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Abstract: Early detection of prostate cancer (PC) is largely carried out using assessment of prostate-
specific antigen (PSA) level; yet it cannot reliably discriminate between benign pathologies and
clinically significant forms of PC. To overcome the current limitations of PSA, new urinary and serum
biomarkers have been developed in recent years. Although several biomarkers have been explored in
various scenarios and patient settings, to date, specific guidelines with a high level of evidence on the
use of these markers are lacking. Recent advances in metabolomic, genomics, and proteomics have
made new potential biomarkers available. A number of studies focused on the characterization of the
specific PC metabolic phenotype using different experimental approaches has been recently reported;
yet, to date, research on metabolomic application for PC has focused on a small group of metabolites
that have been known to be related to the prostate gland. Exosomes are extracellular vesicles that
are secreted from all mammalian cells and virtually detected in all bio-fluids, thus allowing their
use as tumor biomarkers. Thanks to a general improvement of the technical equipment to analyze
exosomes, we are able to obtain reliable quantitative and qualitative information useful for clinical
application. Although some pilot clinical investigations have proposed potential PC biomarkers,
data are still preliminary and non-conclusive.

Keywords: prostate cancer; biomarkers; metabolomics; exosomes; early diagnosis

1. Biomarkers in Prostate Cancer: Current Limitations

Prostate cancer (PC) is the most commonly diagnosed cancer in men, principally
affecting men over 50 years old, and is the leading cause of cancer-related deaths in men [1].
Furthermore, PC and subsequent treatments have a high impact on both functional and
psychological status, significantly affecting patients’ quality of life (QoL) [2]. Early detection
of PC is largely carried out using assessment of prostate-specific antigen (PSA) level in
blood complemented by digital rectal examination (DRE). Regrettably, PSA cannot reliably
discriminate between benign prostatic hyperplasia (BPH) or prostatitis and clinically
significant forms of PC, due to its limited sensitivity and specificity [3].
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In 2012, the US Preventive Services Task Force (USPSTF) released a recommendation
against PSA screening [4], which resulted in a reduction in the use of PSA for early detection.
This strategy and recommendation led to a rise in the incidence of advanced disease and,
possibly, PC cancer-related mortality after 2012 [5,6]. In 2018, the USPSTF published an
updated statement suggesting that men aged 55–69 should be informed about the benefits
and harms of PSA-based screening, discouraging this program for men over 70 years old [7].
A comparison of systematic and opportunistic screening suggested over-diagnosis and
mortality reduction in the systematic screening group, compared to a higher over-diagnosis
in the opportunistic screening regimen [8].

Over the past few years, the urgency to find an alternative approach for an early and
non-invasive detection of PC, as well as for a proper discrimination between PC and several
prostatic benign pathologies, has become clear. PC is a highly heterogeneous neoplasm,
with many men presenting with an indolent course, while others present with a rapidly
progressive disease. Due to the clinical heterogeneity of PC present in clinical practice,
the analysis of the metabolic profile of PC samples is highly dispersed. Indolent PC cases
with a Gleason score (GS) of 6 can display a low aggressiveness and low propensity for
growth and progression; it is possible that the metabolic profile of these indolent PC cases
is closer to that of BPH cases. On the contrary, clinically significant PC (csPC) cases, and in
particular those with a GS of 8 or higher, often show rapid growth and progression, proba-
bly sustained by a different metabolic profile. Moreover, patients with PC usually have
various extents of concurrent BPH in the transition and periurethral zones of the prostate.
The determination in bio-fluids of current markers, such as PSA and its derivates, continue
to be unable to properly discriminate between these two coexisting entities. The analysis of
possible biomarkers, enclosed in extracellular nanovesicles released in the same bio-fluids
(exosomes) rather than freely circulating, could increase their specificity and accuracy in
discriminating between neoplastic and benign hyperplastic prostatic modifications [9].

2. Role of Different Bio-Fluids on PC Biomarkers
2.1. Urinary or Serum Biomarkers: Which Are Better?

In recent years, new urinary and serum biomarkers have been developed, with the
goal of overcoming the current limitations of PSA, mainly represented by a low specificity,
which has led to unnecessary biopsies and over-diagnosis and over-treatment of indolent
PC cases [10–12]. Ideally, to be useful in clinical practice, a tumor biomarker should present
the following characteristics: first and most importantly, it should be relatively specific
for PC, and not affected by other benign conditions; second, it should be useful in all
steps of the natural history of the disease (i.e., from diagnosis to follow-up after initial
and subsequent therapy) and, in this context, it should be accurate in distinguishing csPC
from indolent cases. Finally, biomarkers should be cost-effective, and not invasive in the
method of collection [13]. In the last ten years, a better knowledge of the genetic and
epigenetic mechanisms involved in PC biology has led to the availability of new urinary
and plasma markers in clinical practice [14]. Although several biomarkers have been
explored in various scenarios and patient settings—with the aim to identify more sensitive
and specific biomarkers for detecting and monitoring PC—to date, specific guidelines with
a high level of evidence on the use of these markers are lacking, mainly due to limitations
inherent to both plasma and urine samples. Moreover, before widely implementing them
in the different phases of patient care, there are several open questions waiting to be
answered: What are the advantages of blood and urinary routes, respectively? What are
the scenarios in which one biomarker is more useful than another? What is the impact—and
its magnitude—of the interplay with other decision tools, such as imaging?

2.2. Urinary Biomarkers

Recent advances in metabolomic, genomics, and proteomics have made new potential
biomarkers available, virtually in all fields of oncology. In the field of PC, these advances
have led to a renewed interest in urine as a valuable biomaterial source of new markers [15].
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Indeed, PC cells or substances derived from PC cells can be found in prostatic fluids—and
therefore in urine samples—both directly and after prostatic massage by DRE. Therefore,
urine can represent a source of prostate cells, proteins, DNA, and RNA, with the potential
to serve as markers for the detection and follow-up of PC [16]. Urine has become one of the
most attractive bio-fluids in clinical proteomics. Compared with other clinical biological
specimens, such as blood samples, urine provides many advantages for the determination
of both diagnostic and prognostic biomarkers (Table 1).

Table 1. Advantages and limitations of serum and urinary biomarkers.

Advantages Critical Issues Availability Potential Clinical Utility

Serum Biomarkers: PHI, 4K scores

Easy to perform
Reproducible

High risk of confounding factors
Include PSA for interpretation

Include clinical variables (4Kscore)
Uncertain reference range and

ethnic variability (PHI)

PHI: FDA-approved
4K: CLIA-certified

Primary Diagnosis
(biopsy-naïve/repeat biopsy)

Diagnosis of csPC
AS

Urinary Biomarkers: PCA3, SelectMDx, MiPS, ExoDx

Easy to collect
Large quantities

Reproducible
Fewer confounding

elements

Need DRE (not ExoDx)
Visit to a health-care provider to

obtain the urine sample (not ExoDx)
Difficult to collect cells derived

from PC
Include clinical variables

(SelectMDx)
Uncertain cut-off value (PCA3)

PCA3: FDA-Approved
SelecMDx, MiPS, and
ExoDx: CLIA-certified

Primary Diagnosis
(biopsy-naïve/repeat biopsy)

Diagnosis of csPC
AS

Abbreviations list: PHI = Prostate Health Index; 4K = four-kallikrein; PCA3 = Prostate Cancer Antigen 3; PSA = prostate-specific antigen;
DRE = digital rectal examination; PC = prostate cancer; csPC = clinically significant PC; AS = active surveillance; FDA = Food and Drug
Administration; CLIA = Clinical Laboratory Improvement Amendments.

First, urine is easy to collect—recurrently and in large quantities—without any risk or
harm to the patient [17]. In addition, since it is not associated with significant proteolytic
degradation and has a less complex composition compared to serum or plasma, the presence
of fewer confounding elements facilitates the isolation process and thus the evaluation of
biomarkers [16]. With regard to its application as a source of biomarkers for localized and
early-stage PC, urine may be more appropriate than blood, as it contains markers from
virtually all human tissues [16]. Moreover, urine does contain materials coming directly from
the prostate gland, and it does not require crossing of blood–tissue barriers. Despite the
advantages of urinary flow, only a few biomarkers are currently available and approved by
regulatory authorities. The first and only FDA-approved urinary biomarker for PC is the
Progensa Prostate Cancer Antigen 3 (PCA3) assay, which measures the concentration of PCA3
and PSA messenger RNAs (mRNA) levels by transcription-mediated amplification, using
2.5 mL of post-DRE urine. A PCA3 score is generated by calculating the ratio of PCA3:PSA
mRNA, the latter being used as a method of normalizing for the amount of prostate material
within the total volume of urine [18]. Since its introduction into clinical practice, it has shown
promising results for PC detection, staging, and prognosis [19]. A recent meta-analysis
showed that the sensitivity of the PCA3 test was 46.9–82.3%, and the specificity was 56.3–89%
for primary diagnosis, and similar results were reported for csPC [20]. Moreover, PCA3
has proven to be useful in the context of active surveillance (AS), in which the PCA3 scores
obtained at the first biopsy and during AS protocol were significantly higher in patients with
Gleason grade reclassification than in those without [21]. Despite the clinical scenarios in
which it has been tested, at present, PCA3 is only approved for patients with a previous
negative biopsy, probably due to the fact that the definition of the best discriminating cut-off
value is controversial—which has made the available studies very heterogeneous, especially
in the setting of biopsy-naïve patients [22]. Indeed, several studies have highlighted the fact
that PCA3 does not work well with a single threshold, showing a high NPV below a low
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threshold, and a high PPV above a high threshold, with a gray zone in between—which is
reflective of the reality of PC biology [22,23]. These limitations might be in part overcome by
combining multiple gene analysis, such as SelectMDx or Mi Prostate score [15]. SelectMDx
measures post-DRE mRNA transcripts from the HOX6 and DLX1 genes in combination with
other risk factors, such as age, DRE, PSA, PSA density, and family history [24]. SelectMDx
has shown promising results for the initial diagnosis, with an AUC of 0.90 in the diagnosis
of csPC [25]. Similar results in terms of specificity and sensibility were reported for Mi
Prostate Score, which combines PCA3 with TMPRSS2-ERG and serum PSA [26]. ExoDx
Prostate IntelliScore is a test that measures PCA3 and ERG RNA expression in exosomes in
voided urine, without the need for a prior DRE—and thus without the need of a health-care
provider to obtain the sample [27,28]. It was found to provide additional predictive accuracy
above a clinical model to predict csPC, with an AUC of 0.80 [27]. In a prospective series, the
addition of the gene expression model increased diagnostic performance of csPC significantly,
compared to the current standard of care (AUC 0.73) [28].

Given the promising results of these urinary markers, to implement their use in clinical
practice, some critical issues should be resolved in the future. First and most importantly,
to overcome PSA limitations, future studies on new urinary biomarkers should be more
focused on the diagnosis of csPC, since a biomarker that merely detects any PC will not
be sufficient to improve patient care. Second, the role of DRE for the collection of urinary
samples should be further investigated; yet it still remains debated, adding an element of
variability among clinical studies.

2.3. Serum Biomarkers

Compared with urinary biomarkers, in the last years only a few blood biomarkers
have been proposed and tested in PC patients, and only one is approved in clinical practice
by the Food and Drug Administration (FDA). This could be partially explained by the fact
that a serum biomarker should have specific characteristics, yet blood contains markers
from all tissues—with a high risk of confounding factors. Moreover, blood should contain
substances exclusively produced by the prostate, like PSA, and ideally not conditioned by
other pathologies that can affect the prostate itself. Finally, it should be more specific than
PSA for csPC. Currently, many of the new serum markers under investigation include the
use of total PSA (tPSA) or free PSA (fPSA) in the analysis and interpretation of the results,
leading to the issue of whether these new markers may suffer from the same limitations as
PSA [14]. Ideally, optimal PC screening risk stratification requires molecular subtyping to
yield information on disease biology, prognosis, and treatment benefits [29]. The prostate
health index (PHI) assay and four-kallikrein (4Kscore) test have been recently developed
and tested in several clinical studies, including primary diagnosis and monitoring after
therapy [30]. Both tests use combinations of different serum PSA isoforms and/or related
proteins to increase PC-specific sensitivity. PHI was the first FDA-approved new blood
serum assay, which combines the levels of tPSA, fPSA, and p2PSA (a PC-specific fPSA
isoform) [31]. Following FDA approval, several studies have focused on the comparison
between the diagnostic performance of PHI and the f/tPSA ratio in different clinical
settings. In the context of primary diagnosis, a large multicenter study involving more
than 800 patients with PSAs between 2 and 10 ng/mL, PHI showed an AUC of 0.70 for
the detection of any PC and 0.72 for csPC, highlighting its potential clinical utility for
AS [31]. In this context, PHI is not recommended by scientific societies as a diagnostic
tool for predicting biopsy reclassification in men under AS. However, a recent metanalysis
showed a pooled sensitivity of 0.90 and specificity of 0.17 for PHI in the detection of
high-grade PC [32]. The four-kallikrein (4Kscore) test is a Clinical Laboratory Improvement
Amendments (CLIA) certified serum-based test that combines the levels of tPSA, fPSA,
intact PSA, human kallikrein 2 (KLK2), and clinical information to obtain a risk stratification
index indicating whether the patient has a csPC [33]. Similar to PHI, 4Kscore showed good
accuracy for both primary diagnosis and prediction of csPC [34].
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Table 2 summarizes data on diagnostic performance of new markers in various clinical
scenarios reported from previous studies.

Table 2. Diagnostic performance of new markers in various clinical scenarios.

Biomarkers
Primary Diagnosis of PC (No.

of pts, Inclusion Criteria,
AUC Results)

Primary Diagnosis
Repeat Biopsy

(No. of pts, Inclusion
Criteria, AUC Results)

Diagnosis of csPC
(No. of pts, Inclusion

Criteria, AUC Results)

Active Surveillance
(No. of pts,

Inclusion Criteria,
AUC Results)

Serum

PHI

No. pts 892 No. pts 95 No. pts 658 No. pts 253

PSA 2–10 ng/mL AUC 0.72 [35] PSA 4–10 ng/mL AUC 0.65 for GR [36]

AUC 0.72 [31] AUC 0.71 [37]

No. pts 658 No. pts 391 No. pts 769

PSA 4–10 ng/mL PSA 2–10 ng/mL PSA 2–10 ng/mL

AUC 0.71 [37] AUC 0.78 [38] AUC 0.72 all (0.68 initial
biopsy, 0.78 repeat biopsy) [38]

No. pts 300 No. pts 110

PSA 2–10 ng/mL PSA 2–20 ng/mL

AUC 0.77 [39] AUC 0.69 [40]

4K Score

No. pts 749 No. pts 925 No. pts 749 No. pts 718

PSA > 3 ng/mL PSA > 3 ng/mL PSA > 3 ng/mL AUC 0.78 for GR [41]

AUC 0.69 including age and
DRE [42]

AUC 0.68 including age, PSA,
DRE [43]

AUC 0.78 including age and
DRE [42]

No. pts 531 No. pts 531

PSA 3–15 ng/mL PSA 3–15 ng/mL

AUC 0.69 including age [34] AUC 0.71 including age [34]

No. pts 740 No. pts 740

PSA > 3 ng/mL PSA > 3 ng/mL

AUC 0.83 including age, PSA,
DRE [44]

AUC 0.90 including age, PSA,
DRE [44]

No. pts 925

PSA > 3 ng/mL

AUC 0.87 including age, PSA,
DRE [43]

Urinary

PCA3

No. pts 300 No. pts 48 No. pts 497 No. pts 552

PSA 2–10 ng/mL PSA 2.5–6.5 ng/mL PSA > 3 ng/mL AUC for GR 0.61 [45]

AUC 0.73 [39] AUC 0.79 [46] AUC 0.53 [47]

No. pts 497 No. pts 470 No. pts 905 No. pts 294

PSA > 3 ng/mL Any PSA PSA > 3 ng/mL AUC for GR 0.58 [48]

AUC 0.72 [47] AUC 0.65 [49] AUC 0.65 [25]

No. pts 578
PSA <50 ng/mL

AUC 0.75,
PSA 4–10 ng/mL,

AUC 0.74 [50]

No. pts 103
Any PSA

AUC 0.64 [51]

No. pts 138
PSA 4–20 ng/mL

AUC 0.55 [52]

SelectMDx

No. pts 52 No. pts 114 No. pts 125

PSA > 3 ng/mL PSA > 3 ng/mL AUC for GR 0.70 [53]

AUC 0.92 [54] AUC 0.67 [55]

No. pts 905

PSA > 3 ng/mL

AUC 0.76 [25]



Int. J. Mol. Sci. 2021, 22, 4367 6 of 17

Table 2. Cont.

Biomarkers
Primary Diagnosis of PC (No.

of pts, Inclusion Criteria,
AUC Results)

Primary Diagnosis
Repeat Biopsy

(No. of pts, Inclusion
Criteria, AUC Results)

Diagnosis of csPC
(No. of pts, Inclusion

Criteria, AUC Results)

Active Surveillance
(No. of pts,

Inclusion Criteria,
AUC Results)

MiPS

No. pts 1225 No. pts 1225

PSA > 3 ng/mL PSA > 3 ng/mL

AUC 0.75 [26] AUC 0.7 [26]

ExoDX

No. pts 195 No. pts 195

PSA 2–10 ng/mL PSA 2–10 ng/mL

AUC 0.73 [27] AUC 0.80 [27]

No. pts 519

PSA 2–10 ng/mL

AUC 0.73 [28]

Abbreviations list: no. pts = number of patients; PHI = Prostate Health Index; 4K = four-kallikrein; PCA3 = Prostate Cancer Antigen 3;
csPC = clinically significant prostate cancer; PSA = prostate-specific antigen; AUC = area under the curve; DRE = digital rectal examination;
AS = active surveillance; GR = grade reclassification; MiPS = Mi Prostate Score.

Despite the promising data and the numerous urinary and serum biomarkers under in-
vestigation, including FDA approved PCA3 and PHI, currently no strong recommendations
by international guidelines exist [56,57]. To implement their use in clinical practice, some
critical issues should be covered in the near future. Given the results of new biomarkers
in reducing unnecessary biopsy and in detecting csPC, there is still a lot of uncertainty
about when to use them and on which population, although a total PSA range between
2.5 and 10 ng/mL could be a valid hypothesis. Therefore, there is the need for head-to-head
comparisons among new biomarkers in an attempt to understand which marker performs
better for a given population. Moreover, we should take into account that multiparametric
magnetic resonance imaging of the prostate (mpMRI) has radically changed the clinical
practice scenario in recent years, both in patients with previous negative biopsy and in
biopsy-naïve men [58–61]. Given the fact that mpMRI is the standard of care today, future
research on new markers should include MRI-guided or fusion biopsies, rather than the
only systematic biopsies, since the accuracy of the new markers may be higher, as reported
by some authors [62,63]. In this context, combining mpMRI with biomarkers would be
of particular value; yet the optimal interplay between these tools is still uncertain, as the
optimal sequence and timing in order to maximize the detection of csPC while limiting the
detection of indolent PC remains to be fully determined [30].

3. Role of Metabolomics in PC Diagnosis

Metabolomics, consisting of the exhaustive study of the entire small metabolite compo-
sition of a biological system, is considered by many as the missing link between phenotype
and genotype, thus representing an essential tool in clinical study [64]. Compared with
genomics or proteomics, metabolomics reflects changes in phenotype and therefore func-
tion [65]. Since metabolites represent the end-products of physiological processes, studying
the metabolome may allow a better understanding of disease pathogenesis and, conse-
quently, of the choice and mechanisms of intervention [65]. Clinical care may profit by
metabolomics for several purposes, including not only the discovery of biomarkers for a
specific disease, but also the metabolic differentiation of different clinical phenotypes in a
cohort of patients, to stratify individuals into subgroups on which outcomes and treatments
may be based. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have
evolved as the most common techniques in metabolomics studies. Usually, MS approaches
are combined with modern separation techniques, such as liquid chromatography (LC), gas
chromatography (GC), or capillary electrophoresis (CE), depending on the physico-chemical
properties of the investigated molecules. Each of these techniques brings its own advantages
and limitations, which should be considered based on the analyzed samples and compounds
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of interest. NMR spectroscopy is a quantitative and non-destructive technique and does not
require extra steps for sample preparation, such as separation or derivatization. Another
strength of this technique is the high reproducibility; however, although the sensitivity of
NMR spectroscopy has increased enormously, this remains a weak point for NMR compared
with MS. MS-based metabolomics provides an excellent approach that can offer a combined
sensitivity and selectivity platform for metabolomics research [66,67]. Compared with
NMR spectroscopy, MS is superior in allowing analysis of secondary metabolites, which are
present in samples in very low concentrations, such as picomole or femtomole.

Moreover, for increasing the metabolite identifications, different MS approaches, such as
different ionization techniques and mass analyzer technology, can be employed. To date, two
different metabolomic approaches are commonly carried out, namely targeted and untargeted
metabolomics. Targeted metabolomics is focused on the quantification and identification
of selected metabolites, such as those involved in a particular metabolic pathway or as the
direct product of administered drugs or food intake. In targeted analysis, sample preparation
plays an important role since it can reduce the ion suppression due to high abundance and
interfering compounds present in complex biological sample. The MS-based metabolomics
approach is the method of choice for targeted analysis compared to the NMR-based approach.
Instead, untargeted approaches provide the most appropriate route to detect unexpected
changes in metabolite concentrations, maximizing the number of identified metabolites. In
fact, in untargeted analysis, it is possible to detect hundreds to thousands of metabolites.
Moreover, no laborious sample preparation is required compared to targeted analysis.

Untargeted approaches are usually employed when observational studies are per-
formed, with the purpose of determining still unraveled possible biomarkers. These studies
are generally performed on relatively small, but statistically significative, sets of samples. By
limiting the manipulation of the samples, the broadest variety of compounds is considered.
Due to the extreme complexity of biological samples, however, several minor compounds
are consistently masked by high-abundance species. In a recent paper by Cerrato et al., an
untargeted metabolomics study of zwitterionic and positively charged compound was set up
thanks to a prior sample pretreatment step [68]. A cornerstone of any metabolomics study is
the acquisition of high-quality data. This involves careful planning of experiments, analytical
measurements, data processing, and statistical/chemometric analysis. Chemometrics is
fundamental for obtaining reliable results after NMR and MS analyses, which provide a
large amount of data. Statistical modelling, such as univariate statistical testing, multivariate
regression methods (i.e., principal components analysis, partial least squares, or orthogonal
projections to latent structures), cluster analysis, machine learning techniques, and non-linear
methods are commonly employed for classification purposes, and selection of under—or
over—expressed compounds associated with two different sets of samples [69]. Unsuper-
vised approaches, e.g., principal component analysis, are employed for data overview for
revealing outliers, groups, and trends in the groups. Conversely, supervised approaches,
e.g., partial least square discriminant analysis and orthogonal projections to latent structures,
are employed for building models and highlight the putative biomarkers [69]. Whenever
supervised approaches are employed, particular attention on model validation must be paid
to make sure that the model is not overfitted [70]. In a recent paper by Amante et al. [71],
untargeted mass spectrometric data were processed by partial least square discriminant
analysis in repeated double-cross validation. Untargeted approaches, therefore, counterbal-
ance the use of small sets of samples with the need for high-performance instrumentation,
multiple expertise, extensive database, and manual interpretation of the spectra. Conversely,
targeted approaches are performed on generally larger patient cohorts, with a particular
attention to compounds that are suspected to be linked to PC. A previous large-scale tar-
geted study of 188 selected metabolites was performed on 777 patients, highlighting that
lysophosphatidylcholines were associated with overall risk of PC [72].

PC is a disease of great interest from a metabolomics perspective for prediction,
diagnosis, progression, and prognosis. A number of studies focused on the characterization
of the specific PC metabolic phenotype using different experimental approaches have been
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recently reported (Table 3). Moreover, metabolomics approaches have been employed for
determining biomarkers of PC recurrence [73]. In particular, choline phosphate has been
identified as a major indicator of PC recurrence in a work by Maxeiner et al. [74]. Similarly,
thioamino acid derivatives, namely cysteine, homocysteine, and cystathionine, were found
to provide an increased ability in detecting recurrence over the sole clinical indices [75].

Table 3. Metabolomics studies focused on the analysis of bio-fluids to identify clinically relevant prostate cancer biomarkers.

Source Experimental Approach Sample Cohort Main Findings Ref

Tissue

HR-MAS combined with
multivariate analysis (PLS,

PLS–DA) and absolute
quantification (LCModel)

no. pts = 48
Low levels of spermine and citrate

are correlated with
PC aggressiveness.

[76]

Prostatic fluid 1H NMR spectroscopy coupled
to multiple regression analysis no. pts = 38 Significance differences between

citrate and spermine ratio in PC. [77]

Serum 1H NMR spectroscopy coupled
to multivariate analysis no. pts = 210

Glycine, sarcosine, alanine,
creatine, xanthine, and

hypoxanthine were able to
determine abnormal prostate

(BPH + PC).

[78]

Tissue, urine, and plasma UHPLC-MS and GC–MS no. pts = 110

Sarcosine and N-methyl derivative
of glycine were highly elevated

during PC progression
to metastasis.

[79]

Tissue 1H HR-MAS spectroscopy no. pts = 20

High choline and phosphocholine
levels, along with an increase in

the glycolytic products lactate and
alanine in PC.

[80]

Urine UHPLC-MS/MS coupled to
ROC curve analysis no. pts = 148

Kynurenic acid was found a
promising biomarker for PC

detection. Sarcosine was not found
as significant biomarker for the

diagnosis of PC.

[81]

Serum and urine

LC–ESI–MS/MS technique and
the aTRAQ reagent couple to

ROC and multivariate
(PLS–DA) analyses

no. pts = 89 Ethanolamine, arginine
markers for PC. [82]

Urine ID GC/MS couple to PCA and
ROC analyses no. pts = 48

Sarcosine has no statistical
difference between the PC group

and in the non-PC group.
Decreased urinary levels of

glycine, threonine, and alanine
was observed in PC group.

[83]

Urine

HPLC–TOF/MS in positive and
negative polarity as well as

GC–QqQ/MS couple to PCA
and PLS–DA analyses

no. pts = 64

Altered levels of urinary
metabolites involved in such

biochemical pathways like AA,
purine and glucose metabolism as
well as urea and TCA cycle may be

considered as potential
markers of PC.

[84]

Serum LC–MS and GC–MS no. pts = 400

PC risk was correlated with the
levels of α-ketoglutarate,
thyroxine, TMAO, and
erucoyl-sphingomyelin;

metabolites involved in the
metabolism of nucleotides, steroid

hormones, and tobacco were
associated with non-aggressive PC.

[85]

Abbreviations list: Ref = reference; no. pts = number of patients; PC = prostate cancer; pts = patients; HR-MAS = high resolution magic
angle spinning MRS; UHPLC-MS = high throughput liquid mass spectrometry; GC–MS = gas chromatography-based mass spectrometry;
NMR = nuclear magnetic resonance; ROC = receiving operating characteristics; PLS–DA = partial least squares–discriminant analysis;
PCA = principal component analysis; ID GC/MS = isotope dilution gas chromatography/mass spectrometry; HPLC–TOF/M = high
performance liquid chromatography coupled with time of flight mass spectrometry; GC–QqQ/MS = gas chromatography coupled with
triple quadruple mass spectrometry; BPH = benign prostate hypertrophy; RP = radical prostatectomy; PSA = prostate-specific antigen;
US = ultra-sound; TMAO = trimethylamine oxide; TCA = tricarboxylic acid.
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4. Can Exosomes Analysis Improve PC Biomarkers Performance?

Exosomes (Exos) are a broad and heterogeneous group of small membrane-limited
extracellular vesicles (EVs) (40–180 nm in diameter) that are released from almost all mam-
malian cells, in both normal and pathological processes, and are thus virtually detected in all
bio-fluids, including plasma and urine [86–89]. Exos are generated from the membrane in-
vagination of endosomes and are secreted in the microenvironment after multivesicular body
(MVB) fusion with the plasma membrane [86,87,90]. For this reason, Exos show specific
markers obtained by budding from the endosome membranes, such as tetraspanins (CD63,
CD9, and CD81), heat shock proteins (HSP70), and compounds from the Rab family, Tsg101
and Alix [86–88,91,92], and also other markers obtained during the process of fusion with
the plasma membrane [86,87]. Moreover, Exos show a particular lipid bilayer membrane
and they contain nucleic acids (i.e., DNAs, mRNAs, and microRNAs (miRNAs)) [86,87].
Cells from several organ systems (e.g., hematopoietic, gastrointestinal, nervous), as well
as cancerous cells, can secrete vesicles extracellularly [91,93]. A growing body of evidence
has highlighted the role of Exos as mediators of cell-to-cell communications [86–88,94–96],
as well as in modulating microenvironments. Because it has been demonstrated that Exos
act in the pathophysiology of different human pathologies—including cancer—they have
become a promising source of disease biomarkers [86,87,97,98].

To date, nanoparticle tracking analysis (NTA), immune captured based technologies,
and nanoscale flow cytometry (NFC) represent new technologies to analyze EVs, which could
allow valid information—both quantitative and qualitative—for clinical application [9,99].

Different neoplasms have shown some common features, such as hypoxic conditions,
low nutrient supply, and extracellular acidosis [100–102]. Strikingly, it has been demon-
strated that, independent of the tumor histology and type, Exos are secreted in larger
quantities, as well as with a smaller size, when cultured in vitro under acidic pH (6.5)
compared to a physiological pH (7.4) [89]. This phenomenon is comparable to the increased
plasmatic Exo levels detected in PC patients when compared to inflammatory conditions
of BPH patients [99]. Given this evidence, it is possible that tumor microenvironmental
acidity is responsible for the increased Exo release in cancer conditions.

In both preclinical studies and pilot clinical trials on PC, Exo, under acidic conditions
express ions transporters, such as Carbonic Anhydrase IX (CA-IX), which on Exo exerts a
full enzymatic function [103]. Increased CA-IX expression has been detected in Exo from
plasma of PC patients [104], suggesting that the quantification of its exosomal expression
and activity may be used as a potential cancer biomarker.

The microenvironmental conditions of hypoxia and acidity may be responsible for the
increased Exo release by cancer cells as well as of the increased expression of other tumor
markers, including PSA [99,103].

The behavior shown by Exo under acidic pH evaluated in in vitro studies has been
recently confirmed in clinical trials analyzing plasma of tumor patients with different
methodologies, regardless from the tumor histotype [89,97,99]. Interestingly, a positive
association between the tumor burden and the levels of plasmatic Exo has been found in
pre-clinical in vivo experiments. This evidence was further confirmed by clinical trials
demonstrating a dramatic decline of the plasmatic Exo levels after surgical removal of the
primary tumor [105]. Overall, these data highlight the potential role of circulating Exo levels
in monitoring cancer patients after surgical therapies and after/during medical treatments.

Plasmatic Exo can be characterized and quantified by an immunocapture-based ELISA
(IC-ELISA) test [106], which has been recently modified and compared with other emerging
technologies, such as NTA and NFC [99]. The association of these three techniques showed
that acidic conditions stimulate Exo release from tumor cells [89,99]. In particular, using
IC-ELISA and NFC technologies, it has been demonstrated that human PC cells secrete
increased quantities of Exos expressing PSA [99]. More recently, in a prospective clinical
trial comparing PC patients with both BPH and healthy controls [9], levels of Exos express-
ing PSA were significantly higher in plasma of PC patients, showing a significantly higher
sensitivity and specificity for Exo PSA, when compared to the standard serum PSA in terms
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of initial diagnosis of PC [9]. In the same study, using either IC-ELISA or NFC analysis, the
exosome-related measures were significantly correlated, while serum PSA and exosome
PSA showed independent values [9]. Using together these two methods, sensitivity and
specificity for Exo PSA in distinguishing PC from BPH were 96% and 100%, respectively,
while sensitivity and specificity for IC-ELISA alone were 98% and 80%, respectively [9].
This trial was the first to demonstrate that determination of PSA inside plasmatic Exos is
able to better distinguish two co-existing conditions, such as PC and BPH.

With regards to the different technologies currently available to detect plasmatic Exos
in humans, several factors have made IC-ELISA a promising tool, including the following:
(I) it is non-invasive; (II) it is rapid, specific, and quantitative—thus easily extendable to
other conditions; (III) it requires a small quantity of sample and it is reproducible—allowing
multiple readouts; (IV) it can be useful in several steps—from diagnosis to follow-up; and
lastly (V), it is affordable—with reasonable costs in laboratories worldwide. Moreover,
IC-ELISA analysis allows for multiple markers to be explored within the same sample
and thus to quantify the expression on Exos of both known and potentially novel tumor
biomarkers in the same patient.

To date, although a series of potential new PC biomarkers—including both proteins
and microRNAs—have been explored in some pilot clinical trials, data are still very prelim-
inary and non-conclusive [9,99,104,107–112] (Table 4). The implementation of IC-ELISA
technology in the detection of Exo-associated mRNA may improve the quantification of
plasma RNAs of tumor origin in human bio-fluids, providing more sensitive and specific
analysis than quantitative real-time PCR and microarray analyses. Moreover, Exo can be
enriched in mRNAs and miRNAs, which are hardly detectable in patients’ tissue, in which
a high number of molecules may cover their signal.

Table 4. Summary of the clinical data obtained in prostate cancer patients using exosomes as a source of biomarkers.

Exosomal Biomarkers Source Isolation Method Potential Use Ref

PSA Plasma UC Screening/Early Diagnosis [9,99]

CA IX Plasma UC Diagnosis [104]

Survivin Plasma UC Early Diagnosis [107]

Exosomes levels Plasma UC Diagnosis/Prognosis/Disease surveillance [108]

PTEN Plasma UC Diagnosis [109]

miR-141, miR-375 Serum FCE Diagnosis/Stage Determination [110]

miR-1290, miR-375 Plasma PP Prognosis [111]

miR-141 Serum PP Diagnosis [112]

Abbreviations list: Ref = reference; PSA = prostate-specific antigen; CA = carbonic anhydrase; PTEN = phosphatase and tensin homolog;
FCE = filtration-based capture of exosomes; PP = polymeric precipitation; UC = ultracentrifugation; miR = microRNAs.

In addition to the promising results, further research is still needed in order to validate
the implementation in clinical practice of either plasmatic- or other bio-fluid-derived Exos.
That would potentially allow considerable advantages for both patients and clinicians,
such as avoiding or limiting unnecessary invasive procedures, and hopefully significantly
reducing the public health costs.

5. Conclusions

The biomarker field in PC has exploded in recent years. Moreover, the available
set of PC biomarkers is constantly growing (numerous novel tests, different biomaterial
sources, improved analytical measurements, and statistical processing), yet only a few of
them have been approved by regulatory authorities. Although the current data on PC
biomarkers show great potential in aiding decision making and improved patients care,
further investigation is warranted. For an optimal implementation of these tools in clinical
practice, trials should be specifically designed to answer key clinical questions, and to
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explore whether a biomarker can actually improve PC management. Finally, combining
mpMRI with biomarkers would be of particular value; yet the interplay of these tools is
still uncertain, as the optimal sequence and timing remains to be determined.
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Abbreviations

PC prostate cancer
PSA prostate-specific antigen
QoL quality of life
DRE digital rectal examination
BPH benign prostatic hyperplasia
GS Gleason score
csPC clinically significant PC
PHI Prostate Health Index
4K four-kallikrein
PCA3 Prostate Cancer Antigen 3
AS active surveillance
FDA Food and Drug Administration
CLIA Clinical Laboratory Improvement Amendments
mRNA messenger RNAs
tPSA total PSA
fPSA free PSA
AUC area under the curve
MiPS Mi prostate score
mpMRI multiparametric magnetic resonance imaging of the prostate
MS mass spectrometry
NMR nuclear magnetic resonance
LC liquid chromatography
GC gas chromatography
CE capillary electrophoresis
HR-MAS high resolution magic angle spinning MRS
UHPLC-MS high throughput liquid mass spectrometry
GC–MS gas chromatography-based mass spectrometry
ROC receiving operating characteristics
PLS–DA partial least squares—discriminant analysis
PCA principal component analysis
ID GC/MS isotope dilution gas chromatography/mass spectrometry
HPLC–TOF/M high performance liquid chromatography coupled with time of

flight mass spectrometry
GC–QqQ/MS gas chromatography coupled with triple quadruple mass spectrometry
RP radical prostatectomy
US ultra-sound
TMAO trimethylamine oxide
TCA tricarboxylic acid
Exo exosomes
EVs extracellular vesicles
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MVBs multivesicular bodies
miRNAs microRNAs
NTA nanoparticle tracking analysis
NFC nanoscale flow cytometry
CA-IX carbonic anhydrase IX
IC-ELISA immunocapture-based ELISA
PTEN phosphatase and tensin homolog
FCE filtration-based capture of exosomes
PP polymeric precipitation
UC ultracentrifugation
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