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THE HONEST EMBEDDING DIMENSION OF A NUMERICAL

SEMIGROUP.

RICHARD MONTGOMERY

Abstract. Attached to a singular analytic curve germ in d-space is a numer-

ical semigroup: a subset S of the non-negative integers which is closed under
addition and whose complement is finite. Conversely, associated to any numer-

ical semigroup S is a canonical mononial curve in e-space where e is the number

of minimal generators of the semigroup. It may happen that d < e = e(S) where
S is the semigroup of the curve in d-space. Define the minimal (or ‘honest’)

embedding of a numerical semigroup to be the smallest d such that S is realized

by a curve in d-space. Problem: characterize the numerical semigroups having
minimal embedding dimension d. The answer is known for the case d = 2 of

planar curves and reviewed in an Appendix to this paper. The case d = 3 of

the problem is open. Our main result is a characterization of the multiplicity
4 numerical semigroups whose minimal embedding dimension is 3. See figure

1. The motivation for this work came from thinking about Legendrian curve
singularities.

A numerical semigroup is a subset S ⊂ N of the natural numbers N closed under
addition and whose complement is finite. Invariantly attached to any curve singu-
larity in d-space is a numerical semigroup. See section 1. For example, if m < n
are relatively prime integers then the planar curve x = tm, y = tn +atn+1 + btn+2 + . . .
has the semigroup < m,n > attached to it regardless of the higher order terms
atn+1 + btn+1 + . . . etc. Here < m,n >= {km + ℓn ∶ k, ℓ ∈ N} denotes the semigroup
generated by m and n, i.e. all sums of m and n.

Any numerical semigroup S has a finite set {n1, n2, . . . , nk} ⊂ S of generators,
meaning elements such that every element of S is a sum of the ni. We write
S =< n1, n2, . . . , nk >. Among all possible finite generating sets of S the one with
the smallest cardinality is unique. The cardinality e of this minimal generating set
{n1, n2, . . . , ne} is called the embedding dimension of S. Underlying this ‘embed-
ding’ terminology is a construction. Form the monomial curve xi = tni , i = 1,2, . . . , e
in e-space using the minimal generating set as exponents. The semigroup attached
to the monomial curve is S. But many curves besides the monomial curve will
have the same semigroup S attached to them. Some might even lie in a space of
dimension d < e.
Definition 0.1. The minimal embedding dimension of a numerical semigroup S
is the minimal dimension d such that the semigroup is that of some analytic curve
germ (C,0)→ (Cd,0)
Example 0.1. The semigroup S =< 4,6,13 > consists of all integers which are sums
of 4,6 and 13, these being its minimal generating set. Its embedding dimension is
3. Its canonical curve is x = t4, y = t6, z = t13. The plane curve x = t4, y = t6 + t7
has this same semigroup. The generator 13 in the semigroup of this curve arises

Date: March 1, 2024.

1

ar
X

iv
:2

40
3.

00
58

8v
2 

 [
m

at
h.

A
G

] 
 4

 M
ar

 2
02

4



2 RICHARD MONTGOMERY

as the order of polynomial p(x, y) = y2 − x3, when pulled back to this plane curve :
p(x, y) = 2t13 + t14. So the minimal embedding dimension of S is 2.

Problem. Characterize those numerical semigroups whose minimal embedding
dimension is d.

This problem has been solved for the case d = 2 of plane curves. See Teissier [10]
proposition 3.2.1, on page 132. We recall and clarify this proposition and sketch a
proof based on the Puiseux characteristic in the Appendix at the end of the paper.
The case d = 3 of space curves appears to be open. See Castellanos [2], particularly
problem 2.4 and the examples in section 2 for perspective.

Teissier states his proposition 3.2.1 in a convoluted way so as to hold for all d ≤ e.
In the appendix I make what sense I can of his proposition as it applies to d > 2.
What he does is to provide a list of sufficient conditions amongst the e minimal
generators of a semigroup in order for that semigroup to have minimal embedding
dimension d ≤ e. Teissier’s conditions imply that curves to which the semigroup
is attached are complete intersections. All plane curve branches are complete in-
tersections which allows his conditions to be necessary and sufficient when d = 2.
Many space curve singularities fail to be complete intersections and consequently
Teissier’s conditions exclude many semigroups with minimial embedding dimension
3.

The “multiplicity” m of a numerical semigroup is its smallest nonzero element.
We have

me(S) ≤ e(S) ≤m(S).
where me(S), e(S), and m(S) are the minimal emdedding dimension, embedding
dimension and multiplicity of the semigroup S. (Refer to the first chapter of the
book [3] for more standard terminology around numerical semigroups.) If we refine
our problem according to multiplicity it becomes more tractable. For example,
semigroups of multiplicity 2 or 3 have minimal embedding dimension less than or
equal to 3 by the above inequality and so can be excluded as ‘trivial’ in the search
for solutions to the problem for d = 3. In this paper we will solve:

Problem. Describe all numerical semigroups whose minimal embedding dimen-
sion is 3 and whose multiplicity 4.

We solve this problem completely below. See theorem 1.1 and figure 1. To give
the readers a taste of the solution, represent an m = 4, e = 4 numerical semigroup
in the form S =< 4, n1, n2, n3 > with 4 < n1 < n2 < n3. Since e = 4 the four integers
4, n1, n2, n3 must represent all 4 congruence classes mod 4. They also must satisfy
the strict Kunz inequalities listed in equation (1) below. We will show that if n3 is
congruent to 2 mod 4 then S is not on our list. So for such S’s we have me(S) = 4.
This fact corresponds to the white top triangle of the Kuntz kite of figure 1. And
will see that among those semigroups of the form S =< 4,6, n2, n3 > if me(S) = 3
then we must have n3 = n2 + 2.

The Kunz cone associated to m = 4 gives us a good language within which to
solve the problem. We describe this cone after recalling how to attach a semigroup
to a curve.

0.1. Motivation: Legendrian semigroups. A Legendrian curve is a space curve
tangent to a contact distribution in 3-space. Legendrian curves are born from plane
curve singularities by a process known variously as “prolonging”, “Nash blow-up”
or “forming the conormal variety” and which shares many properties with the
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Figure 1. The Kunz cone for multiplicity 4 is the cone in R3 over
the interior of this kite when placed on the plane x1 + x2 + x3 = 1.
See equations (1). The set of lattice points in and on the boundary
of the cone for which xi ≡ i (mod 4) are in bijection with multi-
plicity 4 numerical semigroups. The set of such points lying in
the interior of the cone sweep out the semigroups with embedding
dimension 4. Those having minimal embedding dimension 3 cor-
respond to the shaded region of the kite and the interiors of its
edges. Those having minimal embedding 2 correspond to the left
and right vertices of the kite. Thanks to Emily O’Sullivan for
the figure.

classical blow-up of a singularity. The semigroup of a Legendrian curve has a close
but poorly understood relationship with the semigroup of the planar curve which
gave birth to it. See for example [5], [6], or [12]. The following questions motivate
this work.

What is the set of semigroups which arise from Legendrian curves?

More importantly, is this really an interesting question? For example, does the
semigroup of a singular Legendrian curve encode interesting unappreciated “contact
topological” properties of the curve? If the answer to the last question ends up being
“yes” then the answer to the second question would also be‘yes’.

As a beginning step towards answering these questions we have classified the
Legendrian semigroups of multiplicity 2, 3 and 4. We hope to present our findings
in a companion paper. The first two cases (m = 2 and 3) are easy and well-known.
Work on the last case (m = 4) naturally led into the problem solved here, since a
Legendrian semigroup must have minimal embedding dimension 3 or less.
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1. The semigroup of a curve

By a curve we mean a non-constant analytic map c ∶ (C,0) → (Cd,0). The
notation c ∶ (C,0) → (Cd,0) means that c(0) = 0. It also indicates that our true
interest is the germ of the curve, meaning its restriction to any small neighborhood
of 0. In order to attach a numerical semigroup to a curve we assume that the curve
c is well-parameterized:

Definition 1.1. A curve is well-parameterized if it is one-to-one as a map when
restricted to a sufficiently small neighborhood of zero.

If c is not well-parameterized then it can be replaced by another curve which is ‘the
same’ as c and which is well-parameterized. See the final subsection of this section.

Recall the order of a power series converging in a neighborhood of t = 0. The
order of f(t) = Σi≥0aiti, written “ord(f)”, is the smallest i such that ai ≠ 0. For
example ord(t3 +7t5) = 3. If C{t} denotes the space of power series which converge
in some neighborhood of 0 then

ord ∶ C{t}→ N.
The order is a valuation, i.e. a semigroup homomorphism: ord(fg) = ord(f) +
ord(g). LetO0 denote the ring of germs of analytic functions f ∶ (Cd,0)→ C defined
in a neighborhood of 0. Let C{x1, . . . , xd} denote the ring of convergent power series
in the coordinates xi of Cd, converging in some neighborhood (depending on the
series) of 0 ∈ Cd. Pull-back defines a ring homomorphism

c∗ ∶ C{x1, . . . , xd}→ C{t}
by sending p ∈ m to c∗p ∶= p ○ c. Thus c∗C{x1, . . . , xd} ⊂ C{t} is a subring. The
semigroup of c is the collection of all integers of the form n = ord(c∗p) which arise
in this way. In symbols

Definition 1.2 (Semigroup of a curve.). The semigroup of the analytic well-
parameterized curve c is the set of integers S = ord(c∗C{x1, . . . , xd}).

To see that S is closed under addition use ord(fg) = ord(f) + ord(g) and c∗(pq) =
(c∗p)(c∗q).

It may be helpful to write the pullback operation and order map out in coordi-
nates. Write out both our curve and our function in coordinates:

c(t) = (x0(t), x1(t), . . . , xd(t))
and p = p(x1, . . . , xd) where the xi are coordinates for Cd. Then

f(t) = c∗p(t) = p(x0(t), x1(t), . . . , xd(t))
is an analytic function of t.

Remark 1. We could replace O0 = C{x1, . . . , xd} by the ring of polynomials in the
xi or the algebra of formal power series in the xi or even germs of smooth functions
at 0 and we would obtain the same semigroup S as ord(c∗R). This is because c is
well-parameterized and as a consequence the semigroup S is numerical and as such
has a “conductor” , a number k such that all integers greater than or equal to k lie
in S. Considerations of degrees then show that by restricting oneself to polynomials
in the xi of a fixed degree (roughly degree (k/m) + 1 where m is the multiplicity of
the curve c) will suffice to realize all elements of S.
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To see that our semigroup S is “numerical”, i.e. that the complement of S is
finite, we must use that S is well-parameterized. Suppose, by way of contradiction,
that the complement of S were infinite. Then the g.c.d of S would not be 1, but
instead some integer k > 1. From this it follows that, roughly speaking, all the
exponents arising in all power series c∗p, p ∈ m would be divisible by k and from
this that we could express c(t) = γ(tk) for some analytic curve γ. This implies that
c is not well-parameterized. (We say ‘roughly speaking’ because we might need to
reparameterize first: c(t) = γ(τ(t)k) where τ ′(0) ≠ 0.)

The reader may wish to refer to section 5 of Arnol’d [1] for a beautiful perspective
on the relation between a curve and its semigroup.

1.0.1. Analytic equivalence. Call two curves c1, c2 ∶ (C,0) → (Cd,0) “analytically
equivalent” if there are germs of analytic diffeomorphisms Ψ ∶ (Cd,0) → (Cd,0)
and ψ ∶ (C,0) → (C,0) such that c2 = Ψ ○ c1 ○ ϕ. In the singularity literature this
equivalence relation is also called “RL equivalence”. We write c1 ∼ c2 to mean that
the two curves are analytically equivalent. One easily verifies that any analytically
equivalent curves share the same numerical semigroup. For us, this is the main
point of studying numerical semigroups.

By way of orienting ourselves to the subject, it may help to state a few elementary
results. Below, let S denote the semigroup of a curve c.

Fact. m(S) = 1 ⇐⇒ S = N ⇐⇒ c′(0) ≠ 0 ⇐⇒ c is equivalent to the line
t↦ (t,0, . . . ,0).

Fact: m(S) = 2 ⇐⇒ S =< 2,2k+1 > for some integer k ⇐⇒ c is equivalent to the
curve christened as the “Ak singularity”: (t2, t2k+1), or, if d > 2, (t2, t2k+1,0, . . . ,0).

Fact: If m(S) =m > 1 and n1 is the smallest generator of S besides m then c is
equivalent to a curve of the form x1(t) = tm, x2(t) = tn1 + . . . where the “ . . .” means
term of order greater than n1 and where ord(xi(t)) > n1 for i > 2 , if d > 2.

1.1. On well-parameterizing and real curves. Consider curves c, γ ∶ (C,0) →
(Cd,0) as being “the same curve” if there is a non-constant analytic map ϕ ∶ (C,0)→
(C,0) such that either c = γ ○ ϕ or γ = c ○ ϕ holds. Curves that are “the same” in
this sense share the same image: c(D) = γ(D′) for D,D′ ⊂ C sufficiently small
appropriate neighborhoods of zero.

Given a curve c which is not well-parameterized we can always find another curve
γ that is “the same” as c and which is well-parameterized. To give a quintessential
example, take d = 2 and c(t) = (x(t), y(t)) = (t4, t6). Then c is badly parameterized.
The curve γ(t) = (t2, t3) is “the same curve” as c since c = γ ○ ϕ with ϕ(t) = t2 and
γ is well-parameterized.

Here is an alternative definition of “well-parameterized”. A badly parameterized
curve c(t) can be factored as c = γ ○ ϕ where ϕ ∶ (C,0) → (C,0) is a reparameteri-
zation having ϕ′(0) = 0. A “well-parameterized curve’ is a curve that is not badly
parameterized.

Our original definition of “well-parameterized” in terms of being one-to-one does
not work for curves over R because of maps like ϕ(t) = t3 which are one-to-one over
R. If γ(t) = (t2, t3) then γ ○ ϕ is still one-to-one when viewed as a real curve but
we do not consider it to be well-parameterized.
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1.2. Kunz Cone. The Kunz cone for classifying multiplicity m semigroups is a
convex polyhedral cone in Rm−1 which provides a direct and concrete way to pa-
rameterize all semigroups of multiplicity m. The semigroups arise as a subset of
the lattice points in this cone. See [9] or [7] and references therein.

To describe the Kunz cone for multiplicitym = 4 we use 3 coordinates (x1, x2, x3) ∈
R3. To obtain a semigroup associated to a point in this cone we insist that the xi
are positive integers greater than 4 and that

xi ≡ i(mod4).

Definition 1.3. An Apery point in R3 is a point (x1, x2, x3) ∈ R3 with xi ∈ N,
xi > 4 and xi ≡ i. Here, this and all subsequent congruences “≡” are congruences
mod 4.

The semigroup associated to an Apery point is

S =< 4, x1, x2, x3 >
It is essential here that we do not impose the ordering x1 < x2 < x3. It is also
essential that the list 4, x1, x2, x3 need not be the list of minimal generators.

The Kunz cone is defined by the four inequalities

(1) Kunz cone =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1 + x2 ≥ x3
x3 + x2 ≥ x1
2x1 ≥ x2
2x3 ≥ x2

To understand how these inequalities arise, look at the first one. If x3 ≥ x1 + x2
then, since 1 + 2 ≡ 3(mod4) we have that x3 = x1 + x2 + 4k for some integer k ≥ 0.
It follows that x3 ∈< 4, x1, x2 > or that < 4, x1, x2 >=< 4, x1, x2, x3 >. So all Apery
points with x3 ≥ x1+x2 yield the same semigroup, and, notably, a semigroup whose
embedding dimension is 3 (or perhaps even 2) , not 4. Since we want a bijection
between points and semigroups, we exclude all Apery points having x3 > x1 + x2.
We keep the single point x3 = x1 +x2 so as to represent the semigroup < 4, x1, x2 >.

Proposition 1.1. The Apery points in the Kunz cone for multiplicity 4 are in bi-
jection with numerical semigroups of multiplicity 4. The points lying in the interior
of the cone (i.e. all inequalities are strict) correspond to those semigroups whose
embedding dimension is 4. The Apery points lying in the interior of the codimension
1 faces of the cone correspond to semigroups whose embedding dimension is 3 and
those lying on the rays of the cone (codimension 2 faces) correspond to semigroups
of embedding dimension 2.

Now, return to our problem of characterizing the multiplicity 4 semigroups whose
minimal embedding dimension is 3. All the points on the faces and rays of the Kunz
cone have embedding dimension 3 or less, and so minimal embedding dimension 2
or 3. In this way we have reduced our problem to the interior of the Kunz cone,
which is to say, to those semigroups whose embedding dimension is 4.

Theorem 1.1. Let S =< 4, x1, x2, x3 > be a multiplicity 4 semigroup with embedding
dimension 4, so that all the Kunz inequalities are strict. Then, S has minimal
embedding dimension 3 if and only if

● a) max(x1, x2, x3) ≠ x2
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● b) max(x1, x2, x3) > 2min(x1, x2, x3)

We have indicated these semigroups in figure XX. We are endebted here to the
thesis of O’Sullivan [8] for pointers in how to depict the Kunz cone via a slice. Here
we use the same slice x1 + x2 + x3 = 1 that she used. See figure 1.

It is easier to understand the theorem and give its proof if, instead of stating it
as above, we run through all 6 possible orderings of the xi:

(1) x1 < x2 < x3
(2) x2 < x1 < x3
(3) x1 < x3 < x2
(4) x3 < x1 < x2
(5) x2 < x3 < x1
(6) x3 < x2 < x1
Then item (a) of the theorem says that the orderings (3) and (4) do not occur for

any semigroup whose minimal embedding dimension is 3 and embedding dimension
is 4. So, for example, the semigroup < 4,7,9,10 > can only arise as the semigroup
of a curve in 4 dimensional space.

Item (b) of the theorem asserts that if the xi satisfy one of the orderings (1), (2),
or (5), (6) then the inequality of (b) is the necessary and sufficient conditions for
< 4, x1, x2, x3 > to have minimal embedding dimension 3 and embedding dimension
4. For example, if our generators are in the order of condition (1) and satisfy
x3 > 2x1 (and neccessarily x3 < x1 + x2) then the semigroup < 4, x1, x2, x3 > has
minimal embedding dimension 3 and embedding dimension 4. An example of such
a semigroup is < 4,5,10,11 >.

2. proof

Let n1 < n2 < n3 be the list x1, x2, x3 permuted so as to be in numerical order.
(For example, in case (5) n1 = x2, n2 = x3, n3 = x1.) Then, after a local diffeomor-
phism and reparameterization we can put our curve into the form

(2) x = t4, y = tn1 + atn1+s1 + . . . , z = tn2 + . . .

Here s1 > 0 and the . . . in both expansions means terms of order higher than the
smallest written down, so, in the case of z, of order higher than n2. When written
in this form we have ord(x(t)) = 4, ord(y(t)) = n1, ord(z(t)) = n2. Now ord(xk(ay+
bz)) ∈< 4, n1, n2 > so that, in order to realize the largest generator n3 of S we require
polynomials which contain terms quadratic in y, z. Since ord(ay2 + byz + cz2) ≥ 2n1
we require

(3) n3 ≥ 2n1
if S is to be the semigroup of a space curve.

We use inequality (3) to eliminate orderings (3) and (4). In both these cases
n3 = x2. If we are case (3) then n1 = x1, but the strict Kunz inequality requires that
x2 < 2x1 or n3 < 2n1 violating inequality (3). Similarly in case (4) we have n1 = x3
and the strict Kunz inequality asserts again that n3 < 2n1, violating inequality (3).

To finish off the proof we exhibit space curves for the other four orderings (1),
(2) and (5) , (6) which realizes the given semigroup. In these cases either n1 or n2
is x2 so that

n1 + n2 ≡ n3
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(Recall that all congruences “≡” are congruences mod 4.) The strict Kunz inequal-
ities then read

n3 < n1 + n2 = ord(y(t)z(t)).
We are left with the fact that if we can find a polynomial whose order is n3 then
we must have that

max{n2,2n1} < n3 < n1 + n2.
We are to show that any n3 in this range and congruent to 1 or 3 as appropriate,
can be realized as the order of a polynomial pulled back to the curve. We can set

n3 = 2n1 + s for 1 ≤ s < (n2 − n1)

and further fix the normal form (2) of the curve so that

x = t4, y = tn1 + tn1+s, z = tn2 .

Then

y2 = t2n1 + 2t2n1+s + t2n1+2s

If n1 = x2 then 2n1 ≡ 0 so that 2n1 = 4k. Then y2 − xk = 2t2n1+s + . . . so that
ord(y2 −xk) = n3. This takes care of cases (2) and (5). In the remaining two cases,
(1) and (6), 2n1 ≡ 2 and n2 ≡ 2 so that so that 2n1 = n2 + 4k which is the order of
xkz. Then y2 − xkz = 2t2n1+s + . . . and ord(y2 − xkz) = n3. This takes care of all
cases and completes the proof.

QED

3. Appendix. Teissier deciphered.

We describe necessary and sufficient conditions for a semigroup S to have minimal
embedding dimension me(S) = 2. It is a rewording and clarification of proposition
3.2.1 on p. 132-3 of Teissier [10]. We sketch a proof based on the Puiseux char-
acteristic of a plane curve and a recursion relation between this characteristic and
the semigroup of the curve. To do this, we will recall the Puiseux characteristic.

If me(S) > 2 then one implication in Teissier’s proposition still holds. This
direction gives a sufficient condition on a semigroup S to have me(S) = d for d ≤ e.
We describe what we have been able to understand of this part of the proposition.

3.1. Divisor and factor vector of an increasing list. Consider an increasing
list of positive integers of length e = g + 1:

b⃗ = [b0; b1, ..., bg]; bi < bi+1
Associated to this vector we have another integer vector which we will call its
“divisor vector”:

e⃗ = [e0, e1, e2, . . . , eg]
defined by the iteration scheme

(4) ei = g.c.d.(b0, ..., bi) , e0 = b0
Note that ei = g.c.d.(ei+1, bi) and that all the ei are factors of b0. (Some of them
may be 1.)

The list ei is non-increasing and satisfies ei∣ei−1. It follows that for each i > 0
there is an integer ni ≥ 1 given by

ni = ei−1/ei.
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The list of n’s supply another integer vector

n⃗ = [n1, . . . , ng],

now of length g, associated to b⃗. We call n⃗ the “factor vector”. Note that

ng = eg−1,

ei = ni+1ni+2 . . . ng.

In particular

b0 = n1n2 . . . ng.

3.2. Planar semigroups lie on the boundary of the Kunz cone. Set

m = b0
in order to denote the multiplicity of the curve corresponding to the semigroup S.
Since each ni ≥ 2 we have that m ≥ 2g or log2m ≥ g. Now, as long as m ≥ 6 we have
that m > log2m + 2 so m − 1 > g + 1. Whem m = 3,5 we have g = 1 or e = 2 and so
the planar semigroups lie on the 1-dimensional faces of the Kunz cone. In the case
m = 4 we just dealt with we can have g = 2 and so e = 3 = m − 1 and the planar
semigroups lie on the faces of the Kunz cone. It follows that in all situations in
which m > 2 the planar semigroups lie on the boundary of the Kunz cone.

3.3. Conditions for a semigroup to be that of a plane curve.

Proposition 3.1. Let S =< b0, b1, . . . , bg > be a numerical semigroup given by its
minimal generators bi listed in order. Write e⃗ = [e0, e1, . . . , eg] for the divisor vector
of [b0, b1, . . . , bg] and n⃗ = [n1, n2, . . . , ng] for its factor vector (ni = ei−1/ei).
S has minimal embedding dimension 2 if and only if the following three conditions

hold for its associated three integer vectors
(1): the divisor vector e⃗ is strictly decreasing and ends with 1.
(2): for i = 1, . . . , g we have nibi ∈< b0, b1, . . . , bi−1 >
(3): for i = 1, . . . , g − 1 we have nibi < bi+1

We sketch a proof of the proposition at the very end of this appendix. We do
so by translating the proposition, and the planar semigroups, into the languague of
Puiseux characteristics. We recall that language in time for the proof at the end.

Example 3.1. If S =< b0, b1, . . . > and b0, b1 are relatively prime then e1 = 1. If
condition (1) holds then there cannot be an e2, so it must be that g = 1. Thus
S =< b0, b1 > if S comes from a planar semigroup whose first two generators are
relatively prime. These are represented by the curves discussed in the first paragraph
of this paper.

Corollary 3.1. If m = b0 is the multiplicity of a semigroup S =< b0, b1, . . . , bg >
given by its minimal generating set bi and if S is planar, i.e. has minimal embedding
dimension 2, then the embedding dimension g+1 of S is less than or equal to 1 plus
the number of prime factors of m counted with multiplicity.

Proof of Corollary. The longest we can make the divisor vector [e0, e1, . . . , eg]
and keep it strictly decreasing beginning with m = e0 is 1 plus the number of prime
factors of m. We do this by omitting one factor at a time from mso that ei = ei−1/pi
where the pi exhaust the prime factors, taken with multiplicity, of m. QED
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Remark 3.1. Condition (1) is extraneous in that it is implied by condition (2)
and the assumption that the bi form a minimal set of generators. For, if (2) holds,
then the non-increasing list ei has to be strictly decreasing. To see this we argue by
contraposition. If ei is not strictly decreasing then there is an i such that ei−1 = ei
in which case ni = 1. But then (2) says that bi ∈< b1, . . . , bi−1 > which implies
that the generator bi can be omitted from our list of generators and we still have a
generating set for S.

3.4. An aside: self-duality and planarity. The conductor c of a numerical
semigroup S is the smallest element of S such that all integers greater than c lie in
S. The set of gaps of a numerical semigroup is the finite set N ∖ S. A numerical
semigroup is called “self-dual” if the cardinality of the set of its gaps is half of its
conductor c. It is a well-known fact that planar semigroups are self-dual. Here is a
notable example, described as “3.2.3 Remark” on p. 133 of Teissier, of a self-dual
semigroup which is not that of a planar curve.

Example 3.2 (Teissier). Set S =< 9,21,22 >. A session with GAP yields that
the conductor of S is 78 and the number of gaps is 39 so that S is self-dual. The
divisor list of S is e⃗ = [9,3,1] and the factor list is n⃗ = [3,3]. We have (b0, b1, b2) =
(9,21,22). Since n1b1 = 63 > b2 = 22 this semigroup fails condition of (3) of the
proposition so cannot be the semigroup of a planar curve.

3.5. Teissier’s proposition for non-planar curves. Teissier wrote his propo-
sition so that one direction of its implications holds for any minimal embedding
dimension d in place of d = 2. I describe the statement as I understand it. Take it
with a bit of scepticism, since I do not understand his proof.

Suppose that a semigroup S is given by its minimal generators bi as before. Drop
condition (1) of the proposition. Suppose that condition (2) holds. (Teissier labels
this condition (1)). And suppose that condition (3) holds, but not for all g−1 listed
indices, but instead for ℓ = g + 1 − d of these indices. Then there exists an analytic
curve γ ∶ (C,0)→ (Cd,0) having S as its semigroup.

He says nothing about the converse direction of the implication. It is generally
false as examples with e =me and b0, b1 relatively prime show.

Within the proof on page 133 Teissier says that condition (2) implies that the
canonical curve xi = tbi is a complete intersection. Is it a necessary and sufficient
condition to be a complete intersection? I do not know.

3.6. Strategy of proof of the Proposition. We show how to go from a plane
curve to its Puiseux characteristic. We describe a transformation taking us from the
Puiseux characteristic to the semigroup of the curve. It is straightforward to check
that the resulting semigroup satisfies the proposition. Conversely, starting from
the semigroup we can reverse the Puiseux-to-semigroup transformation to recover
the Puiseux characteristic from the semigroup, provided the semigroup satisfies the
conditions of the proposition. And given the Puiseux characteristic it is immediate
to write down a plane curve with this Puiseux characteristic. In order to implement
this strategy we begin with reviewing the Puiseux characteristic of a plane curve.

3.7. The Puiseux characteristic of a plane curve. The Puiseux character-
istic of an analytic plane curve germ c ∶ (C,0) → C2 is an increasing vector

λ⃗ = [λ0, λ1, . . . , λg] of positive integers encoding the key exponents which arise in
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the power series expanison of c(t) = (x(t), y(t)). A reparameterization and change
of coordinates puts the curve into the form

(5) x = tm, y = antn + an+1tn+1 + an+2tn+2 +⋯,

where 1 <m < n and an ≠ 0. Then

λ0 =m.

We can assume that n is not a multiple of m in the expansion of the curve. For
if n = km then the diffeomorphism (x, y) ↦ (x, y − anxk) kills the term ant

n. We
can kill all powers of tm arising in the power series of y(t) by this same trick. With
this in mind, write supp(y) = A for the set of all exponents occuring in the power
series of y. Thus

A = {i ∈ N ∶ ai ≠ 0} where y(t) = Σaiti

We have just seen that we can get rid of all multiple of m arising in A by applying
a diffeomorphism (x, y)↦ (x, y − f(x)). We have “seived out” m from A.

Definition 3.1. If A ⊂ N and m ∈ N then the m-seive of A, denoted [m;A] is the
set A with all multiples of m deleted. In set notation, [m;A] = A ∖mN.

Since c(t) is well-parameterized, the m-seive of A is not empty.
Let λ1 be the smallest element of [m;A]. Thus, λ1 = n above, assuming that m

does not divide n. If gcd(m,n1) = 1 the process ends and the Puiseux expansion of
c(t) is [m,λ1]. Otherwise, write e1 = gcd(m,λ1).

We continue by setting A2 = [e1;A] and choosing λ2 to be the smallest element
of A2. We write e2 = gcd(e1, λ2). If e2 = 1 we stop and Puiseux characteristic is
[m,λ1, λ2]. Otherwise we set A3 = [e2;A2] and take λ3 to be the smallest element
of A3. Iterate the process: λi =min(Ai), ei = gcd(ei−1, λi), and Ai+1 = [ei;Ai]. We
stop with λg when eg = 1. We have constructed an increasing list m = λ0 < λ1 <
λ2 < . . . < λg of integers which have no common divisor. Our Puiseux expansion is
this list.

In the process, we have also constructed the divisor vector of n⃗, namely the ei.
It is a strictly decreasing vector ei < ei−1.

Example 3.3. The Puiseux characteristic of the plane curve germ

(t8, t16 + t20 + a22t22 + a26t26 + a27t27)

is [8; 20,22,27] provided that a22, a27 ≠ 0. The divisor vector of this Puiseux char-
acteristic is e⃗ = [8,4,2,1]. Its factor vector is [2,2,2].

3.8. Characterizing Puiseux characteristics. Here are the necessary and suffi-
cient conditions for a list of integers, labelled now [λ0, λ1, . . . , λg] to be the Puiseux
characteristic of some curve.

1. λ0 > 1 and the list is strictly increasing: λi < λi+1.

2. Its associated divisor vector e⃗ = [λ0, e1, . . . , eg] is strictly decreasing and ends
with 1.

Remark 2. A Puiseux characteristic of length 2 consists of a pair of relatively
prime integers [λ0, λ1] with λ0 < λ1. By fiat (or a logical contortion if you prefer)
the only Puiseux characteristic of length 1 is the vector λ = [1].
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3.9. Puiseux to Semigroup. The following iteration scheme recovers the semi-
group generators < b0, b1, . . . , bg > of the semigroup of a plane curve from its Puiseux
characteristic [λ0;λ1, . . . , λg]. I am endebted to Teissier, 2.2.1, formula (*) p. 122
for this scheme. C.T.C. Wall ’s book , Prop. 4.3.8 on p. 86 and five or so pages on
either side also covers this recursion formula. We will see how this process works
for the curve of example 3.3 at the end of this subsection.

b0 = λ0

b1 = λ1

b2 = λ2 − λ1 + n1λ1
And inductively

bi = λi − λi−1 + ni−1bi−1
Using ni−1 > 1 one easily verifies by induction that

bi > λi, i > 1.
and that bi ∈< λ1, λ2, . . . , λi >.

I will not rederive the recursion formula but simply content myself with the
understanding the generator b2. So suppose that e1 = gcd(m,λ1) > 1 where λ0 =m.
Then we can put c(t) into the form

x = tm, y = tλ1 + atλ2 + . . . ;a ≠ 0.
We have that n1e1 =m and λ1 = βe1 for some integer β. Then

yn1 = tn1λ1 + n1atλ2t(n1−1)λ1 +O(tj), j > λ2 + (n1 − 1)λ1
But n1λ1 = βn1e1 = βm so that

xβ = tn1λ1

which shows that ord(xβ − yn1) = λ2 + (n1 − 1)λ1. Hence λ2 + (n1 − 1)λ1 ∈ S, where
S is the semigroup of this curve. It is not difficult to show that this integer is the
smallest element of S not lying in < m,λ1 >⊂ S and hence this integer is the next
generator b2 of S after b1 = λ1.

Remark 3. The bi obtained from this formula have the same divisor vector e⃗ =
[e0, e1, . . . , eg] and factor vector [n1, n2, . . . , ng] as that of the Puiseux vector. This
follows directly from the recursion relation. Using the same recursion relation, we
can invert an associated matrix and solve for the λi given the bi.

Example 3.4. Return to our earlier curve (t8, t16 + t20 + a22t22 + a26t26 + a27t27)
whose Puiseux characteristic is [8; 20,22,27] provided that a22, a27 ≠ 0. To find its
semigroup compute that

[e0, e1, e2, e3] = [8,4,2,1]
while

[n1, n2, n3] = [2,2,2]
We compute b0 = λ0 = 8, b1 = λ1 = 20

b2 = 22 − 20 + 2 ∗ 20 = 42

b3 = (27 − 22) + 2 ∗ b2 = 5 + 84 = 89
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so that S =< 8,20,42,89 >
As a reality check we verify that we can get the integers 42,89 as orders of

polynomials pulled back to the curve. Take the case a22 = a27 = 1, a26 = 0 for
simplicity so that y(t) = t20 + t22 + t27. Then y2 −x5 = (t40 + 2t42 + 2t47 + . . . .)− t40 =
2t42 + 2t47 which has order 42. To get 89 note that (y2 −x5)2 = 4t84 + 8t89 + ... Now
84 is a multiple of 4. Since [8,20] = 4[2,5] and since the conductor of < 2,5 > is
4, from 16 onwards all integers which are multiples of 4 occur in any semigroup
having 8 and 20 as generators. It follows that we can kill the t84 term of (y2 −x5)2
with some polynomial in x, and y. Indeed 84 = 64 + 20 is the valuation of x8y. We
see that

(y2 − x5)2 − 4x8y = 8t89 + ...
which has a valuation of 89.

3.10. Sketch of a proof of Teissier’s proposition 3.1. Given a plane curve,
form its Puiseux expansion. Run the recursion to obtain the minimum generating
list for the semigroup of the curve. Use remark 3 to see that the divisor vector of
the list semigroup generators is strictly decreasing. Inductively verify conditions
(2) and (3).

Conversely, given a semigroup whose minimal generating list satisfies the given
relation run the recursion relation backwards to obtain a Puiseux expansion [λ0, λ1, . . . , λg]
whose semigroup is the give semigroup. The curve x = tλ0 , y = tλ1 + tλ2 + . . . + tλg

has S as its semigroup.
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