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ABSTRACT The dissimilatory sulfate-reducing deltaproteobacterium Desulfovibrio vul-
garis Hildenborough (ATCC 29579) was chosen by the research collaboration
ENIGMA to explore tools and protocols for bringing this anaerobe to model status.
Here, we describe a collection of genetic constructs generated by ENIGMA that are
available to the research community.

The study of sulfate-reducing microorganisms (SRMs) is necessitated by the multi-
tude of impacts caused by their metabolism on Earth’s sulfur, oxygen, and carbon

cycles (1, 2), their corrosion of concrete and ferrous metal structures (3, 4), and their
involvement in human health (5). Recently, possible SRM contributions to biohydrogen
and hydrocarbons for biofuel, polyhydroxyalkanoates to replace plastics, bioremedia-
tion of toxic metals, and bioactive metal sulfides for cancer treatment have been
revealed (2). With 28mM sulfate in the oceans, SRMs have a competitive advantage for
biomass turnover there. Estimates of SRM degradation of about 50% of the organic
matter reaching the marine sediment (1, 6) would make them among the more abun-
dant organisms on Earth.

Because of the environmental importance of these microbes, the first sulfate-reduc-
ing bacterium with a sequenced genome, Desulfovibrio vulgaris Hildenborough (7), was
chosen to be brought to model status for use in generating a transposon (Tn) library
and for constructing strains that produce affinity-tagged proteins (Table 1). In the
Dryad digital repository, we provide a list of the Hildenborough constructs and a
ReadMe file that describes their construction (9). Below, references are included where
construction details can be found.

Marker exchange mutation, replacing a nucleotide sequence with a selectable
marker flanked by homologous chromosomal regions, has been the cornerstone of
genetic constructions (10, 11). To generate in-frame deletions without a residual select-
able marker, a parental strain, JW710, was created that is resistant to inhibition by 5-
fluorouracil through deletion of the uracil phosphoribosyltransferase (upp) gene (12).
The return of the upp gene restores sensitivity, providing a counterselectable gene.
JW710 also allows site-directed mutations (13) and multiple deletions to be created
without an accumulation of selectable markers (12, 14). The plasmids, pSC27 (15),
pMO719 (16), pMO9075 (11), and pMO746 (17), with features used in various strain
constructions, are available from https://www.addgene.org/Judy_Wall/.

Transposon mutants were generated by conjugation of a nonreplicating plasmid
encoding a mini-Tn5 (18) conferring kanamycin (and Geneticin) resistance and
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modified with barcoding oligonucleotide sequences (19, 20). Kanamycin-resistant
transconjugants were recovered from transposition events and subjected to sequenc-
ing to locate the insertion site of the transposed DNA. Over 10,000 transconjugants
were isolated and archived individually. Pools of these transposon mutants marked
with TagModules were made to assay gene fitness in parallel (19), but their use
revealed that unidentified members had an aerobic contaminant(s). Confirmation of
the axenic status and the genome location of the transposon should be performed
prior to use of these mutants. Randomly barcoded TnSeq approaches (21) have since
been used to make pooled transposon libraries successfully in Hildenborough. These
pooled bar-coded transposon mutants are also available upon request (22; V. Trotter,
personal communication, 27 August 2020).

Affinity-tagged gene constructs were made for affinity purification to identify pro-
tein-protein interactions (23, 24). Sequential tags were Strep-tag (25) and FLAG (26),
separated by the tobacco etch virus (TEV) protease site (27), referred to as STF or STF
with 6� His for C-terminal tagging. Single-tagged constructs with SNAP allowed in vivo
covalent tagging with a fluorescent dye (28).

Data availability. The genetic constructs described herein are available, within
reason, from Valentine V. Trotter (vvtrotter@lbl.gov) and Adam M. Deutschbauer
(amdeutschbauer@lbl.gov). The constructs can be found listed at the Dryad digital re-
pository (https://doi.org/10.5061/dryad.h70rxwdh9). These strains were generated,
wholly or in part, in the laboratory of Judy D. Wall, and the list was deposited in 2021. A
ZIP file was deposited at Dryad containing a ReadMe document, a composite Excel file,
an Excel file necessary for TagModule/barcode identification of transposon mutants and
of complementary barcoded gene deletions, and a text file listing of TagModules. On
sheet 1 in the composite Excel file is a search engine that will identify all constructs avail-
able for any gene locus provided as a DVU number.
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TABLE 1 Summary of genetic constructs of Desulfovibrio vulgaris Hildenborough

Type of construct
Total no. of
constructs

No. of unique
genes mutated

% of predicted protein-encoding
genes

Marked and unmarked gene
deletionsa

.725

Tn mutants 11,034 2,480 72.6b

Barcoded deletions for expanded Tn
mutant pool

275 214 6.3

Total no. of
constructs No. of tags

% of predicted protein-encoding
genes modified

Constructs for tagged proteins 1,568c 45.9
STF 1,231 36.0
STF-6� His 237 6.9
SNAP 61 1.8
Other tags 39 1.1
a Includes marker-replacement deletions (MR), marker-less deletions (MLD), site-directed mutants, and a few complementation strains.
b Total of 3,417 (8).
c Total of 1,430 unique genes.
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