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RESEARCH ARTICLE
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Abstract

In Huntington’s disease (HD) patients and in model organisms, messenger RNA trans-

criptome has been extensively studied; in contrast, comparatively little is known about

expression and potential role of microRNAs. Using RNA-sequencing, we have quantified

microRNA expression in four brain regions and liver, at three different ages, from an allelic

series of HD model mice with increasing CAG length in the endogenous Huntingtin gene.

Our analyses reveal CAG length-dependent microRNA expression changes in brain, with

159 microRNAs selectively altered in striatum, 102 in cerebellum, 51 in hippocampus, and

45 in cortex. In contrast, a progressive CAG length-dependent microRNA dysregulation was

not observed in liver. We further identify microRNAs whose transcriptomic response to CAG

length expansion differs significantly among the brain regions and validate our findings in

data from a second, independent cohort of mice. Using existing mRNA expression data

from the same animals, we assess the possible relationships between microRNA and

mRNA expression and highlight candidate microRNAs that are negatively correlated with,

and whose predicted targets are enriched in, CAG-length dependent mRNA modules. Sev-

eral of our top microRNAs (Mir212/Mir132, Mir218, Mir128 and others) have been previously

associated with aspects of neuronal development and survival. This study provides an

extensive resource for CAG length-dependent changes in microRNA expression in disease-

vulnerable and -resistant brain regions in HD mice, and provides new insights for further

investigation of microRNAs in HD pathogenesis and therapeutics.
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Introduction

Huntington’s disease (HD) is a dominantly inherited neurodegenerative disorder clinically

characterized by progressive movement disorder, cognitive dysfunction, and psychiatric

impairment [1]. The hallmark of HD neuropathology is selective degeneration of striatal

medium spiny neurons (MSNs), and, to a lesser extent, deep-layer cortical pyramidal neurons

[2]. Currently there are no therapies to prevent the onset or slow the progression of HD.

HD is caused by a CAG trinucleotide repeat expansion encoding an elongated polygluta-

mine (polyQ) stretch near the N-terminus of Huntingtin (HTT) [3]. Unaffected individuals

have CAG repeat lengths ranging from 6–35, and HD individuals have repeat lengths greater

than 36 on oneHTT allele, with the length of the CAG repeat inversely correlated with the age

of disease onset [4,5]. Patients with CAG lengths in the 40s often have motor symptom onset in

the fourth decade while repeat lengths greater than 60 lead to juvenile onset [6]. Patients with

repeat lengths of 37–40 may have very late onset or no observed clinical symptoms. In contrast

to age of clinical onset, the influence of CAG repeat length on disease progression is more mod-

est [6], suggesting an important impact of CAG length in early disease pathogenesis [7]. Recent

imaging studies of HD patients suggest that CAG repeat length correlates with caudate atrophy

[8] and that combined CAG repeat length and age is a useful predictor of many clinical out-

comes in HD [6]. Overall, HD patient studies underscore a critical role of CAG repeat length in

the onset of HD pathogenesis. The graded impact of CAG length on HD symptomatic onset

led to the “polyQ molecular trigger” hypothesis, which suggests polyQ expansion in HTT leads

to subtle repeat length-dependent graded molecular changes in vulnerable neuronal cells that

act in a profound and dominant fashion to initiate the disease [7].

Multiple studies have examined mRNA expression signatures of HD in post-mortem

human brains as well as in multiple mouse models. In contrast, comparatively little is known

about changes in microRNA expression in HD patients or in animal models. Multiple micro-

RNAs have been implicated in a handful of small studies performed on postmortem human

tissue [9] and model organisms [10,11]. A larger recent study examined microRNA expression

in HD patients, pre-symptomatic carriers and controls in human cortex and found multiple

differentially expressed microRNAs, some of which modulate neuron survival [12].

Here we studied microRNAs dysregulated in anHtt CAG length- and age-dependent fash-

ion across striatum, cortex, cerebellum, hippocampus, and liver of HD mouse models [13,14].

We generated and analyzed microRNA expression data from a series of murine huntingtin

(Htt) knock-in (KI) models across 3 time points to identify individual microRNAs whose

expression changes progressively with CAG length and age. The data we generated are publi-

cally available for additional mining and modeling through GEO and the HDinHD portal

(www.HDinHD.org).

Results

Longitudinal microRNA analysis of brain and liver of HD allelic series

mice

Using deep microRNA sequencing, we profiled the striatum, cortex, cerebellum, hippocampus

and liver of 2-, 6-, and 10-month (denoted 2m, 6m, 10m) old mice that express one wild-type

endogenousHtt allele and a second engineered Htt allele with a knock-in of a humanHTT
exon1 carrying one of 7 different CAG repeat lengths (denoted Q in the mouse strain labels). In

the first phase of the study, we sequenced Q20, Q80, Q92, Q111, Q140, and Q175 plus wild

type (WT) control littermates of the Q20 mice. These 6 Q-lengthHtt knockin lines include

those that exhibit behavioral and physiological phenotypes within the mouse lifespan (Q140
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and Q175), as well as those with modest (Q111) and no observable phenotypes but with molec-

ular pathogenic signatures (Q92 and Q80) [15,16]. The Q20 mice are considered controls

since the repeat length approximates the average humanHTT repeat length (the mouse Htt
gene has a CAG length of 7). In a second batch designed to add a Q50 allele, we sequenced

Q20, Q50, Q92 and Q140 mice at age 6 and 10 months, plus WT littermates of the Q20 and

Q50 lines. In each batch, we sequenced 8 animals per genotype and age for each tissue. A

detailed analysis of the mRNA data from the first phase of this allelic series ofHtt KI mice is

described in [14]; here we focus on the analyses of the microRNA data.

For each tissue and timepoint, we carried out differential expression (DE) analysis between

mice with mutant CAG repeat lengths (Q50 and higher) and the Q20 and WT controls, as well

as an analysis of association with CAG length as a numeric variable. We find robust age- and

CAG length-dependent increases in differentially expressed microRNAs in the striatum and to

a lesser degree in the cortex, cerebellum and hippocampus, while such CAG length-dependent

differential expression is not a feature of the liver transcriptome (Fig 1; S1 Table).

To identify the microRNAs with the strongest evidence of DE across the 6- and 10-month

points, we combined the DE statistics across the two time points in each tissue using meta-

analysis. In the striatum, the meta-analysis identified 159 microRNAs associated with Q as a

continuous variable at the FDR<0.05 significance level. Smaller numbers have been identified

in cerebellum (102), hippocampus (51) and cortex (45). Only 3 microRNAs passed the meta-

analysis FDR<0.05 threshold for association with Q in liver. These numbers are consistent

with striatum being the brain region most affected by theHtt mutation in HD. The brain

region with the second highest number of DE microRNAs is cerebellum, followed by hippo-

campus and cortex. Interestingly, while cerebellum is known to be relatively modestly affected

in adult-onset HD, this brain region is known to be affected in Juvenile HD [17]. The

Fig 1. Differential expression analysis with respect to CAG length in Series 1. Bars show numbers of significantly (FDR<0.05) differentially expressed microRNAs in

the 5 tissues studied in Series 1; the numbers are also shown next to each bar. The bars labeled Continuous Q represent numbers of microRNAs significantly associated

with CAG length (Q) treated as a numeric variable. Numbers in parentheses represent the counts of distinct microRNA clusters in which the significant microRNAs fall

into. Blue and red bars represent microRNAs significantly down- and up-regulated, respectively, with increasing CAG length (Q).

https://doi.org/10.1371/journal.pone.0190550.g001
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microRNA transcriptional response toHtt knock-in mice, at least in the high CAG lengths, is

very profound and consistent with the pathological findings in the patients.

At 2m of age we identified a modest number of DE microRNAs across most of the tissues,

but the observed differential expression of these microRNAs does not appear to be progressive

with increasing CAG length. In contrast, in the 6 and 10-month striatum we found a relatively

large number of DE microRNAs that increases with CAG length. The trend is especially strik-

ing in 10-month striatum, where we found no DE microRNAs in Q80, 2 DE microRNAs in

Q92, 34 DE microRNAs in Q111, 58 in Q140, 68 in Q175, and 97 microRNAs were signifi-

cantly associated with Q viewed as a numeric variable. The sets of DE microRNAs in striatum

overlap strongly between different comparisons as well as between 6 and 10 months (S1 Fig);

for example, of the 40 and 34 DE microRNAs in Q111 samples at 6 and 10 months, 18 are

common (hypergeometric test P = 9×10−13). The overlap of DE microRNAs observed in the

2-month Q175 and 6 and 10 month Q175 is also statistically significant: of the 6 significant

microRNAs in 2 month Q175, 5 are also significantly DE in 6 and 10 month Q175 samples

(P = 7×10−3 and 3×10−4 with 6 and 10 month DE microRNAs, respectively).

In cerebellum, significantly DE microRNAs were only detected in Q140 (13 microRNAs at

10 months) and Q175 lines (1, 69 and 79 microRNAs at 2, 6 and 10 months, respectively) as

well as in association testing with Q as a numeric variable (1, 61 and 78 microRNAs at 2, 6 and

10 months). In cortex, most of the DE microRNAs were found in Q175 samples: 8 at 6m and

33 at 10m, with 5 microRNAs common (hypergeometric test p-value P = 6×10−5); only a small

number of microRNAs were differentially expressed in lower CAG length samples (3 and 7 in

Q80 and Q92 at 2 months, 6 in Q92 at 6 months). In hippocampus, we similarly found most

DE microRNAs in Q175 samples: 16 and 43 at 6 and 10 months, respectively, 13 of which are

common (hypergeometric test P = 2×10−12).

Liver samples show the most DE microRNAs at 6m and much fewer at 2m and 10m. In

contrast to the striatum and cortex, the numbers of DE genes at 6m do not exhibit a trend of

correlation with CAG length: The most robust differential expression is observed in Q92 mice

(32 DE microRNAs), followed by Q80 (7 DE microRNAs), and Q140 (5 DE microRNAs). No

significantly DE microRNAs were found in 6-month Q111 and Q175 samples. Finally, very

few if any DE microRNAs were found in 10m liver across all genotypes.

Relatively little is known about possible brain-related functions of most of the top DE

microRNAs identified in our analyses. We have carried out a GO enrichment analysis on sets

of differentially expressed microRNAs but found no GO terms whose enrichment p-values are

significant or at least suggestive after multiple testing correction. This could be due to the fact

that only a relatively small fraction (40%) of the 480 microRNAs retained in our analysis are

annotated in GO. Nevertheless, there are several individual microRNAs that have been impli-

cated in potentially relevant pathways and processes. The top striatum hits include the down-

regulatedMir212/Mir132 cluster whose knockout has been implicated in impaired synaptic

function [18] and down-regulation in neuronal death via the PTEN/FOXO3a signaling path-

way [19].Mir132 is required for normal dendrite maturation in newborn neurons in the adult

hippocampus and may participate in other examples of CREB-mediated signaling [20]. More-

over,Mir132 is induced by neuronal activities [21] and is implicated in regulating the function

of the chromatin regulator MeCP2 [22]. TheMir212/Mir132 cluster has also been implicated

in regulation of aging-related processes via interaction with FOXO3 [23]. Several DE micro-

RNAs have been implicated in the broad processes of neuron differentiation and maturation.

Mir218 is strongly downregulated in the striatum and has been implicated in establishing

motor neuron fate as a downstream effector of Isl1-Lhx3 [24]. Interestingly, expression of the

Isl1 gene increases significantly with CAG length in the same samples (Supplementary Table S1

in [14]) while Lhx3 shows minimal expression.Mir128 has been implicated in regulation of
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motor behavior by modulating neuronal signaling networks and excitability [25] and in regu-

lating cortical lamination as well as for the development of neuronal morphology and intrinsic

excitability [26].

Validation of Htt CAG-length dependent microRNA response in different

tissues using an independent RNA-sequencing series

To validate our results and explore effects of lower CAG lengths (i.e., Q50), we sequenced short

RNA in 6- and 10-month striatum, cortex, cerebellum and liver samples from an independent

set of Q20, Q50, Q92 and Q140 mice plus the WT littermates of the Q20 and Q50 lines. In this

data set, referred to as Series 2, we again sequenced 8 samples (4 male and 4 female) per geno-

type, tissue and age. We analyzed these data using the same approach as the Series 1 data, test-

ing differential expression between the samples with CAG length�50 and the controls (WT

and Q20 samples), as well as testing the association between expression and Q considered as a

numeric trait.

We have found a small number of microRNAs with DE between Q50 and control samples

that were significant in 6-month cortex (2 microRNAs) and in 10-month cerebellum (5 micro-

RNAs) but none of the associations were significant in the meta-analysis of 6- and 10-month

samples (Fig 2 and S1 Table). Similar observations apply also to the Q80 samples in Series 1,

leading us to conclude that microRNA transcriptional changes in these two models (Q50 and

Q80) are too weak to be reliably identified in our data.

To assess the concordance of DE between Series 1 and Series 2, we compared meta-analysis

significance statistics for binary DE comparisons present in both series (Q92 and Q140) as

well as continuous Q (S2 Fig). For Q92 vs. controls, we observe moderate concordance (corre-

lation r = 0.29, permutation p-value p = 0.01, Methods) between Series 1 and Series 2 for stria-

tum and statistically non-significant concordance in cortex, cerebellum and liver. In Q140

samples, we observe strong concordance between series 1 and 2 in striatum (r = 0.76, p =

3.7×10−16) and cerebellum (r = 0.53, p = 1.6×10−7), moderate concordance in cortex (r = 0.36,

p = 0.004) and non-significant concordance in liver. For Q as a numeric variable, the concor-

dance is strong in all 3 brain tissues (all correlation above 0.39, p<10−5) and moderate in liver

(r = 0.28, p = 0.003).

Another way to assess concordance is to evaluate the proportion of microRNAs called

significantly associated with Q (at FDR<0.05 level) in Series 1 that are also significantly

Fig 2. Differential expression analysis with respect to CAG length in Series 2. Bars show numbers of significantly (FDR<0.05) differentially expressed microRNAs in

the 4 tissues studied in Series 2; the numbers are also shown next to each bar. Numbers in parentheses represent the counts of distinct microRNA clusters in which the

significant microRNAs fall into. Blue and red bars represent microRNAs significantly down- and up-regulated, respectively, with increasing CAG length (Q).

https://doi.org/10.1371/journal.pone.0190550.g002
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associated with Q in Series 2 (S2 Table). Of the 159 microRNAs significant for Q in Series 1

striatum, 93 (or 58%) and 65 (41%) are also associated with Q in Series 2 at the levels p<0.05

and FDR<0.05, respectively. In cortex, of the 45 microRNAs significant for Q in Series 1, 14

(32%) and 3 (7%) are also associated with Q in Series 2 at p<0.05 and FDR<0.05, respectively.

In cerebellum, of the 102 microRNAs significant for Q in Series 1, 28 (27%) and 2 (2%) are

also associated with Q in Series 2 at p<0.05 and FDR<0.05, respectively. Heatmaps of differ-

ential expression of validated microRNAs are shown in Fig 3.

Cross-tissue comparisons of microRNA transcriptional response to CAG
length expansion

To gain insight into global tissue similarities and differences of microRNA transcriptome

response to polyQ expansion within HTT, we evaluated the concordance of differential expres-

sion among the various tissue and time point combinations. To that end, we represented each

tissue by a vector of Z statistics from the analysis of association of microRNA profiles with Q

as a numeric variable. Thus, Htt CAG length expansion has a similar effect on two tissues (or at

Fig 3. MicroRNA whose DE validates in Series 1 and Series 2. The heatmap represents differential expression Z statistics in all binary genotype comparisons for those

microRNAs whose association with Q (as a numeric variable) passes the threshold FDR<0.05 in both Series 1 and Series 2. Top left and right panels show validated

down- and up-regulated striatum microRNAs, respectively; bottom left and right panels show all validated microRNAs in cortex and cerebellum, respectively.

https://doi.org/10.1371/journal.pone.0190550.g003
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two different time points) if their corresponding vectors of Z statistics are highly positively cor-

related. A heatmap of the correlations is shown in Fig 3 (the corresponding statistical signifi-

cance is shown in S3 Fig) and provides several layers of information. The clustering of data

sets by the similarity of the significance statistics groups together the striatum sets in a single

relatively tight cluster and cerebellum data sets in another relatively tight cluster. First, the

striatum in Series 1 and 2 at 6- and 10-months form a tight cluster, which is closely clustered

with cortex and hippocampus data set (6 and 10 months) cluster from Series 1 and cortex

10-month from Series 2. This suggests that there is a broad overlap of cortical and striatal

microRNA response toHtt CAG length expansion in allelic series mice. Interestingly, the stria-

tum 2-month from series 1 already clustered with the broader 6- and 10-month striatum/cor-

tex/hippocampus cluster, implying that the Q-length dependent microRNA dysregulation

occurs earliest in the striatum. Second, the cerebellum from both series showed tight but dis-

tinct clusters form the striatum/cortex/hippocampus cluster, showing distinct cerebellar Q-

length dependent microRNA expression. Finally, the 6- and 10-month liver data sets appear

separate from all other data sets.

Consistent with the notion that microRNA responses are broadly distinct across all four

brain regions, we only identified three microRNAs (Mir484,Mir212, andMir6944) that are

commonly dysregulated across all 4 brain regions. Using the 6- and 10-month meta-analysis

statistics, we found a single microRNA,Mir484, that is differentially expressed (downregulated

with increasing CAG length) across all 5 tissues in Series 1 and striatum in Series 2 at the

p<0.05 threshold and changes in the same direction with Q across all 9 data sets (in Series 2

cortex and liver, the p-values are below 0.1 (suggestive) but above 0.2 in series 2 cerebellum).

The non-significant results in cortex, cerebellum and liver in Series 2 may be due to the lack of

Q175 samples in Series 2. Interestingly,Mir484 has been implicated in suppressing translation

of mitochondrial fission protein FIS1 and inhibited FIS1-mediated fission and apoptosis in

cardiomyocytes and adrenocortical cancer cells [27]. Further studies are needed to determine

whether the decreased expression ofMir484 alters Fis1 levels in different brain regions in HD

knockin mice and contributes to dysregulated mitochondrial dynamics in HD cells [28,29].

MicroRNAs whose transcriptomic response to CAG length differs

significantly between striatum, cortex and cerebellum

HD is characterized by selective neuronal vulnerability, with the striatal and deep layer cortical

neurons most susceptible to degeneration; in contrast, neurons in other brain regions (e.g. cer-

ebellum) and non-neuronal cells are relatively resistant to mHtt-induced cell death [2]. To

examine molecular-level differences that may underlie the pathophysiological observations, we

studied differential transcriptomic response toHtt CAG expansion among the 5 surveyed tis-

sues. To this end, we carried out statistical testing using a model that includes interaction of

tissue with CAG length. We focused particularly on differences between striatum (strongly

affected by HD), cortex (affected by HD to a lesser extent than striatum), and cerebellum

(largely unaffected by HD). We identified 109 microRNAs with significant evidence of differ-

ent DE between striatum and cerebellum and 57 microRNAs with significant evidence of dif-

ferent DE between striatum and cortex (S3 and S4 Tables).

Because the strength of transcriptional response (e.g., as measured by fold changes) is, in

general, strongest in striatum, many of the microRNAs that are strongly associated with CAG
length in the striatum also show significant evidence for inter-tissue differences in association

with Q between the striatum and other tissues. To avoid essentially duplicating the list of

microRNAs with strong DE in the striatum, we further prioritized those microRNAs whose

fold change with respect to Q has the opposite sign in striatum and cortex or cerebellum, and

MicroRNA signatures of Huntingtin CAG repeat expansion
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whose associations with Q in both compared tissues (striatum and cortex or striatum and cere-

bellum) pass a suitable significance threshold (p<0.05 or FDR<0.05).

In comparing striatum vs. cerebellum, we found 15 microRNAs with significant difference

in association with Q, opposite sign of association with Q in striatum and cerebellum, and

FDR<0.05 for association with Q in both tissues. These 15 microRNAs includeMir128 (in

both -1 and -2 forms) that has been implicated in regulating motor behavior by modulating

neuronal signaling networks and excitability in adult neurons [30];Mir218,Mir369 and

Mir543. The last two are part of a cluster implicated in the fine-tuning of N-cadherin expres-

sion level and in the regulation of neurogenesis and neuronal migration in the developing neo-

cortex [31].

In comparing striatum vs. cortex, we found a single microRNA,Mirlet7f-1, with significant

difference in association with Q, opposite sign of association with Q in striatum and cortex,

and FDR<0.05 for association with Q in both tissues, and additional 6 microRNAs (Mir206,

Mir301b,Mir92b,Mir378b,Mir208b,Mir449a) satisfying p<0.05 for association with Q in

both tissues.Mir92b has been implicated in the development of intermediate cortical progeni-

tors in embryonic mouse brain [32], pointing again to a possible connection between CAG-

length dependent dysregulation and developmental processes.

MicroRNA correlations with, and target enrichments in, gene co-

expression modules highlight developmental gene modules and their

putative microRNA regulators

We next evaluated possible connections between microRNA and mRNA expression levels. A

comprehensive analysis of mRNA profiling from the same samples has been reported previ-

ously [14]. The mRNA analysis utilized Weighted Gene Co-expression Network Analysis

(WGCNA) [33,34] to define gene co-expression modules, i.e, clusters of genes whose expres-

sion profiles are correlated. Expression profiles of genes in each cluster were summarized

using a representative profile called the eigengene [35]. By relating the module eigengene to

CAG length the authors of [14] found 13 striatum and 5 cortex modules whose expression is

strongly CAG length-dependent.

We first evaluated the enrichment of the CAG length-dependent mRNAmodules in pre-

dicted targets of significantly differentially expressed microRNAs. Specifically, we used predic-

tions generated by MicroRNA.org [36], microCosm [37], targetScan [38], as well as a set of

experimentally verified microRNA-mRNA interactions compiled in mirTarBase [39].

We found 124 striatum and 10 cortex microRNA-module combinations showing enrich-

ment p-values less than 0.05; 78 of the 124 striatum combinations also passed the Bonferroni-

corrected p-value threshold of 0.05 (S5 Table). In general, increased microRNA expression is

expected to result in decreased mRNA expression of its target [40] although not all microRNAs

impact the levels of their target mRNA. Hence, we further restricted our attention to those

microRNA-module combinations where the microRNA expression levels are negatively corre-

lated with the mRNA module eigengene. Fifty-five (44%) of the 124 striatum and 9 of the 10

cortex microRNA-module combinations exhibited negative correlations (mean of 6- and

10-month correlations in Series 1 data).

The microRNA-module correlation and enrichment analysis provides several intriguing

findings (Table 1 and Fig 5). The strongest negative microRNA-module correlations were

observed between striatum module M39 andMir132 (mean correlation -0.79) andMir212
(mean correlation -0.75); module M39 is also strongly enriched in predicted targets of both

microRNAs (p = 1×10−7 for targets predicted by MicroRNA.org). Other examples of strongly

negatively correlated microRNA-module pairs with strong enrichment of predicted targets
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includeMir132 and module M1 (correlation -0.63, enrichment p-value 2×10−6),Mir181d and

module M34 (correlation -0.58, enrichment p-value 4×10−6), andMir128 and module M39

(correlation -0.58, enrichment p-value 1×10−7). Modules M34 and M39, as well as modules

M20 and M46 that also appear in Table 1, are enriched several development-related biological

functions and in cadherin and protocadherin genes. These results provide hints that the upre-

gulation of the developmental genes observed in these knock-in mice by [14] is also reflected

by the microRNA transcriptome.

Relationship to prior microRNA studies

MicroRNA expression in HD has received relatively little attention from high-throughput

studies to date. A previous study has examined microRNA expression in Brodmann Area 9 of

the cortex in post-mortem brains from HD patients, pre-symptomatic carriers and controls

[12]. Although this study is not directly comparable to ours, we have examined the concor-

dance of association with CAG length in the cortex in our study and differential expression

between HD patients and controls reported by [12].

Overall, we find a weak but significant correlation of significance Z statistics between the

10-month cortex and the human BA9 data (r = 0.26, p = 0.02 in Series 1 and r = 0.34, p = 0.003

in Series 2; S4 Fig). Correlations of 6-month cortex Z statistics were not significant. We found

8 microRNAs (Mir615, Mir135b,Mir212,Mir132,Mir20a, Mir708, Mir99a, Mir138-2) that

are significantly (FDR<0.05) associated with CAG length in the meta-analysis of Series 1 6

and 10-month data and pass the p-value threshold of 0.05 in the human BA9 data. A single

microRNA,Mir615, passes FDR<0.05 threshold in both human and mouse data. Hoss et al

highlightedMir10b in particular; this microRNA has increased expression with CAG length in

Table 1. MicroRNA-module pairs with strongest negative correlations and significant (FDR<0.05) enrichment of the module in predicted microRNA targets.

miRNA mRNA module miRNA-ME correlation1 Target source Enrichment p value Enrichment FDR

Mir132 39 -0.79 MicroRNA.org 9.6E-08 2.8E-06

Mir212 39 -0.75 MicroRNA.org 9.8E-08 2.9E-06

Mir132 1 -0.63 MicroRNA.org 2.2E-06 4.0E-05

Mir181d 34 -0.58 MicroRNA.org 4.1E-06 6.8E-05

Mir128-2 39 -0.58 MicroRNA.org 1.3E-07 3.6E-06

Mir128-1 39 -0.54 MicroRNA.org 1.3E-07 3.6E-06

Mir221 39 -0.51 MicroRNA.org 6.7E-07 1.4E-05

Mir218-2 20 -0.49 MicroRNA.org 1.7E-04 1.7E-03

Mir29a 39 -0.47 MicroRNA.org 3.2E-07 7.6E-06

Mir181a-1 34 -0.46 MicroRNA.org 1.9E-06 3.5E-05

Mir186 46 -0.46 MicroRNA.org 7.2E-10 4.5E-08

Mir320 46 -0.43 MicroRNA.org 3.4E-07 8.1E-06

Mir222 39 -0.43 MicroRNA.org 5.7E-08 1.8E-06

Mir139 46 -0.43 MicroRNA.org 3.0E-09 1.5E-07

Mir139 46 -0.43 targetScan 8.7E-04 4.8E-02

Mir340 34 -0.42 MicroRNA.org 8.7E-07 1.8E-05

Mir203 25 -0.39 MicroRNA.org 1.2E-03 8.7E-03

Mir543 1 -0.38 MicroRNA.org 5.1E-06 8.3E-05

Mir186 39 -0.38 MicroRNA.org 1.0E-11 1.3E-09

Mir363 39 -0.37 MicroRNA.org 1.4E-06 2.7E-05

1Correlation of the microRNA with the module eigengene (ME) which is a representative expression profile of the mRNA module.

https://doi.org/10.1371/journal.pone.0190550.t001
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10-month data, concordant with the human results, but moves in the opposite direction in

both 6-month data sets (S4 Fig).

Several other, smaller studies [9–11] have been published but their low sample sizes make

direct comparisons with our data difficult. Such convergence of microRNA dysregulation in

both HD mouse and patient brains could help to prioritize the study of this short list of micro-

RNAs in HD pathogenesis.

Discussion

While the transcriptome of messenger RNA has been extensively studied in both HD patients

and in model organisms, comparatively little is known about the microRNA transcriptome in

HD. This study is the first to extensively elucidate Htt CAG length-dependent changes in

microRNA expression in the brain regions differentially vulnerable to HD. Our analyses of 4

brain regions–striatum, cortex, hippocampus and cerebellum–revealed CAG length-dependent

microRNA expression changes, with a large number (159) of microRNAs progressively altered

in striatum and smaller numbers in cerebellum (102), hippocampus (51) and cortex (45). In

contrast, this progressive CAG length-dependent microRNA dysregulation was not observed

in liver. Interestingly, the number of dysregulated microRNAs in cerebellum is about twice

that in cortex and hippocampus, despite that fact that cerebellum is relatively unaffected by

HD. This fact may reflect a robust transcriptional response that protects cerebellum from the

deleterious effects of the CAG length expansion.

Clustering of tissues and time points by similarity of DE (Fig 4) also suggests that the tran-

scriptional response in cerebellum is distinct from the other 3 brain regions. Because large

numbers of significant associations in cerebellum were observed only in the highest Q length

(Q175), we also cannot fully exclude the possibility that the cerebellum dysregulation is unique

to long Q lengths, rather than being progressive with CAG length. However, fold changes in

lower CAG lengths, especially in Q140 but to a lesser extent also in Q111 and Q92, are moder-

ately correlated with fold changes in higher CAG lengths across time points and series (S5 Fig),

supporting the progressivity of at least some of the transcriptional effects of CAG length expan-

sion. We identified microRNAs whose transcriptional response to the CAG length expansion

varies significantly among the 4 brain regions because these microRNAs may be involved in the

differential sensitivity to CAG length expansion. We have specifically focused on those micro-

RNAs whose differential expression in cerebellum, cortex or hippocampus is also significant

and in the opposite direction relative to striatum. This analysis identified far more microRNAs

in cerebellum (31) than in cortex (7) or hippocampus (3). This is another line of evidence that

cerebellum exhibits a very specific transcriptional response to CAG length expansion.

Although a systematic enrichment analysis of the groups of microRNAs identified in the

various analyses in GO terms has not revealed significant findings, individual microRNAs

identified across our multiple analyses (differential expression, microRNA-module enrich-

ment, differences in association with CAG length) provide several intriguing hints about mech-

anisms possibly involved in HD pathogenesis. TheMir132/Mir212 cluster has been implicated

in neuronal survival and shows strongest down-regulation in the striatum, followed by cere-

bellum and cortex. Several microRNAs (Mir128,Mir181d,Mir92b) have been implicated in

regulation of neuronal development and differentiation; several of the top mRNA modules

enriched in targets of the microRNAs are also enriched in developmental genes. A unique fea-

ture of the microRNA expression data presented here is that mRNA expression has also been

profiled in the same animals [14]. This allowed us to identify microRNA-gene module pairs

that are negatively correlated and the gene module is enriched in predicted targets of the

microRNA, providing another layer of information about possible targets of dysregulated
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microRNAs (Table 1, Fig 5). Interestingly, top mRNA modules (M34, M39, M46, and M20)

with strongest negative microRNA-module correlations and enrichment in microRNA targets

are also enriched in developmental genes (e.g., cadherins and protocadherins). Our results

suggest that CAG length-dependent dysregulation of microRNAs regulating gene expression

during development could be causing (at least partially) the dysregulation of developmental

gene expression. Future mechanistic studies will be necessary to test this hypothesis further.

Our comparison of microRNA changes in HD mouse model and patients helped to identify

four microRNAs that are dysregulated in a similar manner. Together, such integrative systems

level analyses will facilitate the prioritization and functional validation of microRNAs for their

causal roles in HD pathogenesis.

We carried out the sequencing in two separate series of knock-in mice. Although the two

designs are not identical and the lack of Q175 samples in the second series makes the signifi-

cance of association with CAG length weaker, the second series nevertheless provides a useful

tool for assessing validation, as well as allowing us to study a relatively short CAG length (Q50).

Differential expression in higher Q samples (Q140) is robustly preserved in striatum and to a

lesser degree in cerebellum and cortex. Differential expression in lower CAG lengths (specifi-

cally, Q92) is moderately preserved in the striatum, while the lack of concordance in cortex,

cerebellum and liver indicates that lower CAG lengths have a much weaker effect in these

tissues.

Fig 4. Concordance of differential expression across the 22 tissue/time point combinations. To generate this heatmap, we have arranged the miRNA significance Z

statistics as a long vector in each of the 22 data sets (individual tissue, time point and series), and calculated correlations of these vectors. The correlations measure how

similar the tissues are in their miRNA transcriptomic response to the CAG length mutation. Datasets are ordered by hierarchical clustering with the clustering tree shown

on the left. Colors on the heatmap margins indicate tissue (turquoise, striatum; blue, cortex; green, hippocampus; yellow, cerebellum; brown, liver). Only correlations

whose absolute value is above 0.20 are shown explicitly.

https://doi.org/10.1371/journal.pone.0190550.g004
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Our study also has several important limitations. Our validation data, although from differ-

ent animals, come from the same mouse lines as the discovery data, and both data sets were

generated using the same technology. Our study focused on surveying the small RNA tran-

scriptome only; although we found intriguing hints of possible functional impact of the

observed microRNA expression dysregulation, future detailed studies will be necessary to

more clearly delineate and validate such functional effects.

In summary, our study provides an unbiased transcriptional characterization of the impact

of CAG repeat expansion in endogenous murine Htt in vivo, and identifies microRNAs that

are dysregulated in a CAG length- and age-dependent manner in specific brain regions. Our

findings are available online in the HD resource HDinHD and should facilitate the future

mechanistic understanding the role of microRNA in HD pathogenesis and therapeutics.

Materials and methods

Animal breeding and husbandry

The genotype lines as well as breeding of animals has been described in [13,14]. Briefly, this

study utilized 7 heterozygous (HET)Htt KI lines expressing CAG repeats of 20 (Htttm2Mem), 50

(Htttm3Mem), 80 (Htttm1.1Pfs), 92 (Htttm4Mem), 111 (Htttm5Mem) [41], 140 (Htttm1Mfc) [42], and

Fig 5. Network plots of top hub genes in CAG length-dependent modules and their putative regulator microRNAs. Each panel shows the top hub genes in one of the

CAG length-dependent modules and microRNAs that are negatively correlated with the module eigengene and whose predicted targets are significantly enriched in the

module. Predicted microRNA-target relationships are indicated by turquoise lines while the gene-gene co-expression relationships are indicated by red lines (thicker and

wider lines indicate higher Topological Overlap). Only modules and microRNAs from Table 1 are shown whose correlations are less than -0.4; correlations of all mRNA-

microRNA pairs shown in this figure are negative.

https://doi.org/10.1371/journal.pone.0190550.g005
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175 (obtained by spontaneous CAG expansion in the Q140 model) [43]. For each one of the 7

lines, male HET mice were crossed with C57BL/6J female mice. Experimental animals were

selected according to the following guidelines: No more than 1 animal per sex per genotype

was selected from each litter. Animals originated from litters that could contribute to the

experimental group with 4 animals were preferred over litters contributing 3, which in turn

were preferred over litter contributing 2 animals. Body weight cut off: experimental animals

had to weigh more than 11 g (females) and more than 13 g (males) by 5 weeks of age (the re-

housing week).

Final experimental cages housed 8–10 animals in rat Opticages (Animal Care Systems,

Inc.), about half HET and half WT, same sex, and originating from 10 different litters. Mice

were fed 5001 rodent diet (Harlan-Teklad). On the week of arrival, one tail snip was collected

for genotype confirmation, and electronic transponders (Data Mars) were implanted. One

week after arrival, mice were handled twice for about 1 minute each. The first cage change was

scheduled around 10 days following arrival to minimize disturbance of the cages that could

trigger fighting.

The cages were maintained on a 12:12 light/dark cycle, with white light during the day and

red light during the night, maintaining a low subjective light level for the subjects during the

night period. While inside the cage, water was only available from within the IntelliCage cor-

ners, while food was freely available on the cage floor at all times.

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals, NRC (2010). The protocols were approved by the Insti-

tutional Animal Care and Use Committee of PsychoGenics, Inc., an AAALAC International

accredited institution (Unit #001213).

Tissue selection

Striatum, cortex, hippocampus, cerebellum, and liver were selected for full profiling in Series

1. Specifically, at each of 3 time points (2, 6, 10 months), four female and four male heterozy-

gous mice from each of 6 CAG repeat lengths (Q20, Q80, Q92, Q111, Q140 and Q175) were

profiled, resulting in 48 samples from each tissue and each time point. Additional samples

from wild type littermates from the Q20 line were profiled as well (striatum, hippocampus and

cerebellum at all 3 ages, cortex and liver at 2 and 10m only). For Series 2, 6- and 10-month stri-

atum, cortex, cerebellum and liver were profiled. Profiled CAG lengths included 20, 50, 92 and

140, in addition to wild type littermates of the Q20 and Q50 mice. As in Series 1, 4 female and

4 male animals were profiled from each group.

Tissue specimens were removed, flash frozen on dry ice, and RNA was harvested using the

Qiagen miRNeasy kit. RNA quality and integrity were monitored via Agilent Bioanalyzer. A

minimum of 3.75 μg of total RNA were used to collect enriched RNA subfractions for library

construction. Libraries were sequenced on an Illumina HiSeq2000 sequencer using strand-spe-

cific, single end, 36-mer sequencing protocols to a minimum read depth of 5 million reads per

sample. Clipped reads were aligned to mouse genome mm10 using the STAR aligner [44]

using default settings. Read counts for individual genes were obtained using HTSeq [45].

Data availability

All of our transcription data are available at Gene Expression Omnibus (Series 1 striatum:

GSE65773; cortex: GSE65769, hippocampus: GSE73507, cerebellum: GSE73505, liver:
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GSE65771; Series 2 striatum: GSE78793, cortex: GSE78791, liver: GSE78792, cerebellum:

GSE78790) and our online tool, HDinHD (www.HDinHD.org).

Removal of potential outliers in expression data

Although differential analysis testing was carried out using the raw counts, for outlier removal

we transformed the raw counts using variance stabilization. Within each tissue and time point

we constructed Euclidean distance sample networks [46] and removed samples whose stan-

dardized inter-sample connectivity Z.k was below the threshold of -5. In this step we used

robust standardization, i.e., subtracting the median and dividing by the (asymptotically consis-

tent) median absolute deviation.

Initial differential expression testing indicated that despite removal of suspected outlier

samples, measurements of individual microRNAs still contained apparent outliers (different

samples appeared to be outliers for different microRNAs). Because removing all such outliers

would lead to sample sizes that are too small, and since at the time of this analysis DESeq2 did

not provide facilities to weigh individual samples, we have replaced suspected individual outli-

ers as follows. First, for each microRNA (observation) and each tissue/time combination, we

calculate Tukey bi-square-like weight coefficients λ based on the variance-stabilized transfor-

mation of the raw counts. Specifically, for each observation x, the coefficients are calculated as

l ¼ ð1 � u2Þ
2
;

where u = min(1,|x−m|/(9MAD)), andm andMAD are median and median absolute deviation

of the observations (one microRNA in one tissue and at one time point). These coefficients are

used as weights when calculating the robust bi-weight midcorrelation [47]; the coefficients are

near 1 for observations near the median, decrease as observations deviate more from the

median, and are zero when the deviation is higher than 9 median absolute deviations (medians

of the absolute deviations |x−m|). For each microRNA and tissue/time combinations,MAD is

adjusted such that (1) 10th percentile of the coefficients λ is at least 0.1 (that is, the proportion

of observations with coefficients <0.1 is less than 10%) and (2) for each individual CAG length,

40th percentile of the coefficients λ is at least 0.9 (that is, at least 40% of the observation have a

high coefficient of at least 0.9). Finally, observations x with coefficients λ<0.5 are replaced by a

weighted average of the original observation and the average �x of all non-outlier observations

(i.e., observations with λ�0.5),

xreplaced ¼
ð0:5 � lÞ�x þ lx

0:5

� �

;

where the square brackets indicate rounding to the nearest integer. Thus, mild outliers

(0<λ<0.5) are replaced by a weighted average that weighs the average �x of all non-outlier

observations more as the outlier becomes more extreme, and the extreme outliers (λ = 0) are

replaced completely by the average �x. This approach is similar in spirit to the outlier replace-

ment implemented in DESeq2; our method has the advantage of explicitly preserving at least a

few observations at each CAG length as non-outliers.

Differential expression and association testing

Starting from the outlier-replace counts, we have used standard differential analysis and asso-

ciation testing via negative-binomial general linear models implemented in R package DESeq2

[48], with CAG length (Q) as a variable of interest and gender and batch as covariates. For test-

ing with binary outcomes (e.g., Q140 vs. controls) we used Q20 and WT samples as controls.
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For analysis of association with CAG length as a numeric variable, we have used CAG length

Q = 7 for the WT controls.

Differential expression analysis for binary genotype comparisons and association analysis

for Q treated as a numeric variable are performed in DESeq2 using the same type of moderated

negative binomial generalized linear models (GLMs). For DE analysis, the genotype is a binary

variable while for association analysis, CAG length is treated as a numeric (continuous) vari-

able. In DE analysis the resulting GLM coefficient is interpreted as log2 fold change, while for

association analysis the coefficient represents thelog2 fold change per unit CAG length. Micro-

RNAs for which the coefficient is significantly (after Benjamini-Hochberg False Discovery

Rate, FDR, correction) non-zero are considered significantly differentially expressed or associ-

ated with the relevant genotype comparison.

We have used the Wald test and disabled independent filtering and outlier replacement in

DESeq2. We have run differential expression tests in each tissue and time point separately and

combined results across the 6- and 10-month time points using meta-analysis. Resulting p-val-

ues were corrected for multiple comparisons using the Benjamini-Hochberg FDR method

[49].

Since we have observed very few significant associations at 2 months, for testing of tissue-

CAG length interactions we have combined the 6- and 10-month data and added age as a

covariate. To determine significance, we have used the likelihood ratio test (LRT) where the

full and reduced models differ by the addition of a CAG length–tissue interaction term.

Meta-analysis

Since the DE and association statistics show strong concordance between 6 and 10 month

data, we pool association statistics across the 2 time points (data sets) in each tissue using

meta-analysis. A simple, yet powerful meta-analysis method relies on combining the Z statis-

tics from individual data sets [50,51]. Specifically, for each microRNA i and data set a, one

obtains a Z statistic Zia, for example, by the inverse normal transformation of the p-value.

Next, a meta-analysis Zi statistic for microRNA i is calculated as

Zi ¼
1
ffiffiffiffiffiffiffiffi
Nsets
p

XNsets

a¼1

Zia

Here Nsets = 2 and the index a runs over the 6 and 10-month data sets for a given tissue. The

meta-analysis statistic Zi is approximately normally distributed with mean 0 and variance 1;

the corresponding p-value is then calculated using the normal distribution.

Permutation tests of significance

When correlating two vectors of microRNA significance statistics (e.g., for studying concor-

dance of differential expression), the standard correlation p-value is biased in the anti-conser-

vative direction (inflated significance). This occurs because the individual microRNAs are not

all independent, violating the assumption of independence that underlies the calculation of

standard correlation p-value. To arrive at realistic p-values for concordance of DE, we repeated

each DE calculation 200 times with randomly permuted genotype values. For each observed

DE correlation r, we then calculated the corresponding 200 correlations ri, i = 1,2,. . .,200 of

significance statistics from permuted DE test as well as their mean �rperm and standard deviation

sperm. An approximate, semi-parametric p-value can then be obtained by calculating the
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permutation Z statistic

Zperm ¼
r � �rperm
sperm

;

and calculating the corresponding two-sided p-value using the normal distribution function.

We emphasize that the p-values obtained in this manner are approximate but are expected to

be much closer to unbiased than the naïve Student correlation p-values.

MicroRNA clusters

MicroRNA clusters are small groups of microRNAs whose genomic locations are very close

and that often share a common regulatory mechanism and expression pattern [52]. To facili-

tate the interpretation of our results in terms of clusters, we have defined microRNA clusters

as groups of microRNAs whose genomic positions are at most 200kb apart. We report the

microRNA cluster membership information in our comprehensive result tables (S1, S2 and S4

Tables), and Figs 1 and 2 contain not only the numbers of significant microRNAs but also the

number of distinct clusters represented by the microRNAs.

Supporting information

S1 Fig. Overlaps of DE microRNAs among all comparisons in striatum. For each pair of dif-

ferential expression analyses, the table shows the overlap of the significantly (FDR<0.05) dif-

ferentially expressed microRNAs in the two analyses and the corresponding hypergeometric

p-value. The color scale indicates the number of overlapping DE microRNAs as a fraction of

the minimum of the numbers of DE microRNAs in the two analyses. The diagonal shows the

number of DE microRNAs in each comparison.

(PDF)

S2 Fig. Concordance of Series 1 and Series 2. For each of the 4 tissues and 3 analyses present

in both series, a scatterplot shows the meta-analysis DE significance in Series 2 (y-axis) vs. 6-

and 10-month meta-analysis in Series 1. Each dot represents a single microRNA. Correlations

and the corresponding permutation-based p-values are shown in the title of each plot. The cor-

relations serve as a measure of concordance of DE between Series 1 and Series 2.

(PDF)

S3 Fig. Statistical significance of concordance of association with Q as a numeric variable

across tissues and time points. This figure shows the permutation-based p-values corre-

sponding to the correlations shown in Fig 3.

(PDF)

S4 Fig. Concordance of DE in our cortex data with the results of Hoss et al. In each panel,

the x-axis shows the microRNA significance Z statistic for continuous Q in one of our 6 or 10

month cortex data sets, and the y-axis shows the significance Z statistic for association with

disease status in human BA9 data [12]. Each point represents a single microRNA. Correlations

and the corresponding permutation-based p-values are shown in the title of each panel.

(PDF)

S5 Fig. Concordance of DE across all tests in cerebellum. For each of the DE analyses carried

out on cerebellum data, the table shows the correlations of DE significance Z statistics and the

corresponding semi-parametric permutation-based p-values. Only correlations whose permu-

tation p-value is less than 0.05 are shown explicitly. Color scale indicates the correlation value.

(PDF)
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S1 Table. Complete results of association screening of individual microRNAs. Each sheet

in the file corresponds to one data set (tissue and series). Each sheet contains meta-analysis sta-

tistics, mean expression and differential expression statistics for binary comparisons of higher

CAG length samples vs. controls (e.g., suffix Q80.vs.ctrl corresponds to comparison of Q80 vs.

controls) and as well as association statistics for CAG length (Q) treated as a continuous vari-

able.

(XLS)

S2 Table. Counts of significantly associated and validated microRNAs. For each of the 4 tis-

sues for which there are validation (Series 2) data, the table lists the number of microRNAs sig-

nificantly (FDR<0.05) associated with CAG length in Series 1 data, and numbers of those of

the significantly associated microRNAs that validate (i.e., pass the significance threshold) in

Series 2. Two significance thresholds are used for validation, FDR<0.05 and p<0.05. The

numbers and fractions are further split according to the direction (up or down with CAG

length) in the discovery (Series 1) data.

(CSV)

S3 Table. Numbers of microRNAs with significant (FDR<0.05) tissue-CAG length interac-

tion (TQI). The third column indicates the number of the microRNAs for which there is no

significant evidence of a change of direction (sign) of association with CAG length: the associa-

tions with CAG length either have the same sign or at least one did not pass the p<0.05 thresh-

old. The 4th and 5th columns give the numbers of microRNAs with opposite signs of

association with CAG length that also pass the indicated significance thresholds in both com-

pared tissues; we consider this a significant evidence of opposite direction of transcriptional

response to CAG length mutation.

(DOCX)

S4 Table. Statistics testing for tissue-CAG length interactions (differences in CAG associa-

tion between tissues). Each sheet in the file corresponds to one pairwise tissue interaction and

contains association statistics for interaction as well as relevant statistics of association with Q

as a continuous variable in each tissue. Column significanceIndex is 0, 1 or 2 if the microRNA

is significantly associated with CAG length in neither, one or both tissues, respectively. Column

exprDivergesInHigherQ is 1 if the expression difference between the two tissues increases with

increasing CAG length.

(XLS)

S5 Table. Enrichment mRNA modules in predicted targets of microRNAs. For each micro-

RNA, this table summarizes mRNA modules that are enriched in the predicted targets of the

microRNA. The mRNA modules were identified in mRNA data from the same mice; the anal-

ysis is described in [14]. Columns are annotated in a separate sheet in the file.

(XLS)
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