Title
Erratum: Branching fraction measurements of the color-suppressed decays $B_0 \to D^{(*)0}\pi^0$, $D^{(*)0}\eta$, $D^{(*)0}\omega$, and $D^{(*)0}\eta'$ and measurement of the polarization in the decay $B_0 \to D^{*0}\omega$ (Physical Review D (2011) 84 (112007))

Permalink
https://escholarship.org/uc/item/4zk0979d

Journal
Physical Review D - Particles, Fields, Gravitation and Cosmology, 87(3)

ISSN
1550-7998

Authors
Lees, JP
Poireau, V
Tisserand, V
et al.

Publication Date
2013-02-06

DOI
10.1103/PhysRevD.87.039901

License
CC BY 4.0

Peer reviewed
Erratum: Branching fraction measurements of the color-suppressed decays $B^0 \to D^{(*)0} \pi^0$, $D^{(*)0} \eta$, $D^{(*)0} \omega$, and $D^{(*)0} \eta'$ and measurement of the polarization in the decay $B^0 \to D^{*0} \omega$

[Phys. Rev. D 84, 112007 (2011)]
We incorrectly reported in the abstract the measured branching fraction and uncertainties of the decay $\bar{B}^0 \rightarrow D^{*0} \eta'$. The revision of the abstract is given below.

We report updated branching fraction measurements of the color-suppressed decays $\bar{B}^0 \rightarrow D^0 \pi^0$, $D^{*0} \pi^0$, $D^0 \eta$, $D^{*0} \eta$, $D^0 \omega$, $D^{*0} \omega$, $D^0 \eta'$, and $D^{*0} \eta'$. We measure the branching fractions ($\times 10^{-4}$): $\mathcal{B}(\bar{B}^0 \rightarrow D^0 \pi^0) = 2.69 \pm 0.09 \pm 0.13$, $\mathcal{B}(\bar{B}^0 \rightarrow D^{*0} \pi^0) = 3.05 \pm 0.14 \pm 0.28$, $\mathcal{B}(\bar{B}^0 \rightarrow D^0 \eta) = 2.53 \pm 0.09 \pm 0.11$, $\mathcal{B}(\bar{B}^0 \rightarrow D^{*0} \eta) = 2.69 \pm 0.14 \pm 0.23$, $\mathcal{B}(\bar{B}^0 \rightarrow D^0 \omega) = 2.57 \pm 0.11 \pm 0.14$, $\mathcal{B}(\bar{B}^0 \rightarrow D^{*0} \omega) = 4.55 \pm 0.24 \pm 0.39$, $\mathcal{B}(\bar{B}^0 \rightarrow D^0 \eta') = 1.48 \pm 0.13 \pm 0.07$, and $\mathcal{B}(\bar{B}^0 \rightarrow D^{*0} \eta') = 1.48 \pm 0.22 \pm 0.13$. We also present the first measurement of the longitudinal polarization fraction of the decay channel $D^{*0} \omega$, $f_L = (66.5 \pm 4.7 \pm 1.5)$%. In the above, the first uncertainty is statistical and the second is systematic. The results are based on a sample of $(454 \pm 5) \times 10^6 B\bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance, with the BABAR detector at the PEP-II storage rings at SLAC. The measurements are the most precise determinations of these quantities from a single experiment. They are compared to theoretical predictions obtained by factorization, Soft Collinear Effective Theory (SCET), and perturbative QCD (pQCD). We find that the presence of final state interactions is favored and the measurements are in better agreement with SCET than with pQCD.