + [Γn−1]ᵀ q n−1,` (3.20)

where both q i and q i are iteratively computed by matrix-vector multiplications us-
ing (3.8) and (3.18). As stated previously, this computation is done for individual
intervals (tm , tm+1). The vectors q 1, q 1,` only depend on the initial data point xm , and
the vectors Γn−1,Γn−1,` depend on the final time point xm+1. In the general compu-
tation, we thus define q m := q 1,Γm+1 :=Γn−1 and Γm+1,` :=Γn−1,`. Using this together
with (3.18) in (3.15), we obtain

∂

∂θ`
L (θ) ≈ ∂

∂θ`
log p(x0 |θ)+

M−1∑
m=0

1

[Γm+1]ᵀ An−2q m

[
Γm+1,`

]ᵀ q n−1 + [Γm+1]ᵀ q n−1,`.

(3.21)

The full derivation of the DTQ method is in Appendix A. The derivations of the like-
lihood and its gradient are in Appendixces A.1 and A.2, respectively. We also provide a
derivation of the DTQ likelihood and gradient with multiple sample paths in Appendices
A.3.1 and A.3.2, respectively. We also provide a more efficient adjoint based gradient com-
putation in Appendix A.4. Above, we only included the crucial calculations required to
implement the DTQ method, for the sake of clarity.

3.3 Two-dimensional Coupled SDE

Here we deal with coupled SDE of the general form

dX1,t = f1(Xt ;θ)dt + g1(Xt ;θ)dW1,t (3.22a)
dX2,t = f2(Xt ;θ)dt + g2(Xt ;θ)dW2,t , (3.22b)

where Xt = (X1,t , X2,t) is a two-dimensional stochastic process. W1,t and W2,t denote two
independent Wiener processes with W1,0 = W2,0 = 0 almost surely. For a = 1,2, we refer to
fa and ga as, respectively, drift and diffusion functions. Both drift and diffusion functions
may depend on a parameter vector θ ∈RN .

As in the fundamental model (3.1), our goal is to infer the parameter vector θ from
direct observations of Xt . Suppose that at a sequence of times 0 = t0 < t1 < ·· · < tM = T , we
have observations x = x0, x1, . . . , x M . Here xm = (x1,m , x2,m) is a sample of Xtm .

For this case, we consider a real-world system. We create a pursuit model to infer
a stochastic model of a chaser’s pursuit of a runner. This is motivated by "fast-break"
situations in a basketball game, where an offensive player races towards the basket in an
attempt to score before the defensive team has time to set up their defense. Let the runner
be the player (on offense) who has the ball and is running toward the basket. Let the chaser
be the player (on defense) who is trying to prevent the runner from scoring. Let the current
spatial coordinates of the runner and chaser be, respectively, (xr (t), y r (t)) and (xc (t), yc (t)).

36 CHAPTER 3. DENSITY TRACKING BY QUADRATURE

Figure 3.7: Diagram illustrating motion of runner and chaser. At any instant of time, the
chaser’s velocity vector points toward the runner’s current position.

Consider the diagram in Figure 3.7. Since the chaser is moving towards the runner,
the velocity vector of the chaser points toward the runner’s current position. Let ~φ= (xr −
xc , y r − yc). Then the unit vector that points toward the runner from the chaser is φ/‖φ‖.
The velocity of the chaser, (ẋc , ẏc), can thus be given as

(ẋc , ẏc) = γ(t)
φ

‖φ‖ , (3.23)

where γ(t) = ‖(ẋc , ẏc)‖, the instantaneous speed of the chaser. Note that (3.23) is a cou-
pled system of nonlinear ordinary differential equations known as the pursuit model—
classically, one assumes that γ(t) and (xr (t), y r (t)) are given, in which case one typically
solves an initial-value problem for (xc (t), yc (t)). To generalize the classical model to the
real data context considered here, we multiply both sides of (3.23) by dt and then add
noise to each component:

d(xc , yc) = γ(t)
~φ

‖~φ‖dt + (ν1dW1,t ,ν2dW2,t). (3.24)

For the stochastic pursuit model (3.24), we take Xt = (xc (t), yc (t)). We treat γ(t) as piecewise
constant. Each constant value of γ(t) is one component of the parameter vector θ; the final
two values of this vector are ν1 and ν2. Finally, if we treat (xr (t), y r (t)) as given, then we can
identify the time-dependent drift functions f1 and f2 as the two components of γ(t)φ/‖φ‖.
Given time-discrete observations of (xc , yc) and (xr , y r), how do we infer γ(t) along with ν1

and ν2? We now provide a method to answer this question.
Following the method mentioned in Section 3.2.1, we discretize the model using the

Euler-Maruyama discretization as

x̃1,i+1 = x̃1,i + f1(ti , x̃ i ;θ)h + g1(ti , x̃ i ;θ)
p

h Z1,i+1 (3.25a)

x̃2,i+1 = x̃2,i + f2(ti , x̃ i ;θ)h + g2(ti , x̃ i ;θ)
p

h Z2,i+1. (3.25b)

The Z1,i and Z2,i are independent and identically distributed random variables, normally
distributed with mean 0 and variance 1, i.e., Zi ∼ N (0,1). If we let p̃i (x1, x2 |θ) denote the
joint probability density function of X1,i and X2,i given θ, then the Chapman-Kolmogorov

3.3. TWO-DIMENSIONAL COUPLED SDE 37

equation associated with (3.25) is

p̃i+1(x1, x2 |θ) =
∫

y∈R2
Gh
θ (x1, x2, y1, y2, ti ;θ) p̃i (y1, y2 |θ)dy, (3.26)

where

Gh
θ (x1, x2, y1, y2, ti ;θ) = p̃ i+1 | i (x1, x2 | y1, y2;θ)

= 1√
2πσ2

1

exp

[
− (x1 −µ1)2

(2σ2
1)

]
1√

2πσ2
2

exp

[
− (x2 −µ2)2

(2σ2
2)

]

Here

µ1 = y1 + f1(ti , y1, y2;θ)h,

µ2 = y2 + f2(ti , y1, y2;θ)h,

σ2
1 = g 2

1 (ti , y1, y2;θ)h,

σ2
2 = g 2

2 (ti , y1, y2;θ)h.

That is, Gh
θ

(x1, x2, y1, y2, ti ;θ) is the conditional density of X1,i+1 and X2,i+1 given X1,i = y1,
X2,i = y2 and θ = θ, evaluated at the point (x1, x2). The fact that the conditional density is a
product of normal distributions with means µ1,µ2 and variances σ2

1,σ2
2 can be shown using

(3.25) together with the fact that X1,i+1 and X2,i+1 are conditionally independent given X1,i

and X2,i . This conditional independence is a direct consequence of having two indepen-
dent random variables Z1,i and Z2,i in (3.25).

The crux of the DTQ method is to apply quadrature to (3.26) to evolve an initial density
forward in time. Consider a spatial grid with fixed spacing k > 0 and grid points xr

1 = r k,
xs

2 = sk, y r ′
1 = r ′k, and y s′

2 = s′k. Then we apply the trapezoidal rule in both the y1 and y2

variables to obtain:

p̂i+1(xr
1 , xs

2 ; θ) = k2
∞∑

r ′=−∞

∞∑
s′=−∞

Gh
θ (xr

1 , xs
2, y r ′

1 , y s′
2 , ti ;θ) p̂i (y r ′

1 , y s′
2 ;θ). (3.27)

It is unnecessary to sum over all of Z2. We know that a two-dimensional Gaussian decays
to zero far from its mean. Since the mean (µ1,µ2) is approximately (y1, y2), we sum only
from y1 = x1 −ζk to y1 = x1 +ζk and similarly for y2:

p̂i+1(xr
1 , xs

2 ; θ) = k2
r+ζ∑

r ′=r−ζ

s+ζ∑
s′=s−ζ

Gh
θ (xr

1 , xs
2, y r ′

1 , y s′
2 , ti ;θ) p̂i (y r ′

1 , y s′
2 ;θ). (3.28)

We choose ζ manually to ensure the accuracy of the computation. We now have our
method to evaluate p̃(xm+1 |xm ,θ). Let us take i = 0 in (3.28) to correspond to the time
tm . We start with the deterministic initial condition X0 = xm , corresponding to the density
p̃0(x) = δ(x− xm). Inserting this point mass into (3.26), we obtain a Gaussian density for
p̃1(x). For each r, s ∈ [−yL/k, yL/k], we set

p̂1(xr
1 , xs

2 ;θ) ≈ p̃1(xr
1 , xs

2 ;θ).

38 CHAPTER 3. DENSITY TRACKING BY QUADRATURE

Now that we have p̂1, we use (3.28) repeatedly to compute p̂2, p̂3, and so on until we reach
p̂n . The object p̂n is then a spatially discrete approximation of the transition density from
time tm to time tm +nh = tm+1. For this last density, instead of evaluating it on the spatial
grid used by the trapezoidal rule, we evaluate the density at the data xm+1. This avoids
interpolation. In this way, we compute a numerical approximation of p̃(xm+1 |xm ,θ), as
required for the likelihood function.

3.4 Results

We now present numerical tests of our algorithm in three cases. For each case, we generate
multiple sample paths using a specified SDE with known parameters. We use θ to denote
the true parameter vector. Using the data thus generated, we then use our method to
produce θ̂, our maximum likelihood estimate of the parameter vector. In the first two
scenarios, the SDE we use for generating data coincides with the SDE used for inference.
In the third scenario, we use a generic polynomial SDE for inference—this SDE includes as
a special case the SDE used for generating data.

To test the performance of the algorithm, we generate data using the Euler-Maruyama
approximation of the SDE. We step forward in time, starting from t0 to a final time point
T > 0. We use a step size of ξ, where ξ = 10−4 unless specified otherwise. We retain the
samples only at times t = m∆t from m = 0 to m = M , where M∆t = T . For consistency
during comparisons, we set t0 = 0, T = 25, and ∆t = 1.

3.4.1 Linear SDE (Ornstein-Uhlenbeck process)

We consider the SDE for the Ornstein-Uhlenbeck process with linear drift and constant
diffusion terms:

dX t = θ1(θ2 −X t)dt +θ3dWt . (3.29)

For the first set of experiments, the true parameter vector is θ = (0.5,0,1). We start the
optimizer with an initial condition θ0 = (1,2,0.5). We study how well we are able to in-
fer the parameters as a function of DTQ’s internal time step h and the number of sample
paths. For this set of experiments, the spatial grid spacing k is set to k = h0.75. In Table
3.1, we summarize this information together with the RMS (root-mean-square) error be-
tween the estimated and true parameter values. This is equivalent to the 2-norm error,
‖θ− θ̂‖2. We also record the number of iterations required for the optimizer to converge to
the minimizer of the objective function, the negative log likelihood.

The method is not as sensitive to h as one might expect. Instead, what we find is that
the error decreases when we decrease the number of sample paths. When we use only 100
sample paths, we obtain a qualitatively reasonable solution for all three components of θ,
with θ2 in particular identified up to machine precision.

To explore whether the above findings were peculiar to the way we generated the data,
we conducted another series of tests starting with a true parameter vector of θ = (0.5,0.9,1).
The results are displayed in Table 3.2. This time, when we use the Euler-Maruyama
method to generate data, we use an internal time step of ξ = 10−6, retaining all other pa-
rameters described above. For the inference, we give the optimizer an initial guess of
θ0 = (1,0.5,0.5). We again set the spatial grid spacing to k = h0.75 and record the RMS error.

3.4. RESULTS 39

0 50 100 150 200

-6
-4

-2
0

2
4

Ornstein-Uhlenbeck process without noise

Index

tra
j1

0 50 100 150 200

-6
-4

-2
0

2
4

Ornstein-Uhlenbeck process with noise

Index

tra
j1

Figure 3.8: Illustration of sample paths generated for Ornstein-Uhlenbeck process for the
same initial conditions. The plot on the left is the deterministic (ODE) version with no
additive noise. The plot on the right is the stochastic (SDE) version with noise.

True θ Initial θ0 Estimated θ̂ Iterations h Paths RMS Error
(0.5, 0, 1) (1, 2, 0.5) (1.020, 0, 1.404) 31 0.05 300 0.6597
(0.5, 0, 1) (1, 2, 0.5) (1.041, 0, 1.430) 30 0.02 300 0.6916
(0.5, 0, 1) (1, 2, 0.5) (1.048, 0, 1.438) 34 0.01 300 0.7028
(0.5, 0, 1) (1, 2, 0.5) (1.052, 0, 1.443) 34 0.005 300 0.7084
(0.5, 0, 1) (1, 2, 0.5) (1.054, 0, 1.445) 35 0.002 300 0.7119
(0.5, 0, 1) (1, 2, 0.5) (0.671, 0, 1.143) 31 0.01 100 0.2238
(0.5, 0, 1) (1, 2, 0.5) (0.673, 0, 1.146) 28 0.005 100 0.2264
(0.5, 0, 1) (1, 2, 0.5) (0.674, 0, 1.147) 26 0.002 100 0.2284

Table 3.1: Results for Case 1. Using either 300 or 100 sample paths produced by Euler-
Maruyama simulation with time step ξ= 10−4, we study the effect of reducing h, the inter-
nal DTQ time step.

The results from Table 3.2 show that if we increase the number of sample paths from 50
to 300, the error decreases dramatically. This leads us to our view that, for the present ver-
sion of DTQ, the quality of the data is important. When we decrease the Euler-Maruyama
time step from ξ= 10−4 to ξ= 10−6, we gain roughly one extra decimal place of accuracy in
the sample paths. This leads DTQ towards higher quality estimates of the parameters in
the Ornstein-Uhlenbeck model (3.29).

The performance of DTQ should increase as the number of sample paths increases.
In this regard, we believe the results from Table 3.1 are an artifact of how the data was
generated. We will see confirmation of this in the results below on a nonlinear SDE model.

Additionally, we note that Table 3.2 confirms that DTQ’s results are relatively insensi-
tive to decreasing h, the internal time step of DTQ. Note that the data set we use for the

40 CHAPTER 3. DENSITY TRACKING BY QUADRATURE

experiments is collected at intervals of ∆t = 1. We have found, in practice, that the choice
h = ∆t/20 is sufficient for inference. This is consistent with the results of Pedersen (1995),
who chooses h ≈∆t/25.

True θ Initial θ0 Estimated θ̂ Iterations h Paths RMS Error
(0.5, 0.9, 1) (1, 0.5, 0.5) (0.361, 0.968, 0.836) 39 0.050 50 0.2254
(0.5, 0.9, 1) (1, 0.5, 0.5) (0.362, 0.968, 0.839) 46 0.020 50 0.2226
(0.5, 0.9, 1) (1, 0.5, 0.5) (0.362, 0.968, 0.840) 42 0.010 50 0.2219
(0.5, 0.9, 1) (1, 0.5, 0.5) (0.362, 0.968, 0.841) 28 0.005 50 0.2212
(0.5, 0.9, 1) (1, 0.5, 0.5) (0.463, 0.885, 0.966) 45 0.050 300 0.05244
(0.5, 0.9, 1) (1, 0.5, 0.5) (0.466, 0.886, 0.973) 22 0.020 300 0.04561
(0.5, 0.9, 1) (1, 0.5, 0.5) (0.467, 0.886, 0.975) 22 0.010 300 0.04370
(0.5, 0.9, 1) (1, 0.5, 0.5) (0.468, 0.886, 0.976) 26 0.005 300 0.04237
(0.5, 0.9, 1) (1, 0.5, 0.5) (0.468, 0.886, 0.976) 20 0.002 300 0.04237

Table 3.2: Results for Case 1. Using either 300 or 100 sample paths produced by Euler-
Maruyama simulation with time step ξ = 10−6, we study the effect of reducing h, DTQ’s
internal time step.

3.4.2 Nonlinear SDE (Double Well Potential)

As our second example, we consider the following SDE with a nonlinear drift and constant
diffusion term:

dX t = θ1(θ2 −X 2
t)dt +θ3dWt . (3.30)

0 20 40 60 80 100

-6
-4

-2
0

2
4

Double well potential without noise

Index

tra
j1

0 20 40 60 80 100

-6
-4

-2
0

2
4

Double well potential with noise

Index

tra
j1

Figure 3.9: Illustration of sample paths generated for the double well potential process
with same initial conditions. The plot on the left is the deterministic (ODE) version with
no additive noise. The plot on the right is the stochastic (SDE) version with noise.

In Table 3.3, we show the results of an initial set of tests. In these tests, we vary both

3.4. RESULTS 41

the true parameter vector θ and the initial guess θ0 that is given to the optimizer. For
these tests, the data consists of 100 sample paths and the DTQ grid spacing is given by
k = h0.75. Note that even when θ0 is far from θ, the estimated parameters θ̂ are close to θ.
This trend holds for different values of θ. In fact, DTQ’s RMS errors are quite low for all
tests involving the nonlinear model (3.30).

True θ Initial θ0 Estimated θ̂ Iterations h RMS Error
(0.2, 1, 0.5) (1, 1, 1) (0.162, 0.886, 0.488) 37 0.05 0.06901
(0.4, 1, 0.5) (1, 1, 1) (0.629, 1.023, 0.618) 24 0.05 0.14965
(1, 4, 0.5) (0.5, 0.5, 0.5) (0.928, 3.990, 0.467) 50 0.01 0.04568
(1, 4, 0.5) (2, 2, 1) (0.925, 3.990, 0.430) 48 0.01 0.05935
(1, 4, 0.5) (8, 8, 2) (0.928, 3.990, 0.467) 47 0.01 0.04571

Table 3.3: Results for Case 2. We study a collection of problems involving different true θ
values and different initial guesses θ0.

Next, in Table 3.4, we study the effect of decreasing DTQ’s internal time step, h, when
all other problem/algorithm parameters are kept fixed. For these tests, we set θ = (1,4,0.5),
θ0 = (2,2,1), and k = h0.75. The data consists of 100 sample paths. The results show that it
is possible to slightly reduce the RMS error by decreasing h, the internal time step. Based
on these results, we see that there is no disadvantage incurred by using our method with
h = 0.05; at this internal time step, the method runs very quickly in R.

True θ Initial θ0 Estimated θ̂ Iterations h RMS Error
(1, 4, 0.5) (2, 2, 1) (0.925046, 3.990012, 0.430020) 37 0.05 0.05948
(1, 4, 0.5) (2, 2, 1) (0.925311, 3.990029, 0.430068) 48 0.01 0.05935
(1, 4, 0.5) (2, 2, 1) (0.926930, 3.990418, 0.471400) 48 0.005 0.04563
(1, 4, 0.5) (2, 2, 1) (0.925808, 3.990464, 0.473724) 41 0.002 0.04577
(1, 4, 0.5) (2, 2, 1) (0.925433, 3.990480, 0.474493) 31 0.001 0.04583

Table 3.4: Results for Case 2. We study the effect of decreasing h, keeping all other param-
eters fixed.

In Table 3.5, we run a series of tests where each test is repeated twice, once with the
spatial grid spacing set to k = h0.75 and again with k = h. For these tests, we generate
data with θ = (1,4,0.5). If we examine the first two rows of Table 3.5, what we see is that
decreasing the spatial grid spacing has a significant, beneficial effect on the RMS error.
What has happened here is that we have given the optimizer an initial guess where the
third element of θ0 is 0.1, a relatively small value. If we go back to the SDE (3.30), we see
that this third element of θ0 corresponds to the diffusion coefficient. When the diffusion
coefficient is small, the Gaussian kernel Gh

θ
becomes very narrow. This necessitates a finer

spatial grid in order to resolve the kernel well enough to perform accurate quadrature.
For the final four rows of Table 3.5, the third element of θ0 is 1 and we do not observe as
significant a reduction in RMS error when we refine the spatial grid.

42 CHAPTER 3. DENSITY TRACKING BY QUADRATURE

True θ Initial θ0 Estimated θ̂ Iterations k Paths RMS Error

(1, 4, .5) (.5, .5, .1) (0.100, 4.024, 0.100) 39 h0.75 100 0.5688
(1, 4, .5) (.5, .5, .1) (1.035, 3.993, 0.499) 43 h 100 0.0205

(1, 4, 0.5) (2, 2, 1) (0.925, 3.990, 0.430) 48 h0.75 100 0.0593
(1, 4, 0.5) (2, 2, 1) (0.955, 3.995, 0.481) 35 h 100 0.0283

(1, 4, 0.5) (2, 2, 1) (1.035, 3.993, 0.499) 75 h0.75 300 0.0206
(1, 4, 0.5) (2, 2, 1) (1.022, 4.008, 0.497) 32 h 300 0.0138

Table 3.5: Results for Case 2. We compare spatial grid laws k = h0.75 and k = h.

Finally, in Table 3.6, we study the effect of increasing the number of Euler-Maruyama
sample paths in the data set that we feed into the inference algorithm. We keep all other
algorithm and problem parameters fixed, with θ = (1,4,0.5), θ0 = (2,2,1), h = 0.01, and k =
h0.75. The results show a steady improvement in the estimated θ̂ as the number of sample
paths increase. The last row of Table 3.6 contains our best result for this inference problem
with an RMS error less than 0.01.

True θ Initial θ0 Estimated θ̂ Iterations Paths RMS Error
(1, 4, 0.5) (2, 2, 1) (0.776, 4.060, 0.424) 100 2 0.1408
(1, 4, 0.5) (2, 2, 1) (0.899, 3.992, 0.510) 27 10 0.0583
(1, 4, 0.5) (2, 2, 1) (0.833, 4.018, 0.440) 35 50 0.1030
(1, 4, 0.5) (2, 2, 1) (0.925, 3.990, 0.430) 48 100 0.0593
(1, 4, 0.5) (2, 2, 1) (0.901, 4.007, 0.464) 33 200 0.0609
(1, 4, 0.5) (2, 2, 1) (1.035, 3.993, 0.499) 75 300 0.0206
(1, 4, 0.5) (2, 2, 1) (1.107, 3.994, 0.513) 43 400 0.0624
(1, 4, 0.5) (2, 2, 1) (0.988, 3.999, 0.489) 33 1000 0.0094

Table 3.6: Results for Case 2. We examine the effect of increasing the number of sample
paths in the data set, keeping all other parameters fixed.

3.4.3 Generic Polynomial Drift and Diffusion Functions

For our third example, we reuse (3.30) to generate simulated data, but we use a more
general model for the drift function, a generic cubic polynomial. In other words, for the
purposes of inference, we use the SDE model

dX t = (θ0 +θ1X t +θ2X 2
t +θ3X 3

t)dt +θ4dWt . (3.31)

We infer the parameters θ = (θ0,θ1,θ2,θ3,θ4) in the SDE (3.31) from the observations gener-
ated using the SDE (3.30) to see if we recover the correct form of the drift function. Ideally,
DTQ will infer that θ0 and θ2 in (3.31) are zero.

In Table 3.7, we display our results for three values of h, the internal time step. We
generate our data by simulating 100 sample paths of (3.30) with θ1 = 0.2, θ2 = 4, and θ3 = 0.4.
Note that in terms of the inference model (3.31), this corresponds to θ = (0,0.8,0,−0.2,0.4).
For the initial guess, we use θ0 = (0,0,0,0,0.5). In this particular set of tests, instead of
using the BFGS algorithm described above, we use NLopt’s method of moving asymptotes

3.4. RESULTS 43

(MMA) algorithm (Svanberg (2002)).
Overall, DTQ correctly identifies the qualitative form of the model. That is, we find

that the first and third components of θ̂ are close to zero, and the remaining components
of θ̂ are also close to their true values.

True θ Initial θ0 Estimated θ̂ Iter h RMSE
(0, .8, 0, -.2, .4) (0, 0, 0, 0, .5) (0.014, 0.619, -0.003, -0.154, 0.357) 69 0.005 0.0859
(0, .8, 0, -.2, .4) (0, 0, 0, 0, .5) (0.014, 0.867, -0.003, -0.217, 0.424) 57 0.002 0.0334
(0, .8, 0, -.2, .4) (0, 0, 0, 0, .5) (0.012, 0.766, -0.003, -0.192, 0.408) 89 0.001 0.0168

Table 3.7: Results for Case 3. We perform inference using model (3.31), which has a higher-
dimensional parameter space than (3.30), the model used to generate the data.

3.4.4 Coupled SDEs

We implement the Metropolis algorithm in R. Inside the Metropolis algorithm, we evaluate
the likelihood function using the DTQ method, which is implemented in C++ as an R
package. Note that all code and data used in this work is available online (https://
github.com/hbhat4000/sdeinference)—see the Rdtq2d and pursuit2d directories.

Electrical Oscillator

To test the method, we first consider the SDE

dX1,t =−X2,t

L
dt + s2

1

L
dW1,t , dX2,t =

X1,t

C
dt + s2

2

C
dW2,t . (3.32)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

X[, 1]

X
[,

2]

Figure 3.10: Illustration of the sample path generated by an LC circuit. The dependent
variables X1,t and X2,t represent, respectively, the current and voltage of the circuit at time
t .

https://github.com/hbhat4000/sdeinference
https://github.com/hbhat4000/sdeinference

44 CHAPTER 3. DENSITY TRACKING BY QUADRATURE

This system describes a noisy electrical oscillator with one inductor (with inductance L)
and one capacitor (with capacitance C) as shown in Figure 3.10. The dependent variables
X1,t and X2,t represent, respectively, the current and voltage of the circuit at time t .

Our goal here is to test the performance of the algorithm using simulated data. To
generate this data, we start with known values of the parameters: L = C = (2π)−1 and s1 =
s2 = .4/

p
2π. Using a fixed initial condition (X1,0, X2,0), we then use the Euler-Maruyama

method to step (3.32) forward in time until a final time T > 0. When we carry out this time-
stepping, we use a step size of 0.001 and then retain only those samples at times tm = m∆t ,
from m = 0 to m = M , where M∆t = T . The simulated data is taken over two periods of the
oscillator (T = 2) with a full resolution of ∆t = 0.01. By, for example, taking every other row
of this data set, we can obtain data with a resolution of ∆t = 0.02.

Using the samples {xm}M
m=0 thus constructed, we run the Metropolis algorithm. Because

capacitance and inductance are physically constrained to be positive, we set 1/L = θ2
1 . For

the tests presented here, we infer only θ1, keeping other parameters fixed at their known
values. For θ1, we use a diffuse Gaussian prior with mean 0 and standard deviation 100.
For the proposal distribution ZN+1 in the auxiliary Markov chain, we choose i.i.d. Gaus-
sians with mean 0 and standard deviation 0.35.

When we run the Metropolis algorithm, we discard the first 100 samples and retain the
next 1000 samples. For each value of ∆t and the DTQ time step h, we compute both the
mean of the samples of θ2

1 and the mode of the kernel density estimate of θ2
1 . We compare

these values against the true value of the parameter 1/L = 2π and record the relative errors
as, respectively, e1 and e2:

∆t h e1 (relative error of mean) e2 (relative error of mode)
0.04 0.04 6.1% 7.6%
0.04 0.02 0.54% 6.8%
0.04 0.01 5.1% 1.1%
0.02 0.02 12% 14%
0.02 0.01 4.9% 2.3%

When h = ∆t , only one step of the method described in Section 3.3 is required to go from
time tm to tm+1. This step does not use any quadrature at all—one merely evaluates (3.26)
using a point mass for the density at time tm . The resulting likelihood function is a prod-
uct of Gaussians. On the other hand, when h is strictly less than ∆t , we must use quadra-
ture (i.e., the actual DTQ method) to step forward in time from tm to tm+1. Clearly, using
the DTQ method to compute the likelihood yields more accurate posteriors than using a
purely Gaussian likelihood.

To visualize the results, we present Figure 3.11. The true value of 1/L = 2π is indi-
cated by the dashed black line. The posterior mode for h = 0.01 is indicated by the solid
black line. The curves are kernel density estimates computed using the posterior samples
described above.

Comparison of DTQ with POMP

In the following section, we present a detailed comparison between DTQ and POMP (King
et al. (2016)). A partially observed Markov process (POMP) model consists of incomplete
and noisy measurements of a latent, unobserved Markov process. These models are char-
acterized by the transition density for the Markov process and the measurement density.

3.4. RESULTS 45

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

1/L

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

h=0.04

h=0.02

h=0.01

Figure 3.11: We plot kernel density estimates of posterior densities p(θ2
1|x). We use sim-

ulated data with ∆t = 0.04, generated as described above. Each posterior density corre-
sponds to a finer DTQ step h. As we take a finer DTQ step (i.e., as h decreases), the
posterior mode approaches the true value indicated by the solid vertical line at 1/L = 2π.

POMP facilitates inference of system parameters using time series data with frequentist
and Bayesian methods.

Let θ be a p-dimensional parameter, θ ∈ Rp . Let ti ∈ T, i = 0, · · · , N , be the times at
which X (t ;θ) is observed, and t0 ∈ T is the initial time. Xi = X (ti ;θ) represents the ob-
served data at time point ti and Xi : j = (Xi , Xi+1, · · · , X j) represents the observed data in
the time interval [ti , t j]. The observations of the latent dynamical system X0:N are Y1:N .
The data, y∗

1:N = (y∗
1 , · · · , y∗

N), are modeled as a realization of the observation process and
are known. The POMP model implies that the joint density of X0:N and Y1:N is given by
fX0:N ,Y1:N (x0:N , y1:N ;θ). This joint density is determined by the initial density fX0 (x0;θ), to-
gether with the conditional transition probability density, fXn |Xn−1 (xn |xn−1;θ) and the mea-
surement density fYn |Xn (yn |xn ;θ), for 1 ≤ n ≤ N .

The log likelihood for a POMP model is `(θ) = log fY1:N (y∗
1:N ;θ), which can be written as

a sum of conditional log likelihoods,

`(θ) =
N∑

n=1
`n|1:n−1(θ), (3.33)

where

`n|1:n−1(θ) = log fYn |Y1:n−1 (y∗
n |y∗

1:n−1;θ)

= log
∫

fYn |Xn (y∗
n |xn ;θ) fXn |Y1:n−1 (xn |y∗

1:n−1;θ)d xn .

POMP models compute the log likelihood `(θ) using a Sequential Monte Carlo (SMC, or
particle filter) method. SMC builds up a representation of fXn |Y1:n−1 (xn |y∗

1:n−1;θ) that can be
used to obtain an estimate, ˆ̀

n|1:n−1(θ) of `n|1:n−1, and hence an approximation ˆ̀(θ) of `(θ).
The particle filter generates a swarm of particles representing fXn |Y1:n (xn |y∗

1:n ;θ) which is
analogous to the Monte Carlo samples, X F

n, j , j = 1 : J .
For comparison, we use precisely the same data, priors, and initial conditions as above

46 CHAPTER 3. DENSITY TRACKING BY QUADRATURE

in Section 3.4.4, to produce 2000 post-burn-in samples from the posterior using the particle
filter. We infer θ1 = 1/L = 1.0,θ2 = 1/C = 1.0 and θ3 = s2

1/L = s2
2/C = 4.0. The time interval

is set to ∆t = 0.1 and inference is done for varying number of intermediate steps h taken.
In Figure 3.13 we compare the posterior distributions and MAP estimates for DTQ and
POMP. As shown, DTQ performs comparably to the particle filtering model for inference
of θ1 and θ2, the drift parameters. For the diffusion parameter, θ3, POMP model performs
much better than DTQ.

0.8 1.0 1.2 1.4 1.6

0
2

4
6

8
10

theta_1

pr
ob

ab
ili

ty
 d

en
si

ty

h=0.05
h=0.025
h=0.0125

(a) θ1 for DTQ

0.8 1.0 1.2 1.4 1.6

0
2

4
6

8
10

theta_1

pr
ob

ab
ili

ty
 d

en
si

ty

h=0.05
h=0.025
h=0.0125

(b) θ2 for DTQ

4.0 4.2 4.4 4.6

0
2

4
6

8
10

12

theta_3

pr
ob

ab
ili

ty
 d

en
si

ty

h=0.05
h=0.025
h=0.0125

(c) θ3 for DTQ

0.8 1.0 1.2 1.4 1.6

0
2

4
6

8

theta_1

pr
ob

ab
ili

ty
 d

en
si

ty

h=0.05
h=0.025
h=0.0125

(d) θ1 for POMP

0.6 0.8 1.0 1.2 1.4

0
1

2
3

4

theta_2

pr
ob

ab
ili

ty
 d

en
si

ty

h=0.05
h=0.025
h=0.0125

(e) θ2 for POMP

3.6 3.8 4.0 4.2 4.4

0
1

2
3

4
5

6
7

theta_3

pr
ob

ab
ili

ty
 d

en
si

ty

h=0.05
h=0.025
h=0.0125

(f) θ3 for POMP

Figure 3.12: We plot the probability density for DTQ using a naïve MH-sampler and POMP
using an adaptive MH-sampler, for varying intermediate time steps h. The blue, red and
black curves are the posterior distributions for h = ∆t/2,∆t/4, and ∆t/8 respectively. The
solid black line is the value of the true parameter, and the dotted black line represents the
MAP estimate.

In Table 3.8 we further compare the mean and standard deviation of the inferred pa-
rameters from the true parameters. We show that introducing internal time steps improves
the estimates as compared to the Eulerian estimate. Though the acceptance rate is lower
for the sampler using POMP, the estimates are closer to the true value.

3.4. RESULTS 47

∆t = 0.1 Mean RMS Std Dev Accept
θ1 θ2 θ3 error θ1 θ2 θ3 rate (%)

h = ∆t Eulerian 0.747 0.906 3.072 0.557 0.062 0.076 0.031 29.55
h = ∆t/2 pomp 0.960 0.809 4.014 0.113 0.058 0.123 0.076 10.99

DTQ 0.866 1.305 4.260 0.244 0.043 0.082 0.092 28.53
h = ∆t/4 pomp 1.004 0.954 3.992 0.027 0.083 0.125 0.367 16.41

DTQ 0.892 1.157 4.430 0.271 0.048 0.069 0.037 25.43
h = ∆t/8 pomp 1.01 1.01 4.02 0.015 0.048 0.098 0.087 17.14

DTQ 0.98 1.17 4.21 0.155 0.039 0.077 0.035 23.87

Table 3.8: Comparison of the mean and standard deviation of inferred parameters, θ1,θ2

and θ3, for DTQ and POMP, for varying intermediate time steps, h = ∆t ,∆t/2,∆t/4 and
∆t/8.

x

y

z

−1000

−900

−800

−700

−600

−500

−400

−300

(a) h = ∆t/2 (DTQ)

x

y

z

−1000

−900

−800

−700

−600

−500

−400

−300

(b) h = ∆t/8 (DTQ)

x

y

z

200

300

400

500

600

700

(c) h = ∆t/16 (DTQ)

x

y

z

−5000

−4000

−3000

−2000

(d) h = ∆t/2 (POMP)

x

y

z

−4000

−3000

−2000

−1000

(e) h = ∆t/8 (POMP)

x

y

z

−6000

−5000

−4000

−3000

−2000

−1000

(f) h = ∆t/16 (POMP)

Figure 3.13: We plot the estimated likelihood surfaces to get an insight on the approxima-
tion of the likelihood, `(θ) for DTQ and POMP. The plots are on the θ2 vs θ3 grid using 100
intervals and varying intermediate time steps (h = ∆t/2,∆t/8 and ∆t/16). The plots show
that the DTQ method produces a smoother approximation of the likelihood as compared
to the particle filter.

48 CHAPTER 3. DENSITY TRACKING BY QUADRATURE

∆t = 0.1 Difference in Mean Difference in Mode
POMP DTQ POMP DTQ

h = ∆t 0.029 0.005 0.044 -0.014
h = ∆t / 2 -0.373 -0.062 -0.014 0.025
h = ∆t / 3 -0.235 -0.156 -0.034 -0.020
h = ∆t / 4 -0.221 -0.086 -0.030 -0.048
h = ∆t / 5 -0.028 -0.090 -0.066 -0.052
h = ∆t / 6 -0.067 -0.058 -0.045 -0.044
h = ∆t / 7 -0.181 -0.056 -0.039 -0.041
h = ∆t / 8 -0.052 -0.063 -0.027 -0.041
h = ∆t / 9 -0.273 -0.059 -0.041 -0.039
h = ∆t / 10 -0.028 -0.095 -0.030 -0.035

Table 3.9: Comparing difference in mean and modes for the estimated parameters from the
true parameters for POMP and DTQ methods.

The likelihood approximation plots in Figure 3.13 show that DTQ provides a smooth
approximation of the likelihood function and thus a vanilla Metropolis-Hastings sampler
can be used to sample the intermediate steps. In the case of POMP particle filter, the likeli-
hood estimation is uneven with sharp changes. This makes the particle filters more sensi-
tive to the initial condition, number of particles and the sampler. An adaptive Metropolis-
Hastings sampler is needed with fine-tuned parameters to reach inference results compa-
rable to those produced by DTQ. We believe that these results indicate that DTQ can be
used an alternative to more established methods implemented in POMP, as it provides
a more stable approximation of the likelihood function. This enables vanilla samplers to
generate reasonable estimates of the parameters.

Basketball Tracking Data

Next, we test the method using the pursuit SDE (3.24). We set the runner’s trajectory equal
to a sinusoidal curve y = sin(πx) from x = −1 to x = 1. We assume the runner covers this
trajectory over the time period 0 ≤ t ≤ 8. The chaser’s trajectory is simulated using the
Euler-Maruyama method to step (3.24) forward in time from a fixed initial condition X0 =
(xc

0, yc
0). During the generation of the data, we use a step size of 10−4. By downsampling

this single time series, we generate time series with spacing ∆t = 0.4,0.2 and 0.1.
For the test presented here, the values of the parameters are ν1 = 0.15, ν2 = 0.1, and

γ(t) =
{ γ1 = 0.4 if 0 ≤ t < 4
γ2 = 1.0 if 4 ≤ t ≤ 8.

Because we want all speeds and diffusion constants to be positive, we take γi = eθi and
νi = eθi+2 for i = 1,2. The priors for θ1 and θ2 are normal with variance one and mean equal
to the log of the mean speed of the chaser computed over the chaser’s entire trajectory.
The priors for θ3 and θ4 are normal with mean log(0.4) and variance 1. We use mean zero
Gaussian proposals for all components of θ. We choose the variances of these proposals so
that the acceptance rate for all runs is near 30%.

3.4. RESULTS 49

Figure 3.14: We plot simulated data for the runner and chaser on the standard basketball
court of dimensions 94ft. × 50 ft. The plot on the left creates the runner’s trajectory as y r =
5log(xr). The chaser’s speed is γ(t) = 1+2t and we consider 10 points along the trajectory.
For the plot on the right, we consider 50 points on both the trajectories. The runner’s
trajectory in this case is randomized. y r = ((xr)2)/100+ (xr /20)+N (µ= 0,σ= 2).

Using the samples {xm}M
m=0 thus constructed, we run the Metropolis algorithm with h =

∆t/i with i = 1,2,3,4. For each choice of parameters ∆t and h, we compute 10100 samples
and discard the first 100. To compute the runner’s trajectory at intermediate points, we use
linear interpolation between times tm and tm+1. We tabulate the results below; each value
of γ1 represents the mean of eθ1 over all Metropolis samples of θ1:

parameters γ1 γ2 ν1 ν2

∆t = 0.1;h = 0.1/1 0.301 0.748 0.124 0.0886
∆t = 0.1;h = 0.1/2 0.311 0.956 0.124 0.0858
∆t = 0.1;h = 0.1/3 0.307 1.011 0.117 0.0805
∆t = 0.1;h = 0.1/4 0.308 1.025 0.120 0.0829
∆t = 0.2;h = 0.2/1 0.306 0.650 0.142 0.1146
∆t = 0.2;h = 0.2/2 0.310 0.877 0.137 0.1197
∆t = 0.2;h = 0.2/3 0.309 1.015 0.112 0.0844
∆t = 0.2;h = 0.2/4 0.304 1.019 0.111 0.0852
∆t = 0.4;h = 0.4/1 0.292 0.514 0.188 0.2010
∆t = 0.4;h = 0.4/2 0.312 0.960 0.177 0.1774
∆t = 0.4;h = 0.4/3 0.307 0.987 0.124 0.1447
∆t = 0.4;h = 0.4/4 0.303 1.014 0.145 0.1130

Overall, the results show that our algorithm produces mean posterior estimates that are
reasonably close to the ground truth values. When the spacing of the data ∆t is large, we
see greater benefit from using the DTQ method. For instance, when ∆t = 0.4, the mean
estimates of γ2 improve dramatically from 0.514 to 1.014 as we decrease h, i.e., as we take

50 CHAPTER 3. DENSITY TRACKING BY QUADRATURE

more internal DTQ steps. Similar trends can be seen for ν1 and ν2.

●

●

●
●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
05

0.
10

0.
15

0.
20

0.
25

number of DTQ steps taken

R
M

S
 e

rr
or

●

●

●
●

●

● ● ●

Legend

delta t = 0.4
delta t = 0.2
delta t = 0.1

Figure 3.15: As the number of DTQ steps increase (h = ∆t ,∆t/2,∆t/3,∆t/4), the L2 norm
error between the estimated and the true parameters decrease, for ∆t = 0.1,0.2 and 0.4.

We now turn to real tracking data taken from the game played between the Golden
State Warriors and the Sacramento Kings on October 29, 2014. Reviewing this game, we
found a fast break where Stephen Curry (of the Warriors) was the runner and Ramon
Sessions (of the Kings) was the chaser. The entire fast break lasts 4.12 seconds. The spatial
tracking data is recorded at intervals of 0.04 seconds, for a total of 104 observations. The
tracking data uses the position on a court of dimension 94×50. We have rescaled the data
to lie in a square with center (0,0) and side length equal to one.

To parameterize the chaser’s speed γ(t), we have used a piecewise constant approxi-
mation with 8 equispaced pieces. Combined with the diffusion constants ν1 and ν2, this
yields a 10-dimensional parameter vector θ. As in the previous simulated data test, we set
the true parameters γi and νi to be the exponentials of the corresponding elements of the
θ vector.

For the Metropolis sampler, the priors and proposals are higher-dimensional versions
of those described in the simulated data test above. The main difference is that we now
generate only 1000 post-burnin samples.

Using the Metropolis samples, we compute a kernel density estimate of each parame-
ter. We then treat the mode of each computed density as the MAP (maximum a posteriori)
estimate of the corresponding parameter. We then use the MAP estimates of the parame-
ters in the pursuit SDE (3.24). We generate 100 sample paths of this SDE using the Euler-
Maruyama method with time step 10−4. As shown in Figure 3.16, the mean of these sample
paths (plotted in black) agrees very well with the chaser’s trajectory (plotted in red). This
gives evidence that our stochastic pursuit system is an appropriate model for NBA fast
breaks involving one runner and one chaser.

3.4. RESULTS 51

●●●
●●●

●●●
●●

●●
●●●

●●●
●●●

●●●●
●●●●

●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●

−0.4 −0.2 0.0 0.2 0.4
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

x

y

●●
●●●●

●●●●
●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●●

●●●●

Figure 3.16: The agreement between the black curve (mean of simulated stochastic pur-
suit trajectories using MAP estimated parameters) and the red curve (chaser’s trajectory)
shows that the stochastic pursuit model is appropriate. The runner’s trajectory is given in
blue.

To visualize the insight provided by the model, we plot in Figure 3.17 the MAP esti-
mated γ(t) function over the time period of the fast break, 0 ≤ t ≤ 4.12. The speed γ(t) is
the piecewise constant function plotted in black, while the mean speed computed directly
from the data is given by a red horizontal line. The inferred speed shows that the chaser
slows down dramatically approximately 1.5 seconds into the fast break. If one reviews the
video footage of the play, this corresponds to the runner confusing the chaser and evading
him.

Given our stochastic pursuit model’s success in fitting the real data, in future work, we
seek to apply the same methodology to a much larger sample of fast breaks. In this way,
we can quantify a runner’s ability to evade a chaser and/or a chaser’s ability to stay near
a runner who is actively trying to score.

●●

●●

●●●

●●

●●●

●●

●●●

●●

0 1 2 3 4

0.
10

0.
15

0.
20

t

M
A

P
 g

am
m

a(
t)

Figure 3.17: For the fast break tracking data described in the text, we plot the MAP estimate
of the chaser’s speed γ(t) in black. Note that the inferred speed differs greatly from the
mean speed across the entire trajectory, plotted as a horizontal red line.

52 CHAPTER 3. DENSITY TRACKING BY QUADRATURE

3.5 Discussion

In this chapter, we have both derived and experimentally studied a new algorithm for pa-
rameter inference in stochastic differential equation models. The crux of the algorithm is to
use quadrature to compute the transition densities required for the both the log likelihood
function and its gradient.

The results in Section 3.4 clearly demonstrate several conditions under which DTQ
performs well. In particular, we find empirical evidence justifying the approximations
made in Section 4.2—especially (A.14) and (A.15), which have not been justified in prior
theoretical work. Once the internal time step h is sufficiently small, further reduction of
h does not significantly improve the quality of the inferred θ̂. We do find that certain
algorithm parameters, such as the spatial grid spacing k, do need to be adjusted to handle
scenarios such as very small diffusion coefficients.

We have seen that the primary challenge to be addressed is that the present version
of DTQ, in order to produce highly accurate results, requires high-quality data. In the
next chapter, we continue our work for measurement models that enable filtering of noisy
observations. To create a scalable implementation of the DTQ method, we implement the
algorithm in a parallel and distributed fashion using Apache Spark, allowing for time-
dependent drift and diffusion coefficients and for data that is not equispaced in time.

Chapter 4

Scalable SDE Filtering and Inference

In this chapter, we consider the problem of Bayesian filtering and inference for time se-
ries data modeled as noisy, discrete-time observations of a stochastic differential equation
(SDE) with undetermined parameters. We develop a Metropolis algorithm to sample from
the high-dimensional joint posterior density of all SDE parameters and state time series.
Our approach relies on an innovative density tracking by quadrature (DTQ) method to
compute the likelihood of the SDE, the part of the posterior that requires the most com-
putational effort to evaluate. As we show, the DTQ method lends itself to a natural im-
plementation using Scala and Apache Spark, an open source framework for scalable data
mining. We study the performance and scalability of our algorithm on filtering and infer-
ence problems for both regularly and irregularly spaced time series.

4.1 Introduction

In this chapter, we focus on the problem of Bayesian inference and filtering for time series.
The time series consist of noisy observations of a process that satisfies a stochastic dif-
ferential equation (SDE). The drift and diffusion terms of this SDE contain undetermined
parameters. Our goal is to use the observations to infer both the time series of the SDEs
actual state (the filtering problem) and the parameters in the drift/diffusion terms (the
inference problem). While there are existing packages (e.g., for use with the R language
for statistical computing) for solving either the inference problem or the filtering problem,
we are not aware of an existing package that solves both problems simultaneously in a
Bayesian fashion. The method and implementation described here is the first to make use
of Apache Spark, an open source framework for scalable data processing and machine
learning on computing clusters (http://spark.apache.org).

The problem we consider arises in many recent studies in neuroscience (Kneissler et al.
(2015)) and systems biology (Sun et al. (2008)). In these fields, advances in measurement
technology has led to large amounts of experimental data on biophysical processes. The
data often consist of noisy and/or incomplete time series measurements of the system’s
state. Due to intrinsic noise on the cellular scale, these processes are often modeled by SDEs
with undetermined parameters. The task is then to use the data to infer these parameters
and the true states of the process.

To solve the Bayesian inference and filtering problem, we develop a Metropolis algo-

53

http://spark.apache.org

54 CHAPTER 4. SDE FILTERING

rithm to sample from the joint posterior density of the state series and the SDE parameters.
A key bottleneck in the inference/filtering problem for SDEs, identified by many authors,
is the evaluation of the conditional density of the state series given the parameters, i.e.,
the likelihood function for the SDE. The exact likelihood function for the SDE can only be
computed in special cases when we can solve analytically for the SDEs transition density.
Therefore, prior work has focused on approximating the exact likelihood, either through
analytical methods, numerical methods, or a combination of the two. For a thorough re-
view of past work on this problem, we refer the reader to Chen (2003); Sørensen (2004);
Iacus (2009); Barber et al. (2011); Fuchs (2013).

Consider the computation of the transition density pX t j+1
(x j+1|X t j = x j ,θ). Here X t

stands for the state of a process that evolves forward in time via an SDE with parame-
ter vector θ. We let x j and x j+1 denote the true states of the system at times t j and t j+1. Let
p(x, t) denote the density function of X t . Then one approach to approximating the transi-
tion density is to numerically solve the forward Kolmogorov (or Fokker-Planck) equation
with the initial condition p(x, t j) = δ(x−x j) up to time t j+1. Then p(x j+1,T) will be a numer-
ical approximation of the transition density. The Kolmogorov equation is a linear partial
differential equation (PDE) with spatially-dependent coefficients.

Our approach is similar in that we also numerically track the density p(x, t) without
sampling. Instead of numerically solving a PDE, we track the density by applying quadra-
ture to the Chapman-Kolmogorov equation associated with a time-discretization of the
SDE (4.1a). We detail this density tracking by quadrature (DTQ) method in Section 4.2. As
we show, the DTQ method enables one to break the computation of the likelihood into a
sum of likelihoods involving consecutive pairs of observations (t j , x j) and (t j+1, x j+1) just
as described above. For each such pair, the DTQ method computes the likelihood using
iterated matrix multiplication. In Section 4.3, we show how these features of the DTQ
method enable it to naturally take advantage of the efficiency and parallelism of Apache
Spark and Scala.

The central contribution of this work is a DTQ-based Metropolis algorithm, and ensu-
ing implementation in Scala and Spark, to sample from the joint posterior of the param-
eters and the state series given the observations. To clarify, we note that in our problem,
the data consists of noisy observations of the process X t : we let y j denote the observation
at time t j . Equipped with the DTQ method, we develop a Metropolis algorithm to sample
from the joint posterior p(θ,x|y). Note that this is in contrast to numerous prior studies that
treat the state series x as a hidden or latent variable; in such approaches, the term “poste-
rior” is used to denote p(θ|y). The pomp R package implements such an approach using
particle filtering and particle Markov Chain Monte Carlo (King et al. (2016)). Our approach
treats the state series x as a parameter vector. This is necessary in situations where there is
significant and/or interdependent uncertainty in both the parameters and the state series.

In Section 4.4, we describe experimental tests of our algorithm using both regularly and
irregularly spaced time series. While there is further room for improvement, especially
with regards to the classical Metropolis accept/reject step used here, the tests show that
our current code does solve the Bayesian inference and filtering problem at a baseline
acceptable level. The tests also establish the scalability of the algorithm, both as a function
of the number of Spark processors and as a function of the length of the time series.

As far as computing the likelihood function of the SDE is concerned, the DTQ method
is most similar to the methods of Pedersen (1995) and Santa-Clara (1997). In these methods,

4.2. STATISTICAL METHOD 55

one also starts with the Chapman-Kolmogorov equation for the Euler-Maruyama scheme
applied to (4.1a). However, instead of evaluating the resulting integrals by deterministic
quadrature, Pedersen and Santa-Clara evaluate the integrals by Monte Carlo methods.
These methods involve generating numerical sample paths of the SDE at times in between
the observation times. Unless one generates sample paths conditional on both X t j = x j and
X t j+1 = x j+1, this approach is problematic.

The work of Aït-Sahalia (2002) shares our goal of computing an accurate approxima-
tion of the exact transition density and resulting likelihood function. Instead of applying
quadrature, Aït-Sahalia expands the transition density in a Gram-Charlier series and then
computes the expansion coefficients up to a certain order.

Other approaches that have been explored in the literature include likelihood-free meth-
ods such as Approximate Bayesian Computation (Picchini (2014)), variational methods
(Archambeau et al. (2008); Vrettas et al. (2015)), and/or Gaussian processes (Archambeau
et al. (2007); Ruttor et al. (2013)). We reserve for future work a detailed comparison of these
methods to our method.

4.2 Statistical Method

The fundamental model considered in this chapter is

dX t = f (X t ;θ)dt + g (X t ;θ)dWt (4.1a)
Yt = X t +εt . (4.1b)

The first part of the above system (4.1a) is a stochastic differential equation (SDE) driven
by Brownian motion Wt . The second part (4.1b) models the observation process Yt by
the addition of noise εt to the state process X t . In this work, we assume that εt is i.i.d.
(independent and identically distributed) Gaussian with mean 0 and variance σ2

ε .

4.2.1 Inference Problem

Suppose that we have data of the form y = (y0, . . . , yL) where y j = Yt j , the observation at time
t j . Here t0 < t1 < ·· · < tL is a sequence of times, not necessarily equispaced, at which we
collect observations. Using y, we seek to infer the following objects:

• the discrete-time path taken by the state process, x = (x0, . . . , xL). Here x j = X t j , the
state of the SDE at time t j .

• the parameter vector θ ∈RN , and

• the variance σ2
ε of the noise term εt .

We view this problem as a Bayesian inference problem, and our goal is to sample from
the posterior

p(x,θ,σ2
ε |y) ∝ p(y |x,θ,σ2

ε)p(x,θ,σ2
ε). (4.2)

In the above expression, the left-hand side is the conditional density of the random vari-
ables X t0 , X t1 , . . . , X tL ,θ,σ2

ε given the random variables Yt0 ,Yt1 , . . . ,YtL . To save space and
make our equations more readable, we will omit these random variables in what follows.

56 CHAPTER 4. SDE FILTERING

It is clear from (4.1b) that y is conditionally independent of θ given x and σ2
ε . It is

also clear from (4.1b) that the observation/state pair at time t j is independent of all other
observation/state pairs. Hence we can write

p(y |x,θ,σ2
ε) =

L∏
j=0

p(yt j |x j ,σ2
ε). (4.3)

Next, we examine the second term on the right-hand side of (4.2). It is clear that σ2
ε is

independent of the other random variables, so we can write:

p(x,θ,σ2
ε) = p(x,θ)p(σ2

ε) = p(x|θ)p(θ)p(σ2
ε). (4.4)

Putting it all together, we have the following expression for the posterior:

p(x,θ,σ2
ε |y) ∝

[
L∏

j=0
p(yt j |x j ,σ2

ε)

]
p(x|θ)p(θ)p(σ2

ε). (4.5)

From (4.1b), we have that yt j |x j ,σ2
ε is Gaussian with mean x j and variance σ2

ε . The terms
p(θ) and p(σ2

ε) are priors. The only other term, p(x|θ), is the likelihood of θ under the model
(4.1a). The detailed derivation of the likelihood computation using the DTQ method is pro-
vided in Section 3.2.1. The complete derivation of the DTQ method is given in Appendix
A. The derivation of the likelihood computation is in Appendix A.1 and the gradient com-
putation is in Appendix A.2.

4.2.2 Metropolis Algorithm

We return to the problem of sampling from the posterior (4.5). We give a classical Metropo-
lis algorithm that incorporates the DTQ method described above for computing the likeli-
hood. The fundamental idea here is to construct a discrete-time, continuous-space Markov
chain whose equilibrium density is the posterior density (4.5). We then compute a sample
path of this Markov chain beginning at a particular initial condition in parameter space.
The sample path consists of a sequence of iterates; let xi , θi , and (σ2

ε)i denote the i -th iter-
ates of the respective parameters.

We now describe how to proceed from the i -th to the (i + 1)-st iterate of the Markov
chain. To compute proposed iterates, we require access to random vectors/variables Zx ∈
RL+1, Zθ ∈RN , and Zσ ∈R. Then the Metropolis algorithm is as follows:

• Generate proposals by combining old iterates with samples:

x∗i+1 = xi +Zx

θ∗i+1 = θi +Zθ

log(σ2
ε)∗i+1 = log(σ2

ε)i +Zσ

The log transformation ensures that σ2
ε > 0.

• Calculate the ratio

ρ = p(x∗i+1,θ∗i+1, (σ2
ε)∗i+1 |y)

p(xi ,θi , (σ2
ε)i |y)

. (4.6)

4.3. SCALABLE IMPLEMENTATION 57

In practice, the denominator of this ratio has already been calculated at the previous
step; only the numerator must be calculated. To compute the numerator, we use (4.5)
together with the procedure from Section 3.2.1, including (3.9), (3.6), and (3.11).

• Let u be a sample from a uniform random variable on [0,1]. If ρ > u, we accept the
proposal, setting xi+1 = x∗i+1, θi+1 = θ∗i+1, and (σ2

ε)i+1 = (σ2
ε)∗i+1. If ρ ≤ u, we reject the

proposal, setting xi+1 = xi , θi+1 = θi and (σ2
ε)i+1 = (σ2

ε)i

4.3 Scalable Implementation

There are two elements to our strategy of implementing the MCMC algorithm from Section
4.2 in a scalable fashion. The first aspect has to do with representing the main DTQ step
(3.7) using Scala and Breeze. The second aspect has to do with using Apache Spark to
evaluate each term in the product (3.2) in a parallel, distributed fashion. Note that all of our
codes and data are available at https://github.com/hbhat4000/sdeinference/
tree/master/sparkdtq. The main code to perform MCMC inference is sparkdtq.sc.
Also note that all development and testing was carried out on a server with 24 effective
cores (2 Intel Xeon E5-2620 chips at 2.0 GHz), 16 GB of RAM, and 4 TB of disk space.

4.3.1 Scala/Breeze

A typical approach in computational statistics to implement (3.7) would be to view the
equation as matrix multiplication. Indeed, it is conceptually simple to view kG(z j ′ , z j) as
the (j ′, j) element of a (2M +1)× (2M +1) matrix G , in which case (3.7) can be written as

pi+1 =G pi . (4.7)

Multiplication by G steps the density forward by h units of time; for this reason, we refer
to G as the propagator.

The above approach, while mathematically correct, does not recognize the sparsity of
G . In fact, we have an accurate estimate of where the nonzero entries of G are located:
near the diagonal. From (3.5), we see that the argument to the exponential is zero when a =
b+ f (b;θ)h. If we suppose that f is smooth, then the mean-value theorem implies that there
exists ξ such that b = (a − f (0)h)/(1+ f ′(ξ)h). If f has bounded derivative (in this context,
equivalent to assuming f is Lipschitz), then this implies that b = a +O(h). The upshot is
that for fixed a, when b is near a, the exponential term in (3.5) will be maximal. Similarly,
we can conclude that for fixed a, when b is far from a, the exponential term in (3.5) will
be negligible. We have focused on the exponential term under the assumption that the
diffusion coefficient g , and hence the normalization term in (3.5), does not itself grow
exponentially. In practice, this and other assumptions made above are quite reasonable.

Because of the decay of the Gaussian, for each fixed j ′, the (j ′, j) element of G need not
be computed for all j . We fix a window size γ> 0 and then only compute G(j ′, j) for those j
that satisfy both −M ≤ j ≤ M and j ′−γ≤ j ≤ j ′+γ. We choose γ large enough such that each
density pi+1 is correctly normalized, i.e., such that k

∑
j p j

i is sufficiently close to 1. In all of
our tests, we have been able to choose γ¿ M while maintaining normalization to machine
precision.

https://github.com/hbhat4000/sdeinference/tree/master/sparkdtq
https://github.com/hbhat4000/sdeinference/tree/master/sparkdtq

58 CHAPTER 4. SDE FILTERING

Figure 4.1: In order to implement the matrix-vector multiplication in (4.7) in a scalable way,
we make use of the structure of the propagator matrix G . Instead of computing all entries
of this matrix, we compute and store only those entries that are close to the diagonal—the
pink rectangles in the upper half of the diagram. The blue rectangles in the lower half of the
diagram correspond to windowed versions of the pdf vector pi . In both cases, there is one
windowed vector per row; the row numbers go from −M to M as labeled. Both the pink
and blue rectangles correspond to vectors of length 2γ+1, with γ¿ M . The matrix-vector
multiplication G pi then corresponds to a collection of 2M +1 vector-vector dot products.
This representation of (4.7) makes efficient use of Scala, Breeze, and the Intel MKL. For
more details, see the description in Section 4.3.1.

The main DTQ step (3.7), as it is implemented in Scala using the window parameter
γ, is represented graphically in Figure 4.1. The code implementing this step makes use
of the Breeze library (https://github.com/scalanlp/breeze) for numerical linear
algebra in Scala. For additional efficiency, we utilize Breeze’s support for the Intel Math
Kernel Library (MKL).

Let us explain the procedure diagrammed in Figure 4.1. In the Metropolis algorithm
given in Section 4.2.2, each time we must evaluate the numerator of ρ in (4.6), we must
evaluate the likelihood function for a particular choice of x and θ. For this choice of θ,

https://github.com/scalanlp/breeze

4.3. SCALABLE IMPLEMENTATION 59

we evaluate each row of the propagator matrix G over a window of size 2γ+ 1. These
rows are represented by the pink rectangles; there are 2M + 1 such rows. Because each
such row has the same size, we store the resulting collection as a Breeze DenseVector of
DenseVector. This computation, which comprises the upper half of Figure 4.1, occurs
once per Metropolis step.

To implement (4.7), we must now multiply the propagator matrix by the vector repre-
senting the pdf at time step i . This matrix-vector product can be equivalently described
as a collection of 2M +1 vector-vector dot products, where each vector is of size 2γ+1. To
generate the vectors to dot against collection of propagator vectors (already computed),
we apply a windowing technique. Namely, for each element p j

i of the pdf vector pi ,
we construct a window of size 2γ+ 1 around the element p j

i : the window consists of
(p j−γ

i , . . . , p j
i , . . . , p j+γ

i). Of course, it is understood here that pc
i = 0 whenever |c| > M . In

this way, we build a collection of windowed pdf vectors, represented in Figure 4.1 as the
lower-right stack of blue rectangles. As above, the collection consists of 2M + 1 vectors,
each of size 2γ+1.

With the propagator collection denoted by propagator and the collection of win-
dowed pdf vectors denoted by allwins, the Scala and Breeze syntax for computing all
required dot products at once is, simply

px = propagator dot allwins (4.8)

This line of code completes the implementation of (4.7). To iterate the procedure, we apply
the windowing procedure—diagrammed in the lower half of Figure 4.1—to px, store the
resulting collection in allwins, and then repeat (4.8).

The entire procedure diagrammed in Figure 4.1 makes use of functional programming
techniques—specifically, Scala’s map construct—to entirely avoid explicit loops. Addition-
ally, note that this procedure is inherently more efficient than using a sparse matrix repre-
sentation for the propagator matrix; we know where the nonzero entries belong, so we do
not need to allocate either space or time to this task.

4.3.2 Spark

Spark enables parallel/distributed computation using the notion of a resilient distributed
dataset (RDD). Since the main bottleneck in our Metropolis algorithm is the computation
of the likelihood p(x |θ), we turn to the question of converting the state time series x into an
RDD. We think of this time series as a sequence of pairs (t j , x j) as depicted in the top line
of Figure 4.2. When we examine (3.2), we see that to compute a given term in the product,
we need access to neighboring pairs (t j , x j) and (t j+1, x j+1).

Hence, we map the original sequence of pairs, labeled as −→t x in Figure 4.2, to tslices, a
Scala Array where each element is a vector of neighboring pairs. We convert this array to
an RDD, tslicesRDD, using Spark’s sc.parallelize method. When we subsequently
use a map operation to compute the log likelihood log p(x j+1 |x j ,θ) term corresponding to
each element of tslicesRDD, the computation takes place in parallel. Spark automati-
cally distributes the propagator and the θ vector. For a non-equispaced time series prob-
lem, each calculation of p(x j+1 |x j ,θ) will take more (respectively, less) time when t j+1 − t j

is larger (respectively, smaller). Again, Spark automatically assigns tasks to workers to

60 CHAPTER 4. SDE FILTERING

compute the overall log likelihood efficiently.

Figure 4.2: We use Spark to parallelize the computation of the likelihood (3.2). We accom-
plish this by converting the original time series (for states x, not observations y) from a
vector of pairs to an array where each element is a vector of consecutive pairs. The origi-
nal vector of pairs is labeled as −→

t x, and the Scala Array of consecutive pairs is tslices.
This latter object can be easily converted into a Spark RDD; subsequent map operations on
this RDD are executed in parallel.

4.4 Results

We present results on artificial data sets. The model used to generate these data sets is the
Ornstein-Uhlenbeck SDE together with an observation process:

dX t = θ1(θ2 −X t)dt +θ3dWt (4.9)
Yt = X t +εt . (4.10)

Specifically, we apply the Euler-Maruyama discretization to (4.9) with a time step of
κ = 10−6. Suppose our temporal grid consists of t j = n(j)κ, where n(0) = 0, and n(j +1) >
n(j). In some of the examples we pursue, n(j) will be deterministic and the temporal grid
will be equispaced, while in other examples, n(j) will be stochastic and the temporal grid
will be non-equispaced. Either way, we take n(j) to have expected value 2×105, so that the
average difference between temporal grid points t j+1 − t j is 0.2.

We then start at a random initial condition by sampling X0 from a Gaussian random
variable with mean 0 and variance 1. We step forward one step at a time (with time step
κ), saving the numerical solution X t at points in time corresponding to the temporal grid
points {t j }L

j=0. We label the points we save as (x0, x1, . . . , xL) =: x, and then perturb them via
(4.10) to generate y. In particular, we set y j = x j + Z where Z is normally distributed with
mean 0 and variance σ2.

The DTQ method described in Section 3.2.1 has four internal parameters: the time
step h, the spatial grid spacing k, the spatial grid cutoff M , and the decay width γ of the
Gaussian kernel G . For the tests described below, we will give the value of h that was used.
All other parameters are as follows: k = h0.75, M = dπ/k1.5e, and γ= 25.

4.4. RESULTS 61

0 50 100 150 200

-6
-4

-2
0

2
4

Ornstein-Uhlenbeck process without noise

Index

tra
j1

0 50 100 150 200

-6
-4

-2
0

2
4

Ornstein-Uhlenbeck process with noise

Index

tra
j1

0 50 100 150 200

-6
-4

-2
0

2
4

Ornstein-Uhlenbeck process with measurement noise

Index

tra
j1

Figure 4.3: Illustration of sample paths generated for Ornstein-Uhlenbeck process in the
deterministic (left), stochastic (center) and measurement noise (right) setups with the same
initial conditions.

4.4.1 Equispaced Time Series

In the first set of experiments, we follow the procedure outlined above to generate artificial
data y with the temporal grid defined by t j = n(j)κ = (0.2) j . The ground truth for the
parameters consists of θ = (0.5,1,0.25) and σ2 = 0.01. In addition to the other parameters,
we focus on inferring θ1 and θ2; we fix θ3 = 0.25 throughout. In the Metropolis algorithm,
we take as initial conditions x0 = y, θ = (1,0.1,0.25), and σ2

ε = 1.

For priors for θ1 and θ2, we use Gaussian densities with respective parameters (µ =
0.5,σ= 1) and (µ= 2,σ= 10). For σ2

ε , we use an exponential prior with parameter λ= 1.

In the Metropolis algorithm, we take all proposal random variables to be independent
Gaussians. In particular, Zx is a collection of L +1 independent Gaussians, each with pa-
rameters (µ= 0,σ= 0.02), Zθ consists of two independent Gaussians, each with parameters
(µ= 0,σ= 0.05), and Zσ consists of a Gaussian with parameters (µ= 0,σ= 0.02). These dis-
tributions have been chosen, via trial and error, to yield a Metropolis acceptance rate that
is between 20−40% in all tests we have conducted.

For two values of the DTQ internal time step (h = 0.02 and h = 0.01), we apply the
Metropolis algorithm to generate 10,000 samples of the posterior (4.5). Note that h = 0.02
implies M = 257 and h = 0.01 implies M = 559; hence γ= 25 gives at least a 10-fold reduction
in computational effort.

We discard the first 100 samples as burn-in samples. Using the 9900 remaining samples,
we plot the posterior densities for θ1, θ2 and log10σ

2
ε in Figure 4.4. In this chapter, all

density plots use a Gaussian kernel with the “nrd” (or normal reference rule) bandwidth
Scott (2015). The density in blue (respectively, black) corresponds to the samples produced
using the DTQ method with h = 0.02 (respectively, h = 0.01). The red vertical lines indicate
the ground truth values for each parameter.

62 CHAPTER 4. SDE FILTERING

0

1

2

3

0.00 0.25 0.50 0.75
θ1

de
ns

ity

0

1

2

3

4

5

0.5 1.0
θ2

de
ns

ity

0

1

2

−2.0 −1.5 −1.0 −0.5 0.0
log10(σε2)

de
ns

ity

DTQ step h=0.02 h=0.01

Figure 4.4: Posterior densities for the inference/filtering problem with equispaced time
series (t,y). Each density is calculated on the basis of 9900 post-burn-in Metropolis samples
computed using the indicated value of the internal DTQ time step parameter h. Overall,
we see reasonable agreement between the ground truth values (indicated by red vertical
lines) and the posterior densities.

Overall, we see that the Metropolis algorithm does a reasonable job of inferring the pa-
rameters. For the Ornstein-Uhlenbeck model (4.9), Bayesian inference is non-trivial when
the temporal spacing between observations is sufficiently large. Keeping in mind the log-
arithmic scale for the density of the third parameter, we still conclude that our method has
the greatest room for improvement here. As we show below, however, the mean inferred
value of σε is consistent with the observation series y and the mean inferred state series x.

4.4.2 Non-equispaced Time Series

In this next set of experiments, we follow a nearly identical procedure to that described in
Section 4.4.1. The main difference is that the temporal grid is defined by t j = n(j)κ where
n(j) is uniformly distributed on the integers between 4×104 and 4×105−4×104. Effectively,
this generates a time series with minimum, mean, and maximum spacings t j+1 − t j of,
respectively, 0.04, 0.2, and 0.36. We use the same priors and Metropolis initial conditions
as in Section 4.4.1. We change the proposal distributions slightly. The parameters for Zx

and Zσ are now (µ = 0,σ = 0.01), while for Zθ the parameters are still (µ = 0,σ = 0.05). For
two values of the DTQ internal time step (h = 0.02 and h = 0.01), we apply the Metropolis
algorithm to generate 10,000 samples of the posterior (4.5). Again, we discard the first 100
samples as burn-in samples.

Using the samples thus obtained, and using the same procedure described in Section
4.4.1, we plot the posterior densities for θ1, θ2 and log10σ

2
ε in Figure 4.5. Overall, as com-

pared with Figure 4.4, we see improved agreement between the ground truth values and
the posteriors for θ2 and log10, while the posterior for θ1 is still reasonably accurate.

4.4. RESULTS 63

0

1

2

3

0.00 0.25 0.50 0.75
θ1

de
ns

ity

0

1

2

3

4

0.5 1.0 1.5
θ2

de
ns

ity

0.0

0.5

1.0

1.5

2.0

−2.0 −1.5 −1.0 −0.5 0.0
log10(σε2)

de
ns

ity

DTQ step h=0.02 h=0.01

Figure 4.5: Posterior densities for the inference/filtering problem with non-equispaced
time series (t,y). Each density is calculated on the basis of 9900 post-burn-in Metropolis
samples computed using the indicated value of the internal DTQ time step parameter h.
Overall, we see reasonable agreement between the ground truth values (indicated by red
vertical lines) and the posterior densities.

Figure 4.6: We plot the observations (in red) together with each of the samples of the state
series x. Each such sample is a grey curve, and the mean of all such grey curves is plotted
in black. We refer to the black curve as the mean inferred state series.

Using precisely the same data, priors, and initial conditions, we used the particle
MCMC method from pomp (King et al. (2016)) to produce 10000 post-burn-in samples from
the posterior p(θ1,θ2, logσε|y). The mean of this posterior is (0.00539,−0.765,−2.088). Only
the final estimate is acceptable; the estimates for θ1 and θ2 are highly inaccurate. Here

64 CHAPTER 4. SDE FILTERING

we have given an initial guess for x0 = y0 ≈ 0.280, exactly what we do in our method. If
we instead provide a bit of external assistance to pomp and guess x0 = 0, the true mean
of the X0 used to generate the artificial data, we obtain an excellent posterior mean of
(0.477,0.973,−1.986). Though further testing is required, we believe these results indicate
that our method may be a viable alternative to the more established methods implemented
in pomp.

We turn to the filtering results, focusing on the post-burn-in samples of x generated
with DTQ parameter h = 0.01. In Figure 4.6, we plot the original non-equispaced observa-
tion series y in red. We have plotted in grey each of the 9900 samples of the state series
x; the mean of these samples is plotted in black. We see that the Metropolis sampler does
indeed explore a number of different trajectories for the state series, and that the mean
inferred state series corresponds to a smoothed version of the original observation series.

Figure 4.7: We plot the observations (in red) together with the mean inferred state series
(in black). The error bars (grey) are computed by adding/subtracting the mean inferred
value of σε to/from the observation series y. Note that the mean inferred state is typically
within one σε of the corresponding observation.

In Figure 4.7, we again plot the original non-equispaced observation series y in red
and the mean inferred state series x in black. This time, however, we add/subtract the
mean inferred value of σε to y to obtain error bars associated with each observation. These
error bars are plotted in grey. The idea behind this plot is that if (4.1b) holds, then given
the symmetry of the random variables εt , it should also be true that X t = Yt + ε′t , where
ε′t has the same distribution as εt . To be self-consistent, the observation series should, at
least most of the time, lie within one (inferred) standard deviation σε of the (inferred) state
series. The plot in Figure 4.7 confirms that this is the case.

4.4.3 Scaling

We have conducted tests to explore the relationship between running time and L, the
length of the observation series. For each L ∈ {124,250,500,2500}, and for each h ∈ {0.02,0.01},

4.5. DISCUSSION 65

we have generated a time series of the indicated length, run our inference/filtering code,
and recorded the amount of time T required to generate 1000 Metropolis samples of the
posterior. The results are plotted in the left panel of Figure 4.8 with log-transformed axes.
For each set of points, we fit a line of the form logT = β0 +β1 logL, which corresponds to
the law T = eβ0 Lβ1 . The solid lines in the left panel of Figure 4.8 correspond to this latter
law, plotted on the same log-transformed axes. For the h = 0.02 line, we obtain β1 = 0.9092;
for the h = 0.01 line, we obtain β1 = 0.9639. These results are consistent with O(L) temporal
scaling.

●

●

●

●

●

●

●

●100

200
300
400

50
0

10
00

15
00

20
00

25
00

L (length of observation series)

tim
e

(m
in

ut
es

)

DTQ step
●

●

h=0.02

h=0.01

●

●

●

●

●

●

●

●

5

10

5 10 15 20
number of Spark processors

tim
e

(m
in

ut
es

)

DTQ step
●

●

h=0.02

h=0.01

Figure 4.8: Left panel: For each indicated value of L, we have generated a time series of
length L, run our inference/filtering code, and recorded the amount of time T required
to generate 1000 Metropolis samples of the posterior. We fit lines to logT as a function of
logL—both the lines and the original data are plotted on log-transformed axes. The slopes
of the lines are less than 1, consistent with O(L) temporal scaling. Right panel: For a non-
equispaced time series of length 2501, we ran our code with ν Spark processors where
ν ∈ {3,6,12,24}. We recorded T , the time required to generate 10 Metropolis samples of the
posterior. We fit lines to logT as a function of logν—both the lines and the original data
are plotted on log-transformed axes. The slopes of the lines are close to −0.5, suggesting
O(ν−1/2) scaling.

We have also explored how the running time of our code changes as we change the
number ν of Spark processors. We begin with a non-equispaced time series of length 2501.
For each ν ∈ {3,6,12,24} and each h ∈ {0.02,0.01}, we recorded the time T required to generate
10 Metropolis samples. For each set of points, we fit a line of the form logT = β0 +β1 logν.
Both the raw data and lines are plotted on log-transformed axes in the right panel of Figure
4.8. For the h = 0.02 line, we obtain β1 = −0.4164, while for the h = 0.01 line, we obtain
β1 =−0.4699. These results suggest O(ν−1/2) scaling.

4.5 Discussion

The results from Section 4.4 show that while decreasing the value of the DTQ internal step
h does change the sampled values and the plotted densities, the change is not significant.

66 CHAPTER 4. SDE FILTERING

We believe much greater gains (in terms of agreement between the posterior modes and
the ground truth values) would be achieved by improving both the proposal strategy and
the vanilla Metropolis accept/reject step; such ideas have been pursued successfully by
Fuchs (2013) and others, and we seek to implement these improvements in future work.
For now, however, we conclude that the implementation described in this chapter does
indeed perform Bayesian filtering and inference at a baseline acceptable level.

Aside from improving the Metropolis algorithm, we see three main areas for improve-
ment. First, we have yet to test and tune our implementation on a large-scale, distributed
Spark cluster. Second, we believe we can derive large gains in performance by adapting
our algorithm to work in a streaming fashion. Specifically, instead of inferring the en-
tire state series x at once, as we currently do, we can proceed one step a time through
the temporal sequence of observations. Third, we have already begun to incorporate the
DTQ method into an adjoint method suitable for computing gradients of the likelihood.
This will enable us to apply techniques such as stochastic gradient descent or Hamilto-
nian Monte Carlo to our inference problem for either fast MLE/MAP point estimation or
accelerated sampling from posteriors. These steps, and possibly others, will become neces-
sary as we adapt our methods to multi-dimensional time series problems, a task we have
already begun.

Bibliography

Aït-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: A
closed-form approximation approach. Econometrica, 70(1), 223–262.

Archambeau, C., Cornford, D., Opper, M., and Shawe-Taylor, J. S. (2007). Gaussian process
approximations of stochastic differential equations. Journal of machine learning research,
1, 1–16.

Archambeau, C., Opper, M., Shen, Y., Cornford, D., and Shawe-Taylor, J. S. (2008). Vari-
ational inference for diffusion processes. In Advances in Neural Information Processing
Systems, pages 17–24.

Bally, V. and Talay, D. (1996). The law of the Euler scheme for stochastic differential equa-
tions. II. Convergence rate of the density. Monte Carlo Methods and Applications, 2(2),
93–128.

Barber, D., Cemgil, A. T., and Chiappa, S. (2011). Bayesian Time Series Models. Cambridge
University Press.

Batz, P., Ruttor, A., and Opper, M. (2016). Variational estimation of the drift for stochastic
differential equations from the empirical density. Journal of Statistical Mechanics: Theory
and Experiment, 2016(8), 083404.

Batz, P., Ruttor, A., and Opper, M. (2017). Approximate Bayes learning of stochastic differ-
ential equations. arXiv preprint arXiv:1702.05390.

Bhat, H. S. and Madushani, R. W. M. A. (2016). Density tracking by quadrature for stochas-
tic differential equations. arXiv preprint arXiv:1610.09572.

Bhat, H. S. and Madushani, R. W. M. A. (2016). Nonparametric adjoint-based inference for
stochastic differential equations. In 2016 IEEE International Conference on Data Science
and Advanced Analytics (DSAA), pages 798–807.

Bhat, H. S., Madushani, R., and Rawat, S. (2015). Parameter inference for stochastic dif-
ferential equations with density tracking by quadrature. In International Workshop on
Simulation, pages 99–113. Springer.

Bhat, H. S., Madushani, R., and Rawat, S. (2016a). Bayesian inference of stochastic pursuit
models from basketball tracking data. In International Conference on Bayesian Statistics
in Action, pages 127–137. Springer.

67

68 BIBLIOGRAPHY

Bhat, H. S., Madushani, R., and Rawat, S. (2016b). Scalable SDE filtering and inference
with Apache Spark. In Workshop on Big Data, Streams and Heterogeneous Source Mining:
Algorithms, Systems, Programming Models and Applications, pages 18–34.

Bhattacharya, R. N. and Waymire, E. C. (2009). Stochastic Processes with Applications. SIAM.

Bladt, M., Sørensen, M., et al. (2014). Simple simulation of diffusion bridges with applica-
tion to likelihood inference for diffusions. Bernoulli, 20(2), 645–675.

Boninsegna, L., Nüske, F., and Clementi, C. (2017). Sparse learning of stochastic dynamic
equations. arXiv preprint arXiv:1712.02432.

Bressloff, P. C. (2014). Stochastic Processes in Cell Biology, volume 41. Springer.

Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2016). Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the
National Academy of Sciences, 113(15), 3932–3937.

Cai, Y. (2002). Convergence theory of a numerical method for solving the Chapman–
Kolmogorov equation. SIAM Journal on Numerical Analysis, 40(6), 2337–2351.

Chen, L., Jakobsen, E. R., and Næss, A. (2017a). On numerical density approximations of
solutions of SDEs with unbounded coefficients. Advances in Computational Mathemat-
ics, pages 1–29.

Chen, S., Shojaie, A., and Witten, D. M. (2017b). Network reconstruction from high-
dimensional ordinary differential equations. Journal of the American Statistical Asso-
ciation, 112(520), 1697–1707.

Chen, Z. (2003). Bayesian filtering: From Kalman filters to particle filters, and beyond.
Statistics, 182(1), 1–69.

Cobb, L. (1981). Stochastic differential equations for the social sciences. Mathematical Fron-
tiers of the Social and Policy Sciences, Cobb, L., Thrall, M., eds, Westview Press, Boulder, co,
pages 1–26.

Cox, J. C., Ingersoll Jr, J. E., and Ross, S. A. (2005). A theory of the term structure of interest
rates. In Theory of Valuation, pages 129–164. World Scientific.

Cukier, R., Lakatos-Lindenberg, K., and Shuler, K. (1973). Orthogonal polynomial solu-
tions of the Fokker-Planck equation. Journal of Statistical Physics, 9(2), 137–144.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(methodological), pages 1–38.

Di Paola, M. and Sofi, A. (2002). Approximate solution of the Fokker–Planck–Kolmogorov
equation. Probabilistic Engineering Mechanics, 17(4), 369–384.

Fuchs, C. (2013). Inference for Diffusion Processes: With Applications in Life Sciences. Springer
Science & Business Media, Berlin.

BIBLIOGRAPHY 69

Ghahramani, Z. and Roweis, S. T. (1999). Learning nonlinear dynamical systems using an
EM algorithm. Advances in Neural Information Processing Systems (NIPS), pages 431–
437.

Hurn, A. S., Jeisman, J., and Lindsay, K. A. (2007). Seeing the wood for the trees: A critical
evaluation of methods to estimate the parameters of stochastic differential equations.
Journal of Financial Econometrics, 5(3), 390–455.

Iacus, S. M. (2009). Simulation and Inference for Stochastic Differential Equations: With R Ex-
amples. Springer Series in Statistics. Springer, New York.

Kikuchi, K., Yoshida, M., Maekawa, T., and Watanabe, H. (1991). Metropolis Monte Carlo
method as a numerical technique to solve the Fokker–Planck equation. Chemical
Physics Letters, 185(3-4), 335–338.

King, A. A., Nguyen, D., and Ionides, E. L. (2016). Statistical inference for partially ob-
served Markov processes via the R package pomp. Journal of Statistical Software, 69(12),
1–43.

Kloeden, P. E. and Platen, E. (1992). Higher-order implicit strong numerical schemes for
stochastic differential equations. Journal of Statistical Physics, 66(1-2), 283–314.

Kloeden, P. E. and Platen, E. (2011). Numerical Solution of Stochastic Differential Equations.
Springer Science & Business Media.

Kneissler, J., Drugowitsch, J., Friston, K., and Butz, M. V. (2015). Simultaneous learning
and filtering without delusions: A Bayes-optimal combination of predictive inference
and adaptive filtering. Frontiers in Computational Neuroscience, 9(47).

Lande, R., Engen, S., and Sæther, B.-E. (2003). Stochastic Population Dynamics in Ecology and
Conservation. Oxford University Press.

Linetsky, V. (1997). The path integral approach to financial modeling and options pricing.
Computational Economics, 11(1-2), 129–163.

Lynch, E. P. and Houghton, C. J. (2015). Parameter estimation of neuron models using
in-vitro and in-vivo electrophysiological data. Frontiers in Neuroinformatics, 9.

Mangan, N. M., Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2016). Inferring biological net-
works by sparse identification of nonlinear dynamics. IEEE Transactions on Molecular,
Biological and Multi-Scale Communications, 2(1), 52–63.

Mangan, N. M., Kutz, J. N., Brunton, S. L., and Proctor, J. L. (2017). Model selection for
dynamical systems via sparse regression and information criteria. Proc. R. Soc. A,
473(2204), 20170009.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous.
Journal of Financial Economics, 3(1-2), 125–144.

Müller, H.-G., Yao, F., and others (2010). Empirical dynamics for longitudinal data. The
Annals of Statistics, 38(6), 3458–3486.

70 BIBLIOGRAPHY

Næss, A. and Johnsen, J. (1993). Response statistics of nonlinear, compliant offshore struc-
tures by the path integral solution method. Probabilistic Engineering Mechanics, 8(2),
91–106.

Nicolau, J. (2007). Nonparametric estimation of second-order stochastic differential equa-
tions. Econometric Theory, 23(05), 880.

Papaspiliopoulos, O. and Roberts, G. O. (2012). Importance sampling techniques for esti-
mation of diffusion models. Statistical Methods for Stochastic Differential Equations, 124,
311–340.

Papaspiliopoulos, O., Roberts, G. O., and Stramer, O. (2013). Data augmentation for diffu-
sions. Journal of Computational and Graphical Statistics, 22(3), 665–688.

Pedersen, A. R. (1995). A new approach to maximum likelihood estimation for stochastic
differential equations based on discrete observations. Scandinavian Journal of Statistics,
22(1), 55–71.

Picchini, U. (2014). Inference for SDE models via approximate Bayesian computation. Jour-
nal of Computational and Graphical Statistics, 23(4), 1080–1100.

Quade, M., Abel, M., Kutz, J. N., and Brunton, S. L. (2018). Sparse identification of nonlin-
ear dynamics for rapid model recovery. arXiv preprint arXiv:1803.00894.

Raissi, M. and Karniadakis, G. E. (2018). Hidden physics models: Machine learning of
nonlinear partial differential equations. Journal of Computational Physics, 357, 125–141.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017). Machine learning of linear dif-
ferential equations using Gaussian processes. Journal of Computational Physics, 348,
683–693.

Roberts, G. O. and Stramer, O. (2001). On inference for partially observed nonlinear diffu-
sion models using the Metropolis–Hastings algorithm. Biometrika, 88(3), 603–621.

Rogers, L. C. G. and Williams, D. (1994). Diffusions, Markov Processes and Martingales: Vol-
ume 2, Itô Calculus, volume 2. Cambridge University Press.

Rosa-Clot, M. and Taddei, S. (2002). A path integral approach to derivative security pricing
II: Numerical methods. International Journal of Theoretical and Applied Finance, 5(02),
123–146.

Rudy, S. H., Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2017). Data-driven discovery of
partial differential equations. Science Advances, 3(4), e1602614.

Ruttor, A., Batz, P., and Opper, M. (2013). Approximate Gaussian process inference for
the drift function in stochastic differential equations. In Advances in Neural Information
Processing Systems, pages 2040–2048.

Santa-Clara, P. (1997). Simulated likelihood estimation of diffusions with an application to
the short term interest rate. Working Paper 12-97, UCLA Anderson School of Man-
agement.

BIBLIOGRAPHY 71

Schaeffer, H. (2017). Learning partial differential equations via data discovery and sparse
optimization. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Science, 473(2197), 20160446.

Schaeffer, H., Caflisch, R., Hauck, C. D., and Osher, S. (2013). Sparse dynamics for partial
differential equations. Proceedings of the National Academy of Sciences, 110(17), 6634–
6639.

Schaeffer, H., Tran, G., and Ward, R. (2017). Extracting sparse high-dimensional dynamics
from limited data. arXiv:1707.08528 [math].

Schenzle, A. and Brand, H. (1979). Multiplicative stochastic processes in statistical physics.
Physical Review A, 20(4), 1628.

Schön, T. B., Svensson, A., Murray, L., and Lindsten, F. (2018). Probabilistic learning of
nonlinear dynamical systems using sequential monte carlo. Mechanical Systems and
Signal Processing, 104, 866–883.

Scott, D. W. (2015). Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley,
Hoboken, NJ, second edition.

Shiga, T. (1981). Diffusion processes in population genetics. Journal of Mathematics of Kyoto
University, 21(1), 133–151.

Skaug, C. and Næss, A. (2007). Fast and accurate pricing of discretely monitored barrier
options by numerical path integration. Computational Economics, 30(2), 143–151.

Sørensen, H. (2004). Parametric inference for diffusion processes observed at discrete
points in time: a survey. International Statistical Review, 72(3), 337–354.

Stuart, A. M. (2010). Inverse problems: A Bayesian perspective. Acta Numerica, 19, 451–559.

Sun, X., Jin, L., and Xiong, M. (2008). Extended Kalman filter for estimation of parameters
in nonlinear state-space models of biochemical networks. PLoS ONE, 3(11), 1–13.

Svanberg, K. (2002). A class of globally convergent optimization methods based on conser-
vative convex separable approximations. SIAM Journal on Optimization, 12(2), 555–573.

Tran, G. and Ward, R. (2017). Exact recovery of chaotic systems from highly corrupted
data. Multiscale Modeling & Simulation, 15(3), 1108–1129.

van der Meulen, F., Schauer, M., and van Zanten, H. (2014). Reversible jump MCMC for
nonparametric drift estimation for diffusion processes. Computational Statistics & Data
Analysis, 71, 615–632.

van der Meulen, F., Schauer, M., and van Waaij, J. (2017). Adaptive nonparametric drift es-
timation for diffusion processes using Faber–Schauder expansions. Statistical Inference
for Stochastic Processes, pages 1–26.

Van Kampen, N. G. (1992). Stochastic Processes in Physics and Chemistry, volume 1. Elsevier.

Verzelen, N., Tao, W., Müller, H.-G., and others (2012). Inferring stochastic dynamics from
functional data. Biometrika, 99(3), 533–550.

72 BIBLIOGRAPHY

Vrettas, M. D., Opper, M., and Cornford, D. (2015). Variational mean-field algorithm for
efficient inference in large systems of stochastic differential equations. Physical Review
E, 91(1), 012148.

Wehner, M. F. and Wolfer, W. (1983). Numerical evaluation of path-integral solutions to
Fokker–Planck equations. Physical Review A, 27(5), 2663.

Wissel, C. (1979). Manifolds of equivalent path integral solutions of the Fokker–Planck
equation. Zeitschrift für Physik B Condensed Matter, 35(2), 185–191.

Yu, J., Cai, G., and Lin, Y. (1997). A new path integration procedure based on Gauss–
Legendre scheme. International journal of non-linear mechanics, 32(4), 759–768.

Zambrini, J.-C. and Yasue, K. (1980). Thermal mechanics: A quantum mechanical analogue
of nonequilibrium statistical thermodynamics. Annals of Physics, 125(1), 176–192.

Øksendal, B. (2003). Stochastic Differential Equations: An Introduction with Applications. Uni-
versitext. Springer-Verlag, Berlin Heidelberg, 6 edition.

Appendices

73

Appendix A

Derivation of DTQ method

We begin by deriving our method and algorithm in the case where x represents a scalar
time series. Equivalently, we can say that ν = 1 and the data consists of only one time-
discretized sample path of (3.1). In Appendix A.1, we will show how to generalize this
derivation to the case where there are ν> 1 sample paths.

First we choose h, the internal time step, to be a small fraction of ∆t . We set hn = ∆t
where n ∈Z and n ≥ 2. Then:

x̃m+1/n = x̃m + f (x̃m ;θ)h + g (x̃m ;θ)
p

hZm+1/n . (A.1)

Here {Zm} is an i.i.d. family of Gaussian random variables with mean 0 and variance 1.
When the index m is an integer, the random variable x̃m is intended to approximate

X tm . When the index m is not an integer, x̃m represents a random variable that interpolates
in time between the random variables that have been sampled to give us our data.

A.1 Likelihood Computation

We are now in a position to compute the likelihood. Let us specify our notation. If
A1, . . . , AM is a collection of random variables, then p A1,...,AM (z1, . . . , zM) denotes the joint
probability density function of A1, . . . , AM . Conditional densities will be denoted similarly.
Then the likelihood we seek to compute, the quantity we wrote as p(x |θ) above, can be
more accurately written as

pX tM ,...,X t0
(xM , . . . , x0 |θ).

First let us use the fact that the SDE (3.1) is an Ito diffusion and therefore satisfies the strong
Markov property (see Bhattacharya and Waymire (2009)). This enables us to write down
our first expression for the likelihood function:

pX tM ,...,X t0
(xM , . . . , x0 |θ) =

M−1∏
m=0

pX tm+1
(xm+1|X tm = xm ;θ).

We now define the log likelihood function:

L (θ) = log pX tM ,...,X t0
(xM , . . . , x0 |θ) =

M−1∑
m=0

log pX tm+1
(xm+1|X tm = xm ;θ). (A.2)

75

76 APPENDIX A. DERIVATION OF DTQ METHOD

Now we introduce our first approximation:

pX tm
≈ p x̃m .

The idea is to approximate the density of X tm by the density of x̃m . We can do the same for
conditional densities, i.e.,

pX tm+1
(xm+1|X tm = xm ;θ) ≈ p x̃m+1 (xm+1 | x̃m = xm ;θ).

The convergence theory for the Euler-Maruyama method indicates that the L1 norm of the
difference between the left- and the right-hand sides is O (h)—see Bally and Talay (1996).
With this approximation, we can write

log pX tM ,...,X t0
(xM , . . . , x0 |θ) ≈

M−1∑
m=0

log p x̃m+1 (xm+1|x̃m = xm ;θ).

Now we can use the density tracking by quadrature (DTQ) method to evaluate each transi-
tion density in the sum. The idea behind the DTQ method is to use quadrature to gradually
evolve the density forward in time from time tm to time tm+1. For clarity in notation, we
look only at the interval (tm , tm+1). The first steps in the derivation are to introduce extra
variables x1, x2, . . . , xn , for each interval (tm , tm+1), integrate them out, and then apply the
Markov property recursively:

p x̃m+1 (xm+1 | x̃m = xm ;θ)

=
∫

xn−1

· · ·
∫

x1

p x̃n ,x̃n−1,...,x̃1 (xn , xn−1, . . . , x1 | x̃m = xm ;θ)dxn−1 · · ·dx1

=
∫

xn−1

· · ·
∫

x1

n∏
i=1

p x̃i (xi | x̃i−1 = xi−1;θ)dxn−1 · · ·dx1. (A.3)

The last equation is the Chapman-Kolmogorov equation for the Markov chain given by
(A.1). Now let Gh

θ
(x, y) be the probability density function of a Gaussian random variable

with mean y + f (y ;θ)h and variance g (y ;θ)2h, evaluated at x. Then the crucial observation
is that, for each i ∈ {1, . . . ,n},

p x̃i (xi | x̃i−1 = xi−1;θ) =Gh
θ (xi , xi−1). (A.4)

This follows from the discrete-time evolution equation for x̃. With these observations, the
(A.3) simplifies to:

p x̃m+1 (xm+1 | x̃m = xm ;θ) =
∫

xn−1

Gh
θ (xn , xn−1)

∫
xn−2

· · ·[∫
x1

Gh
θ (x2, x1)Gh

θ (x1, x0)dx1

]
dx2 · · ·dxn−1. (A.5)

We constrain the approximation at the first time point x0 to be equal to the actual observa-
tion, xm . Also the density at the final time point, tn = tm+1, is evaluated at the observation
xm+1. Our next approximation is to evaluate the integrals by quadrature. We introduce the
spatial grid spacing k > 0. We will use superscripts to denote spatial grid locations, so that,

A.2. GRADIENT COMPUTATION 77

for instance, x j
i = j k for all j ∈Z. Then, repeatedly applying the trapezoidal rule on the real

line, we obtain

p x̃m+1 (xm+1 | x̃m = xm ;θ) ≈ k
∑
jn−1

Gh
θ (xm+1, x jn−1

n−1) ·k
∑
jn−2

Gh
θ (x jn−1

n−1 , x jn−2

n−2) · · ·

·k
∑
j1

Gh
θ (x j2

2 , x j1

1)Gh
θ (x j1

1 , xm).

In practice, we evaluate these sums on a finite subset of Z. We think of

k Gh
θ (x j2

2 , x j1

1)

as the (j2, j1) element of a matrix A. In this way, the above formula reduces to repeated
matrix-vector multiplication. Specifically, let us define the j1-th element of the vector q 1
by

q j1

1 =Gh
θ (x j1

1 , xm).

Then multiplication by the matrix A corresponds to stepping forward in time by h, i.e.,

q 2 = Aq 1

and
q n−1 = An−2q 1.

Finally, noting that xm+1 is a known data point, let us define the jn−1-th element of the
vector Γn−1 by

Γ
jn−1

n−1 = k Gh
θ (xm+1, x jn−1

n−1).

Then we have
p x̃m+1 (xm+1 | x̃m = xm ;θ) ≈ [Γn−1]ᵀ An−2 q 1, (A.6)

where ᵀ denotes transpose. As noted above, the vector q1 only depends on the first obser-
vation xm and the vector Γn−1 only depends on the final observation xm+1 in the interval
(tm , tm+1). For the general case, we can thus define q m := q 1 and Γm+1 := Γn−1 for each
interval. We insert this computation into (A.2) to obtain

L (θ) ≈
M−1∑
m=0

log[Γm+1]ᵀ An−2 q m . (A.7)

A.2 Gradient Computation

Next, we compute the gradient of the log likelihood with respect to θ. This gradient is an
important ingredient for numerical optimization procedures. We start with

∂

∂θ`
L (θ) = ∂

∂θ`
log pX tM ,...,X t0

(xM , . . . , x0 |θ)

≈
M−1∑
m=0

1

p x̃m+1 (xm+1 | x̃m = xm ;θ)

∂

∂θ`
p x̃m+1 (xm+1 | x̃m = xm ;θ). (A.8)

78 APPENDIX A. DERIVATION OF DTQ METHOD

The remaining derivative looks like this:

∂

∂θ`
p x̃m+1 (xm+1 | x̃m = xm ;θ) =

∫
xn−1

· · ·
∫
x1

n−1∑
r=0

{ ∂

∂θ`
p x̃r+1 (xr+1 | x̃r = xr ;θ)

×
n−1∏
s 6=r
s=0

p x̃s+1 (xs+1|x̃s = xs ;θ)
}

dxn−1 · · ·dx1.

Let us simplify the notation and derive an algorithm to compute this quantity. First, we
peel off the r = n −1 term in the sum to write:

∂

∂θ`
p (xm+1 |xm ;θ) =

∫
xn−1

· · ·
∫
x1

{ ∂

∂θ`
p (xn |xn−1;θ)

n−2∏
s=0

p (xs+1 |xs ;θ)
}

+
[

p (xn |xn−1;θ)
n−2∑
r=0

(∂

∂θ`
p (xr+1 |xr ;θ)

n−2∏
s 6=r
s=0

p(xs+1 |xs ;θ)
)]

dxn−1 · · ·dx1.

Again, we can use the definition of Gh
θ

together with the crucial observation described
above to simplify the above expression to:

∂

∂θ`
p (xm+1 |xm ;θ) =

∫
x∈Rn−1

{ ∂

∂θ`
Gh
θ (xn , xn−1)

n−2∏
s=0

Gh
θ (xs+1, xs)

}
+

[
Gh
θ (xn , xn−1)

n−2∑
r=0

(∂

∂θ`
Gh
θ (xr+1, xr)

n−2∏
s 6=r
s=0

Gh
θ (xs+1, xs)

)]
dx .

Let us now discretize in space, again using the trapezoidal rule on the real line repeatedly
just as we did earlier:

∂

∂θ`
p (xm+1 |xm ;θ) ≈ kn−1

∑
jn−1

· · ·∑
j1

{ ∂

∂θ`
Gh
θ (xn , x jn−1

n−1)
n−2∏
s=0

Gh
θ (x js+1

s+1 , x js
s)

}
+

[
Gh
θ (xn , x jn−1

n−1)
n−2∑
r=0

(∂

∂θ`
Gh
θ (x jr+1

r+1 , x jr
r)

n−2∏
s 6=r
s=0

Gh
θ (x js+1

s+1 , x js
s)

)]
.

In the above expression and in what follows, any instance of x j0
m should be interpreted as

simply xm . Now let us push all summations over j1, . . . , jn−2 inside to obtain

∂

∂θ`
p (xm+1 |xm ;θ) ≈ k

∑
jn−1

{ ∂

∂θ`
Gh
θ (xn , x jn−1

n−1)
(
kn−2

∑
jn−2

· · ·∑
j1

n−2∏
s=0

Gh
θ (x js+1

s+1 , x js
s)

)}
+

[
Gh
θ (xn , x jn−1

n−1)kn−2
∑
jn−2

· · ·∑
j1

n−2∑
r=0

(∂

∂θ`
Gh
θ (x jr+1

r+1 , x jr
r)

n−2∏
s 6=r
s=0

Gh
θ (x js+1

s+1 , x js
s)

)]
.

A.2. GRADIENT COMPUTATION 79

Now note that by our previous definitions, we have that

kn−2
∑
jn−2

· · ·∑
j1

F−2∏
s=0

Gh
θ (x js+1

s+1 , x js
s) = An−2q 1 = q n−1.

In an analogous fashion, let us define the jn−1-th element of the gradient vector q n−1,` by

q jn−1

n−1,` = kn−2
∑
jn−2

· · ·∑
j1

n−2∑
r=0

(∂

∂θ`
Gh
θ (x jr+1

r+1 , x jr
r)

n−2∏
s 6=r
s=0

Gh
θ (x js+1

s+1 , x js
s)

)
. (A.9)

Let us define the jn−1-th element of the vector Γn−1,` by

Γ
jn−1

n−1,` = k
∂

∂θ`
Gh
θ (xm+1, x jn−1

n−1).

Using this together with our old definition of Γn−1, we have

∂

∂θ`
p x̃m+1 (xm+1 | x̃m = xm ;θ) ≈ [

Γn−1,`
]ᵀ q n−1 + [Γn−1]ᵀ q n−1,`.

Let us now define the (jr+1, jr) element of the matrix A` by

A jr+1, jr

`
= k

∂

∂θ`
Gh
θ (x jr+1

r+1 , x jr
r).

Then let us return to (A.9). By peeling off the r = n −2 term, we can derive:

q n−1,` = A` q n−2 +A q n−2,`

where q n−2,` is defined analogously to q n−1,`. It is clear that after a finite number of such
manipulations, we will reach the r = 0 term. In this case, the product term will be empty
(and hence equal 1), leaving us with only the derivative with respect to θ` of Gh

θ
(x j1

1 , xm).
In this way, we may derive the following algorithm:

1. We begin with

q j1

1,` =
∂

∂θ`
Gh
θ (x j1

1 , xm).

2. We then iteratively define, for r = 1, . . . ,n −2,

q r+1,` = A` q r +A q r,`. (A.10)

3. We finish with:

∂

∂θ`
p x̃m+1 (xm+1 | x̃m = xm ;θ) ≈ [

Γm+1,`
]ᵀ q n−1 + [Γm+1]ᵀ q n−1,`.

80 APPENDIX A. DERIVATION OF DTQ METHOD

Using this together with (A.6) in (A.8), we obtain

∂

∂θ`
L (θ) ≈

M−1∑
m=0

[
Γm+1,`

]ᵀ q n−1 + [Γm+1]ᵀ q n−1,`

[Γm+1]ᵀ An−2q 1
. (A.11)

A.3 Multiple sample paths

Before proceeding, let us revisit (A.5). We can write

p x̃1 (x1 | x̃m = xm ;θ) =Gh
θ (x1, xm) =

∫
y

Gh
θ (x1, y)δ(y −xm)dy. (A.12)

The term on the right-hand side can be interpreted as evolving the initial density p x̃m (y) =
δ(y−xm) forward by h units of time. We note that conditioning on x̃m = xm on the left-hand
side leads to a Dirac delta initial density on the right-hand side. This will be an important
ingredient in the algorithm that follows.

A.3.1 Likelihood Computation

Now let us reinterpret x = x0, x1, . . . , xM as a sequence of vector-valued observations. For
each s = 1,2, . . . ,ν, the sequence xs

0, xs
1, . . . , xs

M is a scalar time series. With these changes, the
derivation of the log likelihood from (A.2) to (A.3) holds without any changes.

The only real change is that (A.4) only holds for i ∈ {2, . . . ,n}. When i = 1, the quantity
that must be computed is:

p x̃1 (x1 | x̃m = xm ;θ), (A.13)

where we have many samples {xs
m}νs=1 of the random variable x̃m . When ν> 1, these sam-

ples can be used to estimate the density of x̃m as follows:

p x̃m (y) ≈ 1

ν

ν∑
s=1

δ(y −xs
m). (A.14)

This approximation is a density estimate that corresponds to the spatial derivative of the
empirical cumulative distribution function of the samples. By logic analogous to (A.12)
and the above discussion, we can then evaluate (A.13) by

p x̃1 (x1 | x̃m = xm ;θ) =
∫

y
Gh
θ (x1, y) p x̃m (y)dy

≈ 1

ν

ν∑
s=1

Gh
θ (x1, xs

m). (A.15)

We make the approximation (A.14) so that the density along each sample path evolves with
the same initial condition. Without such an approximation, the calculation (A.7) would
have to be repeated ν times.

The calculation of the likelihood now proceeds just as in (A.3) with Gh
θ

(x1, xm) replaced
by (A.15). We now redefine q 1 such that its j1-th element is (A.15) evaluated at x1 = x j1

1 .

A.4. ADJOINT BASED GRADIENT COMPUTATION 81

We also redefine Γm+1 :=Γn−1 to be a matrix whose (jn , jn−1) entry is

Γ
jn , jn−1

m+1 = kGh
θ (x jn

m+1, x jn−1

n−1).

With these definitions, (A.6) becomes

p x̃m+1 (xm+1 | x̃m = xm ;θ) ≈
ν∏

jn=1

(
[Γm+1]ᵀ An−2q m

)
jn

, (A.16)

where (·)s denotes the s-th component of the vector in parentheses. Similarly, (A.7) be-
comes

L (θ) ≈
M−1∑
m=0

ν∑
jn=1

log
(
[Γm+1]ᵀ An−2q m

)
jn

. (A.17)

A.3.2 Gradient Computation

The derivation of the gradient of L (θ), as given in Section A.3.1, now proceeds just as
before with Gh

θ
(x1, xm) replaced by (A.15). The only changes required in the algorithm are,

first, to redefine

q j1

1,` =
1

ν

ν∑
s=1

∂

∂θ`
Gh
θ (x1, xs

m)

and, second, to redefine Γm+1,` as a matrix whose (jn , jn−1) entry is

Γ
jn , jn−1

m+1,` = k
∂

∂θ`
Gh
θ (x jn

m+1, x jn−1

n−1).

With these changes, the gradient becomes

∂

∂θ`
L (θ) ≈

M−1∑
m=0

ν∑
jn=1

([
Γm+1,`

]ᵀ q n−1 + [Γm+1]ᵀ q n−1,`

)
jn(

[Γm+1]ᵀ An−2 q m

)
jn

, (A.18)

where q is computed using (A.10) just as before.

A.4 Adjoint based Gradient Computation

In Section 3.2.2, we develop an algorithm for the direct computation of the gradient of the
negative log likelihood function

− logL(θ) =−
M−1∑
m=0

log p(xm+1 |xm ;θ), (A.19)

where pX tm+1
(xm+1 |X tm = xm ;θ) is the conditional density of X tm+1 = xm+1 given X tm = xm .

We compute this conditional density using the DTQ method in (3.11):

p(xm+1 |xm ;θ) = [Γm+1]ᵀ An−2 q m , (A.20)

82 APPENDIX A. DERIVATION OF DTQ METHOD

where q m represents the first step, An−2 represents the next n−2 steps, and Γᵀm+1 is the last
step. Suppose that θ ∈ RN . Using this, we can obtain an evolution equation for (∇p)`,1 ≤
`≤ N using the direct method

∂L(θ)

∂θ`
= ∂[Γm+1]ᵀ

∂θ`
An−2 q m + [Γm+1]ᵀ

∂(An−2)

∂θ`
q m + [Γm+1]ᵀ An−2 ∂q m

∂θ`

= [Γm+1,`]ᵀ An−2 q m + [Γm+1]ᵀ A` q m + [Γm+1]ᵀ An−2 q m,`. (A.21)

This is the direct method for computing the gradients. It requires computation of N differ-
ent (2L +1)× (2L +1) matrices, A`. To avoid this computation, we use the adjoint method
developed by Bhat and Madushani (2016). Let us revisit the computation for the DTQ
method. On a given inter-observation time interval (tm , tm+1) we consider a discretized
temporal grid, τ0 = tm ,τn = tm+1,τi = tm +i h for 0 ≤ i ≤ n and grid spacing h = (tm+1− tm)/n.
We have the transition densities on the intermediate points in this interval as q 1, . . . , q n−1
using (3.9), (3.10) and (3.11). We introduce M additional new variables, pm for m = 1, . . . , M ,
called state variables. They denote the transition density pX tm+1

(z j |X tm = xm ;θ) at observa-
tion times tm on a discretized spatial grid {z j }L

j=−L . The collection of all these state variables
is p = (p1, p2, . . . , p M) for m = 1, . . . , M . These are the unknown transition densities that we
want to compute. To help compute these densities, we introduce a function, φ, dependent
solely on p ,

φ(p) =
M∑

m=1
φ(pm). (A.22)

This function plays the role of the negative likelihood function defined in (A.19). Our aim
is to take a total derivative of the negative log likelihood function with respect to the θ

vector. We have removed the explicit dependence of the likelihood function on θ using the
φ function. The gradient we seek can thus be written with the differential operator, Dθ, as

Dθ[φ(p)] =∑
m

Dθ[φm(pm)] (A.23)

=∑
m

Dp [φm(pm)] ·Dθ[pm]. (A.24)

In the direct method for the gradient computation in (A.21), we see that Dθ[pm] is the
computationally intense part. To avoid this computation we introduce a function γm that
implicitly relates p to θ, the parameter vector such that

γm(pm ,θ) ≡ 0 =⇒ Dθ[γm(pm ,θ)] ≡ 0 (A.25)
=⇒ Dpm

[γm(pm ,θ)]︸ ︷︷ ︸
Matrix

·Dθ[pm]︸ ︷︷ ︸
Vector

+Dθ[γm(pm ,θ)]︸ ︷︷ ︸
Vector

≡ 0. (A.26)

We can solve this linear system to find the required Dθ vector:

Dθpm =−(Dpm
[γm(pm ,θ)])

−1
Dθ[γm(pm ,θ)]. (A.27)

This gives us the complete derivative Dθ[φ(p)] as

Dθ[φ(p)] =−∑
m

Dp [φm(pm)] · (Dpm
[γm(pm ,θ)])

−1
Dθ[γm(pm ,θ)]. (A.28)

A.4. ADJOINT BASED GRADIENT COMPUTATION 83

We can rewrite this system using a set of Lagrange multipliers, {λm}m=1
M

λᵀ
m = Dp [φm(pm)] · (Dpm

[γm(pm ,θ)])
−1

. (A.29)

We can now write the gradient equation and the adjoint equation respectively as,

Dθ[φ(p)] =∑
m
λᵀ

mDθ[γm(pm ,θ)], (A.30a)

(Dpm
[γm(pm ,θ)])ᵀλm =−(Dpm

[φm(pm ,θ)]). (A.30b)

Solving the linear system for the adjoint equation will help us solve for the required gra-
dient.

Next, we present how the adjoint method is applicable with the computation of the
DTQ method. The iterative step of the DTQ method q i+1 = A q i can be written as a system
of block matrices to compute pm+1 = (qᵀ

1, . . . , qᵀ
n−1)ᵀ as follows:

Kpm+1 = v m+1, (A.31)

where v m+1 = (qᵀ
1, . . . ,0)ᵀ and

K =

I O−A I
−A I

.

O −A I

 . (A.32)

Here 0 denotes a zero row vector of the same length as q i . Also, O denotes a zero matrix
and I denotes an identity matrix, both with the same dimension as that of the matrix A.
Therefore, the block matrix K has dimension (2L + 1)(n − 1)× (2L + 1)(n − 1). Now define
w m+1 = (0,0, · · · ,0,Γᵀn−1)ᵀ, a vector of the same length as pm+1 for the interval (tm , tm+1).
Then we can write the negative log likelihood in (A.19) as

−L (θ) ≈−
M−1∑
m=0

log
(
wᵀ

m+1 pm+1

)
. (A.33)

Let us define the Lagrangian L as follows:

L(pm+1,θ,λm+1) =
M−1∑
m=0

[
− log

(
wᵀ

m+1 pm+1

)+λᵀ
m+1

(
Kpm+1 −v m+1

)]
. (A.34)

Here, pm+1 is the state solution from (A.31) and λm+1 is a vector of Lagrange multipliers.
Now, by taking the variations of the Lagrangian with respect to λm+1 and pm+1, we obtain
the state equation,

Lλm+1 (pm+1,θ,λm+1) = Kpm+1 −v m+1 = 0, (A.35)

and the adjoint equation,

Lpm+1
(pm+1,θ,λm+1) =− w m+1

wᵀ
m+1 pm+1

+Kᵀλm+1 = 0. (A.36)

84 APPENDIX A. DERIVATION OF DTQ METHOD

In the above equations, we have used the subscript on L to denote the variables with re-
spect to which we have differentiated. We compute the gradient of the log likelihood by
taking the derivative of the Lagrangian with respect to each θ`:

Lθ`(pm+1,θ,λm+1) =−
M−1∑
m=0

 pᵀ
m+1

∂w m+1

∂θ`

wᵀ
m+1 pm+1

+
M−1∑
m=0

Qᵀλm+1 =−∂L (θ)

∂θ`
, (A.37)

where
Q = ∂K

∂θ`
pm+1 −

∂v m+1

∂θ`
. (A.38)

We rewrite (A.37) as

− ∂L (θ)

∂θ`
=−

M−1∑
m=0

 qᵀ
n−1

∂Γn−1

∂θ`

Γᵀn−1q n−1

−
M−1∑
m=0

[
∂q 1

∂θ`

]ᵀ
λ1 −

M−1∑
m=0

n−2∑
i=1

[
∂A

∂θ`
q i

]ᵀ
λi+1. (A.39)

Let λᵀ
m+1 = (λᵀ

1,λᵀ
2, · · · ,λᵀ

n−1). Then, the adjoint equation (A.36) can be written as the follow-
ing temporally evolving system of equations, which can be solved backward in time for
i = 1, · · · ,n −2

λn−(i+1) −Kᵀλn−i = 0, (A.40a)

λn−1 = 1

Γᵀn−1q n−1
Γn−1. (A.40b)

The adjoint method to compute the gradient can now be summarized. For each fixed m,
the procedure is as follows.

1 Given the unknown parameter vector θ, solve the state/forward problem equation
(3.10) to find q m+1. This is the same as solving the time evolution system in (3.11).

2 Given θ and q m+1, solve the adjoint equation (A.36) to find λm+1. This is same as
solving the time evolution system in (A.40a-A.40b).

3 With q m+1, λm+1, use (A.39) to compute the gradient.

We follow this procedure for each Markovian piece of the likelihood p(xm+1 |xm ;θ). For
each piece, we need n steps in time to solve for the state q and n steps in time to solve
for the adjoint λ. In total, across the entire time series, we need 2Mn steps to compute the
log likelihood and its gradient. In particular, note that the number of steps in time does
not depend on the dimension of θ. This is in sharp contrast to a direct (i.e., non-adjoint)
method computation of the gradient, in which one would have to perform a forward evo-
lution in time (analogous to (3.10)) for each component of θ. Such a method would require
Mn(1+|θ|) steps to compute the log likelihood and its gradient, where |θ| is the dimension
of θ.

	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Introduction
	Bridge EM Introduction
	Summary
	Related Work

	DTQ Introduction
	Summary
	Related Work

	Outline

	EM via Diffusion Bridge
	Problem Setup
	Parameterization
	Data
	Diffusion Bridge
	Expectation Maximization (EM)

	Experiments
	Experiment 1: Varying Number of Time Series
	Experiment 2: Varying Length of Time Series
	Experiment 3: Varying Noise Strength
	Experiment 4: Varying Data Augmentation

	Discussion

	Density Tracking by Quadrature
	Statistical Model
	DTQ method
	Likelihood Computation
	Gradient Computation

	Two-dimensional Coupled SDE
	Results
	Linear SDE (Ornstein-Uhlenbeck process)
	Nonlinear SDE (Double Well Potential)
	Generic Polynomial Drift and Diffusion Functions
	Coupled SDEs

	Discussion

	SDE Filtering
	Introduction
	Statistical Method
	Inference Problem
	Metropolis Algorithm

	Scalable Implementation
	Scala/Breeze
	Spark

	Results
	Equispaced Time Series
	Non-equispaced Time Series
	Scaling

	Discussion

	References
	Appendices
	Derivation of DTQ method
	Likelihood Computation
	Gradient Computation
	Multiple sample paths
	Likelihood Computation
	Gradient Computation

	Adjoint based Gradient Computation

