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Brief review article — Paradigms and Perspectives

Gene Therapy for Wiskott-Aldrich Syndrome: History, New Vectors, Future Directions
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Introduction

Wiskott-Aldrich Syndrome (WAS, OMIM 301000) is a severe X-linked disorder
characterized by thrombocytopenia, eczema, immunodeficiency, and increased risk of
autoimmunity and cancer. Affecting 1-10 males per million, WAS is caused by mutations in
the WASp gene, which lead to impaired or abolished expression of the WAS protein (WASP),
a hematopoietic-specific regulator of actin cytoskeleton remodeling. The severity of WAS is
scored based on the gravity of thrombocytopenia (score 0.5 to 1), eczema and
immunodeficiency (score 2 to 4), and presence of autoimmunity or malignancy (score 5)*.

Historically, WAS has been treated with splenectomy and immunoglobulin replacement to
prevent infections, the former of which may improve platelet counts but further weakens
immunity. The gold standard treatment for WAS patients is hematopoietic stem/progenitor cell
(HSPC) transplantation (HSCT) from an HLA-identical donor?.

Because related identical donors are rare and a matched-unrelated donor may be untimely,
especially within certain ethnicities, ex vivo gene therapy (GT) represents a valuable
therapeutic alternative. Compared to allogeneic HSCT, GT is an autologous procedure that
bears negligible risk of rejection or graft-versus-host disease and does not require
immunosuppression or fully myeloablative conditioning, which is associated with increased
risk of infection and organ toxicity. On the other hand, GT may present limitations due to gene
correction efficiency, levels of WASp expression, and potential occurrence of insertional

mutagenesis.

Preclinical data

The pathophysiology of WAS has been studied using cells from WAS patients and two
independently generated was™ (wko) mouse strains displaying most features of WAS patients,
excluding severe thrombocytopenia. Knowledge of WAS pathophysiology (summarized in

Figure 1) was crucial in informing several features of clinical gene therapy.
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Study of WAS patients developing revertant mosaicism, heterozygous wko female mice,
gene-corrected patients’ T-cell lines, and wko mice clearly showed a proliferative/survival

advantage for WASP-expressing T cells, B cells, and less prominently for platelets.

Initial GT approaches utilized y-retroviral vectors (RV) with strong viral promoters. However,
due to the nature of the disease and risk of oncogenicity, most groups moved to lentiviral
vectors (LV), likely safer alternatives to RV, as they do not show preference for integration
close to transcription start-sites and can incorporate cellular physiological promoter for

regulated specific expression of the transgene.

Gene correction using a self-inactivating lentiviral vector (LV) to drive expression of WASp
cDNA controlled by a 1.6kb (w1.6W) endogenous WAS promoter restored WASP expression
in T, B, and CD34" cells from patients. It also corrected T-cell dysfunction, DC cytoskeletal
abnormalities, and thrombocytopenia in wko mice treated with non-myeloablative irradiation
and GT3. LV transduced CD34" cells retained the ability to engraft and differentiate in
immunodeficient mice. The wl.6W LV did not cause tumors in GT-treated mice that were
followed up on for a year, nor in recipients of secondary transplantation®, establishing its safety

in preclinical models.

Clinical gene therapy

The proof of concept of GTs efficacy in WAS patients was provided by a clinical trial using a
V-RV bearing a strong viral promoter. Long-term engraftment of RV-transduced HSPC led to
restoration of WASP expression and improved platelet count and T-cell function, resulting in
clinical amelioration of disease phenotype. However, 9/10 patients for which GT was
successful developed acute leukemia due to RV integrations close to oncogenes and
activation of their expression?, including LMOZ2. This further prompted the need for viral vectors

with better safety profiles.
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Various clinical trials based on LV-engineered autologous HSPC began in 3 centers in
Europe (SR-Tiget in Milan, Great Ormond Street Hospital in London, Necker Children’s
Hospital in Paris) and in 1 center in the US (Boston Children’s Hospital) (Table 1). The LV and
transduced CD34+ cells were manufactured at different sites, but vector design was the same.
Treatment consisted of a single infusion of LV-transduced autologous bone marrow or
mobilized peripheral blood-derived CD34* cells after conditioning. SR-Tiget adopted a
reduced intensity-conditioning regimen (RIC) to minimize toxicity and fully exploit the selective
growth advantage of gene corrected cells, while the other centers adopted a more intense
regimen (Table 1). 34 WAS patients (Zhu score: 3-5) were treated worldwide, with a median
follow up ranging from 3.3 to 7.8 years, depending on the center > (Table 1). Three out of 34
patients died of morbidities unrelated to the GT product (Table 1). No severe GT-related
adverse events occurred and no treated patients developed clonal selection, insertional

mutagenesis, leukemia, or replication-competent LV to date.

All surviving patients (31/34, 91%) had sustained multi-lineage engraftment of gene-
corrected cells, with higher gene marking and WASP expression in T cells and other lymphoid
cells, consistent with their strong selective advantage. Despite the use of a RIC, sustained
and robust in vivo BM engraftment of gene corrected progenitors (median 49%, range 22-
85%) was achieved’. Conditioning is not the only factor influencing engraftment since patients
who received a more myeloablative regimen reached a VCN of 0.01 to 0.4 (equivalent to 1%
to 40%) in myeloid cells®. Even in the presence of variable levels of reconstitution, immune
function improved enough to provide a clinical benefit with reduced severe infection rate.
Humoral immune deficiency ameliorated, allowing for discontinuation of immunoglobulin
supplementation in several patients. All subjects showed improvement or resolution of
eczema. Platelet count variably improved after GT, but remained below normal range in most
patients. Amelioration of thrombocytopenia resulted in protection from severe bleeding, as
well as freedom from transfusions and TPO agonists (Figure 2). This may also be a result of

improved platelet function and phenotype after treatment®. Autoimmunity improved after GT>%,
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possibly due to restoration of normal T regulatory cell function and B-cell tolerance. However,
in contrast with the results of other centers, two subjects treated in Boston with pre-existing
autoimmunity had no resolution after-GT, in association with poor recovery of lymphocytes,

including Tregs®.

Although most initially treated patients were children, clinical benefit has now been
demonstrated in older subjects (overall age range: 0.8-35.1 years), who are considered at

higher risk when treated with allogeneic HSCT"1°,

Current challenges and future directions

GT has proven to be an effective treatment for WAS. Available data from recent GT clinical
trials using LV demonstrate the safety and efficacy of this therapeutic approach in the short
and medium term. The experience from this cohort of patients indicates that an adequate
immunological reconstitution provides protection from infections and control of autoimmunity
in most patients. On the other hand, thrombocytopenia persists in several patients after GT,
although in a milder and mostly asymptomatic form. This also occurs, albeit less frequently,
after allogeneic HSCT and is usually associated with low myeloid chimerism. In line with this,
the dose of gene-corrected drug product and in vivo correction of HSPC seems to correlate
with degree of myeloid cell engraftment and improvement in thrombocytopenia. Strategies to
achieve full correction of thrombocytopenia could be based on: 1) improvement of vector
construct to increase transgene expression; 2) optimization of gene transfer efficiency and LV
copy number by transduction enhancers; 3) refinement of the conditioning regimen to increase
myeloid gene corrected engraftment while sparing conditioning-related toxicity, such as with
stem cell depleting antibody drug conjugates. These changes over the current protocols will

however mandate a careful reassessment of risks.

In contrast to the long-lasting experience with HSCT in WAS, there is limited information on

the very long-term safety of GT (>10 years). As of today, no patient treated with LV-GT has
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developed malignancies, the longest follow up being 8.8 years. Despite this timeline being
well beyond the reported time of occurrence of leukemia in the RV trial (range: 1.3-5 years),

life-long monitoring of all LV-treated patients will be crucial.

In 2019, a new clinical study started at SR-Tiget to evaluate the use of a cryopreserved
formulation of wl.6W-transduced autologous CD34* HSPC (OTL-103) in subjects with WAS
(NCT03837483). The use of cryopreserved product aims to increase safety, as it allows for
quality testing of the medicinal product before infusion. If comparable to its fresh counterpart,
the cryoformulation may increase the availability of GT worldwide, making it not only a
standard option in the clinical management of WAS patients, but also a possible treatment for

patients with milder disease forms.



Figures and tables

Table 1. GT in WAS: Worldwide experience with w1.6W LV

Center Conditioning Clinical trial.gov F;?tletn':js Patll_ents Years of follow up” References
(courtesy of) regimen identifier eate alive (median and range)
(n) (n)
Bu 12 mg/kg ®) .
London (target AUC ~60) #NCT01347242 7 6" 3.5 (1.5 - 8.0) and unpublished
(A. Thrasher) Flu 120 mg/m? data
Paris Bu 12 mg/kg
~ ° ) i
(A. Magnani, (th‘ngeZtoAﬁg/mfz) #NCT01347346 5 4°° 7.8 (6.0 - 8.8) and tnpublished
M. Cavazzana)  Ani'cp2o mAb (1 pt¥)
Bu 12 mg/kg ©) .
Zojt%”. (target AUC 70-85)** #NCT01410825 5 5 50 (2.7 - 6.1) and unpuplished
(S-Y. Pai) Flu 120 mg/m?
Bu 6.4 — 9.6 mg/kg
. (current target AUC 48+/-10%) #NCT01515462 7.8)
Milan Flu 60 maine + EAP (HE/CUP) 17 16™M 3.3(0.1-8.8) 78
Anti-CD20 mAb
Total - - 34 31 - -

Bu, Busulfan; Flu, Fludarabine; AUC, area under the curve; mAb, monoclonal antibody; EAP, early access program; HE, hospital exemption; CUP,
compassionate use program.

Busulfan AUC reported in the table is expressed as “x103% ng x h/mL”.
Aln surviving patients. #One patient died 3 years after GT due to post-splenectomy sepsis post-influenza (splenectomy performed early in life, many years before
GT). °Target Busulfan monitoring was performed in 4 out of 5 treated patients. *With autoimmunity. °°One patient died 7 months after GT due to pre-existing
drug-resistant herpes virus infection. **1 pt AUC= 48, not targeted. “One patient died 4.5 months after treatment, due to deterioration of an underlying
neurodegenerative condition, not related to GT.
SUnpublished data have been kindly provided by Adrian Thrasher (UCL, London), Marina Cavazzana and Alessandra Magnani (Hopital Necker-Enfants
malades, Paris) and Sung-Yun Pai (Boston Children’s Hospital), who gave their permission to include them in this table and in the present review.



Figure 1: Mechanisms of disease in WAS. (to be replaced with new version by artist)
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Figure 1: Mechanisms of disease in WAS. WAS-associated immunodeficiency is characterized by defective

T cell priming and effector functions due to deficits in antigen presentation by APC, T cell activation through the
TCR, and migration of T cells and APC. B cell responses are also defective because the GC reaction is impaired
and MZB cells are absent. Thrombocytopenia results from accelerated platelet destruction as WAS platelets have
intrinsically shortened lifespan, as well as from autoimmune attack. Newly generated platelets may also be
trapped in the bone marrow space. Both impaired immunosurveillance and a cell-intrinsic role of WASP as a
tumor suppressor are at the basis of the development of cancer, especially B cell ymphomas. Th2 skewing,
elevated IgE titers and eosinophilia might explain the high incidence of eczema in WAS patients. Autoimmunity
results from the cooperation of several defects including dysfunction in regulatory cells, excessive production of
inflammatory cytokines by myeloid cells, and intrinsic hyper-reactivity of B cells and platelets.



Figure 2: Summary of WAS LV-GT outcome (to be replaced with new version by

artist)
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