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We examine the effect of the collective force due to coherent synchrotron radiation (CSR) in an
electron storage ring with small bending radius. In a computation based on time-domain integration
of the nonlinear Vlasov equation, we find the threshold current for a longitudinal microwave insta-
bility induced by CSR alone. The model accounts for suppression of radiation at long wave lengths
due to shielding by the vacuum chamber. In a calculation just above threshold, small ripples in
the charge distribution build up over a fraction of a synchrotron period, but then die out to yield a
relatively smooth but altered distribution with eventual oscillations in bunch length. The instability
evolves from small noise on an initial smooth bunch of r.m.s. length much greater than the shielding
cutoff. The paper includes a derivation and extensive analysis of the complete impedance function
Z(n, ω) for synchrotron radiation with parallel plate shielding. We find corrections to the lowest
approximation to the coherent force which involve “off-diagonal” values of Z, where ω 6= nω0; that
is, fields with phase velocity not equal to the particle velocity.

PACS numbers: 41.60.Ap, 29.27.Bd, 52.65.Ff

I. INTRODUCTION

The particles in a bunch traveling on a curved trajec-
tory in free space emit synchrotron radiation with a broad
spectrum of wave lengths. At wave lengths comparable
to the bunch length or larger, the radiation from vari-
ous particles is coherent, giving a radiated power propor-
tional to N2, where N is the bunch population. Being so
much larger than the incoherent power at shorter wave-
lengths, proportional to N , this coherent radiation could
actually prevent operation of an electron storage ring if it
were not suppressed by the effect of the metallic vacuum
chamber surrounding the beam. This shielding effect was
recognized in the 1940’s, and was first computed in sim-
ple models of the vacuum chamber by Schwinger [1, 2],
Schiff [3], and Nodvick and Saxon [4].

In the model consisting of infinite parallel plates with
separation h, with the particles moving on a circle of
radius R in the median plane, the coherent radiation
is exponentially suppressed for wavelengths greater than
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about λ0 where

λ0 = 2h
( h

R

)1/2
. (1)

A cutoff of roughly the same value holds for more elab-
orate models [5, 6], for instance a smooth, resistive,
toroidal chamber with rectangular cross-section, if the
transverse dimensions are of order h. This “shielding
cutoff”, which differs from the familiar wave guide cut-
off λw = 2h by the typically small factor (h/R)1/2, is
usually quite small compared to typical bunch lengths in
storage rings. Coherent radiation of a certain wavelength
λ can be produced only if the Fourier spectrum of the
bunch has an appreciable component of that wavelength.
From this we might conclude that CSR will not be a
big effect in most storage rings, since if the bunch form
is smooth and nearly Gaussian with r.m.s. spread σz,
then the bunch spectrum cuts off quickly for λ < 2πσz.
We must be cautious about this point, however, since
there might be higher modes associated with some sort
of small-scale structure on the bunch form. If at high
current the field from coherent radiation is sufficiently
strong to cause even more prominent small-scale struc-
ture, there might be an exponential build-up and even-
tual large-scale changes in the bunch form. A reason for
worry in this regard is that the CSR wake field can be
huge at wave lengths just smaller than the shielding cut-
off. In the parallel plate model the maximum real part of
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FIG. 1: Real (solid line) and imaginary (dashed line) part of
Z(n)/n for the parallel plate model with h = 1 cm, R = 25
cm, and energy E0 = 25 MeV.

Z(n)/n, where Z is the longitudinal impedance, is given
approximately in ohms by

[
ReZ(n)

n

]

max

=
360
e

h

R
≈ 132

h

R
Ω . (2)

This maximum occurs at n ≈ π
√

2(R/h)3/2, whereas the
cutoff λ0 corresponds to n0 = π(R/h)3/2. (Note that
this definition of the cutoff is somewhat arbitrary, be-
ing a point at which the impedance is still appreciable
but falling rapidly as n decreases. At n =

√
2(R/h)3/2

the ratio ReZ(n)/n is off by a factor of about 2000 from
its maximum value.) For rings with small bending radii,
like the example we shall study, the value (2) can be quite
large compared to typical machine impedances, but those
are usually most important at lower frequencies. Fig-
ure (1) shows Z(n)/n for the parameters of the example
treated presently.

Although it is conventional to quote values of Z(n)/n,
it should be recognized that n has no quantitative phys-
ical meaning until R is specified. The wavelength of the
electromagnetic field, 2πR/n, is the crucial quantity for
bunch stability.

Although ReZ(n) is exponentially suppressed for wave-
lengths larger than the shielding cutoff, that is not true of
ImZ(n). This is because we define the impedance to rep-
resent the entire longitudinal field for the chosen model of
the vacuum chamber, not just the part due to curvature.
At low energies there is a prominent space charge con-
tribution to ImZ, which in our example is large enough
to cause noticeable potential well distortion with bunch
shortening.

It is interesting to recall that the first observation
of coherent synchrotron radiation [7] involved a nomi-
nal bunch length much larger than λ0. Since the bunch
came from a linac, which could easily produce a ragged,
non-Gaussian bunch profile, there was probably enough
small-scale structure to allow coherent radiation in spite
of shielding. Furthermore, the first evidence of CSR in
existing storage rings [8–11] was under conditions with
nominal bunch length greater than λ0, but was associ-
ated with a microwave instability that could cause the

bunch substructure necessary to overcome shielding [12].
Correspondingly, the observations showed only intermit-
tent bursts of radiation. Now there is evidence of steady
radiation at BESSY in a situation with a very short
bunch achieved through a lattice with low momentum
compaction [13].

In this paper we report a dynamical simulation that
supports the picture of microbunching in a stored electron
beam as described above. We attempt to understand the
basic phenomenon in a model with a simplified picture of
the collective force from CSR. The force is computed as
though it came from a zero transverse emittance beam
on a circular orbit between parallel plates, the radius of
the orbit equated to the bending radius (not the aver-
age ring radius) of the actual machine. Aside from this
representation of the force, we adopt the usual picture
of longitudinal motion with the revolution time and slip
factor for the actual ring. Probably the biggest defect
in the force calculation is in neglect of transients in the
bend-to-straight transitions. We hope that at least the
total work done by CSR over a turn will be approximated
well enough. Corrections to the CSR force from positive
emittance, non-circular orbits, and a more complicated
vacuum chamber are all difficult to make, but are on the
agenda for further work.

For this first attempt we omit the usual wake fields due
to vacuum chamber corrugations (from bellows, flanges,
transitions, cavities, kickers, etc.). These might play
some role in a correct quantitative description of the in-
stability leading to microbunching, as has been suggested
in Refs.[8, 14]. The wake potential can be computed
(with substantial effort) by standard numerical codes,
and the corresponding force simply added to the CSR
force. Perhaps such an addition should take priority over
improvement of the CSR model.

Within the limitations of the model and discretization
error in numerics, we find a threshold current at which
microbunching evolves from small noise on a smooth
bunch. Also, we follow characteristics of the bunch form
up to a kind of saturation of the instability, in which
small-scale structures die out to a large extent and os-
cillations of a relatively smooth but altered bunch form
ensue.

This study was initiated to provide guidance in design
of a compact storage ring [15], but we hope that the tech-
nical experience gained will also help in analysis of CSR
experiments on existing storage rings [8–11, 13] and in
design of a possible steady CSR source [16, 17]. In par-
ticular, we have made progress in controlling a relatively
new approach based on time-dependent Vlasov dynamics
[12, 18], in a situation where close analysis of short wave
length phenomena is essential. Aspects of our technique
may prove to be useful as well in the important prob-
lem of single-pass CSR in bunch compressors [19, 20].
Currently there is much concern about microbunching in
high energy bunch compressors with very small energy
spread. This problem is being studied with macropar-
ticle tracking, in which assessment of numerical noise
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tends to be difficult. A Vlasov description like that used
here is possibly an interesting alternative. Maintaining a
smooth distribution in phase space, it allows microbunch-
ing without the unphysical phase space granularity of the
macroparticle picture.

In Section II we describe briefly the project that mo-
tivated this work. In Section III we review the single-
particle equations of motion, and the Vlasov equation. In
Section IV we discuss the collective force from shielded
CSR in the impedance formalism. The treatment is not
standard, since we account for the history of the bunch up
to the current time, a matter that is usually neglected in
the impedance formalism (and in the wake potential for-
malism as well). Here there are some surprisingly subtle
mathematical and physical issues, probably not appreci-
ated in earlier work.

Section V A reviews the theory of the linearized Vlasov
equation for a coasting beam in the frequency domain.
The discussion follows Landau’s original method, but
brings out certain points that are often overlooked. Sec-
tion V B reports a first numerical exercise to test the
Vlasov code; namely, a calculation of the instability
threshold for a coasting beam. The result agrees well
with the linear analysis. We also compute nonlinear evo-
lution of the coasting beam. Our main numerical results,
for the bunched beam, appear in Section VI. We treat
both the advent of the instability and its “saturation” at
longer times, emphasizing evolution of the Fourier spec-
trum of the bunch. Section VII contains a summary and
the outlook for further work.

Appendix A gives a derivation of the fields of syn-
chrotron radiation, both longitudinal and transverse, for
the parallel plate model. The “complete” longitudinal
impedance Z(n, ω), a function of both mode number n
and frequency ω, is derived and studied in detail. Analyt-
icity and asymptotic behavior in ω are emphasized, these
being properties that are crucial for the work of Section
IV. Appendices B 1 and B2 cover practical methods for
evaluation of the collective force, given the impedance. In
B 1 we derive the approximate formula used in our calcu-
lations, in which at each time step the force is computed
as though the current bunch form had existed for all pre-
vious times. Interesting corrections to this formula are
found, the first terms of a systematic expansion. These
involve the current time derivative of the bunch form
and also retardation effects involving all previous bunch
forms. The latter are prominent at the wave guide cut-
offs of the vacuum chamber. In B 2 we show how to get
a fast evaluation of the Fourier sums that arise, taking
care to relate these properly to the FFT. Appendix C
reviews the method used for time-dependent solution of
the Vlasov equation.

II. MOTIVATION: A COMPACT ELECTRON
RING FOR COMPTON X-RAY PRODUCTION

A compact electron storage ring has been proposed as
a part of a Compton-scattering X-ray source [15]. The
idea is to produce usable x-rays from interaction of a fast
recirculating bunch of electrons and a laser flash trapped
in an optical cavity [21]. The size of the storage ring
confining the electrons should be as small as possible in
order to maximize the collision frequency. We consider
an example with the following parameters:

E0 = 25 MeV , σE/E0 = 3 · 10−3 , σz = 1 cm ,

νs = 0.0184 , ωs = 5.4 MHz ,

R = 25 cm , h = 1 cm ,

N = 6.25 · 109 = 1 nC . (3)

Here E0 is the nominal energy, σE and σz are r.m.s. en-
ergy spread and bunch length, νs is the synchroron tune,
ωs = 2πfs is the circular synchrotron frequency, R is
the bending radius of each of the four 90o bends, h is
the vacuum chamber gap, and N is the bunch popula-
tion. The ring lattice consists of the combination of two
double bend achromats joined by short drift sections to
accomodate an RF cavity, injection devices and an inter-
action section for a combined length of about 6.3 m.

The small value of R has raised concern that CSR
could become a limiting factor because of the unfavor-
able scaling in this parameter. As indicated by Eqs.(1)
and (2) a small radius of curvature makes the screening
by the vacuum chamber less effective, causes the radia-
tion fields to be more intense and allows a larger portion
of the bunch to radiate coherently. A first assessment of
instability in the linear approximation can be carried out
using Boussard’s argument to replace the bunched beam
stability problem by a roughly equivalent coasting beam
problem. This leads to a current threshold for instability
of 7.1 nC, about seven times the intended design value.
While this value may appear sufficiently safe the ques-
tion remains as to whether it would be possible, in view
of eventual luminosity upgrades, to operate the machine
above threshold. Moreover, one would like to corroborate
the coasting beam analysis with a more realistic model-
ing of beam dynamics including the effect of bunching.
This desire motivated the nonlinear, self-consistent cal-
culation of beam dynamics presented in this paper.

An unusual feature of the proposed ring is that ra-
diation damping and excitation due to incoherent syn-
chrotron radiation play no significant role in beam dy-
namics. The damping time for a machine of this size and
energy is of the order of 1 sec, much larger than the cy-
cle time corresponding to the planned 100 Hz repetition
rate. One cannot rely on possible beneficial effects of ra-
diation damping to contain the emergence of instabilities
and help relax the beam distribution above threshold.
Instead, because of relatively small bunch sizes and low
energy, intrabeam scattering is expected to be signifi-
cant. Over a machine cycle (10 ms) both longitudinal
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and transverse emittances may double in size [22]. This
growth time is still quite large, however, compared to
the time for onset and saturation of the CSR instability,
which amounts to a few synchrotron periods. Conse-
quently, neglect of intrabeam scattering seems justified
in the present study.

III. EQUATIONS OF MOTION

Our model of beam dynamics is based on the standard
picture of longitudinal motion with linearized RF accel-
erating field, augmented with the longitudinal force from
CSR. Transverse motion is neglected entirely. The CSR
force is calculated as though it came from a source mov-
ing on a circle with radius equal to the bending radius of
the dipoles (rather than the average radius of the ring).

The slip factor η is defined as the constant relating a
change in angular rotation frequency Ωr to a change in
momentum P , namely,

η = −P0

Ω0

(
dΩr

dP

)

P0

= α− 1/γ2
0 . (4)

Here P0 and Ω0 are the nominal (design) values of mo-
mentum and revolution frequency, respectively, while α
is the momentum compaction factor and γ0 = E0/mc2

is the Lorentz factor for the nominal energy. Note that
some authors define η with the opposite sign, and some
call η the momentum compaction.

As dynamical variables we choose the dimensionless
coordinates

q =
z

σz
, p = −sgn(η)

E − E0

σE
. (5)

Here z = s − s0 is the distance (in arc length along the
reference trajectory) to the synchronous particle, being
positive when the test particle leads. The deviation of
energy from the nominal energy is E −E0, and sgn(η) is
1 for η > 0 and -1 for η < 0. For the moment, σz and σE

are regarded as arbitrary scale factors to render q and
p dimensionless and of convenient magnitude. In these
variables the standard linearized equations of motion [23]
take the form

dp

dτ
= −aq ,

dq

dτ
=

p

a
, τ = ωst , (6)

where ωs is the angular synchrotron frequency and

a =
β0ωsσz

c

E0

|η|σE
, β0 = v0/c . (7)

The system (6) has Hamiltonian

H(q, p) =
1
2a

p2 +
a

2
q2 . (8)

In a normal electron storage ring, equilibrated by radia-
tion damping balancing quantum fluctuations, the phase
space density function at low current would be

f0(q, p) = exp(−H(q, p))/2π . (9)

Recalling the definition of p in (5), we see that if σE is
identified with the low current r.m.s. energy spread, then
a = 1 or

β0ωsσz

c
=
|η|σE

E0
. (10)

where σz is the low current r.m.s. bunch length. This is
a well known formula, at least for β0 = 1.

In our example we do not have normal equilibration,
but we nevertheless choose a = 1 as a matter of conve-
nience in notation. Then if σz is taken to be a nominal
bunch length, Eq.(10) gives an arbitrary definition of σE ,
which is now only a scaling constant to define the dimen-
sionless variable p of (5), not the r.m.s. energy spread.
Actually, in building our model we shall take σE and σz

to be the r.m.s. spreads desired for the ring, and suppose
that the lattice is designed so that η satisfies (10).

If the beam current is sufficiently high, significant col-
lective forces may arise. These include “geometric” wake
forces generated from interaction of the beam with the
surrounding environment. Our main interest here is in
the additional collective force due to trajectory curva-
ture, which entails both wake and precursor components.
Whatever the collective force, it may in principle be com-
puted from Maxwell’s equations under boundary condi-
tions at the chamber wall, given the charge and current
densities defined by the phase space density of the beam.
The exact phase space density, accounting for granular-
ity of charge, is replaced in Vlasov theory by a smoothed
density f , and the collective force is a functional of f .

In our one-dimensional model the Vlasov density
is denoted by f(q, p, τ), and the collective force by
IcF (q, f, τ). (Note the difference in the sign of F in com-
parison to references [12, 18].) The normalization of F is
chosen to give the current parameter Ic the value

Ic =
sgn(η)e2N

2πνsσE
, (11)

where N is the bunch population and νs is the syn-
chrotron tune. In MKS units Ic is in coulombs per volt.
By (6) with a = 1 the single-particle motion is governed
by the equations

dp

dτ
= −q + IcF (q, f, τ) ,

dq

dτ
= p . (12)

The distribution function satisfies the Vlasov equation,

∂f

∂τ
+ p

∂f

∂q
+

∂f

∂p
[−q + IcF (q, f, τ)] = 0. (13)

We normalize f to have unit integral. Then the particle
density on configuration space is

ρ(q, τ) =
∫

dpf(q, p, τ) . (14)

In a typical high-energy electron machine non-
Hamiltonian effects in the form of damping and quantum
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excitations due to incoherent synchrotron radiation are
usually significant and are essential in shaping the beam
distribution. Additional dissipative effects like intrabeam
scattering can also be present but usually play a minor
role.

Incoherent synchrotron radiation can be adequately
modeled by adding Fokker-Planck terms to the right
hand side of the Vlasov equation (13). The study re-
ported in this paper however will not encompass these
effects, partly because in the storage ring that motivated
this study radiation damping is irrelevant (see Sec. II).
Also, we want to focus our study on the onset of an insta-
bility and its saturation due to non-linearities, a process
which occurs in a few synchrotron oscillation periods –
about two orders of magnitude shorter than a typical ra-
diation damping time.

IV. COLLECTIVE FORCE DUE TO CSR

We do not yet have a numerical method to compute
CSR for arbitrary vacuum chamber walls and arbitrary
particle orbits. General purpose electromagnetic codes
usually do not allow sources moving on curved trajecto-
ries, and in any case would have difficulty with the short
wave lengths involved. Consequently, we rely on analytic
solutions for simple vacuum chamber geometries and a
circular orbit for the source of radiation, hoping that the
collective force will be represented well enough to deter-
mine general features of the dynamics. The radius of the
fictitious circular orbit is taken to be the bending radius
of the ring of interest, not the average radius, since the ra-
diation is expected to have minor importance in straight
sections. Admittedly, transient fields near magnet edges
are not treated correctly.

Besides the parallel plate case, the model of a toroidal
chamber with rectangular cross section has been solved,
including wall resistance [5]. The impedances for the
two models look drastically different, since the torus is
a closed structure with resonances and the parallel plate
system an open structure without resonances. Never-
theless, the corresponding collective forces look qualita-
tively similar, at least for a Gaussian charge distribu-
tion, at points within the core of the bunch [24]. Here
we concentrate on the parallel plate model, which seems
slightly more appropriate for the example that interests
us [15]. A relatively short derivation of the longitudinal
and transverse fields for this model is given in Appendix
A.

In principle the approach of the Appendix can be used
to find the fields for various levels of generality in the
charge/current distribution, but to avoid difficult inte-
grals we must choose a simple form of the distribution.
We work in cylindrical coordinates, with the y-axis per-
pendicular to the plates located at y = ±g , h = 2g. As
a first simplification we suppose that the charge/current
distribution has the form of a “vertical ribbon beam”.
In the bunch frame the line density is λ(θ, t), and in the

laboratory frame the normalized particle density ρ and
current density J are as follows:

ρ(r, θ, y, t) = λ(θ − ω0t, t)
δ(r −R)

R
H(y) ,

J = ( Jr, Jθ, Jy ) = ( 0, Qβ0cρ, 0 ) ,
∫ 2π

0

λ(θ, t)dθ = 1 , λ(θ + 2π, t) = λ(θ, t) ,

∫ g

−g

dyH(y) = 1 , (15)

where Q = ∓eN is the total charge and ω0 = β0c/R.
Here R is the bending radius of the ring, and the velocity
β0c is identified with the nominal velocity of the ring.
Note that ω0 differs from the revolution frequency of the
ring, which is ω0r = 2πβ0c/C for ring circumference C.

We define the impedance in terms of the mean value of
the longitudinal electric field with respect to the trans-
verse distribution:

E(θ, t) =
∫ ∞

0

rdr

∫ g

−g

dy
δ(r −R)

R
H(y)Eθ(r, θ, y, t)

=
∫ g

−g

Eθ(R, θ, y, t)H(y)dy . (16)

By (15) the beam current is

I(θ, t) =
∫ ∞

0

dr

∫ g

−g

dyJθ(r, θ, y, t) = Qω0λ(θ − ω0t, t) ,

(17)
which has the formal Fourier transform

Î(n, ω) =
1

(2π)2

∫ ∞

−∞
dteiωt

∫ 2π

0

dθe−inθI(θ, t)

=
Qω0

2π

∫ ∞

−∞
dtei(ω−nω0)tλn(t) , (18)

where

λn(t) =
1
2π

∫ 2π

0

dθe−inθλ(θ, t) . (19)

Depending on the model of λn(t), the formal transform
(18) is not necessarily a proper Fourier transform. For
instance it may contain a delta-function component, as
in the idealized case of a rigid bunch with λn(t) = λn =
const. In that case we have

Î(n, ω) = Qω0λnδ(ω − nω0) . (20)

For a more realistic model we suppose that the current
is zero until it is turned on at time t = 0. Then the t-
integral in (18) exists and defines an analytic function of
ω for Imω > 0, since λn(t) must be bounded at t = +∞ in
any acceptable model. This setup is equivalent to taking
the Laplace transform with respect to t; indeed, with
s = −iω , Res > 0 , we see that Î is proportional to the
Laplace transform of e−inω0tλn(t):

Î(n, ω) =
Qω0

2π

∫ ∞

0

e−ste−inω0tλn(t)dt . (21)
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To maintain contact with the familiar notation of Fourier
analysis, we use ω rather than s as the variable conjugate
to t.

To be precise we assume physically reasonable condi-
tions on λn(t) for t > 0, namely that it has a continu-
ous second derivative and that |λn|, |λ′n|, |λ′′n| are each
bounded. Then with Imω = v > 0 the following Laplace
transforms exist:

λ̂n(ω) =
1
2π

∫ ∞

0

eiωtλn(t)dt , (22)

λ̂′n(ω) =
1
2π

∫ ∞

0

eiωtλ′n(t)dt

= −iωλ̂n(ω)− 1
2π

λn(0) . (23)

Since λn and λ′n are both smooth and bounded, the in-
version theorem [25] guarantees that

λn(t) = lim
U→∞

∫ U+iv

−U+iv

e−iωtλ̂n(ω)dω , t > 0 , (24)

and similarly for λ′n(t). The improper integral defined
as a symmetric limit in (24) is often called the “princi-
pal value”. It exists under weaker conditions than are
required for existence of separate integrals over the two
half-lines (−∞ + iv, iv) , (iv,∞ + iv). We shall under-
stand all ω-integrals to be principal values, without a
notational indication.

Correspondingly, we take the Laplace transform of
Maxwell’s equations with respect to t. The transform
of terms involving time derivatives of fields will produce
terms from the values of those fields at t = 0, as in (23).
We set those initial values to zero, since we are interested
only in fields excited by the beam, which is absent before
t = 0. Defining Ê(n, ω) to be the double transform of
E(θ, t) (Fourier in θ, Laplace in t), we then find through
solution of Maxwell’s equations that Ê is proportional
to Î; see Appendix A. This proportionality defines the
impedance Z:

−2πRÊ(n, ω) = Z(n, ω)Î(n, ω) . (25)

This does not imply that Z(n, ω) is itself a proper
Fourier-Laplace transform of a continuous function. An
expression for Z(n, ω) is given in Eq.(A31).

From (25) and (21), and the inversion theorems for
Laplace and Fourier transforms, we have

V (θ, t) = −2πRE(θ, t) =

ω0Q
∑

n

einθ

∫

Imω=v

e−iωtZ(n, ω)λ̂n(ω − nω0)dω .

(26)

To retrieve the case of a rigid bunch we take v = 0 and
put (20) in place of (21) in (26) to obtain

V (θ, t) = ω0Q
∑

n

ein(θ−ω0t)Z(n, nω0)λn . (27)

The quantity Z(n) = Z(n, nω0) is what is usually
called the impedance [26]. It is not entirely adequate to
describe the time dependent case with evolving bunch
form. We need instead the function of two variables
Z(n, ω), wave number (n/R) and frequency, which we
shall call the complete impedance. One might conjecture,
however, that a first approximation to the collective force
would be obtained merely by replacing λn by λn(t) in
(27), thus

V (θ, t) ≈ ω0Q
∑

n

ein(θ−ω0t)Z(n, nω0)λn(t) . (28)

We shall in fact derive this approximation, and correc-
tions to it as well, in Appendix B 1. The computations
reported in this paper all use the uncorrected formula,
approximating V (θ, i∆t) as the right hand side of (28)
evaluated from λn((i− 1)∆t), where ∆t is the time step
of the Vlasov integration. This amounts to saying that
the force at time t is calculated as though the bunch form
at time t − ∆t had held constant at all earlier times.
Clearly, retardation effects are not treated exactly. We
anticipate quantitative changes from the corrections dis-
cussed in Appendix B 1, but hope that the qualitative
picture of the dynamics will be about the same.

The formula (26) seems to involve λn(t′) for t′ > t,
which would mean a violation of causality. To show that
such contributions in fact drop out, we invoke the fact
that Z(n, ω) is analytic and bounded as a function of
ω for Imω > ε, any ε > 0. This and other required
properties of Z are proved in Appendix A. Writing Ω =
ω − nω0, we first integrate twice by parts on t′ so that
(22) takes the form

λ̂n(Ω) =
1

2πiΩ

[
−λn(0) +

λ′n(0)
iΩ

+
1
iΩ

(∫ t

0

+
∫ ∞

t

)
eiΩt′λ′′n(t′)dt′

]
. (29)

Now it is seen that the term in the ω-integrand from
∫∞

t
contributes nothing to (26). It is analytic for Imω > ε >
0 and O(|ω|−2), the latter because exponential increase
of e−iωt is compensated by exponential decrease of the∫∞

t
. We can push the contour to a semi-circle at infinity,

getting zero in the limit.

Now define λ̃n(ω, t) as (29) minus its final term which
we have just discarded. Convergence of the ω-integral of
the first term in λ̃ follows from the asymptotic behavior
of Z(n, ω) stated in (A38); i.e., since Z tends to a con-
stant (plus an oscillating term) the integral converges by
virtue of oscillations of the factor e−iωt. The remaining
ω-integrals converge absolutely.

Undoing the partial integrations that led to (29), we
of course get rid of boundary terms at t′ = 0 but acquire
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boundary terms at t′ = t:

λ̃n(Ω, t) =
1
2π

[
−λ′n(t)eiΩt

Ω2
+

iλn(t)eiΩt

Ω
+

∫ t

0

eiΩt′λn(t′)dt′
]
.

(30)

When (30) is used in (26), the ω-integral of its first term
is seen to be zero, again by analyticity and decay as |ω|−2.
The resulting expression of V is

V (θ, t) = ω0Q
∑

n

einθ

∫

Imω=v

dωZ(n, ω)

· 1
2π

[
iλn(t)

e−inω0t

ω − nω0
+ e−iωt

∫ t

0

dt′ei(ω−nω0)t
′
λn(t′)

]
.

(31)

The ω-integral of the first term in the square bracket
exists only by virtue of the integral’s definition as the
principal value. The same is true of the integral of the
second term.

It may seem surprising at first to see the first term in
(31), with a pole at ω = nω0. It might have been assumed
that one could merely throw away

∫∞
t

in (26), arguing by
causality. On second thought, a singularity at ω = nω0

is not at all surprising, since the transform of the current
of a rigid bunch, Eq.(20), has a delta singularity. For
comparison to another simple example, let us suppose
that λn(t) is zero for t < 0 and constant for t ≥ 0. Then,
with Imω > 0, Eq.(18) gives

Î(n, ω) =
iQω0λn

ω − nω0
. (32)

By cutting off the current at negative t, we get a pole
singularity rather than the delta of (20). Of course, after
causality is imposed only a part of Î(n, ω) actually enters,
but (31) shows that the remaining part contains a pole,
just under our minimal assumptions about smoothness
of λn(t) up to time t only.

We can take the limit as v → 0 in (31) by applying the
usual rule for pushing a contour of integration against a
pole. Actually, there are other poles on the real axis to
be accounted for, since Z(n, ω) has poles as a function of
ω at the wave guide cutoffs. That matter is discussed in
Appendix A.

In Appendix B 1 we shall derive approximations to
V (θ, t) which are more economical to evaluate than (31).
For that we make stronger assumptions on smoothness
of λn(t), namely that for m ≥ 0 it have m + 2 continu-
ous and bounded derivatives, with derivatives up to order
m + 1 vanishing at t = 0:

λn ∈ Cm+2 , |λ(k)
n (t)| ≤ M , k = 0, 1, · · · ,m + 2 ,

λ(k)
n (0) = 0 , k = 0, 1, · · · ,m + 1 . (33)

Thus we switch on the current with a certain degree of
smoothness at t = 0. With this assumption we can in-
tegrate by parts as many as m + 2 times in (22), and

discard
∫∞

t
by the same argument as before, to cast (26)

in the form

V (θ, t) =

ω0Q
∑

n

einθ

∫

Imω=v

e−iωtZ(n, ω)µnk(ω − nω0, t)dω ,

µnk(Ω, t) =
1

2π(−iΩ)k+2

∫ t

0

eiΩt′λ(k+2)
n (t′)dt′ ,

(34)

for any k ∈ {0, 1, · · · ,m}. In Appendix B 1 we shall use
(34) to derive approximations to V .

To compute the instantaneous radiated power, note
that the work done by the field E on a charge element
dQ when the charge moves a distance Rdθ = Rω0dt is
equal to dW = dQE(θ, t)Rω0dt. The radiated power for
the charge element is the corresponding rate of change
of field energy, −dW/dt. Putting dQ = Qλ(θ − ω0t, t)dθ
and integrating over θ we find the total radiated power,
from all charge elements. From (25) that is

P(t) =
Qω0

2π

∫
dθλ(θ − ω0t, t)

∑
n

einθ

·
∫

Imω=v

e−iωtZ(n, ω)Î(n, ω)dω

= Qω0

∑
n

einω0tλ∗n(t)
∫

Imω=v

e−iωtZ(n, ω)Î(n, ω)dω .

(35)

In the case of the rigid bunch one can put v = 0 and
apply (20) to obtain the well known formula

P = (Qω0)2
∑

n

ReZ(n, nω0)|λn|2 . (36)

As in (28), we replace λn by λn(t) in (36) for the approx-
imation to P(t) used in numerical explorations to date
[12]. In general the ω-integral in (35) can be expressed
as in (31) or (34). Applying (31) we get

P(t) =
(Qω0)2

2π

∑
n

λ∗n(t)
∫

Imω=v

dωZ(n, ω)

·
[

iλn(t)
ω − nω0

+
∫ t

0

dt′ei(ω−nω0)(t
′−t)λn(t′)

]
. (37)

The collective force of the Vlasov equation (13) is ex-
pressed in terms of V given by (26) or (31) as

F (q, τ) =
1
Q

V
(ω0τ

ωs
+

σzq

R
,

τ

ωs

)
. (38)

The line density λ(θ, t) is related to the distribution func-
tion f by

∫
f(q, p, τ)dp =

σz

R
λ
(σzq

R
,

τ

ωs

)
. (39)
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Once we have adopted the approximation (28), so that
the collective force depends only on f evaluated at time
τ , we make the change of notation

F (q, f, τ) → F (q, f(·, τ)) . (40)

The argument f(·, τ) indicates that F depends on the
f(q′, p′, τ) at fixed τ , with (q′, p′) ranging over the whole
phase space.

V. CSR EFFECTS IN COASTING BEAMS

A. Linearized Vlasov Equation

In order to establish useful guidelines for our numerical
study as well a benchmark for the code it is convenient
to consider first the dynamics of coasting beams. The
linear motion for coasting beams can be studied analyti-
cally and the results of the stability analysis extended to
bunches – if the conditions for the validity of the Bous-
sard criterion are met [27–29]. Boussard stated that a
bunched beam and a coasting beam (with current equal
to the peak current of the bunched beam) should exhibit
similar thresholds for instability provided that the wave-
length of the unstable mode is small compared to the
bunch length. One can hope to apply this criterion to
our case. Because of shielding CSR can only excite per-
turbations with wavelength λ . λ0 = 2h(h/R)1/2. For
radius of curvature of the order of R = 25 cm and cham-
ber height h = 1 cm the cut-off is about λ0 = 4 mm,
smaller than a rms bunch length of 1 cm of interest here.

First, consider linearizing the Vlasov equation (13)
around an equilibrium. Having set f = f0 + f1, where f1

is a small perturbation of equilibrium f0 we find

∂f1

∂τ
+ p

∂f1

∂q
+

∂f1

∂p
(−q + IcF (q, f0(·, τ))

+
∂f0

∂p
IcF (q, f1(·, τ)) = 0 . (41)

Next, in the spirit of Boussard’s analysis we drop the rf
focusing term, and consider a coasting beam with distri-
bution function f(q, p, τ) = f0 + f1, periodic in q with
period L = 2πR/σz. Now coordinate space is the inter-
val [0, L], and the unperturbed distribution normalized
to have unit integral is f0 = exp(−p2/2)/(

√
2πL). The

term F (q, f0(·, τ)) is zero, since a uniform charge distri-
bution produces no wake force; equivalently, Z(n, nω0)
vanishes at n = 0. The resulting linearized Vlasov equa-
tion can be used to investigate the linear dynamics of our
original problem. Applying (28), (38), and (39) we see
that the equation of interest is

∂f1

∂τ
+ p

∂f1

∂q
+ Idω0

∂f0

∂p
×

∞∑
n=−∞

Z(n)einqσz/R R

σz
ρ1n(τ) = 0 , (42)

where

ρ1n(τ) =
1
L

∫
dqe−2πniq/L

∫
dpf1(q, p, τ) , L = 2πR/σz ,

(43)
and

Id = LIc/
√

2πσq . (44)

The current parameter Id is chosen so that the charge
density of the coasting beam is the same as the peak
charge density of the bunched beam. We have as-
sumed that the bunched beam is nearly Gaussian, so
that its normalized particle density is approximately
exp(−(q/σq)2/2)/

√
2πσq. We seek solutions of (42) of

period L in q, and L is typically so large that the peri-
odicity imposes no substantial restriction on the form of
the perturbation.

To find a solution we take the Fourier transform of
(42) with respect to q and the Laplace transform with
respect to t = τ/ωs. The double transform of (42) ex-
ists if |f1n(p, τ)| ≤ Mernt for some positive rn, and the
series in (42) converges uniformly in q. We shall con-
struct a solution of (42) assuming these conditions, and
then observe that the solution in fact satisfies the same
conditions. Taking the transform for Imω > rn we have
that

[
−i

ω

ωs
+ inp

σz

R

]
f̂1n(p, ω) +

Idω0Z(n)
R

σz
f ′0(p)ρ̂1n(ω) =

1
2πωs

f1n(p, 0) . (45)

The initial value f1n(p, 0) will be largely arbitrary, sub-
ject only to conditions of decay in p and n, and smooth-
ness in p. To be specific, let us assume convenient con-
ditions (which can certainly be weakened); first, that
f1n(p, 0) is continuously differentiable in p, and that the
function and its derivative decay at large |p| as a power.
We also need a condition on decay at large n, uniform in
p, in order that the Fourier series converge. For simplic-
ity, we may take f1n(p, 0) = 0, |n| > n̄.

Now (45) implies that the zero mode amplitude,
f10(p, τ), is actually independent of τ , since its Laplace
transform as a function of ω is a simple pole at ω = 0.
Thus we can restrict attention to modes with n 6= 0, since
only such modes are potentially unstable.

For n 6= 0 the transformed equation (45) is an inte-
gral equation for f̂1n(p, ω) with separable kernel. With
reference to n and ω suppressed, it has the form

d(p)f̂1(p) + af ′0(p)
∫

f̂1(p′)dp′ = bf1(p, 0) . (46)

Clearly, any solution may be represented in its p-
dependence as f̂1(p) = (bf1(p, 0) + λf ′0(p))/d(p). Substi-
tuting this expression in (45) and solving for the constant
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λ, we find the solution of (45) as

f̂1n(p, ω) =
bn

dn(p, ω)

[
f1n(p, 0)− an

f ′0(p)
Dn(ω)

∫
f1n(p′, 0)dp′

dn(p′, ω)

]
,

(47)

where

dn(p, ω) = p− Rω

σzωsn
,

an = Idω0
Z(n)
in

(
R

σz

)2

, bn =
R

2πiωsσzn
,

Dn(ω) = 1 + an

∫
f ′0(p)dp

dn(p, ω)
(48)

By integrating (47) over p we find the transform of the
charge density as

ρ̂1n(ω) =
bn

Dn(ω)

∫
f1n(p, 0)dp

dn(p, ω)
, (49)

For sufficiently large Imω > 0 the dispersion function
Dn(ω) has no zero, since it tends to 1 as Imω →∞. Let
rn be the largest non-negative number so that Dn(ω)
has no zero for Imω > rn. Then (47) is analytic in ω
for Imω > rn. The inverse Laplace transform can be
taken along a contour Imω = r > rn, and that contour
can then be pushed down to the real axis, possibly en-
circling a pole from a zero of Dn if rn > 0. (The limit
of f̂1n(p, ω) as ω approaches the real axis exists because
of our assumption of smoothness of f1n(p, 0) and f ′0(p)).
The pole residue will have a factor ernt, showing that
the initial perturbation f1n(p, 0) grows exponentially at
a rate 1/rn. Thus we justify, a posteriori, the assump-
tion on large-t growth that was made in deriving (45).
For sufficiently small current Ic we have rn = 0, and as
the current is increased we expect to reach a value Ith

c at
which a zero of Dn crosses the real axis to the upper half
plane, giving an instability in mode n. We also expect
that one mode n0, determined by specific properties of
the impedance, will be the “most unstable”, the first to
destabilize with increasing current.

One might consider pushing the ω-contour still farther,
down to a semi-circle at infinity in the lower half-plane,
thinking to represent the complete distribution as a sum
of pole contributions from all stable and unstable modes.
This is problematic, however, and not of much practi-
cal interest. Analytic continuation to the lower plane of
the integrals involving f1n(p, 0) and f ′0(p) requires global
analyticity of those functions in p. Smoothness of a dis-
tribution function seems a natural requirement, as an
approximation to the actual granular particle distribu-
tion when the number of particles is large, but the much
stronger requirement of global analyticity seems unmoti-
vated. Even if an analytic function such as the Gaussian
is chosen, the contribution of the semi-circle at infinity
need not be zero.

-1.5 -1 -0.5 0 0.5 1 1.5 2
Re @ -Ic ZHnL�I0 n D

-1
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0

0.5

1

Im
@
-

I c
Z
Hn
L�

I 0
n
D

n=702

n=1235

n=494

above threshold

on threshold

FIG. 2: Keil-Schnell stability diagram. The dashed line de-
fines the onion-shaped stability boundary characteristic of an
unperturbed distribution that is Gaussian in momentum. The
solid lines represent −IcZ(n)/I0n with Ic equal to the critical
value Ith

c = 0.8183 for instability (thicker line) and Ic = 1.018
(thinner line). I0 =

√
2πσq(σz/R)2/ω0.

The equation (46) is a singular equation, classified as
an integral equation of the third kind [30, 31], owing to
the zero of the factor dn(p) in its first term. The solution
has a pole at that zero. In the linearized Vlasov equation
for a bunched beam the analogous singularity is more
difficult to handle, but it appears to be tractable by the
method proposed in Ref.[32].

To search for unstable modes we look for zeros of
Dn(ω) in the upper half-plane, for the case of Gaussian
f0. In that case Dn can be expressed in terms of the error
function of complex argument w(z) ≡ e−z2

erfc(−iz) ≡
e−z2 [

1 + 2i/
√

π
∫ z

0
exp(ξ2)dξ

]
, as defined in [33], §7.1.3.

With the definition W (z) = 1 + iz
√

π/2w(z/
√

2) the
equation Dn(ω) = 0 reads

Icω0√
2πσq

(
R

σz

)2
Z(n)

n
=

i

W (ωR/(ωsσzn))
, (50)

where Ic is defined in (11). Remember that
E0, β0, σE , σz, νs, ωs, N are design parameters for the ring
of interest. On the other hand, R is the bending ra-
dius rather than the average radius of the ring, and the
impedance is computed as though it came from a bunch
on a circular path of radius R with angular revolution
frequency ω0 = β0c/R.

Henceforth we report results for the parameters of
Eqs.(3), suitable for the compact ring discussed in Sec-
tion II. The energy is assumed to be above transition,
so that sgn(η) = 1 in (11). We suppose that the lattice
is designed so that the slip factor η satisfies (10) when
the other parameters in that equation are from (3). In
Section VIA we find the value 0.961 for the normalized
equilibrium bunch length σq. For the present approxi-
mate calculation we put σq = 1.

A convenient way to represent mode stability as pre-
dicted by (50) is by means of a Keil-Schnell diagram,
see Fig. 2. In the complex plane one draws a stability
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FIG. 3: Coasting beam. On the left: Logarithm of the am-
plitude of Fourier mode (n = 702) vs time for six values of
the current parameter Ic (between Ic = 0.76 and Ic = 0.88 in
steps of 0.024). On the right: Evolution of normalized r.m.s.
energy spread σp. In both pictures τ is the normalized time.

boundary (dashed line in the picture) defined parametri-
cally by the real and imaginary components of −i/W (Ω)
for ImΩ = 0 as we let ReΩ run from −∞ to +∞. In the
same plane we can also locate the negative of the LHS of
equation (50) as a function of n for specified values of the
current (solid lines in the picture). Points falling outside
the Keil-Schnell curve identify unstable modes with pos-
itive imaginary part of frequency Imω > 0. Those falling
inside represent stable modes. In Fig. 2 the thick line
corresponds to a normalized current Ic = 0.8183 pC/V.
The fact that the thick curve in the picture is tangent to
the stability boundary qualifies Ic = 0.8183 pC/V as the
current threshold. The most unstable mode has mode
number n = 702 (marked in the picture) corresponding
to a wavelength λ = 2πR/n = 2.2 mm.

The so-called “Keil-Schnell criterion” is an approxi-
mation to (50) obtained by putting W = 1 and replacing
Z(n)/n by the maximum value of |Z(n)/n|. The thresh-
old obtained from the exact equation is about 20% larger
than the prediction of the Keil-Schnell criterion.

B. Numerical Solution of Nonlinear Vlasov
Equation: Coasting Beam

For numerical integration of the Vlasov equation we
define the distribution function f in terms of its values
on a (2N + 1) × (2N + 1) grid with both (normalized)
position and momentum q and p belonging to the interval
[−κ, κ] with κ ' 6.04. We used the methods of Appendix
B to compute the collective force, and the method of
Appendix C to integrate the Vlasov equation. In the
case of the coasting beam, the distribution function is
constructed so that it is periodic in q with period 2κ;
i.e., f(−κ, p) = f(κ, p) is imposed in the interpolation
scheme described in Appendix C. This period is much
smaller than the period L = 2πR/σz of our basic Fourier
analysis, but still much larger than the wavelengths of the
unstable modes that we study. It would be impractical
and unnecessary to use period L in numerical work. We
use the same κ for both the bunched and coasting cases.
Since the number of mesh points per unit distance is then
the same, we can expect to resolve ripples of similar size
in either case.

To check the coding of the Vlasov solver we first cal-
culated the current threshold and compared the outcome
with the linear theory. We started by placing a small
sinusoidal perturbation in space on top of a distribution
Gaussian in momentum and uniform in space:

f =
e−p2/2

√
2π

[
1 + A sin

(nqσz

R

)]
, (51)

with n = 702 corresponding to a wavelength λ =
2πR/n = 2.2mm (see previous Section).

Above threshold and after a short transient the charge
density perturbation is well approximated as a trav-
eling wave with exponentially growing amplitude ∝
eνIτ sin(nqσz/R−νRτ), where νR and νI are the real and
imaginary part of ν = ω/ωs with ω given by Dn(ω) = 0.
This can be seen by taking the inverse Laplace transform
of (49). Pushing the ω-contour to the real axis, we get
the traveling wave from the pole contribution (multiplied
by einθ), plus a background from the integral along the
real axis. The latter can be understood as the source of
the transient. We set the initial value of the perturba-
tion amplitude to be small enough to avoid nonlinearities,
A = 10−3, and computed the amplitude of the mode vs.
time for different values of the current parameter Ic up to
time τ = 0.6. A logarithmic plot of the mode amplitude
is reported in Fig. 3. The growth rates are computed by
numerical fitting (upon discarding the initial transient).
The resulting dependence of the growth rates on Ic was
then used to estimate the threshold by interpolation.

To check convergence to the theoretical value Ith
c =

0.8183 pC/V we repeated the calculation for various
choices of the the grid sizes N = 200, 400, and 600 and
found Ith

c = 0.8341, 0.8202, 0.8189 pC/V respectively.
Coarser grids appear to overestimate the thresholds. The
smallest wavelengths resolved by these three grids (twice
the size κσz/N of a cell in the grid) are respectively
0.6, 0.3, 0.2 mm (to be compared with the perturbation
wavelength λ = 2.2 mm). Charge conservation during
the calculation, which is one figure of merit to evaluate
the overall accuracy, was about one part in 105 or better,
and improved with the density of mesh points.

Having gained confidence in the code we proceeded to
follow the evolution of the instability over a longer time
into the nonlinear regime. The results reported in Fig. 4,
(which were obtained with Ic = 0.98 and an initial per-
turbation as in (51) with n = 702), represent some typical
behavior of beam dynamics for a wide range of currents
above threshold. The perturbation undergoes an initial
exponential growth, then reaches saturation during the
advent of a richer mode spectrum, eventually relaxing to
some sort of pseudo-stationary distribution. Saturation
of the energy spread is seen in the graph on the right in
Fig. 3 and also in the third line of Fig. 4.

The resonance which in Fig. 4 is already apparent at
time τ = 1.2, can be interpreted in terms of particle-
wave interaction. When a single unstable mode dom-
inates, the coherent force in (42) is proportional to
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FIG. 4: Evolution in time of coasting beam by effect of CSR. Instability initiated by a small perturbation with mode number
n = 702 (wavelength λ = 2.2 mm). From top to bottom: snapshots of contour plots of phase space density (top row), charge
density (second row), momentum distribution (third row) and spectrum of charge density (bottom row). Pictures are taken at
(normalized) time τ = 1.2, 1.6, 2.0, and 9.6. In the bottom row the abscissa is m = n/13, where n is the mode number (see
text). The plots is q show only a small part of the full grid.

eνIτ sin(nqσz/R − νRτ), so that the single-particle mo-
tion will look like pendulum motion in a co-moving frame,
over a restricted time interval in which the variation of
eνIτ is not too severe. Particles with momentum near the
perturbation phase velocity p = νRR/σzn undergo “reso-
nant trapping” and cause the appearance of a “knee” on
the profile of the momentum distribution (with size com-
parable to the width of the resonance). In the framework
of a quasi-linear theory this phenomenon sets the stage
for the onset of saturation. As time progresses one ob-
serves a widening and distortion of the resonance islands
and the appearance of “tongues” in the phase space dis-
tribution, branching outward and resulting in an enlarge-
ment of momentum spread. At a later time the charge
density becomes smoother and the momentum distribu-

tion settles to some profile persistent in time as large-
scale structures in phase space appear to get washed
away. This process is reflected by the evolution of the
Fourier spectrum of the charge density, see the bottom
row in Fig. 4. The initial spectrum is a delta function
at m = 702/13 = 54. The nonlinearities first generate a
cascade of modes with mode numbers that are multiples
of 702 and eventually a smoother spectrum. While some
of the smoothing may be an artifact of the numerical
integration, the qualitative behavior appears to be inde-
pendent of the choice of mesh and time step, suggesting
that we have believable representations of the exact so-
lution.

There are a couple of conclusions that we can draw at
this point. The first is that our numerical modeling of the
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gaussian bunch with unity rms length. The impedance yields
the complete longitudinal field, so that it contains a large
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FIG. 6: Bunched beam. On the left: Logarithm of the am-
plitude of Fourier mode n = 702 vs. time for six values of
the current parameter Ic (between Ic = 0.76 and Ic = 0.88 in
steps of 0.024). On the right: normalized r.m.s. bunch length
σq (solid line) and energy spread σp (dashed line) vs. time for
Ic = 0.98.

coasting beam correctly displays the onset of the insta-
bility in accordance with the linear theory and that this
instability leads to the appearance of a corrugation in the
charge density (microbunching). The second conclusion
is that a mechanism for the removal of the microbunching
is provided by the intrinsic nonlinearities of the system.

VI. CSR EFFECTS IN BUNCHED BEAMS

A. Equilibrium distribution

Because of the relatively low energy of the beams
we are considering, the space charge component of the
impedance results in a small but noticeable potential well
distortion. Since we do not want the stability analysis to
be affected by a mismatch, we consider initial distribu-
tions that are stationary solutions of the Vlasov equa-
tion, thus accounting for the potential well distortion.
For convenience of calculation we chose those stationary
solutions to be Häıssinski distributions f0. These have
the form f0 = e−p2/2ρ0(q)/

√
2π where ρ0(q) satisfies the

equation

ρ′0(q) = (−q + IcF (q, f0(·)))ρ0(q) , (52)

with normalization
∫

ρ0(q)dq = 1. Because we expect
that an equilibrium distribution will be relatively smooth
only the low-frequency part of the impedance should be
relevant in shaping its profile. The Fourier spectrum of
a smooth distribution representing a bunch of length σz

traveling along a circular orbit of radius R is significant
only for mode numbers smaller than a small multiple of
the ratio R/σz. For the choice of parameters (3) rele-
vant for the present study this number is well below the
shielding cut-off for the real part of the impedance. See
Fig. 1. Moreover, because the imaginary part of Z(n)/n
is nearly constant over the bunch spectrum we conclude
that the effective impedance shaping the Häıssinski solu-
tion is purely capacitive. In other words, for the purpose
of determining the equilibrium distribution the collective
force can be modeled as being proportional to the space
derivative of the bunch distribution. This can be seen
easily. Having defined Ẑ ≡ limn→0 Im(Z(n)/n) we have

F (q, τ) ' iω0

∞∑
n=−∞

Im[Zn(nω0)]einqσz/Rλn

' ω0
R

σz

∂

∂q

∞∑
n=−∞

Ẑeinqσz/Rλn

= ω0Ẑn

(
R

σz

)2
d

dq
ρ0(q). (53)

Under the assumption that the potential well distor-
tion is not too large we can estimate the relative variation
of rms bunch length of the Häıssinski solution as

∆〈q2〉 = − 1
4
√

π

(
R

σz

)2

ω0IcẐ (54)

Because Ẑ > 0 the effect of the space charge part of
the impedance is to shorten the bunch. An example of
Häıssinski profile is shown in Fig. 5. For this plot the
value of the current parameter Ic = 0.844 pC/V is close
to the threshold for instability.

B. Numerical Solution of Nonlinear Vlasov
Equation: Bunched Beam

Our first task is to determine the current threshold for
instability. We superimposed a sinusoidal perturbation
to the charge density with mode number corresponding
to the most unstable mode expected by the linear the-
ory. Because of rf focusing past the initial transient the
growth of the modes is not purely exponential as can
be observed from Fig. 6. Somewhat arbitrarily we define
growth rate in terms of an exponential fit of points falling
in the interval τ ∈ [0.3, 0.6]. By doing so we find an esti-
mate for the critical current Ic = 0.836 pC/V (obtained
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FIG. 7: Time evolution of bunch under effect of CSR. Density plots in phase space (top row) and charge density (second row).
Pictures are taken at (normalized) time τ = 1.2, 3.2, and 9.6. Instability initiated by a small perturbation with mode number
n = 702 (wavelength λ = 2.2 mm). A unit of q corresponds to 1 cm.

with a 800×800 mesh), or 7.20 nC of charge. This should
be compared with the critical value we obtained by ap-
plying the Boussard criterion, Ic = 0.8183 pC/V. The
latter number is reduced to 0.786 if we include the factor
1/σq, previously set equal to 1. We conclude that the
Boussard criterion is consistent with our findings within
about 6%. As in the calculation of coasting beams we
found little variation in the estimate of the critical cur-
rent as we increased the grid size to 1201×1201 (in which
case Ith

c = 0.833 pC/V) while a coarser 401 × 401 grid
resulted in a value Ith

c = 0.855 pC/V, larger by a few
percent.

Over a longer time the behavior of the bunch and that
of a coasting beam differ in some regards. However, they
share the feature that the nonlinearities cause a relax-
ation of much of the short scale density perturbation that
is seen after onset of the instability. This process devel-
ops quickly and takes place within one or two synchrotron
periods.

The instability originates in the center of the bunch
where the charge density is the largest. A microbunch
structure emerges (see Fig. 7) in the form of a ripple
on the density profile with current-dependent amplitude.
As CSR is emitted forward it mostly affects the front of
the bunch and causes the appearance of filaments in the
bunch density in phase space (See Fig. 7 at τ = 3.2). This
resulting perturbation in the bunch distribution first ap-

pearing in the head of the bunch is then carried over to
the back and then around by the rotation in phase space
from rf focusing. Because no additional relaxation forces
(such as radiation damping) are in action this imbalance
results in a persistent quadrupole-like motion that can
clearly be observed in the evolution of the rms bunch
length and energy spread (see Fig. 6). After about two
synchrotron periods the bunch distribution in phase ap-
pears to freeze as a larger momentum spread and smaller
bunch density move the bunch away from the unstable
condition. The quadrupole pulsation continues indefi-
nitely. In calculations not shown here we have followed
the evolution over hundreds of synchrotron periods and
noticed very little change over time.

VII. SUMMARY AND OUTLOOK

Coherent synchrotron radiation is currently attracting
much attention both as a mechanism for generating us-
able radiation and as source of potentially harmful insta-
bilities. In this paper we focused on the dynamical effects
of CSR and reported on our attempts to develop a sim-
plified but hopefully still sufficiently accurate model for
studying instabilities. We investigated the longitudinal
beam dynamics by looking for numerical solutions of a
Vlasov equation in one degree of freedom with attention
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paid to the specific case of a compact storage ring. How-
ever, aspects of the results we obtained are believed to
apply to more conventional storage rings as well.

The main result of our numerical investigation could
be summarized in the finding of i) a current threshold
for instability very close to the value predicted by lin-
ear theory for coasting beams (confirming the validity of
Boussard’s criterion to an accuracy of 6% ); ii) emergence
of “microbunching” (i.e. a charge density modulation on
the beam density profile) above threshold as a signature
of the instability; iii) rapid saturation (within two syn-
chrotron periods) of the instability and smoothing of the
bunch density.

In a previous paper [12] we related creation and
smoothing of microbunching to the appearance of bursts
of coherent radiation as recently detected in several light
sources. That was for cases in which radiation damping
acts as a relaxation mechanism restoring the conditions
for instability and causing a recurrence of bursting. No
such mechanism is in place in the compact ring of inter-
est in this paper, where above threshold a CSR driven
instability would result in a persistent (and possibly un-
acceptable) emittance degradation. It is a fact worth
emphasizing that the smoothing of the microbunching, as
demonstrated by our calculation, is entirely determined
by the rf and collective forces - not by dissipative forces,
which in the present model were totally neglected.

Our current numerical model does not account fully for
retardation effects, since at each time step we compute
the force from CSR as though the bunch had its present
form at all previous times. We developed corrections to
this picture which can be included at relatively low com-
putational cost. In future work one should examine those
corrections, and also the effect of non-circular orbits, es-
pecially transient fields at edges of bending magnets. Of
course, many other features would come into a refined
dynamical picture: transverse motion, dispersion, more
realistic modeling of the vacuum chamber, etc.

Our solutions of the nonlinear Vlasov equation were
computed by the method of local characteristics, also
called the semi-Lagrangian or Perron-Frobenius method.
The considerable value of this method for beam dynam-
ics has been recognized only recently, and much work re-
mains to be done in exploring its various implementations
and extensions to higher dimensional phase space. We
have not evaluated alternative techniques for the present
problem, for instance the macro-particle approach [34] or
the nonlinear δf method [35]. In a tentative judgment
we prefer our method for offering lower noise than the
macroparticle technique, and for being more appropriate
than δf for dynamics far from equilibrium.
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APPENDIX A: FIELDS IN THE PARALLEL
PLATE MODEL

The longitudinal field for the parallel plate model was
derived in the early work of references [1, 4], but those
papers did not touch certain details that are important
here. We follow the method and notation of Ref.[5]. The
model consists of infinite parallel plates with perfect con-
ductivity, separated by a distance h = 2g. The particles
move on a circular trajectory of radius R in a parallel
plane between the plates, not necessarily the midplane.
The model can be extended to allow finite conductiv-
ity by using the technique of nonharmonic Fourier series
introduced in [36] and [5]. We work in cylindrical co-
ordinates (r, θ, y), the y-axis being perpendicular to the
plates with y = 0 at the midplane. All field components
can be expressed in terms of the Fourier-Laplace trans-
forms of Ey and Hy. The fields may be represented as

[
Ey(r, θ, y, t)
Hy(r, θ, y, t)

]
=

∫ ∞

−∞
dωe−iωt

∞∑
−∞

einθ
∞∑

p=0

·
[

cos[αp(y + g)]Êynp(r, ω)
sin[αp(y + g)]Ĥynp(r, ω)

]
, αp =

πp

h
, (A1)

where the ω-integral follows a path ω = u+ iv with some
fixed v > 0. The other fields and the charge/current
densities have similar expansions with sine or cosine of
αp(y + g) chosen by the following rules:

(Er, Hθ, Hr, Eθ) ←→ (sin, cos, cos, sin)
( Jr, Jθ, Jy, ρ ) ←→ (sin, sin, cos, sin) (A2)

The Maxwell equations are satisfied term-by-term in the
Fourier-Laplace developments, as are the boundary con-
ditions,

Hy = 0 , Er = Eθ = 0 , y = ±g . (A3)

The Fourier-Laplace amplitudes of Ey,Hy must satisfy
the wave equations

[
1
r

∂

∂r

(
r

∂

∂r

)
−

(
Γ2

p +
n2

r2

)][
Êynp

Ĥynp

]
=

[
Z0( −i(ω/c)Ĵynp + Qαpcρ̂np )
( −∂(rĴθnp)/∂r + inĴrnp )/r

]
, (A4)

Γ2
p = α2

p − (ω/c)2 . (A5)

Z0 =
(µ0

ε0

)1/2 = 120π Ω (MKS) =
4π

c
(cgs) .

(A6)

In general, the Laplace transform of the terms of
Maxwell’s equations with time derivatives would lead to
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initial-value terms, but those we set to zero since we are
interested only in fields excited by the source, which is
absent before t = 0. We first solve the equations (A4)
for real ω and Γ2

p > 0, later performing an analytic con-
tinuation to Imω ≥ 0.

The general solution of (A4) is the general solution of
the homogeneous equation (a linear combination of mod-
ified Bessel functions [33], §9.6) plus a particular solution
of the inhomogeneous equation, thus

Êynp(r) = AnpIn(Γpr) + BnpKn(Γpr) + eynp(r) ,

Ĥynp(r) = CnpIn(Γpr) + DnpKn(Γpr) + hynp(r) .

(A7)

Given any particular solutions eynp, hynp the coefficients
Anp, · · · , Dnp must be chosen to satisfy the boundary
conditions; namely,

Êynp(0) < ∞ , (A8)

lim
r→∞

exp(Γpr)Êynp(r) < ∞ , Γp > 0 ,

(A9)

and similarly for Ĥynp. Here (A9) means that below
the frequency of the waveguide cutoff the field must die
exponentially away from the source.

It is easy to construct particular solutions by the
method of variation of parameters, in such a way that
those solutions satisfy the boundary conditions by them-
selves. Then no solution of the homogeneous equations
need be added. Specializing to the source for our model,
in which Jr = Jy = 0, we get the fields meeting all con-
ditions as

[
Êynp(r)
Ĥynp(r)

]
=

[
Kn(Γpr)

∫ r

0

uduIn(Γpu) + In(Γpr)
∫ ∞

r

uduKn(Γpu)
]

·
[ −Z0Qαpcρ̂np(u)

(uĴθnp(u))′/u

]
(A10)

Noting the value of the Wronskian [33], §9.6.15,

In(x)K ′
n(x)−Kn(x)I ′n(x) = − 1

πx
, (A11)

it is easy to check that (A10) satisfies (A4). The bound-
ary conditions (A8,A9) are easily verified as well. Be-
cause the sources are confined to a finite region of r, the
second term drops out at large r, and the large-r behavior
is given by the Kn, which decreases as exp(−Γpr)r−1/2.
At small r, the asymptotes In(x) ∼ (x/2)n/n! , Kn(x) ∼
(x/2)−n(n − 1)!/2 (n 6= 0) , K0(x) ∼ − ln x show that
the fields are bounded at r = 0, for the type of sources
that we consider.

By the Lorentz force law , the longitudinal and trans-
verse forces on the particles are determined by the fields

Eθ , Fr = Er + β0Z0Hy , Fy = Ey −β0Z0Hr (A12)

In Fourier space the Maxwell equations can be solved
algebraically for the corresponding Fourier amplitudes:

Êθnp =
i

Γ2
p

[
nαp

r
Êynp +

Z0ω

c

(∂Ĥynp

∂r
+ Ĵθnp

)]

F̂rnp =
1
Γ2

p

[
αp

∂Êynp

∂r
+

Z0ωn

cr
Ĥynp

]
+ β0Z0Ĥynp

F̂ynp =
β0

Γ2
p

[
ωn

cr
Êynp + Z0αp

(∂Ĥynp

∂r
+ Ĵθnp

)]
+ Êynp

(A13)

To compute (A10), note that by (15), (A2), and (18)
we have

ρ̂np = Φnpδ(r −R)/R , Ĵθnp = Qβ0cρnp ,

Φnp = Hp
1
2π

∫ ∞

0

ei(ω−nω0)tλn(t)dt

Hp =
1
g

∫ g

−g

sin[αp(y + g)]H(y)dy . (A14)

Hence evaluation of (A10) gives

Êynp(r) = −Z0QαpcΦnp

[
θ(r −R)Kn(Γpr)In(ΓpR) +

θ(R− r)In(Γpr)Kn(ΓpR)
]

,

Ĥynp(r) = −ΓpQβ0cΦnp

[
θ(r −R)Kn(Γpr)I ′n(ΓpR) +

θ(R− r)In(Γpr)K ′
n(ΓpR)

]
,

(A15)

where

θ(x) =
{

1 , x ≥ 0 ,
0 , x < 0 .

(A16)

Thus Êynp is continuous at r = R, but the magnetic field
makes a jump that can be computed from (A11):

Ĥynp(R + 0)− Ĥynp(R− 0) =
Qβ0cΦnp

πR
. (A17)

Of course, Ampère’s Law requires a jump at the ribbon
beam. There is no discontinuity in Êθnp and F̂ynp since
∂Ĥynp/∂r + Ĵθnp is continuous.

Introducing (A15) in (A13) and evaluating at r = R±0
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we obtain

Êθnp(R) =

−iZ0QcΦnp

[(αp

Γp

)2 n

R
Kn(ΓpR)In(ΓpR) +

ωβ0

c
K ′

n(ΓpR)I ′n(ΓpR)
]

(A18)

F̂rnp(R + 0) =

−Z0QcΦnp

[α2
p

Γp
K ′

n(ΓpR)In(ΓpR) +

(
β0 +

ωn

cRΓ2
p

)
β0ΓpKn(ΓpR)I ′n(ΓpR)

]
(A19)

F̂ynp(R) =

−Z0QcΦnp

[
αp

(
1 +

β0ωn

cRΓ2
p

)
Kn(ΓpR)In(ΓpR) +

β2
0αpK

′
n(ΓpR)I ′n(ΓpR)

]
(A20)

and

F̂rnp(R + 0)− F̂rnp(R− 0) =
Z0QcΦnp

πR

[(αp

Γp

)2 − β2
0 −

β0ωn

cRΓ2
p

]
(A21)

The longitudinal impedance is defined in terms of the
longitudinal field averaged over the transverse distribu-
tion, as in Eq.(16). By (A2) the Fourier series for Eθ

involves Hp sin[αp(y + g)]. We define the dimensionless
factor Λp in terms of the y-average of that factor, noting
(A14):

Λp = hHp

∫
sin[αp(y + g)]H(y)dy = 2(gHp)2 . (A22)

If H(y) is even we have Λp = 0 for even p. For the
case of a square step distribution, constant for y ∈
[−δh/2 , δh/2] and zero otherwise, we have

Λp = 2sinc2(x), x =
pδh

2h
, p odd , (A23)

where sinc(x) = sin(πx)/(πx). For a Gaussian distribu-
tion with r.m.s. width σy ¿ h and the y-average taken
over [−σy , σy] we have

Λp = 2sinc(x)e−x2/2 , x =
pσy

h
, p odd . (A24)

In either case Λp ≈ 2 for small p, which means that there
is not much dependence on the vertical size of the beam,
since at the values of n of interest only a small number of
p modes are unshielded. In the numerical work we chose
the square step model.

Now suppose that (ω/c)2 < α2
1, which is to say that

the frequency is below all waveguide cutoffs. Then by
(25), (18) and (A14), we get the longitudinal impedance

from (A18) and (A22) as

Z(n, ω) =

2πiZ0R
2

β0h

∞∑
p=1

Λp

[(αp

Γp

)2 n

R
In(ΓpR)Kn(ΓpR) +

ωβ0

c
I ′n(ΓpR)K ′

n(ΓpR)
]

, ω2 < (α1c)2 . (A25)

Below all cutoffs the impedance is purely imaginary. At
higher frequencies the Γp become imaginary one-by-one
as the ascending cutoffs are passed, giving the impedance
a real part.

In a similar way one can derive horizontal and vertical
transverse impedances from the forces (A19) and (A20).
We leave to the reader the appropriate definitions of those
impedances, which may depend on the application of in-
terest.

The low frequency limit of the diagonal longitudinal
impedance can be derived from (A25) by the ordinary
large-argument expansions of In,Kn ([33], §9.7.1), sup-
posing that πR/h is large compared to 1. The resulting
formula is the same as the corresponding one for the pill-
box or rectangular torus model, given in Eq.(4.12) of [5]:

Z(n, nω0)
n

∣∣∣∣
n=0

=
iZ0

β0

∞∑
p=1

Λp

p

[
1
γ2

+
3β2

0 + 1
8

(
h

πpR

)2]

(A26)

For a general complex frequency in the upper half-
plane it is convenient to express the impedance in terms
of the analytic function

γp(ω) = ((ω/c)2 − α2
p)

1/2 = (−Γ2
p)

1/2 , (A27)

defined in the ω-plane with a cut from −αpc to αpc, and
positive for ω > αpc. With this definition we have

γp(−ω) = −γp(ω) , |ω| > αpc , (A28)

and the boundary values on the cut satisfy

γp(u + i0) = i|γp(u + i0)| = iΓp(u) , −αpc < u < αpc .
(A29)

Now recall the following relations that hold for −π <
arg x ≤ π/2 [33], §9.6.3, 9.6.4:

In(x) = i−nJn(ix) ,

Kn(x) = (π/2)in+1[Jn(ix) + iYn(ix)] , (A30)

where Jn and Yn are Bessel functions of the first and
second kinds, respectively [33], §9.1. Substituting (A30)
in (A25) and applying (A29) we find

Z(n, ω) =

Z0
(πR)2

β0h

∞∑
p=1

Λp

[
ωβ0

c
J ′|n|(γpR)H(1)′

|n| (γpR)

+
(αp

γp

)2 n

R
J|n|(γpR)H(1)

|n| (γpR)
]

, Imω > 0 .

(A31)
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Here and in the following we invoke the Hankel functions
H

(1,2)
n (x) = Jn(x)±iYn(x). We have used Bessel function

behavior under n → −n ([33], §9.1.5), to state (A31) in
a form correct and convenient for either sign of n.

Since Jn(z) is an entire function of z, and Yn(z) is
analytic in the z-plane with a cut along the negative real
axis [33, 37], we see from (A31) that Z(n, ω) is analytic
in the upper half ω-plane at fixed integer n. To describe
and study the singularities of Z on the real ω-axis, it is
useful to define the functions

Up(n, ω) =
ωβ0

c
J ′2|n|(γpR) +

(αp

γp

)2 n

R
J2
|n|(γpR)

Vp(n, ω) =
ωβ0

c
J ′|n|(γpR)Y ′

|n|(γpR)

+
(αp

γp

)2 n

R
J|n|(γpR)Y|n|(γpR) , (A32)

thus

Z(n, ω) = Z0
(πR)2

β0h

∞∑
p=1

Λp

[
Up(n, ω) + iVp(n, ω)

]
.

(A33)
Referring to the expressions of Jn and Yn by power

series ([33], §9.1.10, 9.1.11) we see that Up involves
only even powers of γp, and represents an entire func-
tion of ω. On the other hand, Vp involves poles and
branch points on the real axis where γp = 0. By [33],
§9.1.11, the functions Yn(z) − (2/π) ln(z/2)Jn(z) and
Y ′

n(z)−(2/π) ln(z/2)J ′n(z) are meromorphic (analytic ex-
cept for poles) in the whole z-plane. Consequently, it is
useful to rewrite Vp as Vp = V

(1)
p + V

(2)
p where

V (1)
p = Vp − 2

π
ln

(γpR

2
)
Up , (A34)

V (2)
p =

2
π

ln
(γpR

2
)
Up . (A35)

Now V
(1)
p (n, ω), involving only even powers of γp, is mero-

morphic in ω, whereas V
(2)
p (n, ω) is an entire function of

ω times the logarithmic factor that is analytic in the ω-
plane with branch cut [ −αpc , αpc ]. The poles of V

(1)
p

come from γ−2
p and J ′|n|Y

′
|n|, except for n = 0 in which

case there is no pole. The poles alone make the following
contribution to the impedance:

Z∗(n, ω) = isgn(n)(1− δ0n)
Z0πR

2β0h

∑
p

Λp

·
[
nω0 − αpc

ω − αpc
+

nω0 + αpc

ω + αpc

]
,

(A36)

where sgn(n) is the sign of n. The pole location ω = ±αpc
is the p-th wave guide cutoff for the parallel plate system.
Below the cutoff frequency the p-th mode is “evanescent”
(spatially localized), then at cutoff turns into a propagat-
ing wave, allowing energy to radiate to infinity. Corre-
spondingly, this is also the point at which Up + iVp first

acquires a real part, as the frequency is increased from
zero. As we shall see, the poles are associated with re-
tardation effects in the deforming bunch formalism.

The poles do not show up as infinities or even
sharp peaks in Z(n) = Z(n, nω0), since Z∗(n, nω0) =
i sgn(n)Z0(πR/β0h)

∑
p Λp is bounded and independent

of n except for a sign. Consequently, it is likely that the
poles have not been noticed by previous investigators,
who studied mostly Z(n).

In Section IV we encountered the question of the
asymptotic behavior of Z(n, u + iv) , u → ±∞ , v > 0.
Let us first use the reflection properties of Bessel func-
tions ([33], §9.1.35, 9.1.39) and Eq. (A28) to write the
impedance in a form convenient to show its behavior at
u = −∞. We have

Z(n,−ω) = Z0
(πR)2

β0h

∞∑
p=1

Λp

·
[
ωβ0

c
J ′|n|(γpR)H(2)′

|n| (γpR)

−(αp

γp

)2 n

R
J|n|(γpR)H(2)

|n| (γpR)
]

, (A37)

where on the right hand side γp = γp(ω). As a check
of (A37) one may verify the reality property Z(n, u) =
Z(−n,−u)∗ using (A31), (A28), (A29). Now evaluate
(A31) at ω = u + iv and (A37) at ω = u− iv, and apply
the large-argument asymptotic forms of Bessel functions
([33], §9.2). The result is

Z(n, u + iv) ∼ Z0πR

h

[
1− e2iuR/c

] ∑
p

Λp ,

u → ±∞ . (A38)

Now we see that the ω-integral of the first term in the
square bracket of (31) exists since it is understood as the
symmetric limit of (24), the constant term in Z being the
same in the two limits of (A38). The integral with factor
exp(iuR/c) converges by virtue of oscillations, without
the benefit of asymptotic cancellations.

In deriving (A38) we have invoked uniform convergence
of the p-series with respect to u to justify taking the limit
under the sum. Such convergence holds for the Gaussian
model of the vertical distribution, as is seen from (A24)
and the integral representation ([38], III.14.19a)

H(1)
n (z) =

[
2
πz

]1/2
ei(z−πn/2−π/4)

Γ(n + 1/2)

·
∫ ∞

0

e−ttn−1/2

[
1 +

it

2z

]n−1/2

dt . (A39)

The corresponding formula for H(2)(z) is obtained by
changing i to −i in (A39), and an integral representation
for Jn is given by Jn = [H(1) + H(2)]/2. Using these
results and remembering that γp never vanishes because
v > 0, one can show that the coefficient of Λp in the
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p-sum of (A31) or (A37) has a bound of the form Cp2

where C is a constant, independent of u. By (A24) and
the Weierstrass M -test, the p-sum converges uniformly in
u. A similar result holds for any vertical distribution that
is sufficiently smooth to ensure that

∑
p p2|Λp| converges.

In a similar way we can find the asymptotic behavior
of Z(n, ω) as ω tends to infinity along any direction in
the upper half plane. To get the behavior in the first
quadrant put ω = iv + ρ exp(iφ) , 0 ≤ φ ≤ π/2 in the
right hand side of (A31) and let ρ → ∞ at fixed φ. For
behavior in the second quadrant do the same in (A37),
but with −π/2 ≤ φ ≤ 0. Thus we find that Z is bounded
at infinity in the upper half plane, a result that we require
in closing contours at infinity.

For further analysis we require a method to evaluate
the Bessel functions. Since the important values of n
are quite large, asymptotic expansions for large n are
essential. We are mainly interested in ω close to nω0,
so we consider evaluation of Jn(nz) , Yn(nz) and the
corresponding differentiated functions, where

nz = γp(nω0)R = n
[
β2

0 −
(πpR

nh

)2]1/2
. (A40)

The transition from exponential to oscillatory behavior
of the Bessel functions occurs near z = 1, with expo-
nential decrease of Jn(nz) and increase of Yn(nz) as z is
decreased below transition, and similarly for the deriva-
tives. It is then reasonable to define the shielding cutoff
n0(p) for the p-th mode, and the corresponding z, as fol-
lows (assuming β0 ≈ 1):

n0(p) = πp
[R

h

]3/2
, z =

[
β2

0 −
( h

R

)1/2]1/2
. (A41)

This generalizes our previous shielding cutoff, which was
for p = 1, and ensures that Up(n, nω0) first becomes ap-
preciable on increasing n at roughly n = n0(p).

Since the behavior of the Bessel functions changes
rapidly near z = 1, it is convenient when working in
that region to use expansions that are accurate at large
n uniformly in z. We use the Olver expansions ([33],
§9.3.35-9.3.46) which are expressed in terms of Airy func-
tions and are uniform in z to a remarkable extent, in the
entire sector | arg z| ≤ π − ε, any ε > 0. Using results of
Decker [39], we get a fast evaluation of the Olver expan-
sions, as explained in [5].

For z a bit less than 1 the function Up(n, ω) of (A33)
becomes negligible, but we still have to evaluate Vp(n, ω).
For that it is sufficient to use the simpler Debye expan-
sions [40]. Instead of evaluating the individual Bessel
functions and then combining their values numerically,
it is essential first to make an analytic reduction of Vp

which accounts for close cancellations of exponential fac-
tors (very large or very small in this region). This was
done in [40] for the torus impedance. To retrieve the par-
allel plate case from Eq.(2.19) of [40], put σ

(M,E)
np = 0.

Also note that the definition of Λp in the present paper
is twice that of [40].

In practice we make the change from Olver to Debye
expansions at about z = 0.9. We take enough terms
in the p-expansion to give a negligible remainder, but
in many cases the first term alone gives a fairly good
estimate, especially in the important region near the first
shielding cutoff. Evaluating the first term, p = 1, by the
leading term in the Olver expansion, we get the result
(for β0 = 1) given in Ref.[24],

ReZ(n)
n

= 2Z0

[πR

hn

]2 exp
[− 2

3n2

(πR

h

)3]
. (A42)

The results mentioned in connection with Eq.(2) can be
read off from this formula. The exact evaluation for Fig.1
included all modes up to p = 43, but the higher p affect
mainly the behavior at large n.

APPENDIX B: PRACTICAL EVALUATION OF
THE COLLECTIVE FORCE

1. Approximations in the Complete Impedance
Formalism

In this section we assume conditions (33) on the parti-
cle density. These conditions form the basis for a rational
mathematical discussion, but it must be admitted that
the conditions are difficult to verify, since λn(t) is deter-
mined by self-consistent dynamics, in practice only nu-
merically. Nevertheless, an important part of (33), the
requirement that time derivatives up to some order be
zero initially, can be simulated in the numerical solution
of the Vlasov equation. For that we multiply λn(t) by
a “smooth ramp” f ∈ Cm+2 that is zero for t < 0, has
vanishing derivatives up to order m + 1 at t = 0, and
is equal to 1 for t greater than some small t0. This was
done in Ref.[41].

One could, in principle, find the collective force in a
time dependent Vlasov integration by direct numerical
evaluations of the two integrals and the sum in (31) or
(34). The integral over t′ would evolve dynamically in
steps δt of t. This would be an expensive algorithm,
however, involving evaluation of many negligible contri-
butions. It is expected that only components of the elec-
tric field with phase velocity close to the particle velocity
will have a big effect on the beam, which is to say that the
important part of the ω-integral should lie near ω = nω0.
To see that mathematically consider (34) with k = 0, and
suppose that λn(t) can be approximated by a quadratic
function of t over any interval of length δt, which is to
say that λ′′n(t) is constant over such an interval. Then
the integral in (34) is

∫ t

0

dt′eiΩt′λ′′n(t′)

= δt sinc
(Ωδt

2π

) N−1∑

j=0

eiΩ(j+1/2)δtλ′′n(jδt) , (B1)
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where δt = t/N and Ω = ω − nω0. Take v = 0, which is
the relevant value in following considerations. The sinc
factor is strongly concentrated where |Ω|δt . 2π. This is
to be contrasted with the total concentration at Ω = 0
in the case of a rigid bunch existing for all time. Writ-
ing δt = µTs, where Ts is the synchrotron period, we
may state the concentration condition as a limit on the
deviation of the phase velocity from the nominal par-
ticle velocity. Since the phase velocity is ω/kn, where
kn = n/R is the wave number, we see that for (B1) to be
appreciable we must have

|ω/kn − β0c|
β0c

. ωs

µnω0
. (B2)

In our example ωs/ω0 = 0.0045 and the important n are
around 700 (as is seen in Figures 2 and 1). If the variation
of λn(t) can be regarded as quadratic over a hundredth of
a synchrotron period, which may be a reasonable guess
in view of our simulations to date, then µ = .01 and
the relative deviation of phase velocity from the nominal
particle velocity is small compared to 1 at important n,
being 6.4 · 10−4. Since (B2) refers to the spectrum of the
source, it is only a necessary condition for a particular
phase velocity to be involved. For a sufficient condition
one requires in addition that the impedance Z(n, ω) be
appreciable in the region where ω/kn satisfies (B2).

Notice that there is an additional mechanism to con-
centrate the ω-integral near nω0, in that there is a second
order pole in (34) at that point. For higher values of k
in (34) there is even more concentration, both because
of higher order poles Ω−(k+2) and because λ

(k+2)
n tends

to be constant over bigger intervals δt, giving sharper
peaking of the sinc factor.

Although the above argument is not very precise, it
does give a motivation for expanding the impedance in
(26) as follows:

Z(n, ω) = Z(n, nω0) + D2Z(n, nω0)(ω − nω0) + · · · ,
(B3)

where D2 denotes partial derivative with respect to the
second argument of the function. This cannot be done for
n such that nω0 is close to the poles of Z at waveguide
cutoffs, ±αpc, which are displayed in (A36). We can,
however, subtract the pole contribution Z∗ and expand
the remainder:

Z̃(n, ω) = Z(n, ω)− Z∗(n, ω) =

Z̃(n, nω0) + D2Z̃(n, nω0)(ω − nω0) + · · · (B4)

Both Z∗ and Z̃ are analytic and bounded for Im ω > v >
0, which implies that the contribution of Z∗ to (26) can
be written either as in (31) or as in (34), and similarly
for Z̃. Applying (31) with Z∗ in place of Z, we evaluate

the ω-integral by the method of residues to find

V∗(θ, t) =

−ω0QZ0πR

2β0h

∑
n

ein(θ−ω0t)sgn(n)
∑

p

Λp

∫ t

0

dt′λn(t′)

·
[
A(p, n)eiA(p,n)(t′−t) + B(p, n)eiB(p,n)(t′−t)

]
,

(B5)
A(p, n) = αpc− nω0 , B(p, n) = −αpc− nω0 . (B6)

To evaluate the contribution of Z̃ through use of a
truncated Taylor expansion (B4), we assume conditions
(33) with m equal to the degree of the Taylor polynomial.
Putting the Taylor polynomial of Z̃ in place of Z in (34)
and choosing k = m, we see that the resulting ω-integral
converges quadratically. We evaluate the contribution of
any monomial Ωk in the polynomial by using µnk in (34).
Thus the integral for Ωk is

e−inω0t

2π(−i)k+2

∫

ImΩ=v

dΩ · e−iΩt

Ω2

∫ t

0

eiΩt′λ(k+2)
n (t′)dt′ .

(B7)

At every order k we have concentration of the integral
near Ω = 0, both from the second order pole and from the
t′-integral in analogy to (B1). This provides an heuristic
justification for using the Taylor expansion, since at every
order the integrand is large only in a neighborhood of the
expansion point.

The integral in (B7) can be evaluated by pushing the
contour to a semi-circle at infinity in the lower half-plane.
Its value is −2πi times the residue of the second order
pole, which is

[
d

dΩ
(
e−iΩt

∫ t

0

eiΩt′λ(k+2)
n (t′)dt′

)]

Ω=0

= −iλ(k)
n (t) .

(B8)
Thus the contribution to V from the Taylor polynomial
of Z̃ is

Ṽ (θ, t) =

ω0Q
∑

n

ein(θ−ω0t)
m∑

k=0

1
k !

D
(k)
2 Z̃(n, nω0)ikλ(k)

n (t) .

(B9)

The first term of the sum contains an alarmingly large
piece from −Z∗(n, nω0). One is relieved to find that this
is cancelled by a part of (B5), namely the boundary term
that arises when (B5) is integrated by parts.

Invoking that cancellation, we find the full approxima-
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tion to V , based on replacing Z̃ by its Taylor polynomial:

V (θ, t) ≈ 2ω0QRe
∞∑

n=1

ein(θ−ω0t)

[
Z(n, nω0)λn(t)

+
m∑

k=1

1
k !

D
(k)
2 Z̃(n, nω0)ikλ(k)

n (t)− i
Z0πR

2β0h

∑
p

Λp

·
∫ t

0

dt′λ′n(t′)
(

eiA(p,n)(t′−t) + eiB(p,n)(t′−t)

)]
.

(B10)

We were able to replace the full sum on n by twice the
real part of the sum on positive n, because the summand
S satisfies S(n) = S(−n)∗ , S(0) = 0.

The integral in (B10) represents retardation effects as-
sociated with wave guide cutoffs. It is expected to be
largest at those (p, n) for which A(p, n) = αpc − nω0 is
small, giving a primarily reactive effect. The presence of
the integral does not add a lot to the cost of a dynamical
calculation, since one can store each of the integrals as a
matrix M(p, n, t), and update that matrix at each time
step δt by adding the integral from t to t + δt.

In the numerical work for this paper we retained only
the first term of (B10). Preliminary numerical work to as-
sess the role of correction terms in (B10) was reported in
[41], where the full formula with m = 1 was applied. The
added terms seemed to have minor importance, and we
will take that as justification for neglecting them in the
present endeavor. A more thorough investigation should
be made, however, since the Vlasov integration of [41]
did not include a case of fully developed instability.

The reader might have noticed that the terms from the
Taylor polynomial of Z̃ can be obtained more directly by
putting Z̃ for Z in (26) and invoking the Laplace in-
version theorem. The various terms in the polynomial,
multiplied by λ̂n(Ω), give Laplace transforms of deriva-
tives of λn(t), provided that enough initial value terms
are zero. This calculation gives the same result we have
obtained, and the conditions to use the inversion theorem
are weaker than (33); namely, for an m-th degree polyno-
mial, that λn have only m + 1 continuous and bounded
derivatives, and that λ

(k)
n (0) = 0 , k = 0, · · · ,m − 1

when m ≥ 1. Our stronger conditions (33) are needed
to justify the Taylor expansion through the argument
about concentration of the integral near Ω = 0. Concen-
tration from two sources, the second order pole and the
t′-integral, is not obtained under the weaker conditions.

The function Z̃(n, ω) is free of poles at ω = ±αpc, but
it does have a logarithmic singularity at those points from
log(γpR) in (A35). Fortunately, the coefficient Up(n, ω)
of the logarithm is exactly the function that displays the
shielding cutoff; it and its derivatives with respect to ω
are totally negligible at ω = nω0 = αpc, a point far be-
low the shielding cutoff for mode p. Effectively, Z̃(n, ω)
behaves as an entire function of ω near nω0, and there-
fore will be well represented by its Taylor polynomial of
appropriate degree.

2. Numerical Treatment of Fourier Transforms

For the Vlasov integration we need a numerical ap-
proximation to the Fourier transform (19). Suppressing
time dependence and noting (39), we have

λn =
1
2π

∫ πR/σz

−πR/σz

e−inqσz/Rρ(q)dq =
1
2π

∫ κ

−κ

e−inqσz/Rρ(q)dq .

(B11)

Here κ defines the boundary of the q-mesh, ρ(q) being
zero by definition outside the interval [−κ, κ]. Typically κ
is around 6 or 7 in the bunched beam case, much smaller
than πR/σz. We take a uniform q-mesh consisting of the
points

qj = jκ/N − κ , j = 0, 1, · · · , 2N , (B12)

where a typical value of N is 200-600. Since we have to
compute the transform at every time step, it is impor-
tant to save time by employing the FFT. Some tricks are
required to get the results we need from the FFT.

Recall that the FFT supplies the sum

1
J

J−1∑

j=0

e−2πimj/Jf(θj) , m = 0, 1, · · · , J − 1 , (B13)

which is the result of applying the trapezoidal rule to
approximate the transform of a periodic f(θ),

fm =
1
2π

∫ 2π

0

e−imθf(θ)dθ ,

dθ = 2π/J , θj = 2πj/J . (B14)

Correspondingly, let us evaluate (B11) by the trapezoidal
rule, using values of ρ on the mesh (B12). We find

λn =
κeiπµ

2πN
2N−1∑

j=0

e−2πiµj/(2N )ρ(qj) , µ =
nσzκ

πR
.

(B15)
To put this sum in the standard form of an FFT, we
adjust κ (from whatever value we first assumed) to make
∆n an integer, where

∆n =
πR

σzκ
. (B16)

Since this ratio is typically large compared to 1, the mini-
mum required adjustment of κ is small. Since µ = n/∆n,
the sum (B15) takes the form of an FFT at least for those
n which are integral multiples of ∆n. Putting n = m∆n
we have

λm∆n =
κ(−1)m

π

1
J

J−1∑

j=0

e−2πimj/Jρ(qj) ,

m = 0, 1, · · · ,N ; J = 2N (B17)
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The upper limit on m comes from the Nyquist rule, which
states that a mode m is meaningful only if the phase
2πmj/J changes by not more than π from one integration
point to the next (i.e., when j changes by one unit).

For parameters of interest for our example (σz =
1 cm , R = 25 cm , κ = 6) the integer part of πR/σzκ is
13, and we can change κ to 6.0415.. to make ∆n = 13, or
to 6.5449.. to make ∆n = 12. It may be possible to get
by with values of n only in steps of ∆n, using an interpo-
lation technique to fill in the missing n in the sum (28).
We note, however, that a smaller ∆n can be achieved at
the expense of a longer FFT. This will allow a check on
accuracy of the interpolation method. Define a new FFT
data vector padded with zeros:

ρ̃j =
{

ρ(qj) , j = 0, 1, · · · , J − 1
0 , j = J, J + 1, · · · , 2J − 1 (B18)

To illustrate suppose that the original ∆n is even. Then
with n = m∆n/2 the trapezoidal integration (B15), re-
specting the Nyquist rule, can be written as

λm∆n/2 =
κim

π

1
2J

2J−1∑

j=0

e−2πimj/(2J)ρ̃j ,

m = 0, 1, · · · , J , J = 2N . (B19)

By doing an FFT of twice the length in comparison to
(B17), we cover the same range of n, but in steps half as
big.

Turning to evaluation of the collective force through
(28), we first need a guess for the maximum required
n. It seems that n should go well beyond the point
at which Z(n)/n is maximum, since according to the
doctrine of linear coasting beam theory modes near the
maximum are likely to become unstable at high current.
The maximum is around n = 600 in our example. With
∆n = 13 and 400 mesh points in q-space (N = 200), we
can reach n = N∆n = 2600. At first this seemed an ade-
quate choice, and appealing because at N = 200 one can
run for hundreds of synchrotron periods in modest com-
puter time. We discovered, however, that finer meshes
(N = 400 or 600 with the same κ ≈ 6) gave slightly lower
current thresholds for instability. We conclude that one
should experiment, trying to see some sort of convergence
of the current threshold as the mesh is refined.

Regarding the missing n in the above scheme with
∆n > 1, we note Z(n) for the parallel plate model is
well represented by interpolation of its values at points
spaced by fairly large values ∆n, say 10-20. Allowing
the plotting program to provide interpolation, one can-
not distinguish the graph using all n from the one with
spaced n. If Z(n)λn had a similar property, then one
could evaluate the sum of (28) using an interpolative
scheme. It is certainly not clear that the interpolation
will be as accurate as that of Z(n) alone, but we can
check the result by reducing ∆n through a longer FFT.

We consider interpolative schemes for evaluation of a

general sum

S(θ) =
N∆n∑

m=m0∆n

einθf(n) = ein∆nθf(N∆n)

+
N−1∑

m=m0

∆n−1∑

k=0

ei(m∆n+k)θf(m∆n + k) . (B20)

The idea is to write f(m∆n+k) as a low order polynomial
in k for k ∈ [0, ∆n − 1], the polynomial obtained by
interpolation of values f(m′∆n) for m′ near m. Then
the sum on k can be carried out analytically, in terms
of sums of geometric series and their derivatives with
respect to θ. In the case of quadratic interpolation this
is the discrete analog of Filon’s method for evaluation of
Fourier transforms [42]. We state the result for linear
interpolation,

f(m∆n + k) = f(m∆n) +
f((m + 1)∆n)− f(m∆n)

∆n
k .

(B21)
After a fairly long calculation one finds

S(θ) =
1

∆n

1− cos∆nθ

1− cos θ

N−1∑
m=m0

f(m∆n)eim∆nθ + B(θ) ,

(B22)
where the boundary term B, which will be zero in our
application, in general has the form

B(θ) = ein∆nθf(N∆n) +
[

1
eiθ − 1

+
1− e−i∆nθ

2∆n(1− cos θ)

]

·[ein∆nθf(N∆n)− eim0∆nθf(m0∆n)
]

. (B23)

We can now compute the collective force with the help
of (B22). Put f(n) = Z(n)λn(t) and note that negative
n can be eliminated because f(n) = f(−n)∗. We can as-
sume that f(N∆n) is negligible, and since Z(0) = 0 the
boundary terms drop out: f(0) = f(N∆n) = 0. Sup-
pressing the time variable, we have from (38),(28),(B12),
(B22) and (B16) that

F (qj) = −2ω0Re
N∆n∑
n=0

exp(inqjσz/R)f(n)

= a(j)Re
N∑

m=0

(−1)meπimj/N f(m∆n) (B24)

= a(j)Re
2N−1∑
m=0

e2πimj/2N fm , (B25)

where

a(j) = −2ω0

∆n

1− cos(qjπ/κ)
1− cos(qjσz/R)

, (B26)

and

fm =
{

(−1)mf(m∆n) , m = 0, · · · ,N
0 , m = N + 1, · · · , 2N − 1 (B27)
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By rewriting (B24) as (B25), we get the result as
an FFT of length 2N , providing all required j =
0, 1, · · · , 2N . The direct Fourier transform with gaps in
the n-spectrum, as given by (B17), meshes nicely with
the inverse transform in the form (B25), obtained by in-
terpolation.

The reader may ask why we do not represent the col-
lective force in the usual way as proportional to

∫
W (q − q′)ρ(q′)dq′ , (B28)

where the wake potential W is proportional to the in-
verse Fourier transform of Z(n, nω0)λnσ, where λnσ is
the Fourier transform of a very short Gaussian bunch
approximating a delta source. This would avoid making
direct and inverse Fourier transforms at every time step.
The answer is that W (q) has such a rapid variation near
q = 0 that our typical mesh step ∆q is much too large to
resolve the structure of the integrand in (B28). The diffi-
culty persists even if we integrate by parts to put (B28) in
terms of the integral of W , which has a somewhat milder
behavior than W itself.

A possible way to avoid this difficulty would be to rep-
resent ρ(q′) locally by a polynomial, in terms of its values
on a typical mesh, then carefully integrate that polyno-
mial against W (q − q′), taking as fine a mesh as nec-
essary for high accuracy. These integrals need be done
only once. They effectively constitute a set of integration
weights for evaluation of (B28), using just the values of ρ
on a typical mesh [43]. Although we have found it infor-
mative to follow the bunch Fourier spectrum in time, one
might compute it less frequently than at every time step
and still get an adequate picture of its time evolution.

APPENDIX C: INTEGRATION METHOD FOR
THE VLASOV EQUATION

A stable method for time domain integration of the
nonlinear Vlasov equation is based on discretizing the
Perron-Frobenius (PF) operator for the single-particle
map, the latter being approximated by freezing the
coherent force over sufficiently small time steps. Let
Mτ→τ+∆τ (z) , z = (q, p) be the volume preserving map
describing particle trajectories (characteristics) over the
time interval [τ, τ +∆τ ]. Then the PF operator M asso-
ciated with M gives the time evolution of the distribution
function:

f(z, τ + ∆τ) = Mf(z, τ) = f(M−1(z), τ) . (C1)

This is just another way of stating that the probability
of finding a particle in a phase space volume element dz
is preserved:

f(M(z), τ + ∆τ)d(M(z)) = f(z, τ)dz . (C2)

A discretization ofM simply consists of choosing a finite-
dimensional approximation of f . For instance, f might

be described by its values on a grid {zi}, with polyno-
mial interpolation to off-grid points. In that case, evalu-
ation of Mf(zi, τ) would be done by interpolation, since
M−1(zi) is an off-grid point in general. In the litera-
ture the discretized PF method is often called the semi-
Lagrangian method [44], but a more descriptive name
would be the method of local characteristics, since it is
just the traditional method of characteristics extended
to self-consistent dynamics through an approximation of
characteristics that is valid only locally in time.

Several different ways to approximate M for small ∆τ
have been proposed, as well as different ways to represent
f . In the seminal work of Cheng and Knorr [45], the lo-
cal map M was composed of three steps in a “leap frog”
scheme: a drift in q for time step ∆τ/2, an increment in
p for time step ∆τ accounting for both the linear motion
and the coherent force, and another drift for ∆τ/2. The
PF operator for each step was discretized separately, by
means of splines or Fourier series. Two of the present au-
thors [18] took M to be a rotation in phase space followed
by a kick in p from the coherent force, both for step ∆τ .
They used locally quadratic interpolation on a grid to
represent f , doing a single two-dimensional interpolation
per time step.

In the present work we apply a method of Yabe et
al. [46], which uses the Cheng-Knorr representation of
M but a different representation of f based on the idea
of cubic Hermite interpolation. In the Hermite scheme
a function is represented locally as a cubic polynomial
determined by the values of the function and its deriva-
tive on two adjacent mesh points. This gives an error
that is O(h4) for mesh step h, provided that the function
has a continuous fourth derivative [47]. Yabe’s scheme
works with easily computed approximations to the par-
tial derivatives along phase space axes, and requires stor-
age of the approximated derivatives as well as function
values. Since some of the derivatives are approximated
crudely, one does not expect the full accuracy of Hermite
interpolation. The scheme appears to work better than
the method of [18] for a given mesh step, but it requires
much more storage and computation time per time step.
We have not yet made a careful comparison of overall
efficiencies accounting for both storage and time.

The Cheng-Knorr representation of the PF operator
for Eq. (13) may be stated as follows :

f∗(q, p, τ) = f(q − p∆τ/2, p, τ) , (C3)
f∗∗(q, p, τ) = f∗(q, p + (q − IcF (q, f∗))∆τ, τ) ,

(C4)
f(q, p, τ + ∆τ) = f∗∗(q − p∆τ/2, p, τ) . (C5)

In the Yabe scheme the function f is represented by its
values on a cartesian grid, fij(τ) = f(qi, pj , τ), with
approximated Hermite interpolation for off-grid points.
The true cubic Hermite interpolation of function val-
ues g(x), g(x+) which fits given values of derivatives
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g′(x), g′(x+), where x+ = x + h, is

g(x + ξ) ≈ g(x) + g′(x)ξ + c2ξ
2 + c3ξ

3 ,

c2 = − 1
h

(2g′(x) + g′(x+))− 3
h2

(g(x)− g(x+)) ,

c3 =
1
h2

(g′(x) + g′(x+)) +
2
h3

(g(x)− g(x+)) .

(C6)

Given fij , ∂qfij , ∂pfij we wish to determine
f∗ij , ∂qf

∗
ij , ∂pf

∗
ij through (C3). First, f∗ij is determined

by Hermite interpolation of f with respect to its first
argument, then ∂qf

∗
ij is given by the derivative of that

interpolation evaluated at grid point (i, j). The other
derivative ∂pf

∗
ij is approximated more roughly, as follows.

For small ∆τ we have

∂qf(q, p, τ) ≈ f(q, p, τ)− f(q − p∆τ/2, p, τ)
p∆τ/2

=
f∗(q + p∆τ/2, τ)− f∗(q, p, τ)

p∆τ/2
≈ ∂qf

∗(q, p, τ) ,

(C7)

hence

1
2
(∂qf(q, p, τ) + ∂qf

∗(q, p, τ)) ≈ f(q, p, τ)− f∗(q, p, τ)
p∆τ/2

.

(C8)

Multiplying (C8) by p∆τ/2 and differentiating with re-
spect to p we find

∂pf
∗(q, p, τ) ≈

∂pf(q, p, τ)− (∆τ/4)∂p(p∂q(f + f∗)(q, p, τ)) .

(C9)

Finally, we approximate ∂p in the last term of (C9) by
central divided differences on the grid with cell size ∆p in
the p-direction. This gives the desired algorithmic value

∂pf
∗
ij = ∂pfij − ∆τ

4
1

2∆p

[
pj+1(∂qfi,j+1 + ∂qf

∗
i,j+1)

−pj−1(∂qfi,j−1 + ∂qf
∗
i,j−1)

]
(C10)

One can now treat (C4) and (C5) in a similar way, finally
finding fij(τ +∆τ) , ∂qfij(τ +∆τ) , ∂pfij(τ +∆τ), which
are starting values for the next time step. One could
have used f rather than (f + f∗)/2 in the last term of
(C9), but the latter is alleged to enhance stability of the
algorithm. A noteworthy feature of this scheme is that
the quality of the interpolation in phase space depends
on smallness of ∆τ , because of (C7), whereas there is no
such dependence in the methods of [18, 45].

[1] J. Schwinger, “On Radiation by Electrons in a Betatron”,
unpublished report, 1945, transcribed in Lawrence Berke-
ley National Laboratory report LBL-39088 (1996).

[2] J. Schwinger, Phys. Rev. 75, 1912 (1949).
[3] L. Schiff, Rev. Sci. Instr. 17, 6 (1946).
[4] J. Nodvick and D. Saxon, Phys. Rev. 96, 180 (1954).
[5] R. Warnock and P. Morton, Part. Accel. 25, 113 (1990).
[6] K.-Y. Ng, Part. Accel. 25, 153 (1990).
[7] T. Nakazato et al. Phys. Rev. Lett. 63, 1245 (1989).
[8] G. Carr, S. Kramer, J. Murphy, R. Lobo, and D. Tanner,

Nucl. Instr. Meth. Phys. Res. A 463, 387 (2001).
[9] J. M. Byrd et al., Proc. 2002 Euro. Part. Accel. Conf.,

Paris, France, p. 659.
[10] U. Arp et al., Phys. Rev. ST - Accel. Beams 4 054401

(2001).
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