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di Farmacia, Università degli Studi di Napoli
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Pluripotent Stem Cells
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TO THE EDITOR
Defects in melanocytes have been
implicated in the etiology of a variety
of human skin diseases and disorders
(Lin and Fisher, 2007; Fistarol and Itin,
2010; Rees, 2011). There is long-stan-
ding interest in studying the develop-
ment and dysfunction of human
melanocytes, but there has not been a
reliable and accessible system to study
early events in human melanocyte
differentiation. An in vitro system that
reliably and efficiently produces normal
human melanocytes from embryonic
stage cells would allow us to better
dissect the physiological and patho-

logical development of melanocytes.
Recent advances in stem cell biology
have led to the establishment of human
induced pluripotent stem cell (hiPSC)
techniques that enable researchers
to reprogram somatic cells to the pluri-
potent state (Takahashi et al., 2007).
Differentiation of human and mouse
pluripotent stem cells (PSCs) toward
the melanocyte lineage has been
reported (Yamane et al., 1999;
Pla et al., 2005; Fang et al., 2006;
Nissan et al., 2011; Ohta et al., 2011;
Yang et al., 2011), but existing protocols
have shortcomings that may limit their
research and clinical applications. For

example, the use of embryonic stem
cells could lead to allogeneic immuno-
incompatibility of differentiated melano-
cytes and transplant recipients. In
addition, the use of hiPSCs generated
by integrative reprogramming strategies
raises concerns about reactivation of
retained transgenes, some of which are
oncogenes. In addition, the current
methods for melanocyte differentiation
from hiPSCs require optimization in
order to reproducibly generate high-
purity melanocytes from multiple hiPSC
lines.

We have established a strategy to
produce human melanocytes in vitro
for use as a platform for pigment cell
research and the development of cell-
based therapies. We first derived trans-
gene-free hiPSCs from two distinct types
of skin cells: human primary melanocytes
(HMs) and human dermal fibroblastsAccepted article preview online 20 March 2013; published online 9 May 2013

Abbreviations: hiPSC, human induced pluripotent stem cell; HM, human primary melanocyte; a-MSH, a-
melanocyte-stimulating hormone; MITF, microphthalmia-associated transcription factor; PSC, pluripotent
stem cell; SNP, single-nucleotide polymorphism
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Figure 1. For caption see page 2106.

JC Jones et al.
Melanocytes Derived from Transgene-Free hiPSCs

www.jidonline.org 2105

http://www.jidonline.org


0
Control 1 μM MSH 3 μM MSH

50

100

150

O
pt

ic
al

 d
en

si
ty

 a
t 4

50
 n

m
(%

 o
f c

on
tr

ol
 c

el
ls

)

200

250 HMi-506_MelDiff
HMi-503_MelDiff

HM

HM

a

c

d

e f

b

503 506 506

MART-1/Melan-A

PMEL/SILV

TYR

SOX10

POU5F1

NANOG

503

–
– –

+ +
+

+
+–

–
–

– –
– –

– 1 μM MSH
3 μM MSH

MITF-M

TYR

β-Actin

β-Actin

Mel DiffHMi-506

Mel DiffHMi

H
D

F
51iP

S
13

H
D

F
51iP

S
12

H
D

F
51iP

S
10

H
D

F
51iP

S
7

H
D

F
51iP

S
1

H
D

F
51iP

S
6

H
D

F
51iP

S
2

H
D

F
51iP

S
14

H
D

F
51iP

S
5

H
D

F
51iP

S
11

H
D

F
51iP

S
3

A
drenal gland

Lung
P

lacenta
B

G
02

S
pleen

S
IV

F
022

S
IV

F
019

W
A

09_2

W
A

09_1
P

ancreas
H

M
i-506_2

A
dipose tissue

M
R

C
5

W
A

07
H

D
F

51iP
S

9
B

rain tissue

H
D

F
51

H
eart

D
iaphragm

S
keletal m

uscle
H

M
i-506_M

eID
iff_2

H
M

i-506_M
eID

iff_1
H

M
_2

H
M

_1

S
tom

ach

H
E

M
diP

S
1

H
E

M
diP

S
2

H
M

i-506_1

SOX10
PMEL
TYRP1
MLANA
TYR
MITF
PAX3
PAX3
PAX3

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

–0.2
–0.4
–0.6
–0.8
–1.0
–1.2
–1.4

2.0 1.0

Gene expression probes

0.0 –1.0 –2.0

HDF51iPS9
SIVF019
SIVF022
HMi-506_1
HMi-506_2
WA07
WA09_2

BG02
HEMdiPS1
HEMdiPS2
HDF51iPS2
HDF51iPS1
HDF51iPS13
HDF51iPS6
HDF51iPS11
HDF51iPS3
HDF51iPS14
HDF51iPS5
HDF51iPS10
HDF51iPS7
HDF51iPS12
HMi-506_MelDiff_1
HMi-506_MelDiff_2
HM_1
HM_2
HDF51
MRC5
Brain tissue
Placenta
Adrenal gland
Pancreas
Lung
Spleen
Stomach

Skeletal muscle
Diaphragm

Pluripotent

Nonpluripotent

Heart
Adipose tissue

WA09_1

Chr1

Chr3

Chr2

Chr4

Chr5

Chr6

Chr7

Chr9

Chr10

Chr11

Chr12

Chr13

Chr14

Chr15
Chr16

Copy number

0 – 0.5
0.5 – 1.5
1.5 – 2.5
2.5 – 3.5
3.5 – 4.5

Chr19
Chr18
Chr17

Chr20
Chr21
Chr22
ChrX

ChrY

Chr8

H
M

i-506_M
el D

iff
H

M

Figure 2. Continued on following page.

Figure 1. Generation and differentiation of transgene-free human induced pluripotent stem cell (hiPSCs). (a) HMi-506 cells generated from human primary

melanocyte (HM) cells using a Sendai virus–based reprogramming system were cocultured with mouse embryonic fibroblast feeder cells (upper panel) and in

feeder-free conditions (lower panel). (b) Immunofluorescence staining showed that biomarkers of pluripotency, Tra-1-81, NANOG, OCT4/POU5F1, and UEA-I

lectin, were strongly positive in HMi-506 cells but absent in their differentiated derivatives (Mel Diff) and HM cells. (c) Embryoid bodies from HMi-506 cells

contained cells from all three germ layers. NG2-positive cells: ectoderm; smooth muscle actin (SMA)–positive cells: mesoderm; SOX17-positive cells: endoderm.

(d) The HMi-506_Mel Diff cells displayed pigmentation and morphology typical of HM cells. The black arrow indicates a pigmented cell pellet of HMi-506_Mel

Diff cells, whereas the white arrow indicates undifferentiated HMi-506 cells. (e) Immunofluorescence staining showed that microphthalmia-associated

transcription factor (MITF) was expressed in HM cells and HMi-506_Mel Diff cells and absent in HMi-506 cells. DAPI, 4’,6-diamidino-2-phenylindole.

Scale bars¼ 100mm.
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(HDF51) (Figure 1a and Supplemen-
tary Figure S1a online). We used a
nonintegrative reprogramming approach
mediated by Sendai virus–based vectors
independently encoding POU5F1,
SOX2, KLF4, and MYC (Fusaki et al.,
2009; Macarthur et al., 2012). As shown
in Figure 1b and Supplementary Figure
S1b online, biomarkers of cellular plur-
ipotency, including endogenous OCT4/
POU5F1, NANOG, Tra-1-81, and UEA-
I (Wang et al., 2011), were positive in
HMi-506, HMi-503, and HDF51i-509
hiPSCs. Cells were also shown to be
pluripotent using a gene expression
diagnostic test (PluriTest; Muller et al.,
2011), by differentiation into cells that
express biomarkers relevant to all three
germ layers in vitro (Figure 1c and
Supplementary Figure S1c, S1d and
S1e online) and by generation of terato-
mas (Supplementary Figure S1d online).

We newly developed two differen-
tiation protocols based on previously
reported methods. One protocol
involves an aggregation-in-suspension
step, whereas the other does not
(Supplementary Figure S2 online). Both
protocols generated cells displaying
typical melanocyte morphology and
pigmentation (Figure 1d) from hiPSCs
after 30 days of directed differentiation,
suggesting that the aggregation-in-sus-
pension step is dispensable. The mela-
nin granules that accumulated at the
dendritic tips of differentiated cells were
intensely stained by Fontana–Masson
staining, indicating that the pig-
mentation of these cells was due to
melanogenesis (Supplementary Figure S3
online). In addition, MITF (microph-
thalmia-associated transcription factor), a
marker for melanocyte progenitors, was
expressed in more than 90% of the
differentiated derivatives after 30 days
(Figure 1e and Supplementary Figure S4
online), which appears to be a higher

differentiation efficiency than other
reported protocols (Nissan et al., 2011;
Ohta et al., 2011). As expected, MITF
was not detected in the undifferentiated
hiPSCs, and was present in the primary
melanocytes (Figure 1e). Notably, our
protocols resulted in similarly high levels
of melanocyte differentiation for all four
independent hiPSC lines examined,
highlighting their reproducibility.

Other melanocytic biomarkers
including TYR (tyrosinase), MLANA
(melan-A), TYRP1 (tyrosinase-related
protein 1), PMEL (premelanosome pro-
tein), PAX3 (paired box 3), and SOX10
(SRY-box 10) were highly expressed in
the differentiated derivatives (similar to
primary melanocytes, Figure 2a and b).
The melanin content and cell signaling
involved in melanin production in the
differentiated derivatives was increased
by treatment with a-melanocyte-stimu-
lating hormone (a-MSH) in a dose-
dependent manner (Figure 2c and d
and Supplementary Figure S5 online).
These findings indicate that the differ-
entiated derivatives possess molecular
features of bona fide melanocytes and
accurately mimic their ability to respond
to a-MSH, which is the factor that
activates melanogenesis and enhances
skin pigmentation during the tanning
response (Thody, 1999).

Genome-wide gene expression profil-
ing and unsupervised hierarchical
clustering revealed that the melano-
cytes (HMi-506_Mel Diff_1 and HMi-
506_Mel Diff_2) differentiated from
the HMi-506 cells were closely clus-
tered with HMs and were distinct from
all undifferentiated hiPSC samples
(Figure 2e). As genetic abnormalities
may occur in hiPSC genomes during
the reprogramming and differentiation
processes, we tested the genomic stabi-
lity of the cells by comparing the differ-
entiated derivatives with the parental

primary melanocytes using high-resolu-
tion single-nucleotide polymorphism
(SNP) genotyping and copy number vari-
ation analysis. As shown in Figure 2f, the
HMi-506_Mel Diff derivatives and par-
ental cells showed highly similar geno-
typing profiles, showing that the cellular
genome remained stable during repro-
gramming and differentiation.

Similar to human melanocytes
in vivo, the differentiated derivatives in
semiautologous skin reconstructs were
located at the dermis–epidermis inter-
face and interspersed with keratinocytes
(Supplementary Figure S6a, S6b, S6c
and S6d online), indicating their ability
to integrate with the skin tissue of
transplant recipients. Similar to the
autologous dermal fibroblasts used for
generating transgene-free hiPSCs, the
differentiated derivatives stimulated limi-
ted proliferation of peripheral blood
mononuclear cells that were isolated
from the blood of the same individual
in a mixed lymphocyte reaction assay
(Supplementary Figure S6e online).
These results attest to the clinical
advantages of melanocytes differentiated
from hiPSCs using the reprogramming
and differentiation approaches described
here.

In this study, we have demonstrated
that genetically stable melanocytes can
be efficiently differentiated from trans-
gene-free hiPSCs generated from two
different types of cutaneous cells. This
differentiation protocol takes less time
than previously reported melano-
cytic differentiation protocols, and we
showed that it is equally effective for
multiple independent hiPSC lines. We
performed a thorough investigation of
the differentiated cells, including gen-
ome-wide gene expression analysis and
SNP genotyping in addition to func-
tional assays. Our approach can serve
as an unlimited source of custom human

Figure 2. Molecular and functional characterization of the melanocyte-like differentiated cells. (a) Heat map and dendrogram of melanocytic biomarkers

showing that these transcripts were preferentially expressed in human primary melanocyte (HM) cells and HMi-506_Mel Diff cells. Brown arrows, HM samples;

turquoise arrows, undifferentiated HMi-506 samples; orange arrows, HMi-506_Mel Diff samples. (b) Expression of melanocytic and pluripotency biomarkers was

detected by western blotting. (c) Melanin production was increased in a dose-dependent manner in the differentiated derivatives treated with a-melanocyte-

stimulating hormone (a-MSH) for 48 hours. Columns indicate mean of three independent experiments and bars indicate SD. (d) Protein expression of TYR and

MITF-M in cells subjected to a-MSH treatment for 24 hours detected by western blotting. (e) Unsupervised hierarchical clustering of gene expression profiles from

22 human pluripotent stem cell (hPSC) samples and 17 samples of human nonpluripotent cells. Arrows were colored as in a. (f) Copy number variation (CNV)

analysis was performed using single-nucleotide polymorphism (SNP) genotyping data, and indicated that no significant additional CNVs arose during

reprogramming or differentiation.
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melanocytes that can be used for novel
approaches for modeling human skin
disease (e.g., melanoma and vitiligo) and
to provide material for transplantation.
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TO THE EDITOR
The presence of tactile structures in
human hairy skin was first reported by
Pinkus in 1902. He discovered distinct

epidermal disc-like structures with
nerves and ‘‘Tastzellen’’ (i.e., Merkel
cells) at the base of the epidermis, and
named these structures ‘‘Haarscheiben’’

because of their close association with
hair follicles. These structures were
revisited by later investigators (Kamide,
1955; Kawamura et al., 1964). Recent
researchers have also reported the
histology of the human ‘‘Haarscheiben’’
(Moll et al., 2005; Reinisch and
Tschachler, 2005), whereas some other
investigators showed that Merkel cellsAccepted article preview online 4 February 2013; published online 18 April 2013

Abbreviations: K20, keratin 20; LM, light microscopy; SEM, scanning electron microscopy; 3D, three-
dimensional
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