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a b s t r a c t

We present ADIOS 2, the latest version of the Adaptable Input Output (I/O) System. ADIOS 2 addresses
scientific data management needs ranging from scalable I/O in supercomputers, to data analysis
in personal computer and cloud systems. Version 2 introduces a unified application programming
interface (API) that enables seamless data movement through files, wide-area-networks, and direct
memory access, as well as high-level APIs for data analysis. The internal architecture provides a set of
reusable and extendable components for managing data presentation and transport mechanisms for
new applications. ADIOS 2 bindings are available in C++11, C, Fortran, Python, and Matlab and are
currently used across different scientific communities. ADIOS 2 provides a communal framework to
tackle data management challenges as we approach the exascale era of supercomputing.
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1. Motivation and significance

As supercomputers approach the exascale era [1], several
hardware architectures have emerged [2,3] to counteract the
cadence slowdown of Moore’s law [4,5]. Due to the ability to
run larger and more complex simulations, data input output
(I/O) operations are anticipated to become a larger bottleneck
than in current petascale systems [6,7]. To circumvent I/O bot-
tlenecks, vendors and leadership facilities are proposing new
high-bandwidth/low-latency memory, communication, and stor-
age architectures [1,8]. Implementations include direct-memory
access through Infiniband [9], Omni-Path [10], and NVLink [11],
as well as intermediate storage using non-volatile random-access
memory (NVRAM) [12]. As a result, there is a strong need to study
each new paradigm in order to achieve optimal I/O performance
without having to pay the cost of rewriting codebases for each
platform [7].

Large-scale scientific data management is challenging during
the data generation, transfer, storage, and processing stages. As
illustrated in Fig. 1, data lifecycles require efficient data move-
ment across different transport media: files, wide-area-networks
(WAN) and memory staging areas. Several software tools exist
to handle each aspect of the data lifecycle. For example, the
HDF5 [13] and NetCDF [14] libraries have been widely used for
storage and organization of large datasets. Their parallel imple-
mentations, Parallel HDF5 [13] and PNetCDF [15], expose their
functionality to parallel computing environments based on the
standard message passing interface, MPI [16]. At a lower level,
the MPI-2 standard introduces the MPI I/O API for raw bytes
file manipulation in parallel applications, a popular implementa-
tion is ROMIO [17]. On the other hand, interprocess/intraprocess
network transport mechanisms are provided by well-established
implementations: the MPI standard [16], ZeroMQ [18], OpenSH-
MEM [19]. Hence, there are a plethora of interface options and
communication models for each particular mechanism of data
transport.

The present work introduces ADIOS 2: the Adaptable Input
Output System version 2, a framework designed to serve the
scientific community in their data management needs at sev-
eral scales: from laptops, desktops, cloud services to large data
producers in supercomputing applications. ADIOS 2 expands the
performance legacy of the earlier versions of ADIOS that provide
scalable parallel I/O as documented in previous works [20–23].
ADIOS 2 provides a unified application programming interface
(API) with a level of abstraction focusing on how data is produced
and consumed in scientific applications to reduce the cost of in-
tegrating different data transport technologies. Applications using
ADIOS 2 do not need to dramatically modify their source code to
evaluate performance trade-offs when moving their data through
different transport media.

A flexible and portable framework is required due to the
dynamic architectural changes shaping the path to exascale com-
puting [2,3]. As such, the internal architecture of ADIOS 2 focuses
on component reusability and extensibility for seamless integra-
tion of novel data management algorithms. ADIOS 2 is written
in C++11 [24] to take advantage of the portable functionality
added to the language, e.g. threads and algorithms, thus reducing
reliance on platform-specific implementations. ADIOS 2 develop-
ment adopts modern software engineering practices such as unit
testing, continuous integration, and documentation to make the
final product accessible to the scientific community.

ADIOS 2 is part of the United States Department of Energy
(DOE) Exascale Computing Project (ECP) software technology

2. Software description

When designing the ADIOS 2 software infrastructure three
levels of interaction APIs were identified:

1. Public Low-Level API: large-scale HPC simulations codes,
workflows, and ecosystem components

2. Public High-Level API: analysis and visualization using data
science high-level languages frameworks

3. Private APIs: ADIOS 2 library internal components.

The design philosophy targets specific aspects to better serve
interactions with each API level. The rationale is listed as follows,

Public Low-level API:

• Unified API: to reduce the learning curve for different data
transport strategies

• MPI [16] based library (optional non-MPI): reducing costs of
handling low-level I/O related network tasks

• Self-describing ‘‘Variables’’ and ‘‘Attributes’’: to reduce the
costs of manipulating low-level byte formats

• ‘‘Engine’’ abstraction: to allow multiple I/O solutions (file,
stream, WAN) with minimal changes to the application code

• ‘‘Deferred Put/Get’’ abstraction: data transfer is done by
default in deferred mode (lazy evaluation) to minimize low-
level system operations as we group ‘‘Variables’’ in a step,
while sync mode (immediate execution) is treated as the
special case

• ‘‘BeginStep/EndStep’’ abstraction: to match the more natural
production and consumption cycle of scientific data. Users
do not need to track ‘‘step’’ information

• ‘‘Operation’’ abstraction: incorporate novel in-house or ex-
ternal algorithms for data manipulation pre or post move-
ment: e.g. reduction techniques, user callbacks

• Key/value optimizations: provide fine-tuning options to
evaluate I/O performance trade-offs for different application
scenarios

Public High-Level API:

• Flat learning curve: resemble native I/O for easy integration
with high-level languages and their data analysis ecosystem,
mainly C++, Python, Matlab

• Runtime input settings: provide an interface for parameter
settings without requiring compilation

• Ecosystem: analysis tools built around the library (e.g. bpls,
format converters, data visualization models).

Private APIs,

• Development Toolkit: provide a set of reusable and tested
components in a modular architecture

• Modern Software Practices: automated continuous integra-
tion (CI) for quality testing, coding standards, issue tracking
system for community engagement.

2.1. Software architecture

2.1.1. Public API architecture
ADIOS 2 public interfaces are implemented using the Pointer

to Implementation (PImpl) idiom [25]. ADIOS 2 provides a stable
public API, as of version 2.5.0, at two levels:

• Low-Level API: designed for HPC applications, provides
greater level of control and granularity. Available in C++11,
Fortran, C, and Python.

• High-Level API: designed for simple data analysis tasks, re-
sembles nativate language I/O APIs for a flat learning curve.
stack for data and visualization [1,2]. Available in C++11, Python, and Matlab.
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Fig. 1. Scientific data lifecycle data management overview illustrating generation, processing, transfer, storage and analysis tasks. ADIOS 2 provides an abstract and
unified framework reusing the same API for different transport modes.

A schematic representation is provided in Fig. 2 for the low-
level API components and their relationship from an application’s
point of view. ADIOS 2 uses a ‘‘factory pattern’’ [26] in which
the ADIOS component is at the top-level in the factory hierarchy.
ADIOS is the only component ‘‘owned’’ by the application, all
other components refer to an element inside a container in its
corresponding ADIOS factory. Applications can create as many
ADIOS factory components as required. Table 1 provides a sum-
mary description for the role of each component in I/O workflow
composition using ADIOS 2.

ADIOS 2 also provides high-level APIs in C++11, Python and
Matlab, that resemble their native language implementations for
file manipulation for easy integration with data analysis ecosys-
tems available in those languages. Users will find these APIs
suitable for simple tasks in which performance is not critical, e.g.
quick data analysis and testing.

Examples for the public low-level and high-level APIs can be
found in Section 3, Listings 1 and 2, respectively.

2.1.2. Private API architecture
The main goal of the ADIOS 2 internal architecture is to pro-

vide a set of extensible, reusable, and tested toolkit compo-
nents for developers. The private internal architecture of ADIOS
2 adopts the Open Systems Interconnection (OSI) [33] standard.
This layered abstraction model delineates the scope and func-
tionality of each class component in the overall hierarchy of
the object-oriented architecture. As shown in Fig. 3, each toolkit
component can be mapped to the OSI software layers, 7 through
4.

At the heart of ADIOS 2 lies the concept of the abstract ‘‘En-
gine’’. Engines execute the I/O heavy tasks and are conceived
as workflows tackling specific application areas as illustrated in

Table 1
Low-Level API components functionality description.
Component Description

ADIOS Sets MPI communicator domain
Process configuration runtime settings
Factory of IO and Operator components
Only object whose memory is owned by the
application

IO I/O tasks configuration: how, what, where
Sets Engine Parameters and Transports
Factory owner of Variables, Attributes and Engines

Variable User data and metadata representation

Attribute Additional ‘‘human-readable’’ information for a
Variable or a dataset

Engine (abstract) Executes heavy tasks: buffering, transport
management
Manages system resources
Current: BPFile (default), HDF5, InSitu-MPI, SST,
DataMan (WAN), SST

Operator (abstract) Applies Variable data operations inside an Engine
Data Reduction, lossy: zfp [27], SZ [28], MGARD [29];
lossless: PNG [30], bzip2 [31], Blosc [32]
Callback Functions

the Engine, layers 7 through 4, and the Transport, layer 4, classes.
They provide unified interfaces for multiple raw bytes movement
backends tackling different media in the lower hardware layers of
the OSI model.

Design choices favoring reusability allows Engine designers
to have a set of available components to study their perfor-
mance trade-offs when prototyping or extending an Engine. As
an example, the BP serializer and deserializer components, OSI
layer 6 in Fig. 3 (BP3 and BP4), are used in two staging engines:
InSituMPI and SST, and by default in the BPFile engine, for their
Table 2. Fig. 4 illustrates the extendable object-oriented nature of
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Fig. 2. Full Low-Level API components factory hierarchy in ADIOS 2.

Fig. 3. Mapping of the ADIOS 2 internal software architecture layers to the standard OSI model [33] abstraction.

etadata indexing, buffer aggregation across MPI processes, and
ata compression capabilities.

.2. Software functionalities

ADIOS 2 has two primary focus areas in terms of data I/O
ransports:

1. Parallel file I/O
2. Parallel intra/interprocess data staging

The functionalities of ADIOS 2 can be mapped directly to a
ategory of use-cases that each engine addresses. Table 2 sum-
arizes these functionalities for currently available engines.
In addition, each engine provides a set of parameters to fine-

une performance for each application I/O pattern. For example,
he current default engine (BPFile) allows for setting performance
arameters: number of steps to buffer, number of generated
ubfiles, and frequency of collective metadata indexing.

Table 2
ADIOS 2 Engines and areas of application.
Application Engine Application Areas

File BPFile Checkpoint/restart,
analysis data,
zero-copy buffer,
file-based streaming,
code coupling

HDF5 HDF5 compliant files

Data staging SST Interprocess communication
SSC Interprocess communication
InSituMPI On-node interprocess communication
DataMan Peer-to-peer TCP/IP Wide-Area-Networks (WAN)

3. Illustrative examples

The following examples illustrate usage of the low-level and
high-level APIs.
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Fig. 4. ADIOS 2 Engine and Transport internal toolkit abstract classes showing their hierarchy and extendable virtual interfaces to dispatch to multiple media: file,
sockets, shared-memory, etc.

Listing 1 illustrates how ADIOS 2 C++11 low-level API is in-
tegrated with a generic HPC simulation. The example presents a
sequence of interactions of the ADIOS, IO, Variable, and Engine
components. A fundamental aspect is that an ADIOS 2 interface
requires minimal changes when setting the engine type and pa-
rameters, so users can evaluate different transport modes either
at compile or run time.

Listing 1: C++11 Low-Level API Write Example

// ADIOS 2 starting point

// config.xml: string config file name for adios2 runtime parameters

// comm: IO communicator

adios2::ADIOS adios( " config.xml " ,comm);

// Setting the IO process

// " analysis " is the unique string describing the overall IO task

adios2::IO io = adios.DeclareIO( " analysis " );

// Add human-readable info to your data

io.DefineAttribute <std::string >( " app " , " Euler Solver " );

// Regular MPI partition in " x " slowest dimension

const adios2::Dims shape = {size * Nx, Ny};

const adios2::Dims start = {rank * Nx, Ny};

const adios2::Dims count = { Nx, Ny};

// Self-describing Variable metadata: name, type, dimensions

adios2::Variable<double> varT =

io.DefineVariable <double >( " T " , shape, start, count};

adios2::Variable<double> varUx =

io.DefineVariable <double >( " Ux " , shape, start, count};

adios2::Variable<double> varUy =

io.DefineVariable <double >( " Uy " , shape, start, count};

// Optionally , add extra info to a variable

io.DefineAttribute <std::string >( " units " , " K " , " T " );

// Set the Engine type and parameters

// This is typically the one section users need to modify in the API

// to evaluate different transport modes.

// SetEngine and SetParameter can also be set at runtime

// using a config file in the ADIOS constructor

// Each available engine enable different data transport modes:

// file: BPFile (default), BP3, BP4, HDF5

// memory-to-memory: InSituMPI , DataMan, SST, SSC

io.SetEngine( " BPFile " );

// set parameter in key/value string form

// e.g. produce substream/subfiles half the number of MPI processes

io.SetParameter( " SubStreams " , std::to_string(size/2) );

// create an Engine using an unique string

// to start heavy-lifting write I/O tasks

adios2::Engine engine = io.Open( " euler.bp " , adios2::Mode::Write);

while( iterate )

{

// generic computation , e.g. matrix solver

// T, Ux, Uy are std::vector<double>

compute(T,Ux,Uy);

// start an I/O step

engine.BeginStep();

// Put are deferred/lazy evaluation calls by default

// T, Ux, Uy, memory addresses can’t be modified until EndStep

engine.Put(varT, T.data() );

engine.Put(varUx, Ux.data() );

engine.Put(varUy, Uy.data() );

// EndStep executes the data transfer

engine.EndStep();

// T, Ux, Uy memory can be now be modified

...

}

out.Close();

Listing 2 illustrates how to read ADIOS 2 data using the Python
high-level API. ADIOS 2 provides a ‘‘pythonic’’ interface of an
iterable container of steps using a generic ‘‘read’’ function. As
such, variable data is always returned as a numpy [34] array for
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a straight-forward integration with popular data science frame-
works using numpy as a core component, e.g. Pandas [35] and
SciPy [36].

Listing 2: Python High-Level API Read Example

import adios2

with adios2.open( " euler.bp " , " r " ) as fh:

for fstep in fh:

# retrieve current step

step = fstep.current_step()

# inspect variables dictionary in current step

step_vars = fstep.available_variables()

for name, info in step_vars.items():

print( " variable_name: " + name)

for key, value in info.items():

print( " \t " + key + " : " + value)

print( " \n " )

if( step == 0 ):

size_in = fh_step.read( " size " )

# read variables in current step

# returning a numpy array for easy integration

# with data science frameworks (e.g. pandas, scipy)

# either read the entire variable

T = fstep.read( " T " )

# or optionally read a window selection

Ux = fstep.read( " Ux " , start, count)

Uy = fstep.read( " Uy " , start, count)

4. Impact

The following is a summary of the current efforts in integrating
DIOS 2 in several scientific computing frameworks and the
mpact on their data management needs.

.1. Plasma physics

– XGC: The X-point included Gyrokinetic Code (XGC) is a
fusion simulation code to model gyrokinetic plasma physics
[39,40]. ADIOS has been integrated to handle their large-
scale I/O operations on DOE’s supercomputers, including
Summit [8], as well as to support multi-physics coupling
workflows [41,42]. Performance gains for using ADIOS’s ag-
gregation, staging, and NVRAM/burst buffers support have
been reported in various research works [41–44]. This is
illustrated in Fig. 5 for the write performance throughput
of XGC checkpoint-restart on Summit’s GPFS and NVMe I/O
systems.

– GTC: The Gyrokinetic Toroidal Code (GTC) [45] simulates
billions of plasma particles inside a fusion reactor. The out-
put of GTC consists of small, frequent diagnostics data (low
volume, high velocity data), large-sized field data (high fre-
quency, moderate volume data), and checkpoint-restart files
(low frequency, high volume data). GTC uses ADIOS 2 to:
(1) optimize data file outputs, (2) analyze diagnostics data
using its Python high-level interface, and (3) as an input to
visualize field and particle data [46].

– PIConGPU: the relativistic, fully-accelerated, electro-
magnetic particle-in-cell code with primary applications
in plasma physics and laser-particle acceleration. PICon-
GPU [47,48] is written in performance-portable C++ based
on the Alpaka library [49,50] and benefits from ADIOS’s
aggregation and data compression methods. ADIOS 2 SST
staging method has recently been added via the openPMD
project [51], providing a high-level abstraction for meshed
fields and particle data. Targeted use-cases are rapid proto-
typing for loosely coupled in-situ reductions with petabytes
of data per simulation via on and off-node buffering (e.g.
over NVRAM/burst buffers) on the Summit supercomputer
[8].

4.2. Earth science

– E3SM: ADIOS 2 is integrated into the Parallel IO frame-
work (PIO) as a backend for I/O in Energy Exascale 3D
System Model [52]. Currently, ADIOS reduces I/O bottle-
necks by a factor of 50x by delaying data reorganization
outside extreme scale supercomputers like Titan. Efforts are
currently ongoing to port this functionality to the Summit
supercomputer [8].

– SPECFEM3D: ADIOS 2 is being integrated in the spectral-
element global seismic wave propagation, SPECFEM3D_
GLOBE, framework’s forward simulation and adjoint pro-
cess [53]. Running 1,480 earth quakes simulations produces
1.5 petabytes of wave field data on 15,360 nodes of the Titan
supercomputer in about 7 hours. The adjoint simulation
later reads in all of the generated data. ADIOS 2 allows for
efficient data transfers and self-describing mechanisms at
these scales.

4.3. Radio astronomy

– Casacore SKA: The Square Kilometer Array (SKA) is being
designed to be the largest data producer radio telescope
in the world. ADIOS 2 is currently being deeply integrated
into the fundamental radio astronomy data the Casacore
Table Data System [54]. Early exploratory work suggested
improved performance for their I/O workflows such as data
staging, and near-real-time data compression [23,55,56].

4.4. Aerospace engineering

– UPACS-LES: ADIOS 2 has been integrated into UPACS-LES
[38], an in-house program for Computational Fluid Dy-
namics (CFD) in the Japan Aerospace Exploration Agency
(JAXA) for the simulation of the aeroacoustics in aircrafts
and launch vehicles. ADIOS 2 flexibility is essential to their
post-processing tasks on the JAXA’s Supercomputer System
Generation 2 (JSS2) system [37]. Fig. 6 shows a schematic
representation of the heterogeneous nature of JSS2 and the
post-processing pipeline workflow, using the SST staging
engine in ADIOS 2, that bypasses the file system.

4.5. Community frameworks engagements

Efforts are currently ongoing to integrate ADIOS 2 in the fol-
lowing community frameworks to impact their data management
and scalable I/O needs:

• LAMMPS: Molecular Dynamics Simulator [57]
• MFEM: Modular Finite Element Methods Library [58]
• OpenFoam: The open source CFD toolbox [59]
• VTK and VTK-m: The Visualization Toolkit [60,61]
• The Trilinos Project [62]
• PETSc: Portable, Extensible Toolkit for Scientific Computa-

tion [63].
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f

Fig. 5. XGC Checkpoint writing using ADIOS 2 on Summit supercomputer. ADIOS 2 BPFile engines allow for scalable parallel file I/O using optimization parameters
to: (i) skipping collective metadata at write, nometa, (regenerated at post-run), (ii) selecting a custom number of files fewer than the number of MPI processes.

Fig. 6. Overview of the JSS2 system at JAXA [37] and layout for in transit visualization workflows using staging capabilities in ADIOS 2 in the UPACS-LES CFD
ramework [38].
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5. Conclusions

ADIOS 2 serves the scientific community in their data trans-
port, transform and storage needs. By providing a unified API,
ADIOS 2 allows the scientific community to focus on publishing
and subscribing their data where and when required without hav-
ing to handle a plethora or low-level I/O interfaces. ADIOS 2 aims
to provide scalable parallel I/O functionality geared towards the
next generation of exascale supercomputers, in addition to high-
level mechanisms for data analysis. ADIOS 2 has been adopted
by several high-performance scientific computing frameworks.
This paper introduces the ADIOS 2 open-source framework to a
broader audience seeking to explore new paradigms in their data
management needs.
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