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Abstract
We proposed an end-to-end deep learning convolutional neural network (DCNN) for region-of-interest based multi-parameter  
quantification (RMQ-Net) to accelerate quantitative ultrashort echo time (UTE) MRI of the knee joint with automatic 
multi-tissue segmentation and relaxometry mapping. The study involved UTE-based T1 (UTE-T1) and Adiabatic T1ρ 
(UTE-AdiabT1ρ) mapping of the knee joint of 65 human subjects, including 20 normal controls, 29 with doubtful-minimal 
osteoarthritis (OA), and 16 with moderate-severe OA. Comparison studies were performed on UTE-T1 and UTE-AdiabT1ρ 
measurements using 100%, 43%, 26%, and 18% UTE MRI data as the inputs and the effects on the prediction quality of the 
RMQ-Net. The RMQ-net was modified and retrained accordingly with different combinations of inputs. Both ROI-based 
and voxel-based Pearson correlation analyses were performed. High Pearson correlation coefficients were achieved between 
the RMQ-Net predicted UTE-T1 and UTE-AdiabT1ρ results and the ground truth for segmented cartilage with acceleration 
factors ranging from 2.3 to 5.7. With an acceleration factor of 5.7, the Pearson r-value achieved 0.908 (ROI-based) and 
0.945 (voxel-based) for UTE-T1, and 0.733 (ROI-based) and 0.895 (voxel-based) for UTE-AdiabT1ρ, correspondingly. The 
results demonstrated that RMQ-net can significantly accelerate quantitative UTE imaging with automated segmentation of 
articular cartilage in the knee joint.

Keywords Quantitative MRI · Automated segmentation · DCNN · RMQ-Net · UTE · Knee joint · OA

Introduction

Osteoarthritis (OA) is generally considered a heterogene-
ous and multifactorial disease associated with progres-
sive loss of articular cartilage [1]. Recent understanding 
of OA has shifted from a cartilage-centric focus to the 
concept of “whole organ disease” [2]. Human knee joints 

are composed of different tissues that interact and allow 
joints to function over long periods of time. When one 
joint tissue begins to deteriorate, it will likely affect other 
joint tissues and ultimately contribute to the failure of the 
joint as a whole [3]. Unfortunately, conventional magnetic 
resonance imaging (MRI) sequences can only assess long 
 T2 tissues or tissue components, such as the more super-
ficial layers of articular cartilage, synovium, muscle, and 
fat. Many knee joint tissues or tissue components, such 
as the deep cartilage and osteochondral junction, menisci, 
ligaments, tendons, and bone, have short  T2s and show 
little signal with clinical sequences [4–6]. Ultrashort echo 
time (UTE) sequences with echo times (TEs) of less than 
0.1 ms allow direct morphological imaging of both short 
and long  T2 tissues in the knee joint [6–8]. A series of 
quantitative UTE MRI techniques, including T1 [9, 10], 
T1ρ [11, 12], Adiabatic T1ρ (AdiabT1ρ) [13], T2* [14, 
15], magnetization transfer [16], perfusion [17], diffusion 
[18, 19], and quantitative susceptibility mapping [20, 21], 
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have also been developed to probe biochemical alterations 
in all major knee joint tissues, thereby providing a truly 
“whole organ disease” approach for more comprehensive 
assessment of OA.

Compared with qualitative MRI, quantitative MRI 
(qMRI) is a more accurate approach to evaluating under-
lying pathology and disease course [22]. However, 
qMRI is typically much more time-consuming due to the 
requirement of repeated data acquisitions, for example, 
different repetition times (TRs) or flip angles (FAs) for 
T1 mapping [9, 10], different spin-locking times (TSLs) 
for T1ρ or AdiabT1ρ mapping [11–13], and different echo 
times (TEs) for T2* mapping [14, 15]. Another challenge 
is related to the various knee joint tissues involved in 
OA, which can now be evaluated with UTE sequences. 
Conventional MRI cannot quantify short T2 tissues and 
focuses mainly on the superficial layers of articular car-
tilage. On the other hand, UTE MRI allows quantifying 
both short and long T2 tissues in the knee joint. Segment-
ing and quantitatively mapping the various knee joint tis-
sues are much more complicated and time-consuming.

Deep convolutional neural networks (DCNN) are 
feasible methods for accurately segmenting multi-
component organs in medical imaging analysis [23, 24]. 
There has recently been intense interest in employing 
DCNN models to obtain faster quantitative mapping of 
MRI parameters, with or without physics information 
[25–27]. Deep learning models with multi-task or multi-
head design, generally with one as the major task and 
others as auxiliary tasks with weaker constraints, have 
been widely used in deep learning architectures to finish 
several tasks simultaneously. Multitasking is important 
for handling complex tasks simultaneously and has 
been widely used in medical imaging. Normally, the 
architecture for the multitask design could be categorized 
into cascaded, parallel, interacted, and hybrid [28]. In 
medical imaging, the multitask design is normally used 
for simultaneous segmentation and classification or 
regression of the lesion [29–31]. The reconstruction and 
segmentation can also be simultaneously performed [32, 
33]. Also, the limitations on the auxiliary task constraint 
normally would help improve the performance of the 
major task. The multi-task design strategy can be used to 
segment and quantify knee joint tissues.

In this study, a region-of-interest based multiple 
parameters quantitative MRI network (RMQ-net) was 
introduced to accelerate UTE-based qMRI while provid-
ing automatic tissue segmentation and relaxometry map-
ping based on a parallel multitask design. The efficacy of 
the RMQ-net was demonstrated on UTE-based T1 (UTE-
T1) and AdiabT1ρ (UTE-AdiabT1ρ) mapping of articular 
cartilage in the knee joint [9–13].

Method

Subjects

The study was approved by the local Institutional Review 
Board. A total of 65 human subjects (54.8 ± 16.9 years; 33 
females) were included in the study. The whole knee joint 
(29 left, 36 right) was scanned using a transmit/receive 
8-channel knee coil on a 3-T clinical MR system (MR750, 
GE Healthcare Technologies, Inc.). Informed consent was 
obtained from each subject. According to the condensed 
Kellgren–Lawrence (KL) grade [34], subjects were catego-
rized into three groups: normal controls (n = 20, KL = 0), 
doubtful-minimal OA (n = 29, KL = 1–2), and moderate-
severe OA (n = 16, KL = 3–4).

Data Acquisition, Preparation, and Pre‑processing

Three-dimensional UTE cones data sampling was per-
formed using a TE of 32 µs, a TR of 20 ms, and FAs of 5°, 
10°, 20°, and 30°, respectively, with a scan time of 2 min 
22 s for each flip angle for UTE-T1 mapping [10]. Multi-
ple spokes  (Nsp) were acquired after each  AdiabT1ρ prepa-
ration to speed up data acquisition. For UTE-AdiabT1ρ 
mapping, the scan parameters included a TR of 500 ms, an 
FA of 10°, an Nsp of 25, and 7 TSLs of 0, 12, 24, 36, 48, 
72, and 96 ms, with a scan time of 2 min 34 s for each TSL 
[13]. Other imaging parameters included a field of view 
(FOV) of 15 × 15 × 10.8  cm3, a data acquisition matrix 
size of 256 × 256 × 36, a slice thickness of 3.0 mm, an 
acquired voxel size of 0.59 × 0.59 × 3.0  mm3, and a sam-
pling bandwidth of 166 kHz. Additionally, B1 mapping 
was achieved using 3D UTE cones actual flip angle imag-
ing (AFI) with two interleaved TRs of 20 and 100 ms, an 
FA of 45°, a reduced matrix size of 128 × 128 × 18, and a 
total scan time of 4 min 57 s [9].

The UTE raw data were acquired in k-space following 
the 3D Cones trajectories. These complex-valued data 
were regridded onto a 3D Cartesian space, followed by 
fast Fourier transform to generate complex image data. 
Magnitude images were then generated. Subsequently, 
motion registration was applied to all 3D UTE magnitude 
images using the Elastix software, where a rigid affine 
transform was followed by a non-rigid b-spline registration 
[35, 36]. Multiple parametric maps from all acquired 
data were taken as ground truth (GT) and obtained using 
MATLAB 2017b (The MathWorks, Inc.). M0, UTE-T1, 
UTE-AdiabT1ρ, and B1 maps were obtained via non-
linear fitting using the Levenberg‐Marquardt algorithm 
[10, 13]. The fatty areas, such as the bone marrow regions, 
which had low signal intensity due to fat suppression in 
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UTE-AdiabT1ρ imaging, were removed in the ground 
truth map through simple thresholding. Regions of interest 
(ROIs) for the cartilage area were labeled with homemade 
Matlab code by one experienced radiologist with over 
15  years of experience in musculoskeletal radiology. 
Real values were used as the input MRI signals for the 
RMQ-Net.

A total of 1200 slice images from 50 subjects (includ-
ing healthy volunteers and patients with different degrees 
of OA) were used for model training, and 366 images of 15 
additional subjects were used for model validation. The data 
split was accomplished at the patient level. All slices from 
the same subject were assigned to the training, testing, or 
validation cohort. The DCNNs were designed and trained 
with PyTorch 1.1.0 on a workstation with an Nvidia GTX 
1080 Ti (11 GB GPU memory).

Network Design

The RMQ-Net was designed based on a U-Net style DCNN 
but with two branches for outputs, named Reg_branch and 
Seg_branch (Fig. 1). The input of the RMQ-net is MRI 
signals with different FAs and TSLs. The input channel 
number of the first layer in the network was modified 
according to the input MRI signals. Along the encoder path, 
down-samplings were applied to enable subsequent feature 
extractions. Latent features were shared for up-sampling 
operations of both branches. Between convolutional blocks, 
skip connections were established. For the Reg_branch, 
quantitative MRI parameter maps (M0, T1, B1, and T1ρ) 
were generated according to the voxel-fitting-based maps 
as the ground truth, with L1 loss  (lossmap) as the constraint, 
as shown in Eq. (1).

where Y is the ground truth mapping generated by conven-
tional fitting procedure and Ŷ  is the prediction maps for 
M0, T1, B1, and T1ρ. For each parametric map, a dedicated 
Reg_branch is needed.

For Seg_branch, the cartilage mask was generated using 
segmentation loss  (lossseg), which is based on the binary 
cross entropy loss ( lossbce ) and dice loss ( lossdice ), as shown 
in Eq. (2).

where λ is the weight for binary cross entropy loss. The total 
loss for RMQ-Net  (losstotal) consists of  lossmap and  lossseg, 
as shown in Eq. (3).

To evaluate the efficacy of accelerated quantitative 
UTE MRI, inputs of the VMQ-net consist of a series 
of combinations of UTE MRI data with different FAs 
and TSLs. In total, five different combinations were 
investigated, including four FAs and seven TSLs 
(4FAs + 7TSLs) (total scan time of 32 min 38  s), two 
FAs and three TSLs (2FAs + 3TSLs) (total scan time of 
14 min 2 s), one FA and two TSLs (1FAs + 2TSLs) (total 
scan time of 8 min 18 s), and one FA and one TSL (5 
min 44 s). Details of the selected FAs and TSLs can be 
found in Table 1. The outputs of the RMQ-Net include 
multi-parameter mapping (UTE-T1 and UTE-AdiabT1ρ) 
and multi-ROIs (e.g., cartilage, menisci, ligaments, and 
tendons). The multi-parameter maps and segmented 
ROIs can be directly multiplied to generate perspective 

(1)lossmap = l1
(

Y , Ŷ
)

Y = [M0, T1,B1, T1�]

(2)lossseg = �lossbce + (1 − �)lossdice

(3)losstotal = �1lossmap + �2lossseg

Fig. 1  Network architecture for the proposed RMQ-Net was designed 
based on a 5-layer modified Unet architecture with two branches. The 
Reg_branch generates quantitative MRI mapping (M0, T1, B1, and 

T1ρ). The Seg_branch generates the segmentation of various knee 
joint tissue components, such as cartilage, meniscus, and ligaments 
(focusing on the articular cartilage in this study)
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quantitative relaxometry maps for each knee joint tissue. 
For simplicity, only the articular cartilage was investigated 
in this feasibility study.

Training and Testing

The design and implementation of RMQ-Net were based 
on PyTorch 1.1.0 using a workstation with an Nvidia GTX 
1080 Ti (11 GB GPU memory). Hyper-parameters for 
training the RMQ-net included the optimizer of Adam, a 
learning rate from 0.001 with a 3-steps cosine-annealing 
strategy, and epochs of 600. Models of different inputs 
combined with the lowest  losstotal during training were 
saved as the best model for further evaluation.

Evaluation

Pearson correlation analyses were carried out to evaluate 
the performance and efficiency of RMQ-net with differ-
ent combinations of UTE MRI data input as outlined in 
Table 1. Automatic segmentation based on the RMQ-net 
generated masks for the articular cartilage and menisci, 
which were compared with the manual segmentation by 
the experienced radiologist (the ground truth) using Pear-
son correlation analyses. Both ROI-based (mean UTE-T1 
and UTE-AdiabT1ρ values for cartilage in each slice) and 
voxel-based (UTE-T1 and UTE-AdiabT1ρ values for each 
voxel in the segmented cartilage regions) analyses were 
performed. Normalized L2 (normalized root mean squared 
error) and L1 (normalized mean or median absolute dif-
ference) metrics were also calculated. The statistics were 
analyzed with Python scipy packages [37] .

Results

Accelerated Quantitative UTE MRI with the RMQ‑net

Four different combinations of UTE MRI data were 
assembled as inputs of the RMQ-net to test the feasibility 
of accelerated quantification, as shown in Table 1. Repre-
sentative ground truth and predicated T1_map and T1ρ_
map results for the articular cartilage with different combi-
nations of inputs, including 1FA + 2TSLs, 2FAs + 3TSLs, 
and 4FAs + 7TSLs, are shown in Fig. 2.

Correlations Between RMQ‑net Segmented 
Quantitative Results and the Ground Truth

For the RMQ-net segmented cartilage, Pearson correla-
tions between the ROI-based ground truth and predicted 
UTE-T1 results can be found in Fig. 3, where r-values 
slightly decreased with fewer FAs and TSLs. The cor-
relation r-values are 0.918 for 4FAs + 7TSLs, 0.911 for 
2FAs + 3TSLs, 0.904 for 1FA + 2TSLs, and 0.907 for 
1FA + 1TSL. The r-value remains largely unchanged while 
the total scan time is reduced by up to 5.7-fold, suggest-
ing that the cartilage area can be robustly segmented and 
quantified with a fraction of the total qMRI data.

Figure  4 shows the Pearson correlations between 
the voxel-based ground truth and predicted UTE-T1 
results, where r-values slightly decreased from 0.985 
for 4FAs + 7TSLs, to 0.965 for 2FAs + 3TSLs, 0.963 
for 1FA + 2TSLs, and 0.945 for 1FA + 1TSL. The high 
r-values further demonstrate the efficacy of the RMQ-net 
for automatic segmentation and accelerated quantitative 
UTE-T1 mapping of articular cartilage.

Table 1  The estimated scan time, acceleration factor, flip angles, spin-
locking times, and the corresponding Pearson correlation coefficients and 
P values between the ROI-based and voxel-based ground truth and the 

RMQ-Net predicted UTE-T1 and UTE-AdiabT1ρ results for four differ-
ent combinations of 4FAs + 7TSLs, 2FAs + 3TSLs, 1FA + 2TSLs, and 
1FA + 1TSL

Inputs Estimated 
scan time 
(minutes)

Acceleration 
factor

FAs (degree) TSLs (ms) Pearson correlation between 
predicted and ground truth ROI (p 
values)

Pearson correlation between 
predicted and ground truth of 
voxel (p values)

T1_cartilage T1ρ_cartilage T1_cartilage T1ρ_cartilage

4FAs + 7TSLs 32.63 1 5, 10, 20, 30 0, 12, 24, 
36, 48, 72, 
96

0.918 
(p < 0.0001)

0.816 
(p < 0.0001)

0.985 
(p < 0.0001)

0.969 
(p < 0.0001)

2FAs + 3TSLs 14.03 2.3 5,30 12, 36, 72 0.912 
(p < 0.0001)

0.841 
(p < 0.0001)

0.965 
(p < 0.0001)

0.910 
(p < 0.0001)

1FA + 2TSLs 8.3 3.9 30 12, 72 0.904 
(p < 0.0001)

0.785 
(p < 0.0001)

0.963 
(p < 0.0001)

0.914 
(p < 0.0001)

1FA + 1TSL 5.73 5.7 20 48 0.908 
(p < 0.0001)

0.733 
(p < 0.0001)

0.945 
(p < 0.0001)

0.895 
(p < 0.0001)
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Figure 5 shows the correlation study between the RMQ-
net generated UTE-AdiabT1ρ values from automati-
cally segmented cartilage and the ground truth from an 

experienced MSK radiologist. The r-values vary from 0.816 
for 4FAs + 7TSLs, to 0.841 for 2FAs + 3TSLs, 0.785 for 
1FA + 2TSLs, and 0.733 for 1FA + 1TSLs. Improved Pear-
son correlations were observed between the voxel-based 

Fig. 2  Representative ground truth (1st row) and predicted UTE-T1 (1st 
column) and UTE-T1ρ (2nd column) mapping based on 1FA + 2TSLs 
(2nd row), 2FAs + 3TSLs (3rd row), and 4FAs + 7TSLs (4th row), as 

well as the automated segmentation of the femoral and tibial articular 
cartilage (Cartilage_Seg, 3rd column), and the corresponding T1 (T1_
Cartilage, 4th column) and T1ρ maps (T1ρ_Cartilage, 5th column)

Fig. 3  ROI-based correlation between the ground truth cartilage T1 
(T1_Cartilage_GT) and the RMQ-Net predicted cartilage T1 (T1_
Cartilage_pred) results for 4FAs + 7TSLs (A), 2FAs + 3TSLs (B), 
1FA + 2TSLs (C), and 1FA + 1TSL (D), with Pearson correlations of 
0.918, 0.911, 0.904, and 0.908, respectively

Fig. 4  Voxel-based correlation between the ground truth cartilage T1 
and the RMQ-Net predicted cartilage T1 results for 4FAs + 7TSLs 
(A), 2FAs + 3TSLs (B), 1FA + 2TSLs (C), and 1FA + 1TSL (D), with 
Pearson correlations of 0.985, 0.965, 0.963, and 0.945, respectively
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ground truth and predicted UTE-T1ρ results (Fig. 6), where 
r-values varied from 0.969 for 4FAs + 7TSLs, to 0.910 
for 2FAs + 3TSLs, 0.914 for 1FA + 2TSLs, and 0.895 for 

Fig. 5  ROI-based correlation between the ground truth and the 
RMQ-Net predicted UTE-AdiabT1ρ results for four combinations 
of 4FAs + 7TSLs (A), 2FAs + 3TSLs (B), 1FA + 2TSLs (C), and 
1FA + 1TSL (D), with Pearson correlations of 0.816, 0.841, 0.785, 
and 0.733, respectively

Fig. 6  Voxel-based correlation between the ground truth cartilage T1ρ 
and the RMQ-Net predicted cartilage T1ρ results for 4FAs + 7TSLs (A), 
2FAs + 3TSLs (B), 1FA + 2TSLs (C), and 1FA + 1TSL (D), with Pearson 
correlations of 0.969, 0.910, 0.914, and 0.895, respectively Ta
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1FA + 1TSL. These results also suggest that the RMQ-net 
can automatically segment articular cartilage and accelerate 
quantitative UTE-T1ρ mapping.

Table  1 summarizes the four UTE MRI input data 
combinations and the corresponding Pearson correlation 
coefficients between the ROI-based and voxel-based 
ground truth and the RMQ-Net predicted UTE-T1 and 
UTE-AdiabT1ρ results. Normalized L1 and L2 errors are 
listed in Table 2. These results confirm the efficacy of 
the RMQ-net for simultaneous segmentation and multi-
parameter quantitative mapping of articular cartilage in 
the knee joint.

Discussion

Quantitative MRI analysis based on ROIs has received 
increasing attention in clinical settings, as it can bet-
ter investigate the pathogenesis and diagnostic basis of 
various diseases [38, 39] . However, the relatively long 
data acquisition time and associated time-consuming 
manual operations (e.g., segmentation and curve fitting) 
are major obstacles. In this study, we proposed a multi-
parameter quantitative MRI method based on ROIs using 
DCNNs. The RMQ-net allows simultaneous segmentation 
of knee joint tissues and quantitative UTE-T1 and UTE-
AdiabT1ρ mapping with reduced MRI data inputs. High 
Pearson correlation coefficients were achieved between 
the ground truth and the RMQ-Net predicted UTE-T1 and 
UTE-AdiabT1ρ results for all acceleration factors rang-
ing from 2.3 to 5.7. A 5.7-fold acceleration leads to only 
4% decrease in the Pearson correlation for UTE-T1. UTE-
AdiabT1ρ is subject to more significant error, with 10% 
decrease in the Pearson correlation for an acceleration fac-
tor of 5.7. This correlation is reduced by 6% for an acceler-
ation factor of 3.9 and 4% for an acceleration factor of 2.3. 
These results suggest that the RMQ-net allows for accurate 
simultaneous segmentation and multi-parameter quantita-
tive mapping of articular cartilage in the knee joint. The 
accelerated automated UTE qMRI likely benefits future 
clinical translational studies in OA.

The feasibility of simultaneous segmentation and quan-
tification based on DCNNs has been further validated in 
this study, which is the base for the ROIs-based quantita-
tive analysis. The framework of the DCNNs used in this 
study is the encoder-decoder structure with multi-task 
design, with the generation of qMRI mapping as the major 
task and the ROIs segmentation as the auxiliary task. 
Multi-task design is not rare in the medical image domain, 
such as the classification with segmentation [40, 41] , or 
classification with image generation [42] , where classi-
fication always be used as an auxiliary task for the seg-
mentation and the image generation is used as an auxiliary 

task for the classification. However, the combination of 
image generation, physical quantification, and segmenta-
tion as an auxiliary task has still not been fully studied. In 
this study, UTE-based MRI parametric mapping could be 
taken as an image generation task with physical informa-
tion constraints. It has been initially tested that the phys-
ics information can be useful for improving quantification 
accuracy by adding the physics loss design. However, it 
still needs further exploration of how much it could affect 
the results with different weights of the loss. Also, in fur-
ther study, generative adversarial network (GAN)-based 
image generation might be more promising for the gener-
ated quantitative mapping details with physics information 
considered in the loss design [43] .

The major benefit of the RMQ-net is that it may dramati-
cally reduce the MRI scan time. In this feasibility study, we 
found that reasonable quantitative maps and segmentation 
predictions could be generated with much reduced input 
of UTE MRI data. With reduced FAs and TSLs, it could 
be observed that the ROIs-based r-values decrease slightly 
while the total scan time is reduced by fourfold. Therefore, 
it is an efficient technique for accelerated qMRI without 
compromising quantitative accuracy. For further studies, we 
will continue optimizing the network structure by introduc-
ing transformer and diffusion modules to stabilize the out-
put prediction of both the quantification mapping and the 
segmentations. We will also explore reducing the sampling 
points of the MRI scan sequences, which may further reduce 
the total scan time for clinical applications.

There are several limitations to this study. Firstly, the 
backbone for this study is based on a simple Unet, which 
has the potential for further improvement of the performance 
with transformer and diffusion models. Secondly, only UTE 
MRI images were used for this study, as they may not lose 
generality, and more MRI images may be needed for fur-
ther validation. Thirdly, only 2D images were studied in this 
paper. It will be tested on the 3D volume and quantification 
in further study. Fourthly, the cartilage region was annotated 
by only one radiologist, who might introduce some annota-
tion bias. Fifthly, TSL and FA are empirically chosen for 
magnitude processing. Further optimization of spin-lock 
times and curve fitting based on complex-valued data may 
improve UTE-T1 and UTE-AdiabT1ρ mapping [44].

Conclusion

This study proposes an end-to-end deep learning neural 
network framework to simultaneously obtain multiple 
parameters qMRI map and the ROIs quickly and accurately. 
Testing it on UTE-T1 and UTE-AdiabT1ρ mapping dem-
onstrated that the RMQ-net could get reasonable results 
for both qMRI mapping and regional value analysis. More 



2133Journal of Imaging Informatics in Medicine (2024) 37:2126–2134 

ROI regions and qMRI maps could easily be extended for 
simultaneous generation based on this RMQ-net framework 
in the future.
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