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Abstract
MicroRNA (miRNA)-binding site variants in 3′ untranslated regions (3′UTRs) are a novel class of germ-line, functional
mutations, which are now recognized as powerful biomarkers of human cancer risk and biology. The first mutation
discovered in this class is the KRAS-variant, a let-7-binding site mutation in the 3′UTR of the KRAS oncogene. The KRAS-
variant predicts increased cancer risk for certain populations, is a predictive biomarker of cancer treatment response across
cancer types, leads to conserved tumor biology and elevated AKT signaling in KRAS-variant patient tumors, and was
recently found to predict elevated TGF-β and immunosuppression in cancer patients. Based on the functional biology of the
KRAS-variant in cancer patients, here we chose to investigate altered normal cellular biology in the presence of the KRAS-
variant, through interrogation of an isogenic normal breast epithelial cell line model with and without the KRAS-variant. We
find that KRAS-variant normal breast epithelial cells exhibit a mesenchymal phenotype, which appears to be due to numerous
molecular changes, including miRNA dysregulation and autocrine pathway alterations, including elevated TGF-β, resulting
in ZEB and SNAIL upregulation. Our findings support the hypothesis that the KRAS-variant has a fundamental biological
impact on normal cellular biology, that is conserved in these patients when they develop cancer.

Introduction

The discovery of microRNAs (miRNAs) was a critical step
forward in our understanding of human development and
biology [1]. Subsequently, variants within the binding sites
of miRNAs, which tend to be located in the 3′untranslated
region (3′UTR) of important growth and survival genes,
were recently discovered and identified as a novel class of
germ-line mutations, which are powerful biomarkers of
cancer risk and treatment response [2]. The first mutation

discovered of this class in cancer is the KRAS-variant, a let-
7-binding site mutation in the 3′UTR of the KRAS oncogene
[3]. This mutation predicts an increased risk of several
cancers, including non-small cell lung cancer [3], triple
negative breast cancer in premenopausal women [4] and
ovarian cancer [5]. In addition, studies have shown that
women with the KRAS-variant are at a significantly
increased risk of developing multiple primary cancers,
including breast and ovarian cancer, as well as third inde-
pendent cancers [6]. Due to the higher risk of cancer,
especially for KRAS-variant women, we and others inves-
tigated the impact of estrogen and estrogen withdrawal on
women with the KRAS-variant [7]. We found that estrogen
withdrawal was associated with a higher risk of breast
cancer development, and that women with the KRAS-variant
had up to an 11 times higher risk of developing a second,
independent breast cancer compared to women without the
KRAS-variant, perhaps due to the strategy of anti-estrogen
treatment for the management of breast cancer.

In addition, we and others have found that both breast
and ovarian tumors in patients with the KRAS-variant have
conserved gene expression, with a KRAS-addicted sig-
nature, significantly elevated AKT overexpression, as well
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as an estrogen negative, basal-like gene expression pattern
and altered let-7 miRNAs [4, 8]. These biological differ-
ences are clearly significant, as the KRAS-variant has been
shown to also be a strong predictive biomarker of response
to cancer therapy across numerous cancer types, including
ovarian cancer [8], lung cancer [9], colon cancer [10], and
head and neck cancer [11, 12]. Furthermore, cancer patients
with the KRAS-variant appear to have altered immunity,
with elevated TGF-β and immunosuppression [12].

The findings from prior work suggest that the KRAS-
variant is a functional mutation, which predicts unique
baseline biology in those that harbor it, predicting cancer
risk as well as the response to cancer treatment. However,
gene expression differences and cytokine signaling has only
been studied in KRAS-variant patients with cancer. Thus, to
better define the impact of the KRAS-variant on normal cell
biology, we created matched isogenic normal breast epi-
thelial cell lines with (MCF10AKRAS+/−, MT1 and MT2)
versus without (MCF10AKRAS−/−, WT) the KRAS-variant,
which we have previously described [7]. Although these
KRAS-variant normal epithelial cell lines are not trans-
formed, here we demonstrate that they have fundamentally
different baseline biology, with an epithelial to mesenchy-
mal transition, which is mediated through altered miRNA,
gene, and autocrine signaling.

Results and discussion

As KRAS-variant individuals have been shown to have
conserved, altered tumor miRNA expression [3, 4, 8, 13],
we began by evaluating global miRNA expression in our
WT versus MT normal breast epithelial cell lines. We found
that miRNA expression was significantly altered in the MT
versus the WT line (Supplementary Fig. 1). Our analysis in
MT versus WT cells revealed the most significantly altered
miRNAs were often involved in the epithelial-to-
mesenchymal transition (EMT), including mir-200c, miR-
32, miR301b, and miR-205 (Fig. 1a) [14]. In fact there was
1000-fold suppression of mir-200c, which is known to
regulate EMT in normal breast stem cells and breast cancer
stem cells [15–18] as measured by qRT-PCR in MT cells
(Fig. 1b). Of note, many of the most differentially expressed
miRNAs also have documented roles in driving EMT and
inflammation via the TGF-β pathway, including miR-217,
miR-23a, miR215, and miR-376 [19–21]. We additionally
found suppression of let-7 family members consistent with
previous findings in KRAS-variant tumors (Supplementary
Fig. 2).

We next evaluated MT cells to see if the miRNA changes
found do indeed predict phenotypic changes and found that
MT cells in fact exhibited mesenchymal characteristics.
Phenotypically, we found that MT cell lines had taken on a

spindle, fibroblast-like morphology (Fig. 1c; top). Phalloidin
staining of F-actin confirmed that the MT lines were indeed
mesenchymal compared to WT cells, as the actin stress
fibers were thicker and more numerous (Fig. 1c; bottom).
Also, consistent with a mesenchymal phenotype, we found
that cell proliferation in MT cell lines was significantly
lower than the WT cells (Supplemental Fig. 3). However, in
contrast to tumor cells that have undergone EMT, we did
not observe increased migration in MT cells compared to
WT parental cells (Supplemental Fig. 4), suggesting that the
EMT taking place in the in non-transformed normal epi-
thelial cells harboring the KRAS-variant may be distinct
from tumor cells undergoing EMT.

We next wanted to confirm EMT at the molecular level
in the KRAS-variant MT cells, and therefore examined
known epithelial and mesenchymal markers [19, 22].
Immunofluorescence staining demonstrated surface
expression of E-cadherin in WT cells and its absence in
MT cells (Fig. 2a; left panels, red). In addition, fibronectin
was clearly visible in MT cells and not found in the
WT cells (Fig. 2a; right panels, green). Furthermore, by
gene expression analysis as measured by qRT-PCR,
MT cells expressed significantly lower E-cadherin and
Occludin, and significantly higher fibronectin, vimentin,
and N-cadherin compared to WT cells (Supplemental
Fig. 5). The differences in gene expression levels were also
reflected in protein levels as MT cells had significantly
lower levels of E-Cadherin, elevated fibronectin, vimentin,
and N-cadherin, and modestly reduced β-catenin levels
(Fig. 2b), consistent with an EMT phenotype. Next, we
investigated the expression of transcription factors SNAIL1,
Slug, Twist1 and Twist2, ZEB1 and ZEB2, as repression of
E-cadherin is regulated by these factors, which are involved
in most physiological EMT processes [19, 22]. We
observed significant increases in gene expression levels of
SNAIL1, ZEB1, ZEB2, TWIST1 and TWIST2 in MT cells
(Supplemental Fig. 6), as well as significantly higher protein
levels of SNAIL and ZEB (Fig. 2c), however, reduced
protein levels of TWIST, again consistent with an EMT. We
hypothesize that differences found between gene expression
and protein levels for TWIST are likely due to miRNA
regulation. These findings confirm a molecular EMT in
KRAS-variant breast epithelial cells.

We next investigated the potential mechanisms con-
tributing to EMT in KRAS-variant MT cells, starting with
the role of miR-200c, as low levels have been shown to lead
to an EMT due to ZEB overexpression. Therefore, we
restored mir-200c in MT cells by miR200c mimic lentiviral
transduction (Supplemental Fig. 7). We found that restora-
tion of miR-200c in KRAS-variant cells resulted in a sig-
nificant decrease in ZEB1, as well as a modest decrease in
SNAIL (Fig. 3a) and decreased mRNA expression of both
(Supplemental Figs. 8 and 9). However, there was no
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visible or molecular reversal of EMT proteins from this
single pronged approach (Supplemental Fig. 10). While
these findings confirm that mir-200c loss in KRAS-variant
MT cells does lead to ZEB1 overexpression and modest
SNAIL overexpression, it supports the hypothesis that this
pathway is not solely responsible for the observed EMT in
these cells.

We next tested the hypothesis that another pathway that
leads to EMT in our MT cells involves elevated TGF-β.
This hypothesis is based on the known elevated levels of
TGF-β in KRAS-variant cancer patients [12], the finding that
TGF-β suppresses miR-200 [23], and the fact that TGF-β
signaling is known to be causal for EMT in MCF10A cells
through canonical, as well as non-canonical pathways
activating PI3K and MAPK [24, 25]. Therefore, we first
evaluated secretion of TGF-β into culture-conditioned
media by an ELISA assay. We found significantly
increased secreted levels of TGF-β1 by MT cells, relative to

WT (Supplemental Fig. 11). By immunoblotting, we further
confirmed that TGF-β1, TGF-β2, and TGF-β3 protein levels
were all significantly higher in MT versus WT cells
(Fig. 3b). We next determined if downstream signaling was
SMAD-dependent or SMAD-independent in MT cells [26].
At baseline we found similar phosphorylation levels of
Smad2 and Smad3 in WT versus MT cells, yet a significant
increase in phosphorylation of endogenous ERK (as a
readout of MAPK activation) and phosphorylated AKT (as
a read out of PI3K activation), (Fig. 3c), consistent with
SMAD-independent TGF-β signaling in MT cells. Inter-
estingly, consistent with our cell findings, as previously
reported, elevated AKT was found to be one of the most
significant elevated proteins in tumors from KRAS-variant
patients, including breast and ovarian tumors [4, 8].

Finally, in order to confirm the importance of TGF-β
signaling in the EMT of MT cells, we used a TGF-β-specific
inhibitor, Galunisertib, and found that this inhibition led to a
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Fig. 1 MicroRNA and phenotypic differences in KRAS-variant
MT cells. a The KRAS-variant alters global microRNA expression.
Representation of miRNA expression levels in MCF10A cells with
(MCF10aKRAS+/−; MT1 and MT2) versus without (MCF10aKRAS−/−;
WT) the KRAS-variant. b Relative mRNA expression of miR-200c in
MCF10A cells with (MCF10aKRAS+/−; MT1 and MT2) versus without
(MCF10aKRAS−/−; WT) the KRAS-variant at baseline as evaluated by
qPCR. c Representative of phase contrast images (top; ×10 objective)

and AlexaFluor 488-conjugated phalloidin staining of F-actin (bottom;
×40 objective) in MCF10A cells with (MT1 and MT2) versus without
(WT) KRAS-variant grown as a monolayer. The size bars depict 100
and 50 µm length, respectively, in the images. Results of three inde-
pendent experiments are shown (mean ± SEM). A Student’s t-test
(two-tailed) was used to compare two groups and p < 0.05 was con-
sidered significant
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significant decrease in pAKT, SNAIL, and a modest
decrease in ZEB (Fig. 3d), as well as significant decreases
in the downstream mesenchymal marker Vimentin (Sup-
plemental Fig. 12). These findings support the hypothesis
that TGF-β signaling plays an important role in promoting
EMT in KRAS-variant cells, and that this occurs in a
SMAD-independent manner and primarily through SNAIL
and AKT as has been previously reported [27]. However, it
is important to emphasize that TGF-β signaling does not
appear to be the only pathway leading to EMT in KRAS-
variant cells.

To further confirm the importance of downstream AKT
stimulation through TGF-β in SNAIL activation, we next
evaluated which AKT isoform was phosphorylated in
MT cells, and found that AKT1 was phosphorylated at
Serine 473, (Supplemental Fig. 13). This isoform has been
specifically implicated in TGF-β-mediated EMT [27]. As
the PI3K/AKT pathway has been directly implicated in
SNAIL activation and EMT through GSK-3β [25, 28], and
studies have shown that phosphorylating GSK3β promotes
the stability of SNAIL, leading to its upregulation [28, 29],

we next evaluated and found significant increased phos-
phorylation of GSK-3β (S9) in MT versus WT cells through
a phospho-kinase array (Supplemental Fig. 14). To confirm
if inhibiting PI3K/AKT would impact SNAIL directly we
treated WT and MT cells with the PI3K inhibitor
LY294002. We found that phosphorylation of AKT Serine
473 and GSK-3β at Serine 9 were both abrogated by
treatment with the PI3K inhibitor, which also significantly
reduced the level of SNAIL protein expression without any
impact on ZEB (Fig. 3e). These findings confirm the
importance of the AKT axis in SNAIL activation in
MT cells.

It has been reported that the EMT program in mammary
epithelial cells can only be maintained by multiple autocrine
signaling pathways, in addition to TGF-β [23, 24, 30].
Therefore, we performed a cytokine array to determine if
there were additional cytokines and growth factors differ-
entially released by MT versus WT cells that could be
leading to EMT. We found that MT1 and MT2 cells
had enhanced secretion of multiple soluble factors (Sup-
plemental Fig. 15), including increased levels of
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Fig. 2 EMT in KRAS-variant epithelial cells. a The representative
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(MCF10aKRAS−/−; WT) the KRAS-variant grown as a monolayer. Cells
were stained to detect the expression of the epithelial marker, E-
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marker, E-cadherin (Red) is shown in MCF10A WT cells. Upregula-
tion of the mesenchymal marker, Fibronectin (green) is visible in
MCF10A MT1 and MT2. The size bars in yellow depict 50 µm length
in the images. b Western blot analysis of E-cadherin and occludin
(epithelial markers) and Fibronectin, vimentin and N-cadherin

(mesenchymal markers) in MCF10A line with (MCF10AKRAS+/−;
MT1 and MT2) and without (MCF10AKRAS−/−; WT) the KRAS-variant
are shown. The expression of GAPDH was used as an internal control.
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compared quantitatively using ImageJ software with GAPDH as
baseline
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pro-angiogenic factors, such as angiopoietin-1, VEGF,
PDGF-AA, FGF-19, and angiogenin, as well as several pro-
inflammatory factors, including macrophage inflammatory
protein-3α (MIP-3α), IL-6, IL-8, GROα, and macrophage
migration inhibitory factor (MIF). As many of these factors
are known to increase EMT through AKT stimulation
[30–33], we next tested as a proof in principle the
hypothesis that blocking the receptors of some of these
factors in MT cells would impact AKT activation. We
found that inhibiting the CXCR2 receptor with inhibitor
SB225002, which is a receptor that binds both IL-8 and
GRO, directly decreased AKT phosphorylation (Fig. 4a)
above its IC50 of 20 nM.

Based on our evidence that additional autocrine factors
were influencing EMT in MT cells, we next tested the
hypothesis that conditioned media from KRAS-variant
MT cells would induce AKT activation and downstream
pathways in WT cells. We first stimulated WT cells with
serum free and growth factor-free medium that had been
conditioned by MCF10A MT cells (MT media) using a one-
time application. We found that conditioned media from our
KRAS-variant MT cells did in fact induce immediate
phosphorylation of AKT on Ser473 in WT cells. This effect
was over by 16 h, however, when AKT phosphorylation
returned to baseline (Fig. 4b). There was a significant
immediate increase in ZEB in this time frame, as well as a
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experiments are shown (mean) and compared quantitatively with
GAPDH as baseline
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significant increase in phospho-GSK3β by 2 h, but no
impact on SNAIL in this timeframe. To increase time of
exposure of the WT cells to the MT-conditioned media we
next grew cells in a Transwell chamber. We found that this
resulted in a longer period of increased AKT phosphor-
ylation, GSK3β phosphorylation, and a significant increase
in SNAIL activation, which were beginning to decrease to
baseline at 48 h, when the cells reached full plate capacity
(Fig. 4c). We next evaluated EMT protein expression in the
WT cells grown in MT-conditioned media, and observed a
strong induction of fibronectin but no impact on other
proteins (Supplemental Figure 16). These findings support
the hypothesis that autocrine factors excreted from KRAS-
variant cells can lead to AKT activation and subsequent
ZEB and SNAIL overexpression, accompanied by regula-
tion of several proteins important for EMT.

Here we have shown that a 3′UTR mutation, the KRAS-
variant, can lead to fundamental biological changes in
normal MCF10A epithelial cells, that closely resembles
gene expression and cytokine changes in KRAS-variant
tumors and cancer patients. The KRAS-variant reprograms
the cellular phenotype of mutant cells leading to an EMT.
There are several alterations in KRAS-variant cells that

appear to influence their EMT. One pathway appears to be
through miRNA alterations, with loss of miR200c, accom-
panied by ZEB elevation. However, the primary mechanism
of the KRAS-variant-mediated EMT seems to be through
altered secreted angiogenesis factors and pro-inflammatory
cytokines, including TGF-β. These secreted factors, in turn
signal through an autocrine loop, leading to the activation of
the AKT-SNAIL pathway, and could also potentially
impact miRNA levels such as miR-200c [23] (Fig. 5).

Although the KRAS-variant has previously been shown to
be functional and lead to altered signaling in tumors, using
similar signaling pathways found in this report, such as AKT
overexpression and a KRAS “addicted” signature [4, 8], and
KRAS tumor mutations have been shown to promote
mesenchymal features in breast tumors [34], this is the first
evidence of the powerful impact that a 3′UTR germline
mutation can have on baseline normal cellular biology. The
finding that these KRAS-variant normal epithelial cell lines
overexpress TGF-β is especially intriguing, due to the similar
finding in KRAS-variant cancer patients [12]. This raises the
possibility that immune suppression could be a baseline state
for KRAS-variant patients, explaining both their elevated
cancer risk, as well as identifying them as a subgroup who
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Fig. 4 Autocrine signaling in KRAS-variant cells. a The CXCR2
inhibitor SB225002 was used on MT cells at indicated doses for 1 h,
and AKT phosphorylation was evaluated by western blot. Results of
three independent experiments are shown (mean) and compared
quantitatively with tAKT as baseline with the help of ImageJ
software. b Conditioned medium (CM) from MCF10A cells with
(MCF10KRAS+/−; MT1 and MT2) the KRAS-variant was added to
MCF10A WT cells that had been starved for 24 h in serum and growth
factor-free medium. Whole cell lysates were prepared after the indi-
cated times and analyzed by Western blotting. Results of three

independent experiments are shown (mean) and compared quantita-
tively with GAPDH as baseline. c MCF10A cells (MCF10KRAS+/−;
MT1 and MT2) and (MCF10A KRAS−/−; WT) were grown together in
chambered wells with serum starved growth factor-free medium so
that MCF10A WT cells had continued access to growth factors
exclusively secreted from MT cells for a time duration of 24 and 48 h.
Whole cell lysates were prepared after the indicated times and ana-
lyzed by Western blotting. Results of three independent experiments
are shown (mean) and compared quantitatively with GAPDH as
baseline using ImageJ software
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would most benefit from both TGF-β inhibitors, as well as
immune-stimulating cancer therapy. While understanding
how a germline miRNA-binding site mutation leads to altered
miRNA and cytokine levels, and which comes first, is work
that is still needed, these findings argue for the importance of
further elucidating this class of miRNA disrupting normal
human variants in biology and clinical applications. It is
important to note that better defining baseline biology in such
patients is likely the first step towards understanding the
triggers for disease in such patients, and could potentially help
best direct prevention strategies for such individuals in the
near term.

Materials and methods

Cell culture

We previously created perfectly matched isogenic MCF10A
cell lines with and without the KRAS-variant, using the
CompoZr™ custom designed zinc finger nuclease (ZFN)-
targeted genome editing technology, as described [7]. These
cells were authenticated by Genetica via bi-allelic short tan-
dem repeat (STR) analysis at 16 different genomic loci,
yielding 32 diagnostic markers which confirmed they were
the same parental lines, and that the only difference between
them was the presence or absence of the KRAS-variant [7].
MCF10A cell lines with (MCF10AKRAS+/−, MT) and without
(MCF10AKRAS−/−, WT) the KRAS-variant were maintained
in monolayer in Dulbecco’s modified Eagle’s medium-F12
(DMEM/F12) (ThermoFisher Scientific, 10565042) supple-
mented with 5% horse serum (ThermoFisher Scientific,
26050088), 1% penicillin/streptomycin (Thermo Fisher Sci-
entific, 15140122), 0.5 μg/ml hydrocortisone (Sigma-Aldrich,

H-0396), 100 ng/ml cholera toxin (Sigma-Aldrich, C-8052),
10 μg/ml insulin (Sigma-Aldrich, I-0516), and 20 ng/ml
recombinant human EGF (Peprotech, 100-15). As previously
reported, these cells are not transformed, and do not exhibit
anchorage-independent growth [7].

Real-time PCR for epithelial and mesenchymal
markers and transcription factors

Total RNA was extracted from two-independent preparations
of cells using TRIzol using standard procedures. cDNA
libraries were generated (in duplicate) from 1 µg of total RNA
using the iScript cDNA Library Synthesis Kit (BioRad).
mRNA was analyzed (in triplicate) by qPCR using iQ SYBR
Green SuperMix (BioRad) in reactions containing gene-
specific primers (listed below). Reactions were amplified in a
HT7900 (Applied Biosystems) for 10min at 95 °C followed
by 40 cycles at 95 °C for 15 s and 60 °C for 1 min. mRNA
expression was normalized to Beta-Actin and relative
expression was calculated using the delta–delta Ct method.
Primers were designed to span exon–intron–exon junctions
and produced amplicons of ~500 bp. Primers were synthe-
sized at the UCLA Oligonucleotide Synthesis facility. For
TaqMan gene expression assays, relative mRNA expression
of EMT transcription factor in MCF10A line with
(MCF10AKRAS+/−; MT) KRAS-variant cell was compared
with MCF10A without (MCF10AKRAS−/−; WT) KRAS-var-
iant. Cells were cultured in regular growth media for
MCF10A. Cells were harvested for RNA isolation, which was
used in real-time RT-PCR for quantification of SNAI1,
SNAI2, ZEB1, ZEB2, TWIST1, TWIST2, and GAPDH
mRNA. Relative mRNA expression levels were normalized
by GAPDH mRNA expression levels. Total RNA was pre-
pared by using a miRNeasy kit (Qiagen). Primers of
SNAI1 (Hs00195591_m1), SNAI2 (Hs00161904_m1),
ZEB1 (Hs00232783_m1), ZEB2 (Hs00207691_m1),
TWIST1 (Hs01675818_s1), TWIST2 (Hs02379973_s1)
SNAI1, SNAI2, ZEB1, ZEB2, TWIST1, TWIST2, and
GAPDH (Hs02758991_g1) were purchased from Applied
Biosystems. Real-time PCR was done in triplicate with two
independent experiments with TaqMan PCR Mastermix
(Applied Biosystems).

Immunoblotting and antibody phosphokinase array

Cells were lysed in RIPA buffer with a phosphatase and
protease inhibitor (Thermofisher). Protein concentration
was determined using BCA assay (Thermo Fisher). Thirty
micrograms of protein was separated by SDS–PAGE and
transferred to nitrocellulose membranes which were
blocked with 5% non-fat milk TBST for 1 h at room tem-
perature before overnight incubation with primary antibody
diluted in 5% non-fat milk TBST. HRP-conjugated

EMT activation
E-cadherin low, Fibronectin high

Autocrine factors
(TGFβ, IL-8, VEGF etc.)

AKT (Ser473)

GSK3-β

SNAIL

miR200c

ZEB1

KRAS-variant

Fig. 5 A model of EMT in KRAS-variant MCF10A epithelial cells
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secondary antibody (Cell Signaling Technology) was
applied and detected by ECL Western Blotting Detection
Reagent (GE Healthcare Life Sciences) and X-ray film
(Bioland). Serum starved cell were harvested, washed with
PBS, lysed with RIPA lysis buffer with a phosphatase and
protease inhibitor (Thermofisher). Antibody array used was
the human phosphor-kinase (ARY003B) array from R&D
Systems. Each membrane was applied with 200 µg cell
lysate according to manufacturer’s instructions.

Immunofluorescence

MCF10A WT and MCF10A MT were seeded on a four-well
Lab-Tek Slide (Thermo Scientific). After 5 days, cells were
washed with phosphate-buffered saline (PBS) twice and fixed
with 4% paraformaldehyde in PBS for 20 min at room tem-
perature. The cells were then washed three times with PBS
and incubated with the blocking solution, which contains 1%
bovine serum albumin (BSA), 10% normal donkey serum,
and 0.3% Triton X 100 in PBS for 1 h at room temperature.
Cells were then incubated with the primary antibodies (anti-E-
cadherin (NL557 polyclonal Ab, goat IgG [NL648R] and
human anti-Fibronectin MAB, Mouse IgG1 [MAB1918];
R&D Systems) in the blocking solution for overnight at 4 °C.
Cells were washed three times with 0.1% BSA in PBS for 5
min each wash and incubated with NL 493 and NL 557-
conjugated secondary antibodies (R&D Systems) in 1% BSA
in PBS for 2 h at room temperature in the dark. The slides
were washed with PBS and mounted with Antifade Mountant
with DAPI (Invitrogen) and were cured for 24 h at room
temperature in the dark.

miRNA microarray analysis

Total RNA was extracted from cells using Trizol using
standard procedures. miRNA cDNA libraries were gener-
ated from total RNA (1 µg) using Megaplex RT Primers
(Human Pool A, Applied Biosystems). MicroRNA expres-
sion was analyzed using a TaqMan Array Human miRNA
Card A v2.0 (Applied Biosystems). Reactions were cycled
in a HT7900 (Applied Biosystems) for 10 min at 95 °C
followed by 40 cycles at 95 oC for 15 s and 60 oC for 1 min.
miRNAs that had a Ct value of >350,000 were excluded
from further analysis. Relative expression was calculated
using the delta–delta Ct method.

Transduction of miRNA mimics

Transduction of MCF10A with KRAS-variant cells with
either hsa-mir-200c lentivirus (Biosettia) or mir-control
lentivirus (Biosettia) was performed using manufacturer’
protocols. Briefly, 5 × 104 cells per well were infected with
1 × 107 lentiviral transduction units (TU) (multiplicity of

infection [MOI]= 1.5) with the addition of hexadimethrine
bromide (8 µg/ml; Sigma-Aldrich) as adjuvants. After 24 h
of incubation (at 37 °C and 5% CO2), the medium was
changed, and cells were incubated for an additional 48 h in
adequate medium with the inclusion of puromycin (1 µg/ml)
before further analysis.

ELISA

Cells were starved overnight in no phenol red DMEM/F12
medium (ThermoFisher Scientific). Starvation medium was
removed, and 4 ml of fresh assay medium containing 1%
charcoal stripped horse serum in no phenol red DMEM/F12
medium was added to cells in 10-cm culture dish. After
24 h, culture medium was collected by centrifugation. All
ELISAs were performed using commercially available kits
according the manufacturer’s instructions. For TGFβ-1 and
TGFβ-2 ELISA kits were purchased from R&D systems.
All ELISA readouts were normalized by cell number.

Statistical analysis

Data are presented as mean ± SEM when appropriate. A
Student’s t-test (two-tailed) was used to compare two
groups (p < 0.05 was considered significant) unless other-
wise indicated.
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