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ABSTRACT 

Non-Coding RNAs Regulate Innate Immune Signaling 
Haley Lynne Halasz 

 
As our understanding of the human genome has progressed, so has our 

interest in a class of molecules that challenge the central dogma of biology: DNA 

is transcribed into mRNA, mRNA gets translated into protein. These molecules 

have become known as “Non-coding RNAs” because they carry out cellular 

functions as RNAs without coding for proteins. One of the many compelling things 

about non-coding RNAs, is that their expression is highly context and tissue 

specific. The work presented here, focusses on a specific class of non-coding 

RNAs, long non-coding RNAs (lncRNAs), and how they function in the context of 

innate immunity and inflammation. Chapter 1 reviews the importance and clinical 

implications of lncRNAs in inflammatory diseases. Chapter 2 describes a high-

throughput CRISPRi screening approach to identifying lncRNAs that regulate a 

prominent inflammatory signaling pathway, the NFkB pathway, in human 

monocytes. Chapter 2 also focusses on uncovering the mechanism of one such 

lncRNA, LOUP (lncRNA originating from upstream regulatory element of SPI1 

[also known as PU.1]). 

 



 

 x 

Our current understanding of lncRNAs that regulate inflammatory signaling 

in human monocytes is quite limited. Monocytes are precursors to macrophages, 

and both are critical effector cells of the innate immune system. Monocytes and 

macrophages are some of the first cells to respond to pathogens and are 

characterized by their ability to phagocytose. As presented in Chapter 2, we have 

used a human monocytic cell line (THP1 cells) as a model system to conduct a 

reporter based CRISPRi screen to identify lncRNAs that regulate NFkB signaling. 

NFkB is a transcription factor that activates transcription of hundreds of 

inflammatory genes. Dysregulation of this pathway underlies many diseased states. 

Our screen successfully identified numerous lncRNAs that regulate NFkB 

positively or negatively. One of the topmost significant candidates was a previously 

described lncRNA, LOUP that neighbors the myeloid lineage determining factor 

SPI1. In addition to driving myeloid differentiation, SPI1 is a transcription factor 

known to also control activation of inflammatory genes. Interestingly, we found 

that when we knockdown LOUP with CRISPRi, the TLR4/NFkB-driven 

inflammatory response is broadly upregulated, designating LOUP a negative 

regulator of NFkB. Previously, it’s been found that the lncRNA LOUP transcript 

directly mediates interactions between an upstream response element (URE) and 

SPI1’s promoter, hence regulating transcription of SPI1. Consistent with this 

previous work, we also found that expression of LOUP enhances SPI1 expression, 

but that this does not account for LOUP’s inflammatory regulation. Remarkably, 

knowledge of the complexity of the human genome continues to develop, and it's 
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now appreciated that some designated “non-coding” RNAs produce very short 

functional peptides. Upon further investigation of LOUP’s coding potential, we 

discovered that it produces a small peptide responsible for LOUP’s ability to 

negatively regulate NFkB.  

The studies described in Chapter 2, reveal new insights for lncRNAs and 

short ORF-encoded peptides (SEPs) in the context of inflammation. Relatively 

little is known about the mechanisms underlying how lncRNAs function in this 

context, let alone SEPs. While some lncRNAs have been identified as regulators 

of inflammation, the proportion of these genes that have been ascribed functions 

is still quite small, and the ability of some of these genes to produce short peptides 

has only been recognized somewhat recently. To our knowledge, this is the first 

successful CRIPSRi lncRNA screen performed in monocytes, making this not 

only a great technological advancement, but an invaluable resource. Using 

reliable high-throughput methods to screen for functional lncRNAs genome-wide 

is a highly efficient way to identify and further study the mechanisms of this 

under-examined class of genes.  
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CHAPTER 1- Challenges and Future Directions of LncRNAs and 

Inflammation 

 

The text of Chapter 1 of this thesis includes a reprints of the following 

previously published material: 

Halasz, H., Carpenter, S. (2022). Challenges and Future Directions for LncRNAs 

and Inflammation. In: Carpenter, S. (eds) Long Noncoding RNA. Advances in 

Experimental Medicine and Biology, vol 1363. Springer, Cham. 

https://doi.org/10.1007/978-3-030-92034-0_10   

 The co-author listed in this publication, Susan Carpenter, directed and 
supervised the research which forms the basis for the thesis. 
 
  

https://doi.org/10.1007/978-3-030-92034-0_10
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1.1 Abstract  

Until somewhat recently, the complexity of the human genome has not been 

well understood. With advancements in sequencing technology, we now know that 

nearly the whole genome is transcribed but a very small portion of those transcripts 

code for proteins. As the research of non-coding genes and transcripts has evolved 

rapidly in the last decade, it has become clear that many of them serve important 

biological functions in many previously well-studied cell processes. As the 

previous chapters in this book have reviewed, the field of noncoding RNA research 

has provided new insights into specific disease states, especially those driven by 

inflammation. Understanding the basic mechanisms of non-coding RNAs in the 

context of inflammation has led to prospective therapeutics that may overcome 

many of the challenges faced in diagnosing and treating inflammatory diseases. In 

this final chapter we discuss the current state of the field of non-coding RNA 

therapeutics and how it may evolve to overcome the short cummings we currently 

face with diagnosing and treating inflammatory diseases. 

1.2 Non-coding RNAs and Inflammation 

 
A well-adapted immune response is defined by acute activation of immune 

cells that results in transient release of inflammatory mediators. This rapid response 

aids in ridding the body of pathogens and repairing tissue damage. This process 

must be tightly regulated, and the acute response must be adequately resolved once 

the perceived threat is no longer present. Prolonged activation of inflammatory 
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signaling cascades can lead to chronic expression and secretion of inflammatory 

mediators. Even at low levels, chronically circulating inflammatory mediators can 

instigate mal-adaptions in a variety of tissues throughout the body (Barnig et al., 

2019). It is now well understood and accepted that unresolved inflammation drives 

cardiovascular, lung, neurodegenerative, and metabolic diseases, including cancer 

and stroke (Barnig et al., 2019; Franceschi et al., 2018; Lin et al., 2018; Zuo et al., 

2019). All of which the CDC has defined as leading causes of death 

(https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm). 

 

The invasion of a pathogen leads to infiltration and activation of innate 

immune cells such as macrophages and lymphocytes. Pattern Recognition 

Receptors (PRRs) present in the membranes of these cells specifically recognize 

invading pathogens. Engagement of these receptors leads to transcriptional 

activation and translation of many pro-inflammatory chemokines and cytokines. In 

a well-functioning immune response these inflammatory signals get resolved once 

the pathogen has been eliminated. But other factors at the tissue-environmental 

interface can influence immune function and cause constitutive activation of 

inflammatory signals in the absence of a pathogen (Renz et al., 2011). Constantly 

elevated levels of cytokines can disrupt the function of many crucial cellular 

processes, such as mitochondrial function, protein folding, DNA repair, cell 

differentiation and cell regeneration (Barnig et al., 2019; Franceschi et al., 2018; 

Renz et al., 2011). 

https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
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While many mechanisms by which chronic inflammation drives diseases 

have been defined, there is still a great need to better control such aberrant 

processes. While aging, genetics, and environmental pressures seem to be the main 

factors that determine immune function, developing a more complete 

understanding of the complex signaling networks that lead to chronic inflammation 

is central to preventing and treating inflammatory diseases. 

As many of the chapters in this book have demonstrated, we can say with 

growing certainty that non-coding genes play an essential role in inflammatory 

disease pathology. While the non-coding RNA field is still somewhat in its infancy, 

advancements in screening technologies and transcriptomics have helped us 

identify hundreds of non-coding genes involved in various cell types and cell 

processes (Covarrubias et al., 2017; S. J. Liu et al., 2017; Napoli et al., 2020; Xue 

et al., 2017). Recent studies have shown that over 80% of the genome is transcribed 

but less than 3% of those transcripts are coding, revealing newfound complexity of 

the human genome (Salama, 2022). This means that most of the transcriptome is 

non-coding, and despite increasing evidence that many of these transcripts have 

specialized functions, especially in diseased states, only roughly 2% of non-coding 

transcripts have been characterized. Long non-coding RNAs (lncRNAs) account 

for the largest class of non-coding RNA transcripts and are defined as being greater 

than 200 nucleotides in length. These genes have now been found to participate in 
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diverse regulatory functions ranging from signaling molecules to transcriptional 

modifiers. 

The previous chapters in this book have described in detail the mechanisms 

of many well-studied lncRNAs. These lncRNAs have been found to play crucial 

roles in mediating inflammatory processes underlying autoimmune diseases, 

cardiovascular diseases, and cancer (Brodnicki, 2022; Hennessy, 2022; Reggiardo 

et al., 2022; Wijesinghe et al., 2022). As we continue to better understand the basic 

mechanisms of action by which lncRNAs fine-tune many complex inflammatory 

signaling pathways and develop better biochemical assays for studying lncRNA 

structure and function (Sanbonmatsu, 2022), we anticipate that lncRNAs will 

provide novel and desirable therapeutic targets (Pierce et al., 2022; Reggiardo et 

al., 2022). Collectively the field of non-coding RNA research may offer promising 

new resolutions to many of the challenges we face in diagnosing and treating 

chronic inflammatory conditions. 

1.1 Current State of Inflammatory Disease Diagnostics and Treatment  

 

One particular challenge in diagnosing inflammatory diseases has been the 

detection of biomarkers that can truly distinguish a diseased state in an individual 

(Huang et al., 2017). Standard diagnostic blood tests can somewhat reliably assess 

systemic inflammation through circulating levels of interleukins IL-6, IL-8, IL-10, 

tumor necrosis factor-α (TNFα), C-reactive protein, and fibrinogen, etc.… (Pearson 
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et al., 2003) and while these markers are useful for flagging general inflammation 

or risk for a particular disease, they lack the specificity needed to make a clear 

diagnosis. Further diagnostic methods that may accompany blood tests involve 

rather invasive practices such as imaging, endoscopy, and tissue biopsies, but are 

currently necessary to confirm specific disease states. Many inflammatory 

pathologies require multiple diagnostic approaches and the time to diagnosis, let 

alone treatment, can be quite long. This can pose a challenge for patients already 

experiencing debilitating or severe symptoms and may make certain treatment 

options less effective once a diagnosis is determined. 

 

Drug development and treatment of diseases driven by inflammation has 

been somewhat underwhelming. Current pharmacological treatment strategies for 

inflammatory diseases still rely mainly on non-steroidal anti-inflammatory drugs 

(NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids 

and biologic agents (Pearson et al., 2003). While each of these classes of drugs work 

through slightly different mechanisms, they all work by inhibiting immune 

signaling globally and ubiquitously. Fortunately, these drugs have been effective at 

relieving symptoms in patients, but inhibition and suppression of these important 

signaling cascades in a non-specific manner can be very detrimental to immune 

homeostasis in the long term, and these drugs fail to address the underlying biology 

driving disease (Her and Kavanaugh, 2016; Sanbonmatsu, 2022). This again 

highlights the need to better understand the diverse biological roles of many of these 
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targets and the various aspects of physiology they control, to develop more effective 

treatments with much better specificity and precision. With the mounting evidence 

that lncRNAs can fine-tune and very tightly control immune related pathways in a 

very tissue specific manner, these molecules may act as much more promising 

therapeutic targets (Pierce et al., 2022). 

 

With the advancement of the complete human genome sequence also came 

the ability to better study gene variants associated with disease. Genome-wide 

association studies (GWAS) have suggested the relationship between specific 

single nucleotide polymorphisms (SNPs) and specific diseases. These studies have 

served as a valuable guide to better understand the biology of many diseases, with 

the hope of identifying more specific drug targets (Dugger et al., 2018). Although, 

GWAS studies have also revealed the fact that most SNPs associated with disease 

are present in non-coding regions, therefore the biology of many of these SNPs are 

still unknown (Castellanos-Rubio and Ghosh, 2022). Hence, better understanding 

the actions of non-coding variants could reveal drug targets better tailored to 

specific diseases. 

 

1.4 Clinical Potential for Non-coding RNAs 

 

Developments in genomics and transcriptomics, have led to a much clearer 

understanding of the individual variation or stratification that exists within a certain 
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diseased population. A “one-size-fits-all” approach to treating disease is simply not 

optimal. In 2015 the U.S. government launched the Precision Medicine Initiative 

to fund more research and implement a clinical revolution that emphasizes 

individual, personalized healthcare. This includes a push to start employing more 

advanced sequencing and biomarker detection technologies that yield in-depth 

information about healthy and diseased individuals (Dugger et al., 2018). A more 

personalized approach to medicine means considering a person’s genetics, 

microbiome, metabolism, lifestyle, and health history to determine the biological 

cause of the disease and tailor treatments to address that cause. The focus on 

precision medicine has dawned a new approach to drug development and 

diagnostics, and a push to detect subclinical disease before the onset of overt or 

debilitating symptoms. 

 

RNA-based diagnostics and therapeutics have begun to show great promise 

in precision medicine. As mentioned earlier, such a small portion of the genome is 

translated into proteins and a majority of proteins have been deemed undruggable 

(Damase et al., 2021). An eruption of evidence for functional non-coding 

transcripts has really expanded the potential for tailored healthcare. The highly 

tissue and context specific expression of non-coding transcripts and their 

deregulation in diseased states makes them very attractive drug targets. Growing 

evidence suggests that many non-coding RNAs are secreted from cells and are 

protected in extracellular vesicles (Everaert et al., 2019). Therefore the tissue-
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specific expression profiles of ncRNAs are often reflected in bodily fluids, making 

them very attractive as diagnostic markers as well (Bolha et al., 2017; Reggiardo et 

al., 2022; Yuan et al., 2020). Having this type of diagnostic power would not only 

eliminate the need for invasive tissue biopsies but could also help detect diseases 

in their infancy, leading to much better management and prevention. 

 

To date, targeting ncRNAs therapeutically has relied on various RNA 

interference (RNAi) methods. These therapeutic strategies include the use of anti-

sense oligos (ASOs), aptamers, small interfering RNAs (siRNAs), and micro-

RNAs (miRNAs). These strategies work to modulate transcription or post-

transcriptional RNA processing of their targets (Pierce et al., 2022). The biggest 

challenges with these methods have been related to RNA instability, difficult 

delivery across cell membranes, and the immunogenicity or cell toxicity of 

exogenous nucleic acids. Advancements in nanotechnology have facilitated 

stabilization, more efficient delivery, and better safety profile of therapeutic 

nucleotides, mainly overcoming such challenges (Damase et al., 2021). 

While RNAi therapeutics have had success modulating their target genes, the only 

RNAi drugs that have been FDA approved so far, target transcripts of coding genes. 

For instance, Alnylam Pharmaceuticals has developed FDA approved siRNA 

therapies for treating rare genetic diseases that include hereditary amyloidosis 

(patisiran), acute hepatic porphyria (givosiran), and primary hyperoxaluria type 1 

(lumasiran). Ionis Pharmaceuticals and Serepta Therapeutics have successfully 
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developed ASOs to treat spinal muscular atrphy (nusinersen), hereditary 

amyloidosis (inotersen), and Duchenne muscular distrophy (eteplirsen) 

respectively. Currently Haya Therapeutics is dedicated to targeting lncRNAs that 

drive fibrotic disease and have developed an ASO that successfully targets the 

lncRNA Wisper in the treatment of cardiac fibrosis, which is now undergoing 

clinical trial (Micheletti et al., 2017). 

 

Perhaps the most promising aspect of the translational potential of lncRNAs 

is the fact that they can be detected in circulation, and their expression profile often 

corresponds with incipient disease. With advancements in RNA sequencing 

technology, the ability to detect circulating RNA in blood and other bodily fluids 

may offer a truly non-invasive way to not only diagnose presence of disease with 

high tissue specificity, but also prognose the potential for developing disease 

(Pierce et al., 2022; Reggiardo et al., 2022). Companies such as Freenome, Grail, 

and Guardant Health have now developed liquid biopsy tests ready for the clinic 

that can detect the earliest stages of cancer through circulating tumor DNA (Roy 

and Tiirikainen, 2020). This technology relies on DNA that gets released into the 

blood from cancer cell death (tumor shedding), but there is now evidence that live 

cancer cells secrete RNA through extracellular vesicles (Larson et al., 2021). In this 

sense, circulating RNA may offer a more reliable and even more specific 

biomarkers of cancer and other inflammatory conditions. 
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1.5 Future Insights for Non-coding RNA Therapeutics and Inflammation 

 

While lncRNA research is advancing rapidly, our understanding of this 

class of molecules is still somewhat limited. Given that such a large portion of the 

genome produces non-coding transcripts, we must continue to rely on high 

throughput screening methods that can efficiently identify functional lncRNAs in 

specific cell types and under certain disease conditions. As we continue to identify 

functional lncRNAs in the context of inflammation, we will continue to gain a more 

complete understanding of the basic molecular mechanisms by which lncRNAs 

modulate inflammatory processes. Defining these mechanisms has begun to 

highlight the translational potential for lncRNAs yet getting lncRNA therapeutics 

into clinical trials has been somewhat challenging. This is primarily because non-

coding RNAs tend to be poorly conserved, making the jump from preclinical 

studies in animals into human clinical trials challenging. But with the implement of 

high throughput methods across species, we have the power to quickly identify 

molecules that may lack sequence conservation but maintain functional 

conservation. Hopefully this will help focus our basic research efforts on lncRNAs 

with the utmost clinical potential. Additionally, rapidly evolving transcriptomic 

technologies have facilitated the possibility to detect circulating lncRNAs. The 

hope is that these lncRNAs will provide highly specific diagnostic markers for a 

range of conditions. As mentioned above, being able to detect subtle, chronic levels 

of inflammation or autoimmunity at their onset in an individual, has the power to 
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revolutionize how we manage and prevent inflammatory conditions. So while the 

lncRNA field has gained momentum, we have really only begun to shine a light on 

this so-called RNA “dark matter”, but what we have uncovered so far offers great 

promise and we look forward to seeing more progress made in both basic and 

translational lncRNA research. 
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CHAPTER 2- A Reporter-based CRISPRi Screen Reveals lncRNA LOUP 

that Regulates NFkB by Producing a Small Functional Peptide 
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2.1 Abstract 

 

Long non-coding RNAs (lncRNAs) account for the largest portion of RNA 

from the transcriptome and yet most of their functions remain unknown. Here we 

performed a high throughput CRISPRi reporter-based screen to identify lncRNAs 

that regulate TLR4-NFkB signaling in human monocytes. We successfully 

identified numerous non-coding and protein-coding genes that can positively or 

negatively regulate this pathway. To understand the functional roles of lncRNAs in 

TLR4/NFkB signaling, we chose to further study one top candidate from our 

screen, LOUP (lncRNA originating from upstream regulatory element of SPI1 [also 

known as PU.1])(Trinh et al., 2021). It’s been previously shown by Trinh et al. that 

the LOUP transcript directly mediates interactions between a nearby enhancer 

element of SPI1 and the SPI1 promoter. SPI1 is a transcription factor that drives 

myeloid cell fate, is highly expressed in monocytes, and regulates transcription of 

inflammatory genes.  Here we’ve demonstrated that while LOUP expression can 

enhance SPI1 expression in monocytes, knockdown of LOUP also leads to a broad 

upregulation of NFkB targeted genes, both at baseline and upon TLR4-NFkB 

activation, and that this mechanism is independent of LOUP’s regulatory effects on 

SPI1. We found that LOUP harbors three small open reading frames (sORFs) 

capable of being translated, and that one sORF in particular, is responsible for 

LOUP’s ability to negatively regulate TLR4/NFkB signaling. This work 
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emphasizes the value of high-throughput screening to rapidly identify functional 

lncRNAs in the innate immune system.  

 
2.2 Introduction 

 

According to the latest Gencode release (version 43), the human genome 

encodes 19,928 long noncoding RNAs (lncRNAs) making it the largest group of 

genes produced from the genome. Due to their cell type specificity this number 

continues to increase as more sequencing is performed (Cabili et al., 2011) 

LncRNAs are transcripts over 200 nucleotides that are often spliced and 

polyadenylated with low protein coding potential. Over the last decade a number 

of lncRNAs have been functionally characterized and shown to play diverse roles 

in a variety of biological processes from cell differentiation and cancer, to immunity 

(Bhan et al., 2017; Guttman et al., 2011; Robinson et al., 2020). Yet the functions 

of the vast majority of these transcripts remains unknown. Historically one of the 

largest challenges in studying lncRNAs has been the lack of reliable and specific 

approaches to target these transcripts, especially in a high-throughput manner. 

Because lncRNAs lack open reading frames, these genes are not susceptible to 

frameshift mutations induced by classic CRISPR/Cas9. Recently the adoption of 

the modified CRISPR/Cas9 technology- CRISPR inhibition (CRISPRi), has 

become a powerful tool for interfering with transcription of lncRNAs by inducing 

repressive chromatin marks at the transcription start site, rather than altering the 

DNA with an indel or point mutation making it an attractive approach to discover 
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functional lncRNAs. Advanced computational developments in sgRNA library 

design coupled with targeted transcriptional repression induced by the components 

of CRISPRi, have made it possible to rapidly identify many functional lncRNA loci 

in a single pooled screening experiment (S. J. Liu et al., 2017). 

 

A small number of high throughput screens have been performed to identify 

functional lncRNAs (Haswell et al., 2021; S. J. Liu et al., 2017; Liu et al., 2018; 

Zhu et al., 2016) but very few have been performed in immune cells (Arnan et al., 

2022; Covarrubias et al., 2017). To explore new insights into innate immunity, 

more specifically monocyte and macrophage biology, we’ve conducted a screen in 

human monocytes to identify lncRNAs that regulate inflammation through NFkB 

signaling. Upon recognition of pathogens by TLR receptors, the cytoplasmic NFkB 

heterodimer (p50/p65) is allowed to translocate to the nucleus and activate 

transcription of hundreds of inflammatory response genes (Gilmore, 1999; 

Kaikkonen et al., 2023). Acute activation of NFkB signaling in monocytes is 

imperative to proper resolution of pathogenic invasions, therefore it’s important 

that we gain a more complete molecular understanding of NFkB regulation in this 

context, as dysregulation of this pathway can lead to inflammatory diseases 

(Zinatizadeh, et al., 2021). To screen for regulators of NFkB signaling in 

monocytes, we first generated an NFkB (RelA/p65) reporter in the monocytic cell 

line THP1. We then developed an sgRNA library targeting over 2,000 THP1-

expressed lncRNAs and conducted a pooled CRIPSRi screen in the NFkB-reporter 
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THP1s. With this, we identified numerous non-coding genes that positively or 

negatively regulate NFkB activation.  

 

Some lncRNAs exhibit bimodal functions whereby they can function as an 

RNA in cis or in trans, act as enhancers or function through small encoded proteins 

reviewed in (Malekos and Carpenter, 2022). By definition lncRNAs lack coding 

potential, despite the fact that the majority of these genes contain small open 

reading frames (sORFs) less than 100 amino acids (Ruiz-Orera et al., 2020). With 

advances in sequencing and proteomics, it has come to light that many sORFs 

present throughout the genome are actively translated, and some cytoplasmic 

lncRNAs encode small functional peptides (Harrison, 2002; Ji et al., 2015; Wright 

et al., 2022; Zheng et al., 2023). Interestingly, we’ve identified a lncRNA that 

regulates inflammation in a bimodal fashion. LOUP was previously published to 

function in cis to regulate its neighboring protein SPI1. We confirmed this 

phenotype and identified LOUP as a top hit from our screen as a negative regulator 

of NFkB. Interestingly LOUPs function as a negative regulator of inflammation is 

dependent on its ability to produce a sORF-encoded peptide (SEP). Together this 

work highlights the power of CRISPRi screening to identify functional lncRNAs. 

 
2.3 Results 

 
2.3.1 CRISPRi screen identifies lncRNAs that regulate NFkB 
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To begin to define lncRNAs that regulate NFkB signaling in human 

macrophages, THP1 cells containing five NFkB (p65) binding sites upstream a 

minimal CMV-driven EGFP, as well as deactivated Cas9-KRAB (dCas9-KRAB), 

were transduced with pooled lentivirus (MOI = 0.3) generated from our custom 

sgRNA library containing ~25,000 individual sgRNAs. The sgRNA library was 

designed using the hCRISPRi-v2.1 algorithm (S. J. Liu et al., 2017), with 10 

sgRNAs targeting the transcription start sites of 2,342 lncRNAs annotated in the 

human genome assembly GRCh37 (hg19). LncRNA targets were determined based 

on expression in RNA-seq data from THP1s generated by our lab and previously 

published p65 ChIP-seq data (Kaikkonen et al., 2023).  The same design and 

cloning strategy were used as previously described for the CRiNCL library (S. J. 

Liu et al., 2017).  Cells were stimulated with LPS for 24 hours and then sorted by 

FACS. The top and bottom 20% of GFP+ gated cells were collected, and genomic 

DNA was isolated from each population (GFPhi and GFPlo). This gating strategy 

was determined based on earlier reporter-based sorting screens to sufficiently 

capture non-targeting controls  (Covarrubias et al., 2017; Kampmann et al., 2013; 

She et al., 2023). Since lentiviral sgRNAs integrate into the genome, genomic DNA 

was isolated from each GFPhi and GFPlo and unsorted population. In each resulting 

population sgRNAs were PCR amplified and then sequenced (Fig 2.1A-B). 

MAUDE (de Boer et al., 2020) analysis was performed comparing each GFPhi and 

GFPlo population to the unsorted (Fig 2.1C-D). Genes with combined Z-scores of 

less than -3 were defined as significant positive regulators of NFkB while genes 
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with combined Z-scores above 3 were defined as significant positive regulators. 

Given that our sgRNA library included lncRNA genes regardless of genomic 

location, many of the targets are very near to or overlapping with neighboring 

genes. Heterochromatin induced by the dCas9-KRAB has been shown to reach as 

far as 1kb so we considered this caveat when choosing top candidate lncRNAs to 

further functionally validate  (Gilbert et al., 2014; S. J. Liu et al., 2017). 10 of the 

35 top significant hits are intergenic; defined as having their own promoters at least 

1kb away from promoters of neighboring genes (Table 1). 3 top hits, LRF1, 

UHRF1, and KMT2B, that were previously annotated as non-coding transcripts on 

hg19 have now been established as coding genes with unknown functions (Table 

2.1). The other top hits are annotated either from a bidirectional promoter or 

antisense and overlapping to coding genes. In these cases, it is likely that the dCas9-

KRAB has disrupted transcription of both bidirectional and overlapping transcripts. 

Interestingly, none of the coding genes targeted have been previously identified as 

regulators of NFkB and represent novel coding regulators of the pathway and 

therefore are still of interest (Table 2.1).  
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A.                                    B. 

 

 

C.                                                   D.  

 

Figure 2. 1 

Figure 2.1- CRISPRi screen identifies positive and negative regulators of 
NFkB.   
A. Overview of sgRNA library design. sgRNAs were designed to target the 
transcription start sites of over 2000 Gencode hg19 annotated lncRNAs. 
Transcription start sites were predicted using consortiums of data from FANTOM 
and ENCODE. THP1 lncRNA expression was estimated from THP1 RNAseq data. 
B. Overview of the screen. NFkB-EGFP-CRISPRi-THP1 cells were infected with 
pooled the sgRNA libraries, selected, stimulated, and then sorted based on the top 
and bottom 20% of EGFP fluorescence. sgRNAs from the resulting populations 
were PCR amplified and sequenced. C. MAUDE screen analysis. MAUDE was 
performed on each of 3 screen replicates comparing sqRNA enrichment in the GFP 
low population or the GFP high population to the unsorted population. Z-scores 
across replicates were combined by Stouffer’s method and ranked in order of Z-
score. Z-score cutoffs of -3 and 3 are considered significant as highlighted in light 
green (positive regulators) and dark green (negative regulators). Genes labeled are 
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significant known protein coding regulators of NFkB that acted as positive controls 
in the screen. D. Significant hits. The average of the top 3 best scoring sgRNAs 
for all significant hits across three replicates with standard deviation. 
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Gene lncRNA 
Function 

Type NFkB 
Regulation 

GenomeCRISPR 
THP1 

Nearest 
Neighbor 

Promoter 
Distance 

Neighbor 
Function 

GenomeCRISPR 
THP1 

NEPRO-AS1 Unknown 
 

Antisense Positive No data NEPRO 10bp  
 

Notch signaling 
 

No data 

ENSG00000261659 
 

Unknown 
 

Bidirectional Positive Viability hit WDR24 One 
promoter 
 

Autophagy, TOR 
signaling 
 

Viability hit 

SNHG9 miRNA sponge, 
phase 
separation, Wnt 
signaling, cancer  
 

Intergenic Positive No data RPS2 80bp 
 

Ribosomal protein 
 

Viability hit 

ENSG00000237773 Unknown 
 

Antisense Positive No data AHR 400bp Cytochorme p450 
regulation, aromatic 
hydrocarbon 
sensing 
 

Not a hit 

ENSG00000260750 Unknown 
 

Intergenic Positive No data JPH3 6kb 
 

Junctional ER and 
plasma membrane 
comlex 
 

Not a hit 

GABPB1-AS1 
 

miRNA sponge, 
cancer  
 

Antisense Positive No data GABPB1 50bp 
 

Transcription factor, 
organelle 
biosynthesis 

 

Not a hit 

ENSG00000272914 
 

Unknown 
 

Intergenic Positive No data ZNF438 10kb Zinc finger protein 
 

Not a hit 

LRFN1 N/A Coding Positive N/A N/A N/A Unknown 
 

Not a hit 

ENSG00000264772 Unknown Sense Positive No data EIF4A1 One 
promoter 
 

Translation initiation 
factor 
 

Viability hit 

LNC02528 Unknown Intergenic Positive No data TNFaIP3 60kb Ubiquintation 
enzyme, NFkB 
inhibition 
 

Not a hit 

PXN-AS1 Regulation of 
PXN, cancer  
 

Antisense Positive No data PXN 45kb Actin membrane 
attachment, cell 
adhesion 
 

Not a hit 

ENSG00000272070 Unknown 
 

Intergenic Positive No data PCDHGA1 4kb Subunit of 
protocadherin gene 
cluster gamma 
 

Not a hit 

 UHRF1 
 

N/A Coding Positive N/A N/A N/A  No data 

LINC01352 Cancer Intergenic Positive No data MTARC1 40kb Molybdopterin ion 
cofactor binding, 
cellular detox 

Not a hit 

ENSG00000267811 Unknown Antisense Positive No data TAF6L one 
promoter 
 

Transcription 
inititation by 
RNApolI 

Not a hit 
 

MIR155HG Cancer Intergenic Positive No data MRPL39 30kb Mitochondrial 
ribosomal protein 

Not a hit 
 

ENSG00000225280 Unknown Antisense Positive No data NKX2-4 25bp Transcription 
regulation and cell 
differentiation 

Not a hit 

ENSG00000255856 Unknown Antisense Positive No data BCL7A 2kb  
 

Gene translocation Not a hit 

SPAG5-AS1 SPAG5 
regulation, mTOR 
signaling, 
Autophagy 
 

Antisense Positive No data SPAG5 100bp  
 

Mitotic spindle 
apparatus protein 

Not a hit 

KMT2B N/A Coding Positive 
 

N/A N/A N/A CXXC and PHD 
Zinc finger and SET 
domain protein 
 

Not a hit 

RALY-AS1 Unknown Antisense Positive No data RALY 400bp  
 

hnRNP, pre-mRNA 
splicing 

Not a hit 

WAKMAR2 Enhancer of 
immune genes, 
Inflammation, 
wound healing, 
cancer 
 

Antisense Negative No data TNFaIP3 600bp 
 
 

Ubiquintation 
enzyme, inhibits 
NFkB 

 

Not a hit 

SENCR 
 

miRNA sponge, 
interaction with 
CKAP4, cell 
proliferation and 
migration 
 

Antisense Negative No data FLI1 2kb 
 

Proto-oncogene 
transcription factor 
 

Not a hit 

CASP8AP2 
 

N/A N/A Negative N/A N/A N/A  No data 

STAG2-ASI  Unknown 
 

Antisense Negative No data STAG2 50bp 
 

De novo guanine 
nucleotide 
biosynthesis.  

No data 

ENSG00000272434 Unknown 
 

Bidirectional Negative No data IMPDH2, 
QRICH1 

One 
promoter 
 

De novo guanine 
nucleotide 
biosynthesis,  
unfolded protein 
response, apoptosis, 
and transcription 
 

Not a hit, Not a hit 

ENSG00000271797 Unknown 
 

Antisense Negative Not a hit PGGT1B 80bp Geranyl geranyl 
transferase 
 

Not a hit 

LOUP Regulation of 
SPI1 
 

Intergenic Negative No data SPI1 15kb Transcription factor 
myeloid and B-cell  
development 
 

Viability hit 

ENSG00000225806 Paternally 
expressed, may 
regulate 
imprinting at 
locus 
 

Bidirectional Negative No data GNAS One 
promoter 
 

Complex imprinted 
gene expression 

Not a hit 

EIF2AK3-DT Unknown Antisense Negative No data EIF2AK3 150bp 
 

Tanslation initiation 
factor 

Not a hit 

ENSG00000259891 Unknown 
 

Intergenic Negative  CHRAC1 3kb  Histone fold protein Not a hit 

ENSG00000254973 Unknown Intronic, 
possibly 
Intergenic 
 

Negative No data IQANK 30kb Unknown, predicted 
in actin filament 
capping  

No data 
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Table 2. 1 

Table 2.1- Description of top hits from NFkB screen.   
Here each significant hit gene and its closest protein-coding neighbor are 
described. Data from the Genome CRISPR database was used to note whether the 
targeted lncRNAs or their neighbors have been previously indicated as hits in 
viability screens, if so they have been labelled “viability hit”. Four of the hit genes 
once annotated as lncRNAs have been updated to protein coding genes and 
therefore their neighboring genes were not assessed (LRFN1, UHRF1, KMT2B, 
and CASP8AB2). Distances between targets and their neighbors were measured 
between promoters predicted by the ENCODE Registry of Candidate Cis-
regulatory Elements on the UCSC genome browser. 
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2.3.2 LOUP regulates its neighbor SPI1 

The top hit from our CRISPRi screen is the lncRNA LOUP (lncRNA 

originating from the upstream regulatory element of SPI1). Given the recent 

evidence that LOUP may act as an enhancer for its neighboring gene SPI1 (Trinh 

et al., 2021), and that this is true for other lncRNAs neighboring critical protein 

regulators such as the lncRNA PVT1 with its neighbor MYC, (Cho et al., 2018) 

and lncRNA p21 and its protein neighbor p21 (Groff et al., 2016), we measured 

levels of SPI1 protein in THP 1 upon CRISPRi knockdown of LOUP and over a 

time course of LPS stimulation. (Fig 2.2A-B). In THP1 cells SPI1is present at low 

levels at baseline and is induced following LPS stimulation. While the same non-

targeting control cells were used for each experiment (sgRNA_NT) some 

inconsistencies in the timing of this induction are observed with SPI1 being induced 

highly at 2 or 6 hours following LPS stimulation (Fig 2.2B). Perhaps most 

interesting is the comparison of SPI1 levels between each of the control replicates 

and three different LOUP knockdowns at baseline where SPI1 is downregulated 

when LOUP is knocked down. In the LOUP knockdown lines SPI1’s induction 

peaks after 24 hours of LPS to the levels observed in the control lines after 2 to 6 

hours, indicating that LOUP acts as an enhancer for SPI1 but LOUP alone is not 

essential for SPI1 expression.  ChIP-seq (chromatin immunoprecipitation with 

sequencing), ATAC-seq (assay for transposase-accessible chromatin with 

sequencing) and Hi-C (chromosome conformation capture) data from THP1s also 

provides evidence of LOUP’s enhancer qualities. Regions of open chromatin 



 

 25 

dictated by ATAC-seq and H3K27Ac ChIP-seq reads correspond with both LOUP 

and SPI1 promoters. LOUP and SPI1 occupy the same topologically associated 

domain (TAD) determined by HI-C interactions and CCCTC binding factor 

(CTCF) ChIP-seq (Fig 2.3A). Together this data confirms that LOUP can act in cis 

to enhance expression of its neighboring protein SPI1. 
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A.                                               B. 

       
 

Figure 2. 2 

Figure 2.2- LOUP regulates SPI1 in monocytes.  
A. CRISPRi Knockdown of LOUP in THP1s. Three additional sgRNAs were 
designed to target top lncRNA candidate LOUP. qPCR measurement of LOUP 
across three replicate experiments shows knockdown of LOUP by all three sgRNAs 
(p-values<0.05) vs a non-targeting control sgRNA (NT) before LPS stimulation (0 
hours) and after 2 and 6 hours of LPS stimulation. Values are normalized to HPRT 
and error bars represent standard deviation. B. Western blot analysis of SPI1. 
Non-targeting control (NT) vs. 3 LOUP knockdowns (sgRNAs 1, 2, 3) over a time 
course (hours) of LPS treatment. Samples were collected at baseline (0), 15min 
(.25), 30min (.5), 1 hour (1), 2 hours (2), 6 hours (6) and 24 hours (24). Quantitative 
values indicate densitometry ratios of SPI1:Actin. 
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A. 

 
Figure 2. 3 

Figure 2.3- LOUP acts as an enhancer of SPI1. 
A. HI-C data from THP1s displaying predicted TAD for LOUP and SPI1. 
Browser tracks display regions of CTCF binding, ATAC peaks, and regions with 
of high H3K27 acetylation. Numbers on the Y-axis represent normalized read 
counts.  
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2.3.3 LOUP acts to negatively regulate NFkB target genes at the RNA and protein 

level 

Based on the results of the screen, LOUP can negatively regulate NFkB 

activation (Fig 2.1C). To begin to validate LOUP as a negative regulator of NFkB, 

we looked broadly at inflammatory gene expression upon LOUP knockdown (Fig 

2.4A). RNA was collected from two of the LOUP CRISPRi knockdown THP1 cell 

lines (sgRNA_1 and sgRNA_2) both before and after 6h of LPS stimulation. Using 

Nanostring technology to directly quantify RNA transcripts of over 500 immune 

genes, it was evident that knockdown of LOUP broadly upregulates transcription 

of inflammatory genes both before and after LPS stimulation, including transcripts 

that comprise the TLR4/NFkB signaling pathway (Fig 2.4B-C). To determine if 

knockdown of LOUP affects protein levels of inflammatory genes, we collected 

supernatant 24h post LPS treatment from all three LOUP knockdown THP1 cell 

lines and performed cytokine arrays testing 45 proteins. 16 of the 45 inflammatory 

cytokines were significantly increased compared to controls (Fig 2.4D).  
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A.  

  

B.                                                        C. 

  

Figure 2. 4 

Figure 2.4- Knockdown of LOUP upregulates NFkB targeted genes. 
A-B. Multiplexed analysis of immune related transcripts upon LOUP 
knockdown. A. Transcripts of 580 immune genes were measured in RNA from a 
non-targeting control and 2 of the sgRNA LOUP Knockdowns at baseline and after 
6 hours of LPS stimulation. Each sample was measured in duplicate. All transcript 
counts were normalized to 6 housekeeping genes then both knockdowns and 
duplicate measurements were averaged. All genes were plotted regardless of p-
value. B. Heat map representing fold change of knockdowns vs non-targeting 
control at baseline for NFkB pathway genes significantly up-regulated in transcript 
analysis (A) (p-values<0.05). C. Multiplexed ELISA analysis of cytokines upon 
LOUP knockdown. ELISA was performed on the supernatant from three non-
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targeting controls and all three LOUP knockdowns after 24 hour LPS treatment. 
All bars represent an average of all three non-targeting (NT) or an average of all 
three knockdowns with standard deviation. All differences observed between NT 
and knockdowns for each cytokine are significant (p-values<0.05). 
  



 

 31 

 

To determine if a reduction in SPI1 could be responsible for the negative 

regulation of NFkB or inflammatory signaling, THP1s were transfected with 

siRNA targeting SPI1 or a non-targeting siRNA control (siCY3). IL8 was the most 

measurably upregulated secreted cytokine in the LOUP knockdowns (Fig 2.4C). 

IL8 was measured in the SPI1 knockdown vs control by ELISA. Not surprisingly, 

knockdown of SPI1 resulted in significantly decreased levels of IL8 (Fig 2.5A-B). 

This is consistent with the role of SPI1 as a positive regulator of inflammation 

(Ghisletti et al., 2010; Karpurapu et al., 2011; Turkistany and DeKoter, 2011), and 

suggests that loss of SPI1 upon LOUP knockdown is not responsible for the 

increase in inflammatory gene expression. 
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A. 

 
 

B. 
 

 
 

Figure 2. 5 

Figure 2.5- The effect of loss of SPI1 on inflammation. 
A. Knockdown of SPI1. Western blot analysis of SPI11 in WT THP1 cells 
transfected with a SPI1 targeting siRNA (siSPI1) compared to a control non-
targeting siRNA (siCy3). Samples were collected at baseline (0) and after 6 and 24 
hours of LPS treatment. Quantitative values indicate densitometry ratios of 
SPI1:Actin. Blot is representative of 3 separate experiments. B. Effect of SPI1 
knockdown on IL8. IL8 ELISA was performed on supernatant from control and 
LOUP siRNA THP1s treated with LPS for 24 hours. Bars represent an average of 
two separate experiments each measured in triplicate with standard deviation (p-
value<0.0005). 
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2.3.4 A LOUP sORF encoded peptide (SEP) functions as a negative regulator of 

NFkB 

LOUP RNA was detected in both the nucleus and the cytoplasm (Fig 2.6A), 

which is consistent with its roles in regulating transcription of SPI1 and perhaps the 

effects seen more broadly on gene targets of NFkB. It’s been found that some 

cytoplasmic lncRNAs harbor short open reading frames (sORFs) capable of 

producing peptides less than 100 amino acids in length, and that these peptides can 

carry out important functions (Ruiz-Orera et al., 2020). To investigate the coding 

potential of LOUP we first examined existing Ribo-seq datasets from THP1s and 

primary macrophages (Fig 2.6B). Based on ribosome footprints we established that 

LOUP harbors three potential sORFs. To test the translational potential of these 

three sORFs, each of them was cloned in frame with GFP to create a translational 

fusion and introduced into THP1-NFkB-CRISPRi-LOUP knockdown cells. 

Measurable GFP expression was driven by all three sORFs (Fig 2.6C). sgRNAs 

were designed to target the sORF regions as outlined in (Fig 2.6D). To determine 

if disruption of any sORFs resulted in an increase of inflammatory cytokines at 

baseline as it does when transcription of the entire locus is suppressed, we measured 

transcript levels of IKBKE and NFKBIZ. These two transcripts were most 

significantly upregulated at baseline in the LOUP CRISPRi knockouts (Fig 2.3C), 

and interestingly both of these genes were significantly upregulated by the sgRNA 

targeting sORF1 and sORF2, but not the sgRNA uniquely targeting sORF2 (Fig 
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2.6E). It is possible that this sgRNA did not work or that only ORF1 is functional. 

Together this data confirms that LOUP is a bimodal locus capable of regulating its 

neighboring gene through an enhancer mechanism as well as encoding an SEP that 

functions to negatively regulate NFKB genes in monocytes.   
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A.                                     B. 

          

C.                                                                                 D. 

   

E.

 

Figure 2. 6 

Figure 2.6- LOUP encodes a SEP that can regulate NFkB target genes.  
A. Cellular localization of LOUP in THP1s. Nuclear/cytoplasmic fractionation 
of WT THP1 cells after 6 hours of LPS stimulation. Data is from a single 
experiment with propagated error calculated for triplicate measurements. B. LOUP 
coding potential. Annotations of two LOUP isoforms and of three small open 
reading frames (sORFs) predicted for LOUP gleaned from Ribo-seq tracks 
generated from THP1s, differentiated THP1s and primary macs. Also included are 
tracks for short read RNA-seq from THP1s and long read RNA-seq (R2C2) from 
primary macs. C. Expression of LOUP ORF-GFP. Flow cytometry measuring 
GFP expression in LOUP knockdown THP1s transfected with sORF-GFP fusion 
constructs. D. sORF regulation of inflammatory genes. Two of the top most 
upregulated genes in the LOUP CRISPRi knockdowns were measured in LOUP 
Cas9 sORF targeted cells. Expression of IKBKE and NFKBIZ were measured at 
baseline by qPCR in each of 3 Cas9 cell lines (sgRNA_1, sgRNA_2, sgRNA_3) 
along with a non-targeting control (sgRNA_NT) (ns = not significant, * = p-
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value<0.05, ** = p-value<0.001). E. Cas9 targeting of sORFs. Depiction of 
sgRNAs targeting sORFs with CRISPR-Cas9. sgRNAs 1-3 correspond to panel D.    
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2.4 Discussion 

 
Here we’ve described a genome-wide pooled CRISPRi screen to identify 

novel lncRNA genes that regulate NFkB signaling in human monocytes. NFkB 

signaling pathways have been previously well studied and protein coding genes that 

regulate the signaling cascades have thought to have been mostly resolved 

(Gilmore, 1999; Neumann and Naumann, 2007; Verma, 2004; Zinatizadeh et al., 

2021). Not only have we successfully identified novel lncRNA regulators of the 

TLR4/NFkB pathway, but we have also unveiled novel protein regulators as well. 

lncRNAs that share a promoter or overlap with protein coding regions pose a great 

challenge for functional characterization. By targeting these genes with CRISPRi 

we may have simultaneously disrupted the function of the overlapping coding gene, 

regardless of how specifically targeted the dCas9-KRAB was to the lncRNA TSS. 

Despite this being a caveat for identifying functional lncRNAs, we have identified 

novel coding genes that function in this context. Further studies using classic 

CRISPR Cas9 to disrupt coding potential of these genes and measure effects on 

NFkB signaling are warranted to confirm that it is indeed the protein mediating the 

phenotype (Table 1). Although phenotypes associated with lncRNAs can often be 

more subtle than those of proteins, and reporter-based screens are inherently noisy, 

we’ve used MAUDE analysis with a stringent z-score threshold in an effort to 

uphold confidence in our list of functional lncRNA candidates. One candidate in 

particular, LOUP, that has been previously identified as an enhancer lncRNA in 
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myeloid cells (Trinh et al., 2021), served as an excellent target for further functional 

validation. Not only were we able to confirm its ability to function as an enhancer 

in a monocyte cell line, but we’ve also begun to unravel its novel mechanistic role 

as a negative regulator of TLR4/NFkB signaling.  

 

It is known that activation of TLR4 signaling can prime defined enhancer 

regions in both human and mouse macrophages (Hah et al., 2015; Kaikkonen et al., 

2013). In addition to the specific histone modifications that define enhancer 

regions, the actual transcription of enhancer RNAs from these regions (eRNAs) 

seems to be an important mechanism for enhancer function during TLR4/NFkB-

driven gene expression (Kaikkonen et al., 2013). Although the question still 

remains whether the production of eRNAs is only a consequence of transcriptional 

regulation by these loci or if these eRNA transcripts themselves are functional. It 

has been established that many lncRNA genes can also exert transcriptional 

regulation on nearby genes without having the definitive histone marks that 

delineate an enhancer (Chen et al., 2017; Gil and Ulitsky, 2020). Cis upstream 

regulatory elements of SPI1 have also been previously identified (Bonadies et al., 

2010; Leddin et al., 2011; Li et al., 2001; Okuno et al., 2005), but more recently it 

has been shown that the functional and myeloid-specific lncRNA LOUP, is 

transcribed from an upstream element of SPI1 (Trinh et al., 2021). Here the authors 

demonstrated that the lncRNA transcript itself mediates the interaction between the 

SPI1 promoter and the transcription factor RUNX1, but that the LOUP gene does 
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exhibit histone modifications consistent with an enhancer (high H3K4me1, low 

H3K4me3). While we first identified LOUP for its ability to regulate the activity of 

TLR4/NFkB signaling in our screen, we were able to confirm the previous finding 

that it acts as an enhancer of SPI1. SPI1 is a myeloid lineage-determining 

transcription factor that is also active in the inflammatory response of monocytes 

and macrophages (Ghisletti et al., 2010; Karpurapu et al., 2011; Turkistany and 

DeKoter, 2011).  In addition to the fact that LOUP and SPI1 occupy the same TAD, 

we’ve shown that SPI1 is induced in monocytes (Fig 2A) upon treatment with LPS 

and that absence of LOUP decreases SPI1 expression, especially at baseline. 

Interestingly, expression of SPI1 in these monocytes seems to be able to overcome 

the absence of LOUP by 24 hours, perhaps indicating the essential role of the 

protein in these cells, and that there are multiple routes that can lead to its regulation 

(Bonadies et al., 2010; Bulger and Groudine, 2010; Spitz and Furlong, 2012).  

 

Interestingly, we found that hundreds of inflammatory genes are 

upregulated upon suppression of the LOUP locus both at baseline and upon LPS 

stimulation. Of the secreted cytokines measured in the LOUP knockdowns (Fig 

2.4C), IL-8 increased most measurably, but was very significantly decreased in 

response to knocking down SPI1, indicating that LOUP’s effect on IL8 is 

independent of its role as an enhancer of SPI1. This was not surprising given SPI1's 

known role in positively regulating expression of inflammatory genes. Given that 

LOUP was a top hit in our NFkB-reporter based screen, along with the fact that 
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LOUP is present in the cytoplasm and harbors three small ORFs, led us to 

investigate the possibility that LOUP encodes a functional peptide capable of 

negatively regulating the NFkB-driven inflammatory response in these cells. Based 

on the association of LOUP’s sORFs with ribosomes together with the fact that 

targeting one sORF in particular resulted in upregulation of inflammatory genes, 

we have reason to believe that LOUP produces a functional peptide, although more 

work needs to be done to characterize the peptide. The minimum cutoff employed 

for annotated protein coding genes is typically 100 amino acids. It’s now 

appreciated that many annotated lncRNAs harbor sORFs that would result in 

peptides well below this cut-off (~44 amino acids) (Ruiz-Orera et al., 2020). 

CRISPR-Cas9 disruption of sORFs 1 and 2, which are predicted to be 30 and 59 

amino acids respectively, resulted in an increase in inflammatory gene expression, 

while disruption of sORF3, predicted to be 123 amino acids, did not have an effect 

(Fig 2.6D).  While questions remain about the functionality of these peptides under 

100 amino acids, there is mounting evidence suggesting that they have evolved to 

carry out important immunological functions (Couso and Patraquim, 2017; Jackson 

et al., 2018; Ji et al., 2015; Malekos and Carpenter, 2022). While limited, there is 

some evidence supporting the potential for both the lncRNA transcript itself along 

with SEPs harbored within the lncRNA gene to have distinct functional roles. For 

instance, the lncRNA Aw112010, has been shown to downregulate the transcription 

of IL-10 through interactions with the histone demethylase KMD5, thereby 

controlling T-cell differentiation (Yang et al., 2020). Aw112010 also produces a 
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LPS-inducible SEP (<100 amino acids) that regulates the mucosal inflammatory 

response in mice without effects on IL-10 (Jackson et al., 2001).  Our work here 

illustrates that a similar bi-modal mechanism might be the case for the LOUP gene, 

in which the lncRNA regulates transcription of its neighboring gene in cis while 

the SEP modulates the NFkB-driven inflammatory response in trans.  

 

Here we have made clear the value of pooled CRISPRi screening as an 

efficient method to identify functional lncRNAs in the context of innate immunity. 

Meticulous control of TLR4/NFkB signaling is crucial for a proper immune 

response and the screen performed here has demonstrated that lncRNAs play an 

important role in maintaining the pathway. Understanding lncRNA function in this 

context has led to novel insights into inflammatory gene regulation and even the bi-

modal functional capabilities of lncRNAs to regulate gene expression in cis and 

trans. Here we described a novel role for a myeloid-specific lncRNA as a potent 

regulator of inflammatory gene expression. This work will serve as a valuable 

resource of both lncRNAs and coding genes previously undiscovered in this 

pathway, as well as an important foundation for further mechanistic understanding 

of functional SEPs.  

 

2.5 Methods 
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2.5.1 Cell lines 

Wildtype (WT) THP1 cells were obtained from ATCC. All THP1 cell lines 

were cultured in RPMI 1640 supplemented with 10% low-endotoxin fetal bovine 

serum (ThermoFisher), 1X penicillin/streptomycin, and incubated at 37°C in 5% 

CO2. 

 

Lentivirus production 

All constructs were cotransfected into HEK293T cells with lentiviral 

packaging vectors psPAX (Addgene cat#12260) and pMD2.g (Addgene 

cat#12259) using Lipofectamine 3000 (ThermoFisher cat# L3000001) according to 

the manufacturer's protocol. Viral supernatant was harvested 72 hours post 

transfection.  

 

THP1-NFkB-EGFP-dCasKRAB 

We constructed a GFP-based NF-κB reporter system by adding 5x NF-κB-

binding motifs (GGGAATTTCC) upstream of the minimal CMV promoter-driven 

EGFP. THP1s were lentivirally infected and clonally selected for optimal reporter 

activity. Reporter cells were then lentivirally infected with the dCas9 construct that 

was constructed from a pSico lentiviral backbone with an EF1a promoter 

expressing T2A flanked genes: blastocidin-resistant (blast), blue fluorescent 

protein, and humanized dCasKRAB. Cells were clonally selected for knockdown 

efficiency greater than 90%.  
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THP1-NFkB-EGFP-dCasKRAB-sgRNA (LOUP knockdown) 

NFkB-EGFP-CRISPRi-THP1 cells were lentivirally infected with sgRNAs. 

sgRNA constructs were made from a pSico lentiviral backbone driven by an EF1a 

promoter expressing T2A flanked genes: puromycin resistance and mCherry. 

sgRNAs were expressed from a mouse U6 promoter. 20-Nucleotide 

forward/reverse gRNA oligonucleotides were annealed and cloned via the AarI 

site.  

 

THP1-NFkB-EGFP-dCasKRAB- LOUP-/- sORF+  

sORF-GFP fragments were synthesized by Twist Biosciences and cloned 

into a pSico lentiviral backbone. Constructs were then packaged into lentiviral 

particles as described above. Unstimulated GFP+ cells were sorted by FACS on a 

BD FACSAria II two times to achieve a 100% GFP positive population assuming 

that GFP expression in unstimulated cells was not activation of the reporter. Cells 

were consistently cultured under blasticidin and puromycin to maintain active 

dCas9 and sgRNA expression. 

 

THP1-NFkB-EGFP-Cas9 

The NFkB reporter was introduced as described above. The Cas9 construct 

was constructed from a pSico lentiviral backbone with an EF1a promoter 

expressing T2A flanked genes: blastocidin-resistant (blast), blue fluorescent 
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protein, and humanized Streptococcus pyogenes Cas9.Cells were clonally selected 

for knockdown efficiency greater than 90%. 

 
2.5.2 Screen 

 

sgRNA library design and cloning 

10 sgRNAs were designed for each TSS of hg19 annotated lncRNAs 

expressed in THP1s at baseline and upon stimulation. The sgRNA library also 

included 700 non-targeting control sgRNAs, and sgRNAs targeting 50 protein 

coding genes as positive controls. The sgRNA library was designed and cloned as 

previously described in (S. J. Liu et al., 2017).  

 

CRISPRi FACS Screen 

Library infected and selected THP1-NFkB-EGFP-CRISPRi-sgRNA cells 

were expanded to 2000X coverage. Cells were stimulated with LPS (200 ng/mL) 

for 24 h to induce expression of NFkB-EGFP. Flow cytometry and PCR 

amplification of genomic sgRNA sequences were conducted as previously 

described in detail in (Covarrubias et al., 2020).  

 

Screen Analysis 

SgRNA guide adapters were removed with cutadapt (Martin, 2011) and 

counts were obtained with the mageck count function from MAGeCK (Li et al., 

2014). Z-scores for each gene were found by analyzing each replicate 
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independently with MAUDE (de Boer et al., 2020). For each gene in the 

experiment, aggregate z-scores were generated using Stouffer’s method and a 

combined false-discovery rate was calculated.  

 
2.5.3 Sequencing Data  

Data for ATACSeq, ChIPSeq and HiC analyses in THP-1s were originally 

reported in (Phanstiel et al., 2017) and are available at GEO: GSE96800 and SRA: 

PRJNA385337. RiboSeq data is from (Ansari et al., 2022; Fritsch et al., 2012; Su 

et al., 2015), with data available at GSE208041, GSE66810, GSE39561 

respectively. 

 

ATAC and ChIP Seq 

Adapters were trimmed with NGmerge and mapped to Gencode GRCh38 

primary assembly with Bowtie2 (--very-sensitive  --maxins 1000) 

(Langmead and Salzberg, 2012). Replicates were merged and alignments were 

converted to BigWig tracks with the bamCoverage (--binsize 1) module 

from deepTools (Ramírez et al., 2016).  

 

HiC 

Paired-end reads from untreated THP-1s were deduplicated with BBMap 

clumpify (dedupe=t ziplevel=3 reorder=t compresstemp=f 

deleteinput=t) (https://sourceforge.net/projects/bbmap/). Fastqs were 

converted to Pairs format with Chromap (-e 4 -q 1 --split-alignment -

https://sourceforge.net/projects/bbmap/
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-pairs)  (Zhang et al., 2021) and replicates were merged with Pairtools (Open2C 

et al., 2023). Cool format files were generated with Cooler (cooler cload 

pairs) at 5kb resolution, then normalized with hicNormalize (-n smallest 

-sz 1.0) and Knight-Ruiz corrected with hicCorrectMatrix (--

correctionMethod KR) (Abdennur and Mirny, 2020). TADs were called with 

hicFindTADs ( --minDepth 15000 --maxDepth 150000 --step 15000 

--thresholdComparisons 0.05 --delta 0.01 --

correctForMultipleTesting fdr) from the HiCExplorer suite (Ramírez et 

al., 2016). 

 

RiboSeq 

Adapters were removed with Cutadapt (Martin, 2011). A tRNA/rRNA 

index was built with Bowtie2 (Langmead and Salzberg, 2012) and mapped reads 

were discarded. The remaining reads were mapped with STAR to the Hg38 

genome, guided by a custom annotation set composed of Gencode v41 merged with 

the published isoform atlas from primary macrophages (Vollmers et al., 2021). 

Multimapping reads were discarded. 

 
2.5.4 Western Blots 

Cell lysates were quantified by the PierceTM BCA Protein Assay Kit. Equal 

amounts of protein (15 ug) of each sample were denatured at 70°C for 10 min prior 

to loading on 12% SDS-PAGE. Samples were transferred to polyvinylidene 

difluoride (PVDF) membranes using the Trans-Blot Turbo Transfer System (Bio-
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Rad), blocked with TBST (1x Tris buffered saline with 0.1% Tween 20) 

supplemented with 5% (wt/vol) BSA for 1 hr and blotted with PU.1 (9G7) (1:1000, 

Cell Signaling #2258) at 4°C overnight. Horseradish peroxidase (HRP)-conjugated 

goat anti-rabbit (1:2000, Bio-Rad, #1706515) secondary antibody was used. 

Western Blots were developed using SuperSignal™ West Pico PLUS 

Chemiluminescent Substrate (Thermo Scientific cat# 34577). After imaging HRP 

was inactivated for 2 hours in 0.2% Sodium Azide in TBST supplemented with 5% 

(wt/vol) BSA. B-Actin (C4) monoclonal antibody (1:500, Santa Cruz 

Biotechnology cat #47778) was subsequently used as a loading control followed by 

HRP-conjugated goat anti-rabbit secondary antibody (1:2000).  

 

 
2.5.5 siRNA knockdown of SPI1 

WT THP1 cells were transfected with 60 pmol of SPI1 targeting 

(ThermoFisher cat# HSS186060) or Cy3-conjugated non-targeting siRNA 

(ThermoFisher cat# AM4621) for 72 hours using Lipofectamine 3000 

(ThermoFisher cat# L3000001) according to the manufacturer's protocol.  

 
2.5.6 Nanostring multiplexed transcript analysis 

RNA was isolated using the Direct-zol RNA Miniprep Plus Kit (Zymo cat# 

R2052) from one control and two LOUP knockdown THP1 cell lines at baseline 

and after 6 hours of LPS treatment. RNA was quantified on a Nanodrop. 100ng of 

RNA was used for each sample hybridization (Nanostring Master Kit cat# 100052) 
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and detection with the Nanostring Human Immunology V2 nCounter GX Codeset 

(cat# 115000062) on a MAX/Flex nCounter according to the manufacturer's 

protocol.  

 
2.5.7 ELISA and Multiplexed ELISA 

WT THP1 cells transfected with SPI1 targeting siRNAs were seeded at 

equal densities and stimulated with LPS for 24 hours. Samples were diluted 1:10 

and IL8 was measured using the DuoSet IL8 ELISA kit (R&D Systems cat# 

DY208) following the manufacturer's protocol. THP1-NFkB-EGFP-CRISPRi-

sgRNA LOUP knockdown and control cells were seeded at equal densities and 

treated with LPS for 24 hours. 75ul of supernatants were collected and analyzed 

undiluted by EVE Technologies using their Human Cytokine Panel A 48-Plex 

Discovery Assay (cat# HD48A). 

 
2.5.8 Nuc/Cyt fractionation and RT-qPCR 

WT THP1 cells were fractionated according to the NE-PER kit protocol 

(ThermoFisher cat# 78833) with RNAse inhibitor (Superase-IN, ThermoFisher 

cat# AM2696) added to the cytosolic and nuclear lysis buffers. 3 volumes of Trizol 

(TRI Reagent, Sigma T9424) was added to the fractions and RNA was isolated 

using the DIrect-zol RNA Miniprep Plus Kit (Zymo cat# R2052). 16uL of RNA 

isolated from fractions was reverse transcribed (iScript cDNA synthesis kit, Bio-

Rad cat# 1708840) followed by qPCR (iTaq SYBRgreen Supermix, Bio-Rad cat# 
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1725121) using the cycling conditions as follows: 50C for 2 min, 95C for 2 min 

followed by 40 cycles of 95C for 15s, 60C for 30s and 72C for 45s.  
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CHAPTER 3- Conclusion and future directions 
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3.1 Conclusions 

 
The work presented here exhibits the molecular importance of a class of 

molecules that are still relatively under studied. A large majority of the genome is 

non-coding (Cabili et al., 2011; Uszczynska-Ratajczak et al., 2018), and while the 

field of study of non-coding RNAs is progressing rapidly, there is still a need for 

high throughput studies that can efficiently identify functional non-coding genes, 

particularly in the context of inflammation and immunity.  Here we have 

implemented CRIPSRi pooled screening to gain a better understanding of the 

functions on non-coding RNAs in a key inflammatory signaling pathway, and more 

specifically in monocytes. We successfully identified 32 genes that are expressed 

in monocytes and that have not been previously characterized as regulators of 

NFkB. While only 10 of the top 32 hits are annotated intergenic lncRNAs, and the 

others are antisense or bidirectional to coding genes (Table 2.1), this list of genes 

provides a great resource for the further study of both lncRNAs and proteins that 

may have been simultaneously targeted by CRIPSRi. Given that the NFkB pathway 

has been thoroughly studied (Gilmore, 1999; Neumann and Naumann, 2007; 

Verma, 2004; Zinatizadeh et al., 2021), the finding that there are still so many 

undiscovered cell-specific regulators of the pathway is an important breakthrough 

that has progressed our understanding of the great complexity of inflammatory 

signaling.  
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Beyond identifying a number of functional lncRNA genes in a high 

throughput manner, we were able to begin to uncover the intricate mechanism by 

which one such lncRNA, LOUP functions to regulate inflammation. To our 

surprise, we first identified LOUP as a negative regulator of NFkB, despite its 

ability to act as an enhancer for its neighboring gene, SPI1, a known positive 

regulator of inflammation. Perhaps even more surprising is that LOUP’s broad 

negative regulation of NFkB target genes happens despite its enhancement of SPI1 

expression, leading us to hypothesize that while LOUP enhances SPI1 expression, 

especially at baseline and the shorter exposures to LPS, it is not the only regulator 

of SPI1 expression. In trying to understand how LOUP negatively regulates 

inflammation, we discovered that LOUP is primarily present in the cytoplasm, 

immediately raising the question of whether LOUP has coding potential. In further 

investigation of LOUP’s coding potential, we uncovered evidence that LOUP does 

harbor three short ORFs and does in fact produce a functional peptide capable of 

negatively regulating inflammatory genes. Not only does this work advance our 

understanding of lncRNAs that control gene regulation and inflammation, but it 

also advances our knowledge of the functional roles of small peptides, a field that 

is still quite immature.    

  
Understanding how inflammatory signaling is regulated has broad 

implications for translational science.  Tight control over inflammatory signaling 

is crucial for a proper immune response. Chronic expression and secretion of 

inflammatory cytokines, even at low levels can drive maladies, including 
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cardiovascular, neurodegenerative, and metabolic diseases. The ultimate hope in 

doing this research, and developing comprehensive knowledge of inflammatory 

signaling pathways, is that this expertise may lead to better much prevention and 

treatments of one of the lead causes of disease. 

 
3.2 Future directions 

  

While this work contributes novel discoveries that span the fields of 

lncRNAs, small peptides, inflammatory signaling, and innate immunity, it brings 

up many new questions that warrant investigation. For one, the results from the 

screen have left us with many genes to mechanistically characterize and understand 

in the context of NFkB signaling. Likewise, despite the great deal of work done 

here, LOUP’s molecular mechanism is still a bit of a mystery. While we could see 

that LOUP’s sORFs cloned into an artificial system get translated, and targeting 

LOUP’s sORF regions with classic CRISPR-Cas9 results in an inflammatory 

phenotype, we still don’t know which sORF produces a functional peptide. 

Isolation of short peptides from THP1s followed by mass spectrometry could help 

identify the functional SEP. Introducing tagged sORFs to THP1 cells followed by 

pull-down assays to determine any molecular interactions with translated SEPs 

could also shed light on SEP function.  

  

In addition to defining which of LOUP’s SEPs are truly functional, the 

question remains whether LOUP functions the same in primary monocytes as it 
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does in THP1s. The experiments done here in THP1s may be too technically 

challenging in primary cells, but the biological relevance of cell lines is always in 

question. Another way to address the true biological relevance of LOUP’s 

mechanism in THP1s will be to understand its function in a whole organism, 

particularly a mouse. Hence determining if LOUP is conserved in mice is of great 

value, and not terribly straight forward for non-coding regions given that they are 

subject to different selective pressures than coding regions (Ulitsky et al., 2011), 

and many have arisen in the human genome relatively recently (Ulitsky and Bartel, 

2013). So far, there does appear to be syntenic conservation of the LOUP locus in 

mice, but currently no evidence of sORFs. The next step will be to confirm 

expression of LOUP in mouse monocytes.  

 

Overall, this work has established an exciting basis for future studies and 

will serve as the foundation for research that will continue to expand our 

understanding of genes that control inflammatory signaling and innate immunity. 

 
3.3 Outstanding questions 

• Which of LOUP’s SEP is functional? 

• How does LOUP’s SEP function to regulate NFkB? 

• How does LOUP or LOUP’s SEP function in primary monocytes? 

• Is LOUP or LOUP’s SEP functionally conserved in mice? 

APPENDIX 1- Supplemental information to Chapter 2 
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Supplemental tables for the NFkB CRISPRi lncRNA screen (presented in Chapter 

2 -Figure 2.1, Table 2.1) will be available for download once puplished- they will 

include the sgRNA library and the detailed results of the MAUDE analysis. Since 

we screened over 2000 genes, with 10 sgRNAs per gene, the tables are too large 

to include in this printed document. 

APPENDIX 2- Mutant KRAS Regulates Transposable Element RNA and 

Innate Immunity via KRAB Zinc-Finger Genes  

Roman E. Reggiardo, Sreelakshmi Velandi Maroli, Haley Halasz, Mehmet Ozen, 

Eva Hrabeta-Robinson, Amit Behera, Vikas Peddu, David Carrillo, Erin 

LaMontagne, Lila Whitehead, Eejung Kim, Shivani Malik, Jason Fernandes, 

Georgi Marinov, Eric Collisson, Angela Brooks, Utkan Demirci, Daniel H. Kim. 

 
My contributions to the following manuscript: 
 
 The following work focuses on understanding the earliest stages of 

cellular transformation driven by a common and highly pathogenic mutation in 

the KRAS gene. I worked on the very initial stages of this project. I optimized the 

transformation protocol for the AALE cells by transient transfection of a construct 

harboring the KRAS G12D mutation. I subsequently collected RNA from the 

cells. I made RNA-seq libraries from the RNA of these cells as described in the 

methods section. One of the lab’s technicians, Lila Whitehead, assisted me in the 

library preparation protocol. The RNA-sequencing data that was generated 

contributes to Figure 1 and Supplemental Figures 1, 3, and 5 of this manuscript 
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and formed the basis for which subsequent studies were built. Roman Reggiardo 

and Georgi Marinov did the computational analysis of this RNA-seq data.   
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2.1 Abstract 

 
RAS genes are the most frequently mutated oncogenes in cancer, yet the 

effects of oncogenic RAS signaling on the noncoding transcriptome remain 

unclear. We analyzed the transcriptomes of human airway and bronchial epithelial 

cells transformed with mutant KRAS to define the landscape of KRAS-regulated 

noncoding RNAs. We find that oncogenic KRAS signaling upregulates noncoding 

transcripts throughout the genome, many of which arise from transposable elements 

(TEs). These TE RNAs exhibit differential expression, are preferentially released 

in extracellular vesicles, and are regulated by KRAB zincfinger (KZNF) genes, 

which are broadly downregulated in mutant KRAS cells and lung adenocarcinomas 

in vivo. Moreover, mutant KRAS induces an intrinsic IFN-stimulated gene (ISG) 

signature that is often seen across many different cancers. Our results indicate that 

mutant KRAS remodels the repetitive non-coding transcriptome, demonstrating the 

broad scope of intracellular and extracellular RNAs regulated by this oncogenic 

signaling pathway.  

 

2.2 Introduction 
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Most of the human genome is noncoding and transcribed into RNA (Djebali 

et al., 2012). Moreover, about half of the human genome is comprised of 

transposable elements (TEs) (International Human Genome Sequencing 

Consortium et al., 2001), and TEs contribute substantially to the noncoding 

transcriptome (Kelley and Rinn, 2012; Rinn and Chang, 2020). TE RNAs  (Burns, 

2017) and other classes of noncoding RNAs are often altered during cancer (Slack 

and Chinnaiyan, 2019) and epigenetic reprogramming (Kim et al., 2015), where 

activation of RAS signaling leads to the repression of microRNAs (Kent et al., 

2010) and the upregulation of long noncoding RNAs (lncRNAs) (Kim et al., 2015), 

respectively, via changes in chromatin accessibility. In lung cancers, RAS 

mutations are present in one-third of lung adenocarcinomas (The Cancer Genome 

Atlas Research Network, 2014) and serve as driver mutations that initiate 

tumorigenesis (Jackson et al., 2001). Although RAS genes are among the most 

frequently mutated oncogenes in cancer (Simanshu et al., 2017), how oncogenic 

RAS signaling regulates the noncoding transcriptome remains unknown. To 

investigate the role of mutant KRAS in reprogramming the 

transcriptome during early stages of cellular transformation, we characterized the 

composition of both intracellular and extracellular RNA, including protein-coding 

RNA, lncRNA, and TE RNA, using human airway epithelial cells (Lundberg et al., 

2002) and human bronchial epithelial cells (Ramirez et al., 2004) with 

constitutively active mutant KRAS. We show that oncogenic KRAS induces TE 

RNA and cell-intrinsic interferon (IFN)-stimulated gene (ISG) signatures and that 
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KRAB zinc finger (KZNF) genes are globally downregulated both in vitro and in 

mutant KRAS lung adenocarcinomas in vivo. Moreover, our findings indicate that 

significant upregulation and extracellular secretion of TE RNAs and ISGs are 

transcriptomic signatures of mutant KRAS signaling.  

 

2.3 Results 

 
2.3.1 Transcriptomic Reprogramming by Mutant KRAS 

To determine the transcriptomic landscape of protein-coding and noncoding 

RNAs regulated by oncogenic RAS signaling, we performed RNA sequencing 

(RNA-seq) on human airway epithelial cells (AALE) that undergo malignant 

transformation upon the introduction of mutant KRAS (Lundberg et al., 2002). We 

compared the transcriptomes of AALE cells transduced with control lentiviral 

vector to AALEs that were transduced by mutant KRAS-containing lentiviral 

vector and performed differential expression analysis. We identified thousands of 

significantly differentially expressed protein-coding RNAs (n = 1,028 upregulated, 

n = 1,194 downregulated), including ISGs, KRAS signaling genes, and zinc-finger 

genes (Apendix 2 Figures 1A and S1A), as well as hundreds of significantly 

differentially expressed lncRNAs (n = 116 upregulated, n = 163 downregulated) 

(FigureS1A), demonstrating the broad extent to which mutant KRAS reprograms 

the transcriptome (Figures S1A and S1B). 
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Appendix 2 Figure 1 

Apendix 2 Figure 1- Mutant KRAS Signaling activates an Intrinsic ISG 
Signature 
A. Volcano plots depicting significant differential expression observed in key gene 
sets (interferon [IFN] response alpha/gamma: IFN, KRAS signaling up: KRAS, 
zinc-finger genes: ZNF).  
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C D
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Figure 1. Mutant KRAS signaling activates an intrinsic ISG signature
(A) Volcano plots depicting significant differential expression observed in key gene sets (interferon [IFN] response alpha/gamma: IFN, KRAS signaling up: KRAS,

zinc-finger genes: ZNF).

(legend continued on next page)
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2.3.2 Mutant KRAS induces intrinsic ISG expression 

To explore the biological pathways that are perturbed by onco- genic RAS 

signalling, we performed gene set enrichment analysis (GSEA) (Powers et al., 

2018) using genes that were differentially expressed in our mutant KRAS AALE 

cells. GSEA revealed that the three most significantly enriched pathways were the 

IFN-a and -g responses, as well as the hallmark inflammatory response (Appendix 

2 Figure 2B), along with increased KRAS signalling from mutant KRAS(G12D), 

increased metabolic gene expression, and decreased expression of epithelial-to-

mesenchymal transition (EMT) genes (Appendix 2 Figure 2B).  

To further validate the connection observed between mutant KRAS and ISG 

expression, we compared mutant KRAS- induced ISGs in AALE cells to those that 

were induced in human bronchial epithelial cells (HBECs) in response to mutant 

KRAS(G12V) (Appendix 2 Figure S1C). We observed a strong concordance 

between mutant KRAS-induced ISGs in AALE and HBEC cells (Appendix 2 

Figure 2C), confirming our previous results. We then examined the promoter 

regions (±500 bp) of upregulated ISGs and identified motifs enriched in comparison 

to non-differentially ex- pressed (DE) ISGs (Appendix 2 Figure 2D), including the 

key IFN response regulators IRF1, IRF7, and STAT2 (Jefferies, 2019). To deter- 

mine the in vivo relevance of our findings in both mutant KRAS AALE and HBEC 

cells, we examined ISG expression in mutant KRAS(G12D) lung adenocarcinomas 
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(LUAD) from The Cancer Genome Atlas (TCGA), which revealed a subset of ISGs 

that were upregulated in KRAS(G12D) tumors when compared to lung cancer 

samples with wild-type (WT) KRAS (Figure 1E). These results indicate that mutant 

KRAS signalling activates an intrinsic ISG response in lung cells both in vitro 

(AALE, HBEC) and in vivo (TCGA LUAD).    
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Appendix 2 Figure 2 

Appendix 2 Figure 2- Mutant KRAS Signaling Activates an Intrinsic ISG 
Signature.  
B. Significant gene set enrichment analysis (GSEA) results observed in mutant 
KRAS AALE differentially expressed genes ranked by adjusted p value (padj), 
normalized enrichment score (NES), and annotated with the number of genes 
observed out of the total genes in each gene set. C. Differential expression of ISGs 
in mutant KRAS AALEs compared to mutant KRAS HBECs. D. Differentially 
expressed transcription factors (TFs) with binding motifs enriched in differentially 
expressed ISG promoter regions. E. Hierarchical clustering of expression Z score 

B D

C

E
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in TCGA LUAD RNA-seq data for ISGs upregulated in mutant AALE and 
exhibiting strong segregation in TCGA LUAD samples based on KRAS G12D 
mutation status; presence of IRF9/1/7 binding motifs in promoter regions of labeled 
ISGs.  
  

  



 

 66 

 

2.3.3 Epigenetic reprogramming of ISGs by mutant KRAS.  

To elucidate potential mechanisms involved in inducing ISG signatures in 

mutant KRAS AALE cells, we performed the assay for transposase-accessible 

chromatin using sequencing (ATAC-seq) (Buenrostro et al., 2015). In mutant 

KRAS AALEs, open chromatin was significantly enriched at gene promoters for 

upregulated ISGs (Appendix 2 Figure 3A). Open chromatin peaks were uniquely 

present in mutant KRAS AALEs when compared to control AALEs at 183 

transcriptional start sites (TSSs), including 11 ISGs that were specifically and 

significantly upregulated by mutant KRAS signaling (Appendix 2 Figure 3B). In 

addition, we observed strong enrichment of ATAC signal at the TSS of the 

significantly upregulated IRF9 gene, which forms the ISGF3 transcription factor 

(TF) com- plex with STAT1 and STAT2 (MacMicking, 2012), and also strong 

enrichment at the TSS of IRF7, IFI27, OAS2, IFI44, and MX1 (Appendix 2 Figure 

3C). In conjunction with the motif enrichment analysis (Appendix 2 Figure 2D), 

these results show that oncogenic KRAS signaling induces the epigenetic activation 

of ISG TFs and their downstream ISG targets.  

The genome-wide effects of mutant KRAS-mediated epige- nomic 

reprogramming were further assessed with the Genome Regions Enrichment of 

Annotations Tool (GREAT) (McLean et al., 2010). GREAT analysis orthogonally 

confirmed the enrichment of accessible chromatin regions near ISGs and showed 
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the enrichment of related molecular functions, including double- stranded RNA 

binding. Notably, the cellular components most enriched were extracellular in 

nature, including extracellular vesicle and extracellular exosome (Appendix 2 

Figure 3D).  
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Appendix 2 Figure 3 

A

D

C

B

(legend on next page)
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Appendix 2 Figure 3- Mutant KRAS signaling mediates epigenomic 
reprogramming of ISGs. 
A. Mean ATAC-seq counts per million (CPM) (95% confidence interval [CI]) in 
promoter regions of upregulated ISGs (log2 fold change >1.5) in both mutant 
KRAS and control (CTRL) AALEs. B. Differential expression of ISGs with unique 
peaks near TSS (only present in mutant KRAS or control AALEs). C. ATAC-seq 
coverage in both mutant KRAS and CTRL AALEs for subset of ISGs with unique 
peaks detected near TSS.  D. Significant Gene Ontology (GO) term enrichment 
over unique peaks detected in mutant KRAS AALEs as determined by genomic 
regions enrichment of annotations tool (GREAT) analysis.  
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2.3.4 Mutant KRAS reprograms the extracellular transcriptome. 

To test whether extracellular RNAs secreted from mutant KRAS cells also 

exhibit differential expression relevant to intracellular reprogramming events, we 

isolated extracellular vesicles from the culture media of control and mutant KRAS 

AALEs (Enderle et al., 2015; Liu et al., 2017) (Enderle et al., 2015; F. Liu et al., 

2017). Extracellular vesicles isolated from mutant KRAS AALEs comprised 

different sized vesicles that were 90, 150, and 213 nm in diameter, while vesicles 

from control AALE media were predominantly 196 nm in size (Appendix 2 Figure 

4A).  

RNA isolated and sequenced from these vesicles exhibited mutant KRAS-

dependent differential expression of both protein-coding genes (n = 17 upregulated, 

n = 140 downregulated) and lncRNA (n = 5 upregulated, n = 8 downregulated) 

(Appendix 2 Figures 4B and S2A). We also observed significant correlation 

between differentially expressed ISGs in our intracellular and extracellular RNA-

seq datasets that largely agreed with intracellular epigenetic changes (IFI6, MX1, 

IFI27, and OASL) (Appendix 2 Figures 4C and 4D). Furthermore, GSEA showed 

that IFN-a and -g signatures were enriched in both intracellular and extracellular 

RNA (Appendix 2 Figure 4E), indicating that extracellular RNAs reflect 

intracellular ISG changes due to mutant KRAS signaling. To determine the effects 

of oncogenic KRAS on noncoding RNA secretion, we also characterized the TE 
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RNAs that were preferentially packaged and released in extracellular vesicles. We 

found significant upregulation of predominantly long terminal repeat (LTR) RNAs 

such as LTR12, MER11C, and LTR27C, along with LINE, DNA, and Satellite 

repeat RNAs in mutant KRAS AALE extracellular vesicles (Appendix 2 Figure 

4F). Moreover, TE RNAs represented approximately 50% of the extracellular RNA 

released from mutant KRAS AALE cells, suggesting their preferential secretion in 

extracellular vesicles (Appendix 2 Figures S2C and S2D).  
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Appendix 2 Figure 4 

A

D

E F

C

B

(legend on next page)
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Appendix 2 Figure 4- Mutant KRAS signaling induces secretion of TE RNAs 
and ISGs in EVs.  
A. Size distribution of extracellular vesicles (EV) isolated from control (CTRL) 
and mutant KRAS AALEs. B.Volcano plot of differentially secreted GENCODE 
protein-coding RNAs and lncRNAs between mutant KRAS and CTRL AALE EVs. 
C. Scatterplot comparing differentially expressed genes between intracellular and 
extracellular mutant KRAS AALE RNA-seq libraries; linear regression fit with 
formula and goodness of fit displayed. D. Upset plot summarizing overlap of 
differentially expressed upregulated (up) and downregulated (dn) genes across in 
and ex contexts. E. Significantly enriched gene sets detected in both in and ex 
contexts. F. Differential secretion of TE RNAs in EVs from mutant KRAS AALEs 
when compared to control AALE EVs. 
Ex, extracellular; in, intracellular.  
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2.3.5 Regulation of TE RNAs by mutant KRAS.  

Given the prevalence of secreted TE RNAs, we investigated intracellular 

TE RNA dynamics in response to mutant KRAS signaling in AALE cells. 

Analogous to extracellular RNAs, LTR RNAs were among the most significantly 

upregulated TE RNAs in response to oncogenic KRAS signaling, including 

LTR12C RNAs (Appendix 2 Figure S3A). In addition, LINE RNAs such as L1MEc 

and DNA element RNAs such as Tigger5 were also significantly enriched in mutant 

KRAS AALEs (Appendix 2 Figure S3A). Furthermore, we examined TE RNAs in 

mutant KRAS HBEC cells, which similarly exhibited significant upregulation of 

TE RNAs in response to mutant KRAS when compared to control HBECs 

(Appendix 2 Figure S3A). LTR12C RNAs were again the most significantly 

upregulated TE RNAs in mutant KRAS HBEC cells (Appendix 2 Figure S3A), 

further vali- dating our intracellular and extracellular RNA analyses in mutant 

KRAS AALE cells.  

Based on the functions of KZNF genes in silencing TE RNAs in other 

contexts (Imbeault et al., 2017), we examined whether KZNFs could be involved 

in TE RNA regulation in both mutant KRAS AALE and HBEC cells. Given the 

broad downregulation of KZNFs in mutant KRAS AALEs (Appendix 2 Figure 1A), 

we also analyzed KZNF expression in mutant KRAS HBECs, which similarly 

exhibited significant downregulation of KZNFs, many of which overlap with 
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KZNFs downregulated in mutant KRAS AALEs (Appendix 2 Figure S3B). To 

determine the potential relationship between our upregulated TE RNAs and our 

downregulated KZNFs, we looked for significantly enriched motifs in TE RNAs 

using a previously described KZNF-specific motif set (Barazandeh et al., 2018), 

which confirmed the presence of binding motifs for significantly downregulated 

KZNFs in the significantly upregulated TE RNAs (Figure S3C). We also used the 

KNZF binding scores generated from previous chromatin immunoprecipitation 

sequencing (ChIP-seq) experiments (Imbeault et al., 2017) to rank TE RNAs 

targeted by KZNFs, finding that many of the upregulated TEs were among the top 

10–20 targets of downregulated KZNFs in mutant KRAS AALEs (Appendix 2 

Figure S3D), their extracellular vesicles (Appendix 2 Figure S4A), and in mutant 

KRAS HBECs (Appendix 2 Figure S4B). We then computed the average log2 fold 

change of downregulated ZNFs with putative binding sites within upregulated TE 

RNAs, which confirmed a negative association across all three contexts of mutant 

KRAS transcriptional profiling (Appendix 2 Figure S3E). These analyses point to 

a coordinated, TE-KZNF axis that is dysregulated by mutant KRAS.  

2.3.6 KZNFs repress TE RNAs and ISGs activated by mutant KRAS.   

To explore the mechanistic relationship between KZNFs and TE RNA 

expression, we examined mutant KRAS A549 lung cancer cells that overexpress 

ZNF257 or ZNF682 (Ito et al., 2020), both of which we found to be significantly 

downregulated by mutant KRAS signaling in AALE cells and putative regulators 
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of dysregulated TE families (Appendix 2 Figures 1A and S3). Differential 

expression analysis of RNA-seq data indicated significant down- regulation of ISGs 

OAS1 and IRF9 in mutant KRAS A549 cells overexpressing either ZNF257 or 

ZNF682 (Figure S5A), as well as significant downregulation of TE RNAs that were 

upregulated by mutant KRAS in AALE cells (Appendix 2 Figure S5B). These 

findings directly connect mutant KRAS-regulated KZNFs with control of TE RNA 

and ISG expression.  

2.3.7 Epigenetic silencing of KZNFs regulated by mutant KRAS signaling.   

To determine the extent to which mutant KRAS signaling epigenetically 

silences KZNF expression, we examined ATAC-seq data for all significantly 

downregulated KZNF loci. We found that mutant KRAS signaling substantially 

reduces chromatin accessibility at TSS regions (Appendix 2 Figure 5A). When we 

examined genes with ‘‘unique’’ ATAC peaks that were only present in control 

AALEs but disappeared in mutant KRAS AALEs, we found that many of these 

genes were KZNFs that were significantly downregulated (Appendix 2 Figure 5B). 

Six of these downregulated KZNFs, ZNF90, ZNF826P, ZNF736, ZNF471, 

ZNF682, and ZNF853, had peaks unique to control AALEs (Figure 4C). 

Downregulated KZNF TSS regions were enriched in motifs for ETS (ETV1) and 

ELK (ELK1) TFs (Appendix 2 Figure 5D), known downstream effectors of the 

RAS signaling pathway (Simanshu et al., 2017).  
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Appendix 2 Figure 5 

 

A

D

C

B

Figure 4. Mutant KRAS signaling epigenetically silences KZNFs in vitro
(A) Mean ATAC-seq CPM (95% CI) in promoter regions of downregulated KZNFs (<!4.5 log2 fold change) in both mutant KRAS and control (CTRL) AALEs.

(B) Differential expression of KZNFs with unique peaks near TSS (only present in mutant KRAS or control AALEs).

(C) ATAC-seq coverage in both KRAS and CTRL AALEs for subset of KZNFs with unique peaks detected near TSS.

(D) Volcano plots of differentially expressed TFs in mutant KRAS AALEs with significant TF motif enrichment in downregulated KZNF gene promoters.

chr, chromosome.
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Appendix 2 Figure 5- Mutant KRAS signaling epigenetically silences KZNFs 
in vitro.  
A. Mean ATAC-seq CPM (95% CI) in promoter regions of downregulated KZNFs 
(<4.5 log2 fold change) in both mutant KRAS and control (CTRL) AALEs. B. 
Differential expression of KZNFs with unique peaks near TSS (only present in 
mutant KRAS or control AALEs). C. ATAC-seq coverage in both KRAS and 
CTRL AALEs for subset of KZNFs with unique peaks detected near TSS. D. 
Volcano plots of differentially expressed TFs in mutant KRAS AALEs with 
significant TF motif enrichment in downregulated KZNF gene promoters. 
chr, chromosome.  
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2.3.8 Downregulated KZNFs in vivo are associated with poor outcomes in lung 

cancer.   

Finally, we explored the clinical significance of the mutant KRAS- induced 

KZNF silencing we identified in AALE and HBEC cells. Evaluation of KZNF 

expression in TCGA LUAD RNA-seq data revealed their significant 

downregulation in mutant KRAS(G12D) samples when compared to WT KRAS 

lung cancer or matched normal samples, respectively (Appendix 2 Figures 6A and 

6B). Furthermore, LUAD samples in the lowest third of KZNF expression demon- 

strated a significant decrease in overall survival probability (Appendix 2 Figure 

6C), highlighting the clinical impact of the mutant KRAS- mediated KZNF 

downregulation we found in AALE and HBEC cells.  
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Appendix 2 Figure 6 

 
 
 

A

DC

B

Figure 5. Broad downregulation of KZNFs in mutant KRAS LUAD in vivo
(A) Hierarchical clustering of expression Z scores in TCGA LUADRNA-seq data for KZNF genes downregulated inmutant KRAS AALEs; KZNFswith unique peaks

in their promoter regions in control AALEs are labeled.

(legend continued on next page)
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Appendix 2 Figure 6- Broad downregulation of KZNFs in mutant KRAS 
LUAD in vivo.  
A. Hierarchical clustering of expression Z scores in TCGA LUAD RNA-seq data 
for KZNF genes downregulated in mutant KRAS AALEs; KZNFs with unique 
peaks in their promoter regions in control AALEs are labeled. B. Distribution of Z 
scores for significantly downregulated KZNF genes (Wilcox) in TCGA LUAD 
RNA-seq data. C. Kaplan-Meier survival curve for patients in the TCGA LUAD 
dataset stratified into thirds by expression levels of KZNFs downregulated in 
mutant KRAS AALEs. D. Model of mutant KRAS-mediated regulation of TE 
RNAs and ISGs by KZNFs. Created with BioRender.com.  
 
  



 

 82 

 
2.4 Discussion 

Collectively, our findings demonstrate the transcriptomic and epigenomic 

impact of oncogenic KRAS signaling on TE RNAs and ISGs. Our study suggests 

that KZNF repression by mutant KRAS signaling leads to de-repression of TE 

RNAs, triggering an intrinsic ISG response (Figure 5D). This model is supported 

by broad and significant downregulation of these same KNZFs in mutant KRAS-

driven lung adenocarcinomas in vivo. Our conclusions are based on deeply 

sequencing and analyzing the intracellular and extracellular transcriptomes and 

epigenomes of mutant KRAS-transformed lung cells, building on previous work in 

which we discovered the coordinate regulation of non- coding RNAs and RAS 

signaling in the context of epigenomic re- programming (Kim et al., 2015).  

The molecular basis for the intrinsic ISG signature we observe in mutant 

KRAS AALE cells differs from TE RNA-induced IFN responses in cancer cells 

treated with DNA methyltransferase inhibitors (Enderle et al., 2015; Roulois et al., 

2015), as we instead find a prominent role for broad KZNF suppression during the 

early stages of mutant KRAS-driven cellular transformation. Our studies also 

suggest that oncogenic KRAS signaling is sufficient to induce at least a subset of 

the intrinsic ISG signatures that are observed across many cancers and cancer cells 

lines with ADAR dependencies (Gannon et al., 2018; Liu et al., 2019).  
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We also present further evidence for the utility of extracellular RNAs in 

detecting intracellular RNA changes in cancer cells (Reggiardo et al., 2022). 

Notably, we show the secretion of specific TE RNA and ISG signatures that are 

aberrantly upregulated in mutant KRAS lung cells. The enrichment of TE-derived 

noncoding RNAs in extracellular vesicles (Wang et al., 2019) released from mutant 

KRAS cells highlights their potential utility as RNA biomarkers for diagnosing 

RAS-driven cancers.	 

2.5 Methods 

 
2.5.1 Experimental model and subject details. 

Immortalized lung epithelial cells (AALE cells; XX), derived at Dana-

Farber and immortalized by SV40 large-T antigen (Lundberg et al., 2002) were 

obtained as a gift from the laboratory of Eric Collison (University of California, 

San Francisco). The AALE stable cell lines pBABE-mCherry Puro (control) (Lu et 

al., 2017) and pBABE-FLAG-KRAS(G12D) Zeo (mutant KRAS) were generated 

using retroviral transduction, followed by selection in puromycin or zeocin. Cells 

were cultured at 37C and 5% CO2 in SABM Basal Medium (Lonza SABM basal 

medium, CC-3119) with supplements and growth factors (Lonza SAGM 

SingleQuots Kit Suppl. & Growth Factors, CC- 4124).  

HBEC3kt cell lines (HBEC cells; XX) were obtained as a gift from the laboratory 

of Harold Varmus (National Human Genome Research Institute and Weill Cornell 

Medicine). The HBEC stable cell lines pLenti6/V5-GW/lacZ (control) (Vikis et al., 
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2007) and pLenti-KRASV12 (mutant KRAS) were generated using lentiviral 

transduction, followed by selection in blasticidin. Lentiviral plasmids were 

obtained as a gift from the laboratory of John Minna (The University of Texas 

Southwestern Medical Center) (Sato et al., 2013; Vikis et al., 2007). Cells were 

cultured at 37C and 5% CO2 in Keratinocyte Serum-Free Media (KSFM) with 

supplements (Invitrogen, #17005042).  

 

2.5.2 RNA-seq. 

For AALE cell lines, bulk RNA was isolated from cells using Quick-RNA 

MiniPrep kit (Zymogen) and RNA was quantified via NanoDrop-8000 

Spectrophotometer. 1ug of total RNA was used as input for the TruSeq Stranded 

mRNA Sample Prep Kit (Illumina) according to manufacturer protocol. Library 

quality was determined through the High Sensitivity DNA Kit on a Bioanalyzer 

2100 (Agilent Technologies). 6 multiplexed libraries, 3 biological replicates of each 

condition, were sequenced as HiSeq400 100PE runs.  

For HBEC cell lines, cells grown in 10 cm plates (n = 3 per cell line) were washed 

twice in cold DPBS then collected in Tri-reagent for storage at 80C until the bulk 

RNA was extracted using Direct-Zol RNA Miniprep Kit (Zymo Research). 

Concentrations of purified RNA in nuclease-free water were determined by 

Nanodrop-2000 Spectrophotometer and by Qubit RNA BR Assay (ThermoFisher 

Scientific). Quality RIN numbers ranging from 9.4-10 were determined by 

TapeStation 4150 RNA ScreenTape Analysis (Agilent Tech- nologies) before 
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sending RNA to UC Davis DNA Technologies and Expression Analysis Core 

Laboratory for poly-A strand specific library preparation to obtain 60 million paired 

end reads by NovaSeq S4 (PE150) sequencing.  

 

2.5.3 ATAC-seq.  

100,000 AALE cells were collected and centrifuged at 500xg for 5 min at 

4C. Pellets were washed with ice-cold PBS and centrifuged. Pellets were 

resuspended in ice-cold lysis buffer. Tagmentation reaction and purification were 

conducted according to manufac- turer’s protocol (Active Motif). 2 Libraries, one 

from each condition, were sequenced on a NextSeq500 as 2 3 75 paired end reads.  

 

2.5.4 Extracellular RNA-seq. 

The exoRNeasy serum/plasma maxi kit (Qiagen) was used to isolate 

extracellular vesicles, which were quantified using Nanoparticle Tracking Analysis 

(Malvern, UK). 30 mL of AALE cell culture supernatant was filtered to remove 

particles larger than 0.8 um. The filtrate was precipitated with kit buffer and filtered 

through a column to collect extracellular vesicles. These vesicles were then lysed 

with QIAzol lysis reagent. Total RNA was isolated using the indicated phase 

separation method and used to make 6 libraries, 3 bio- logical replicates for each 

condition, for RNA-seq using the Smart Seq HT low input mRNA library prep kit 

(Takara). Libraries were sequenced on an Illumina NextSeq500.  
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2.5.5 RNA-seq Analysis 

All fastq files were trimmed with Trimmomatic 2 (0.38) (Bolger et al., 2014) 

using the Illumina NextSeq PE adapters. The resulting trimmed files were assessed 

with FastQC (Brown et al., 2017)(Brown et al., 2017) and then processed with the 

following analytical pipeline: 

Salmon (1.3.0) 

Pseudoalignment of RNA-seq reads performed with Salmon (Patro et al., 

2017) using the following arguments: –validateMappings –gcBias –seqBias –

recoverOrphans –rangeFactorizationBins 4 using an index created from the 

GENCODE version 35 (Frankish et al., 2021) transcriptome fasta file using decoy 

sequences to enable selective alignment. An additional, TE- aware index was 

created in a similar fashion but supplemented with sequences generated from the 

UCSC Repeat Masker track. 

  

DESeq2 (1.32.0)  

Salmon output was imported into a DESeq object using tximeta (Love et al., 

2020; Soneson et al., 2015)(Love et al., 2014; Soneson et al., 2016) and differential 

expression analysis was performed with standard arguments (Love et al., 2014; Zhu 

et al., 2019). All results were filtered to have padj <0.05. In the case where R could 

only generate 0.00 for the padj values, they were reset to the lowest non-zero padj 

value in the dataset. Where count data was used, it was normalized across samples 

using DESeq.  
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Principal component analysis  

PCA was performed in R using the function prcomp provided by the 

package stats (4.1.1). Input gene abundance data was first variance stabilized using 

DESeq2 and then filtered for genes with 0 standard deviation across the samples.  

 

Motif discovery and enrichment analysis  

All motif-based analysis was performed in R using packages memes (1.1.4), 

universalmotif (1.10.2), BSgenome.Hsapien- s.UCSC.hg38 (1.4.3), 

MotifDBGenomicRanges (1.44.0) and MotifDB (1.34.0) (Lawrence et al., 2013; 

Nystrom and McKay, 2021). Enriched motifs were identified by using the 

runAME() function provided by memes with a control set to ‘shuffle’ the input 

sequences unless otherwise noted in the text. Individual motif occurrences were 

identified with the runFimo() function pro- vided by memes.  

Zinc finger gene analysis  

ChIP-exo data and supplementary information were extracted from 

supplementary data provided by Imbeault et al. (Imbeault et al., 2017). ZNF genes 

were cross referenced with DESeq2 and bed file of Repeat Masked TE inserts from 

the UCSC Genome Browser to extract relevant differential expression data of ZNF 

proteins and Transposable Element transcripts using R. Promoter and motif 

analyses performed as described above.  

Motif discovery was intersected with repeat-masked insertions and cross 

referenced with ChIP-exo target data to identify potential regulatory targets of 
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differentially expressed KZNFs. KZNF targets were ranked by the score provided. 

Additional ZNF binding motifs were acquired from Barazandeh et al.’s website 

(Key resources table) and converted to a database compatible with MEME suite 

(Bailey et al., 2015; Barazandeh et al., 2018).  

Gene set enrichment analysis  

Differentially expressed genes were ranked by the shrunken 

log2FoldChange values generated by DESeq2. Gene sets were acquired using the 

R package msigdbr (7.4.1) (Dolgalev, 2020) and filtered to only contain gene sets 

with ‘Hallmark’ status.  

The R package fgsea (1.18.0) (Korotkevich et al., 2016) was used to 

generate Gene Set Enrichment (Liberzon et al., 2011; Subramanian et al., 2005) 

estimates which were filtered to results with adjusted pvalues <0.05.  

 

GREAT gene ontology analysis  

The R package rGREAT (1.24.0) (Bioconductor) was used to process 

ATAC-seq identified peaks with GREAT and identify enriched GO terms. ATAC-

seq peaks unique to either CTRL or KRAS contexts were used as input with the 

background set to the entire peak library comprised from both contexts.  

 

TCGA ZNF analysis  

TCGA-LUAD phenotype and normalized count data were downloaded 

from the UCSC Xena browser TOIL data repository (Key resources table) 
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(Goldman et al., 2020). The files were combined, and patients were grouped by 

their KRAS mutation status and identity. Heatmaps and associated hierarchical 

clustering were performed in R using the package ComplexHeatmap (2.8.0) (Gu et 

al., 2016). Survival analysis was performed using the survival R package (3.3) 

(Therneau, 2022)(Therneau and others, 2015).  

 

ATAC-seq analysis  

The nf-core ATAC-seq pipeline was used to process ATAC-seq reads to 

alignments with BWA, narrow peak calls with MACS2, and ultimately annotated 

peaks. Read count analysis was performed with the R package bamsignals (1.24.0) 

(Bioconductor) using the sorted bam files produced by the nf-core pipeline.  

 

2.5.6 Quantification and statistical analysis. 

All quantitative data for functional assays have been reported as means ± 

standard deviation. Statistical significance for these were calculated using a 

Wilcox-test (R – wilcox.test()) unless otherwise noted and p values <0.05 were 

considered significant. All statistical analyses were performed with R (version 

4.1.1) running from the Rocker ‘Tidyverse’ Docker container 

(rocker/tidyverse:4.1.1). Linear regression was carried out with the lm() function.  

Supplemental information for Appendix 2 



 

 90 

 
Figure S1. Mutant KRAS signaling induces global transcriptional changes. 
Related to Figure 1. 
A. Volcano plots of differentially expressed protein coding genes and lncRNAs in 
mutantKRAS AALEs. B. Principal component analysis (PCA) of control (ctrl) and 
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mutant KRAS (kras) AALE RNA-seq libraries. Related to variance explained by 
each PC displayed with axis label. C. Volcano plots of differentially expressed 
protein coding genes and lncRNAs in mutant KRAS HBECs. D. Hierarchical 
clustering of expression z-scores in TCGA LUAD RNA-seq data for genes 
upregulated in mutant KRAS AALEs. Related to genes with IRFbinding motifs in 
their promoter regions are labeled. 
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Figure S2. Mutant KRAS signaling significantly alters the RNA composition 
of 
secreted extracellular vesicles. Related to Figure 3. 
A. Principal component analysis (PCA) of control (CTRL) and mutant KRAS 
(KRAS) AALE extracellular (ex) RNA-seq libraries. Related to variance explained 
by each PC displayed with axis label. B. Distribution of insertion-level abundance 
for TE clades in extracellular RNA-seq libraries (Wilcoxon). C, D. Distribution of 
counts assigned to GENCODE coding, lncRNA, and TE clades in intracellular and 
extracellular RNA-seq libraries.  
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Figure S3. TE RNAs activated by mutant KRAS are enriched for KZNF 
motifs. Related to Figures 3 & 4. 
A. Volcano plots of differentially expressed TE RNAs in mutant KRAS AALEs 
and HBECs. B. Comparison of KZNF gene differential expression in mutant KRAS 
AALEs and HBECs. C. Differential expression of KZNFs with binding motifs in 
mutant KRAS-activated TE RNAs in AALEs. D. Ranking of KZNFs by binding 
score for mutant KRAS-activated TE RNAs in AALEs. E. Comparison of TE 
differential expression (x axis) to the average expression of ZNFs with putative 
binding sites within the TE based on motif library generated by Hughes et al. 
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Figure S4. KZNF binding scores highlight potential regulation of differentially 
expressed TEs in mutant KRAS AALE EVs and HBEC cells. Related to 
Figures 3 & 4. 
A,B. Ranking of KZNFs by binding score for each upregulated TE RNA in mutant 
KRAS extracellular (ex) AALE and intracellular (in) HBEC RNA-seq data.  
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Figure S5. Mutant KRAS-regulated KZNFs repress ISGs and TE RNAs. 
Related to Figures 1, 2, 3 & 4. 
A. Scatter plots of differentially expressed genes between mutant KRAS A549 lung 
cancer cells overexpressing ZNF257 or ZNF682 and mutant KRAS AALEs. B. 
Volcano plots of differentially expressed TE RNAs in mutant KRAS A549 lung 
cancer cells overexpressing ZNF257 or ZNF682. 
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APPENDIX 3- High-Throughput CIRSPR Screening Identifies Genes 

Involved in Macrophage Viability and Inflammatory Pathways 

Sergio Covarrubias, Apple Cortez Vollmers, Allyson Capili,  Michael Boettcher,  

Aaron Shulkin,  Michele Ramos Correa,  Haley Halasz,  Elektra K. Robinson,  

Laura O’Briain,  Christopher Vollmers,  James Blau,  Sol Katzman,  Michael T. 

McManus,  and Susan Carpenter 

My Contributions to the following manuscript: 
 

 This work focusses on identifying genes involved in macrophage cell 

viability. Here we performed a genome-wide CRIPSPR-Cas9 screen targeting 

protein coding genes in bone-marrow-derived macrophages. Following the screen, 

I worked to validate the top significant hits as regulators of macrophage viability. 

I cloned the top sgRNAs from the screen targeting the top significant hits, created 

a stable knockdown cell line for each target and performed a mixed cell assay for 

each of these top candidates. From the work that I did, I generated Figure 3.1F of 

this appendix.  
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3.1 Abstract 

Macrophages are critical effector cells of the immune system, and 

understanding genes involved in their viability and function is essential for gaining 

insights into immune system dysregulation during disease. We use a high-

throughput, pooled-based CRISPR-Cas screening approach to identify essential 

genes required for macrophage viability. In addition, we target 3' UTRs to gain 

insights into previously unidentified cis-regulatory regions that control these 

essential genes. Next, using our recently generated nuclear factor kB (NF-kB) 

reporter line, we perform a fluorescence-activated cell sorting (FACS)-based high-
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throughput genetic screen and discover a number of previously unidentified 

positive and negative regulators of the NF-kB pathway. We unravel complexities 

of the TNF signaling cascade, showing that it can function in an autocrine manner 

in mac- rophages to negatively regulate the pathway. Utilizing a single complex 

library design, we are capable of interrogating various aspects of macrophage 

biology, thus generating a resource for future studies.  

3.2 Introduction 

 

Macrophages are critical cells of the innate immune system providing one 

of the first lines of defense against invading microbes. Macrophages arise from 

precursor monocyte cells that constitute ~10%–20% of the immune cells found in 

the blood (Verhoeckx et al., 2015). Upon encountering a danger signal, monocytes 

differentiate into macrophages and rapidly move to the site of infection. Important 

aspects of macrophage function include their ability to proliferate and migrate, as 

well as their ability to induce the inflammatory program to aid in clearing infections 

and initiate tissue repair to maintain homeostasis (Wynn et al., 2013). While much 

work has been performed to understand the contribution of individual proteins to 

the processes that control macrophage biology, there has been no systematic 

approach adopted to study genes involved in macrophage viability and function 

simultaneously in a high-throughput manner.  
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Clustered regularly interspaced short palindromic repeat (CRISPR) 

technology has revolutionized the field of functional genomics, providing an easy-

to-use method for disrupting specific genes (Knott and Doudna, 2018). The 

coupling of CRISPR technology with pooled single-guide RNA (sgRNA) screening 

al- lows simultaneous knockout of thousands of individual genes in a large 

population of cells (Shalem et al., 2014; Wang et al., 2014), enabling unbiased 

reconstruction of biological pathways. Numerous CRISPR screens have probed 

pathways ranging from cell viability (Tzelepis et al., 2016; Wang et al., 2015) to 

virus infection (Han et al., 2018; Park et al., 2017), supporting the use of this system 

for exploring a wide-range of biology. More recently, in macrophages, CRISPR 

screens have been performed to identify novel regulators of infection and 

inflammation. (Schmid-Burgk et al., 2016) carried out a genome-wide CRISPR 

screen to uncover previously unidentified regulators of the NLRP3 inflammasome. 

They found that knockout of NEK7 rescued macrophages from lethality and was 

associated with activation of the NLRP3 inflammasome. (Yeung et al., 2019) per- 

formed a screen in macrophages to identify regulators of Salmonella infection. 

They identified NHLRC2, showing that it can play a role both in Salmonella 

infection as well as macrophage differentiation. Interestingly, many of the hits 

identified in their screen are within pathways with known chemical inhibitors 

providing avenues for future therapeutic targeting. Finally, a recent screen was 

conducted to identify regulators of Shigella infection in macrophages (Lai et al., 

2020). Lai et al. identified host factors modulated by Shigella flexniri infection. 
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They could show that inhibiting acetyl-coenzyme A (CoA) production caused by 

the infection is beneficial to the function of macrophages and limits the infection. 

In addition, knockout of the TLR1/2 pathway reduced inflammation, enhanced 

macrophage survival, and limited infection (Lai et al., 2020).  

Whereas these screens that have been performed, to date, in macrophages 

are focused on a single readout, we have utilized pooled screening to address three 

questions simultaneously: (1) What genes are required for macrophage survival and 

proliferation? (2) How are those genes regulated? (3) What genes contribute to the 

downstream inflammatory signaling processes?  

Our screens provide a resource that identifies genes essential to macrophage 

viability and provide insights into potential cis-elements within the 30 UTRs of 

these genes that may reveal important means of regulation. Lastly, we identify 

previously unidentified positive and negative regulators of nuclear factor kB (NF-

kB) inflammatory signaling. Unexpectedly, our screen uncovers a role for tumor 

necrosis factor (TNF) as a negative regulator of NF-kB and shows that this is 

functioning in an autocrine manner in macrophages. In a single screen, we bring 

together decades of literature on the complex regulation of TNF. Here, we 

demonstrate the power of CRISPR pooled screening to identify a plethora of genes 

with varied and critical roles in macrophage biology.  
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3.3 Results 

 

3.3.1 Pooled CRISPR Screen Identifies Macrophage-Specific Genes Involved in 

Viability 

To define all genes essential for macrophage survival, immortalized bone-

marrow-derived macrophage (iBMDM)-Cas9 cells were transduced (MOI = 0.3) 

with pooled lentivirus generated from our custom whole-genome sgRNA library 

containing ~270K individual sgRNAs targeting all RefSeq annotated coding genes 

and ~500 microRNAs (miRNAs; 12 guides per gene), along with ~5K non-

targeting controls (Appendix 3 Figures 1A and S1A; Tables S1 and S2). Cells were 

maintained at >1,000 cells per sgRNA throughout the screen. Cells were cultured 

for 21 days collecting genomic DNA from cells at day 0 and day 21 (Appendix 3 

Figure 1A). The libraries were prepared as described previously (Boettcher et al., 

2019). Using the Mann-Whitney (MW) U test, we compared the sgRNA repertoire 

from day 21 to that from day 0 and identified significant genes (Appendix 3 Figure 

1B; Tables S3 and S4). We identified expected viability-related genes with roles in 

spliceosome, proteasome, and cell-cycle functions (Appendix 3 Figure 1C). The 

majority of the top significant hits were genes essential for viability, while only 1% 

of genes were growth suppressors (Figure 1D), consistent with previous findings 

(Gilbert et al., 2014). We also analyzed the data using the model-based analysis of 

genome-wide CRISPR-Cas9 knockout (MAGeCK) analysis pipeline (Tables S5 



 

 106 

and S6). We obtained a strong overlap (88% of genes) using both MW and 

MAGeCK analyses and no significant difference in the identified top hits 

(Appendix 3 Figure S1B); however, the MW U test identifies a much larger set of 

hits, possibly due to its sensitivity and, therefore, identifying more true positives.  

Our library also contains within it random barcode sequences associated 

with each sgRNA (Boettcher et al., 2019). Each sgRNA is associated with ~50 

different barcodes. By analyzing the data with the barcodes, it enabled us to 

generate in-sample replicates providing greater statistical power to identify 

significant hits (Figure S1C; Tables S7 and S8). The barcodes were assigned to four 

bins, providing four in-sample replicates that were then used as the input into 

MAGeCK analysis. Figure S1C compares the single-sample analysis that identified 

417 hits (false discovery rate [FDR] < 0.05) to the in-sample replicate analysis that 

identified 609 hits (FDR < 0.05), showing the power of utilizing the binning 

approach to increase statistical power.  

We compared our viability screen hits to the GenomeCRISPR 

(http://genomecrispr.dkfz.de/) database, which includes a collection of ~500 

CRISPR viability screens performed in ~421 cell types. Over 93% of genes from 

our screen overlapped those from the database (shown in gray, Appendix 3 Figure 

1E), suggesting that these are genes critical for a variety of biological processes 

common to all cell types. Interestingly, ~6% of genes identified showed the 

opposite MW Z-score phenotype in our screen compared to the database, 
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suggesting that these genes have unique cell-type-specific functions in 

macrophages (shown in yellow, Appendix 3 Figure 1E). Furthermore, these 

macrophage-specific essential hits included genes involved in NF-kB signaling 

(Appendix 3 Figure S2), suggesting that these genes evolved functions involving 

not only survival but also inflammatory activation, a critical component of 

macrophage function. We individually cloned six candidate macrophage-specific 

essential guides and validated the phenotype using a mix-cell proliferation assay 

(Appendix 3 Figure 1F). The mix-cell assay involved combining cherry-positive 

cells (containing sgRNAs) with cherry-negative cells at a 1:1 ratio and monitoring 

cell growth over time as assessed by changes in the ratio of cherry-positive to 

cherry-negative cells. As shown in Figure 1F, we confirmed four of the six selected 

candidate genes. We showed that tyrosine-protein kinase (Syk), Interferon 

regulatory factor 8 (Irf8), and myotubularin-related protein 9 (Mtmr9) are 

macrophage-specific essential genes, as targeting the coding sequence of these 

genes resulted in decreased fitness. While PC-esterase domain containing 1B 

(Pced1b) is a growth suppressor in macrophages, knocking it out resulted in 

increased fitness of the cells.  
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Appendix 3 Figure 1 

Appendix 3 Figure 1- Screen Identifies Macrophage-Specific Genes Involved 
in Viability A. Cas9-expressing iBMDM cells were infected with a whole-genome 
library targeting all RefSeq annotated coding genes (Table S1). Two days post-
infection, cells were harvested for an initial day-0 time point and then again after 
21 days in culture. B. The MW U test was performed comparing 12 sgRNAs 
targeting each gene to the nontargeting controls for samples collected at both day 
21 and day 0. Genes are displayed ranked by significance. C. GO-term analysis was 
performed on the top 1,000 significant hits using STRINGdb. D. We determined 
the number of essential genes (negative MW Z score) and total number of growth 
suppressor genes (positive MW Z score) and plotted them as a fraction of the total 
(total = 1,000 genes). E. Viability screen hits from our screen were compared to 
those from GenomeCRISPR, a collection of ~500 CRISPR screens 
(http://genomecrispr.dkfz.de/). Genes ‘‘in common’’ as well as genes showing 
‘‘opposite/macrophage-specific’’ phenotypes are displayed. F. Cas9-expressing 
iBMDM cells were infected with sgRNAs targeting selected macrophage-specific 

regulatory cis-elements with negative roles on gene expression
(miRNA binding sites, adenylate-uridylate-rich elements [AU-
rich elements] affecting stability, etc.). We assessed the pheno-
types of 30 UTR-targeting sgRNAs and found an overall neutral
average phenotype for these guides (Figure 2A), suggesting
that the majority of the sites we targeted did not contain any
cis-regulatory elements. However, a subset of these 30 UTR-tar-

geting guides demonstrated phenotypes of >3-fold change in
both directions, suggestive of sites that contain regulatory ele-
ments that could improve or decrease fitness of the cells (Figures
2B–2D; Table S9). We focused on 30 UTR guides that showed
positive (>3-fold) enrichment for genes whose coding-targeting
guides demonstrated significant negative enrichment (Figures
2B–2D, red stars). We reasoned that these 30 UTR-targeting

Figure 1. Screen Identifies Macrophage-Specific Genes Involved in Viability
(A) Cas9-expressing iBMDM cells were infected with a whole-genome library targeting all RefSeq annotated coding genes (Table S1). Two days post-infection,

cells were harvested for an initial day-0 time point and then again after 21 days in culture.

(B) TheMWU test was performed comparing 12 sgRNAs targeting each gene to the nontargeting controls for samples collected at both day 21 and day 0 . Genes

are displayed ranked by significance.

(C) GO-term analysis was performed on the top 1,000 significant hits using STRINGdb.

(D)We determined the number of essential genes (negative MW Z score) and total number of growth suppressor genes (positive MW Z score) and plotted them as

a fraction of the total (total = 1,000 genes).

(E) Viability screen hits from our screen were compared to those from GenomeCRISPR, a collection of ~500 CRISPR screens (http://genomecrispr.dkfz.de/).

Genes ‘‘in common’’ as well as genes showing ‘‘opposite/macrophage-specific’’ phenotypes are displayed.

(F) Cas9-expressing iBMDM cells were infected with sgRNAs targeting selected macrophage-specific viability genes. We combined cherry-positive cells

(containing sgRNAs) with unedited cherry-negative cells at a 1:1 ratio andmonitored growth of sgRNA-infected cells (cherry) relative to uninfected reference cells

in a mix-cell growth assay for 21 days. Experiment was repeated 2 times, and a representative experiment is displayed.
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viability genes. We combined cherry-positive cells (containing sgRNAs) with 
unedited cherry-negative cells at a 1:1 ratio and monitored growth of sgRNA-
infected cells (cherry) relative to uninfected reference cells in a mix-cell growth 
assay for 21 days. Experiment was repeated 2 times, and a representative 
experiment is displayed.  
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3.3.2 CRISPR Targeting The 3' UTRs of Essential Genes Identifies Cis-

Regulatory Elements  

Untranslated regions (UTRs) offer a critical source of regulation for 

messages through specific cis-elements, which can bind miRNAs and/or proteins 

to regulate pathways including RNA decay and translation (Mayr, 2017). To probe 

for novel cis-elements within 3' UTRs, we specifically targeted the 3' UTR within 

known essential genes. For these essential genes, we expected that guides targeting 

coding exons would cause a decrease in fitness. In contrast, guides targeting 3' UTR 

cis-elements that result in an increase in fitness will represent regions containing 

regulatory cis-elements with negative roles on gene expression (miRNA binding 

sites, adenylate-uridylate-rich elements [AU- rich elements] affecting stability, 

etc.). We assessed the phenotypes of 3' UTR-targeting sgRNAs and found an 

overall neutral average phenotype for these guides (Appendix 3 Figure 2A), 

suggesting that the majority of the sites we targeted did not contain any cis-

regulatory elements. However, a subset of these 3' UTR-targeting guides 

demonstrated phenotypes of >3-fold change in both directions, suggestive of sites 

that contain regulatory elements that could improve or decrease fitness of the cells 

(Appendix 3 Figures 2B–2D; Table S9). We focused on 3' UTR guides that showed 

positive (>3-fold) enrichment for genes whose coding-targeting guides 

demonstrated significant negative enrichment (Figures 2B–2D, red stars). We 
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reasoned that these 3' UTR-targeting guides may disrupt significant cis-elements 

that help explain the opposing phenotype we observed (Appendix 3 Figures 2B–

2D, red stars). One possible concern with this analysis is that it is limited to a single 

sgRNA targeting the sites within the 3' UTR (compared to 10–12 within the screen 

for each coding gene target), which could lead to false positives. To mitigate this, 

we made use of the internal barcodes associated with each individual sgRNA. 

Identifying a sgRNA hit associated with multiple individual barcodes reduces the 

possibility of the hit being a false positive. In one example, the viability phenotype 

could be caused by integration-specific effects of an sgRNA on neighboring genes. 

As a control, we analyzed all barcodes associated with all random control sgRNAs, 

comparing the day-0 to day-21 viability screens, and can show high correlation, 

with an R2 of 0.814. This shows that the distribution of reads for barcodes of 

random control genes do not change across the course of the experiment, making 

counting barcodes a valid approach (Appendix 3 Figure 2E). Therefore, we counted 

all unique barcodes associated with sgRNAs in selected genes or random controls 

and compared the reads associated with these genes on day 21 to those on day 0. 

As expected, there is no difference in the read count from day 21 to day 0 for the 

random controls (shown in gray, Appendix 3 Figure 2F). In contrast, we see 

positive enrichment for genes (shown in black, Appendix 3 Figure 2F) whose 

coding-targeting guides demonstrated the opposite effect, which confirmed our 

previous observations in Appendix 3 Figures 2B–2D.  
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We individually cloned selected candidate 3' UTR guides and validated the 

phenotype using a mix-cell proliferation assay as described previously (Appendix 

3 Figure 2G). In all the selected hits we could validate, we confirmed that elements 

targeted within 3' UTRs resulted in an increase in fitness, while those targeting 

within the coding sequence resulted in a decrease in fitness. The phenotypes for 

these 3' UTR-targeting guides provide a resource of potentially important cis-

elements involved in mRNA stability, and further work could involve interrogating 

whether these sites are miRNA targets or targets of other proteins involved in RNA 

decay or translation processes.  
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Appendix 3 Figure 2 

Appendix 3 Figure 2- Targeting of the 3' UTRs of Essential Genes to Probe 
for Previously Unidentified cis-Regulatory Elements. A. Average phenotypes 
for all 3'  UTR-targeting guides was plotted. Error bars represent standard 
deviation of all sgRNAs. B–D. We summarize the phenotypes for coding-
targeting guides (gray) and 3'  UTR-targeting guides (pink) for select genes: 
Sdad1, Foxp1, and Cdk13. E. Scatterplot. The x-coordinates represent the number 
of unique barcodes associated with each random sgRNA at day 0. The y-
coordinates represent the number of unique barcodes associated with each random 
sgRNA at day 21 (R2 = 0.814).	 F. Unique barcode counts were obtained for the 

Figure 2. Targeting of the 30 UTRs of Essential Genes to Probe for Previously Unidentified cis-Regulatory Elements
(A) Average phenotypes for all 30 UTR-targeting guides was plotted. Error bars represent standard deviation of all sgRNAs.

(B–D) We summarize the phenotypes for coding-targeting guides (gray) and 30 UTR-targeting guides (pink) for select genes: Sdad1, Foxp1, and Cdk13.

(E) Scatterplot. The x-coordinates represent the number of unique barcodes associated with each random sgRNA at day 0. The y-coordinates represent the

number of unique barcodes associated with each random sgRNA at day 21 (R2 = 0.814).

(legend continued on next page)
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indicated genes, including random controls. The fold change of these counts from 
day 0 to day 21 was calculated. G. We selected 3' UTR-targeting guides that 
demonstrated positive enrichment, opposite to their coding-targeting guides, 
which had negative enrichment. We validated select guides by monitoring growth 
of sgRNA-infected cells (cherry) relative to uninfected reference cells in a mix-
cell growth assay. Error bars represent standard deviation of three technical 
replicates.  
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3.3.3 FACS-Based Reporter Screen Identifies Positive and Negative Regulators of 

NF-kB 

Macrophages are critical effectors of the inflammatory response, which 

involves transcription factors including NF-kB (Liu et al., 2017). We had 

previously developed NF-kB reporter iBMDMs, adding 5 3 NF-kB-binding motifs 

(GGGAATTTCC) upstream of the minimal cytomegalovirus (CMV) promoter-

driving green fluorescent protein (GFP) and demonstrated lipopolysaccharide 

(LPS)-dependent activation of GFP fluorescence (Covarrubias et al., 2017). We 

lentivirally introduced Cas9 into these cells and confirmed its activity (iBMDM-

NF-kB-Cas) (Covarrubias et al., 2017). Here, we performed a fluorescence-

activated cell sorting (FACS)-based sorting screen using iBMDM-NF-kB-Cas cells 

and infected with the same library as outlined in Figure 1A. After the library was 

established in the cells for 7 days, we stimulated with LPS for 24 h (Appendix 3 

Figures 3A, S3A, and S3B; Table S10). We sorted the top/bottom 20% of GFP-

expressing cells and collected approximately 100 cells per sgRNA (~27 million 

cells for each top/bottom sort), with the aim of identifying both positive (bottom 

20%) and negative (top 20%) regulators of the pathway (Appendix 3 Figures S3A 

and S3B; Table S11). Due to the inherently noisy nature of pooled screening, we 

chose to perform a MW U test to identify significant genes, comparing GFP-low to 

GFP- high sorted samples, and significant genes were ranked by p < 0.01 (Figure 

3B) (Kampmann et al., 2013). As expected, we found several positive controls, 
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including EGFP and known regulators myeloid differentiation primary response 88 

(Myd88) and Rela (NF-kB/p65) in our top hits (Figure 3C). We performed Gene 

Ontology (GO)-term enrichment analysis for the top 150 significant positive 

regulators and found enrichment for pathways that included ‘‘NF-kappaB 

signaling’’ (Appendix 3 Figure 3D). Within the top 150 genes, we identified 

numerous genes known to be involved in the Toll-like receptor (TLR)/NF-kB 

signaling pathway, which include Tlr4 (LPS receptor) and Rela (NF-kB/p65) (Fig-

ure 3E; Table S12), confirming that the screen was a success. We plotted the 

average phenotypes (top 3 guides) for our top 40 candidates, which showed that the 

average sgRNA enrichments were significant (Appendix 3 Figure 3F). Top 

candidates were localized throughout the cell (Appendix 3 Figure 3G; Table S13), 

including in the extracellular compartment. Numerous positive and negative 

regulators of NF-kB have been identified by their differential expression upon NF-

kB activation (Bhatt and Ghosh, 2014). Using previously published data (Zhang et 

al., 2017), we examined the top 50 negative and positive regulators and found that 

the majority were not differentially expressed during LPS stimulation and, 

therefore, could have been missed by previous approaches as regulators of the 

pathway (Figure S3C). NF-kB has been demonstrated to activate genes that 

function in positive- or negative- feedback regulation of the pathway (Oeckinghaus 

and Ghosh, 2009). We assessed whether NF-kB (p65) bound to the promoters of 

our top candidates using published p65 chromatin immunoprecipitation sequencing 

(ChIP-seq) data (Lam et al., 2013) (Appendix 3 Figures S3D and S3E). We found 
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that p65 bound 42% and 54% of the top positive and negative regulators, 

respectively (Appendix 3 Figures S3D and S3E), further supporting the idea that a 

significant number of regulators of NF-kB can, themselves, be regulated by NF-

kB. We validated our top candidates by re-cloning the top two performing sgRNAs 

per candidate, generating individual cell lines for each sgRNA, followed by 

lentiviral infection, selection, and LPS stimulation for 6 h (Appendix 3 Figure 3H; 

Table S14). The readout for our secondary validation experiments involved 

measuring Il6 by qPCR. Il6 is a well-known downstream target of NF-kB and a 

crucial gene in controlling inflammation (Appendix 3 Figure 3H). As expected, 

ablation of our negative regulators resulted in increased Il6 expression, while 

targeting of positive regulators led to decreased levels of Il6 relative to non-

targeting controls (Appendix 3 Figure 3H). In summary, we performed a genome-

wide screen and identified 50 previously unidentified positive and 65 negative 

regulators of NF-kB signaling. To date, there are 120 known regulators of NF-kB, 

and our screen has added 115 additional regulators (p < 0.01) to the pathway. These 

will provide a rich source of information going forward to better understand the 

complex pathways that control inflammation.  
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Appendix 3 Figure 3 

(legend on next page)
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Appendix 3 Figure 3- Screen Identifies Positive and Negative Regulators of 
NFkB Signaling. A. Overview of the NF-kB screen: sgRNA-library-infected 
iBMDM-NF-kB-Cas9 cells were stimulated with LPS (200 ng/mL) for 24 h 
before sorting the top and bottom 20% of GFP-expressing cells. Cells were 
collected and processed as described in STAR Methods. B. MW U test was 
performed comparing 12 sgRNAs targeting each gene to the non-targeting 
controls for GFP-low versus GFP-high sorted samples. Significant genes are 
displayed, ranked by significance. C. Zoom-in of the top screen hits, displaying 
positive regulators (blue) and negative regulators (red). Diagram depicts positive- 
and negative-regulation NF-kB signaling. D. GO-term analysis was assessed for 
the top 150 positive regulators using STRINGdb. E. Connectivity was determined 
by STRINGdb for the top 150 positive-regulator candidates. F. Average sgRNA 
enrichment for the top 3 sgRNAs was calculated for the top 40 screen hits. Error 
bars represent standard deviation of three biological replicates. 
G. Predicted protein localization was determined for the top 40 most significant 
genes using UniProt’s COMPARTMENTS database (https://compartments. 
jensenlab.org/Downloads). H. Selected candidates were infected with either 
control (random) or candidate-specific sgRNAs and were stimulated for 6 h with 
LPS, before RNA harvest. qPCR-based validation was performed by conducting 
qRT-PCR for Il6 RNA relative to Gapdh. Experiment was repeated 3 times, and a 
representative experiment is displayed. Error bars represent standard deviation of 
three technical replicates.  
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3.3.4 Membrane-Bound TNF Alpha (TNF-a) Acts As A Strong Negative 

Regulator Of The NFkB Pathway  

TNF-a is a well-known pro-inflammatory cytokine with established roles in 

driving NF-kB-related inflammation (Bradley, 2008). Furthermore, anti-TNF 

therapy is a proven method for the treatment of various inflammatory-related 

diseases (Ma and Xu, 2013). Given its established role as a soluble protein 

functioning as a positive regulator of NF-kB, it was surprising to discover that our 

pooled-based screen approach identified TNF as a strong negative regulator of 

inflammation (Appendix 3 Figures 3F and 3H). We confirmed TNF editing by 

stimulating control or anti-TNF edited cells with LPS for 24 h before collecting 

supernatant and analyzing TNF protein via ELISA. We found that TNF was 

undetectable in the supernatant after LPS stimulation (Appendix 3 Figure 4A). We 

also confirmed near-complete ablation of TNF via intracellular staining (Appendix 

3 Figure 4B). Our screen suggested a localized function for TNF, which would be 

incompatible with its soluble state. Interestingly, TNF can exist as both soluble and 

membrane bound (Ardestani et al., 2013). We confirmed the presence of 

membrane-bound TNF on the surface of our iBMDMs and found maximal surface 

TNF at 6 h post-LPS stimulation (Appendix 3 Figure 4C). TNF mediates its 

inflammatory effect via binding to its receptor Tnfrsf1a (p55) (Bradley, 2008). Our 

screen confirmed Tnfrsf1a (p55) as a positive regulator of NF-kB in contrast to 

what was found for Tnf (Appendix 3 Figures 4D and 4E). However, TNF can bind 
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to two different receptors, Tnfrsf1a (p55) and Tnfrsf1b (p75), which may have 

opposing functions (Peschon et al., 1998). While the sgRNAs targeting p75 in our 

screen show a trend toward it being a negative regulator similar to TNF, it was not 

significant (Appendix 3 Figure 4D). However, we were able to confirm by qPCR 

that targeting p75 can result in an increase in Il6 (Appendix 3 Figure 4F) similar to 

that observed when TNF is knocked down (Appendix 3 Figures 4D and 4E). 

Interestingly, 6 h post-LPS stimulation, levels of TNF and Tnfrsf1b (p75) increased 

11-fold and 66-fold, respectively, while the levels of Tnfrsf1a (p55) increased a 

moderate 4-fold (Appendix 3 Figure 4G). We evaluated whether the enhanced 

activation of NF-kB in TNF-edited cells could be rescued by mixing these cells 

with unedited (TNF-expressing) cells. We combined cherry- positive cells 

(containing TNF guide RNAs) with unedited cherry- negative cells at a 1:1 ratio. 

Mixed cells were LPS stimulated for 24 h before FACS analysis to measure GFP 

mean fluorescence in- tensity (MFI) (NF-kB activation) (Figure 4H). The enhanced 

NF-kB activation in TNF-edited cells could not be rescued by mixing these cells 

with unedited cells (even when we increased the cherry-negative cells to >75%). 

These data suggest that TNF has autocrine properties, acting within the cell from 

which it is produced, and neither soluble TNF production or membrane-bound TNF 

from neighboring cells can reverse the increase in inflammatory signaling 

(Appendix 3 Figure 4I). The expression profiles of TNF, TNFRSF1A, and 

TNFRSF1B were mirrored in the human THP1 monocytic cell line stimulated with 

PAM3CSK4 (TLR1/2 agonist), suggesting that this specific regulation of TNF is 
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conserved (Appendix 3 Figure S4). Here, we confirm that, indeed, it is membrane 

bound TNF that is functioning as a negative regulator of NF-kB, presumably 

through interactions with p75. Remarkably, our single screening assay could 

provide insight into this complex signaling cascade and bring together decades of 

different approaches to reveal the complexity of TNF signaling in macrophages 

involving membrane-bound forms of TNF in addition to the roles of the respective 

receptors.  
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Appendix 3 Figure 4 

(legend on next page)
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Appendix 3 Figure 4- Screening Identifies Negative-Feedbak Regulatory Loop 
Used by the Tumor Necrosis Factor (TNF) to Regulate Inflammation. A. 
ELISA was performed in control or TNF-edited iBMDMs stimulated with LPS for 
24 h. Supernatant was harvested, and levels of TNF were quantified. Error bars 
represent standard deviation of three biological replicates. B. Control or TNF-
edited iBMDMs were stimulated with LPS followed by brefeldin A treatment and 
stained to assess intracellular TNF levels by flow cytometry. C. iBMDMs were 
stimulated for the indicated time points (LPS for 0, 6, and 24 h), and cell surface 
expression of TNF was measured by flow cytometry. D. Average sgRNA 
enrichment for the top 2 sgRNAs was calculated for TNF and its receptors: p55 and 
p75. Error bars represent standard deviation of two biological replicates. E and F. 
qRT-PCR was performed for Il6 RNA in iBMDMs edited with either control, TNF, 
p55 (E), or p75 F. sgRNAs and stimulated with LPS for 6 h. Error bars represent 
standard deviation of three biological replicates. G. Mean fragments per kilobase 
of transcript per million mapped reads (FPKM) values (4 biological replicates) are 
plotted for genes Tnf, Tnfrsf1a, and Tnfrsf1b for both un-stimulated (‘‘no-stim’’) 
or LPS-stimulated (24 h) cells. Error bars represent standard deviation of four 
biological replicates. H. We combined cherry-positive cells (containing Tnf 
sgRNAs) with unedited cherry-negative cells at a 1:1 ratio. Mixed cells were 
stimulated with LPS for 24 h before FACS analysis to measure GFP mean 
fluorescence intensity (MFI) as proxy for NF-kB activation. Error bars represent 
standard deviation of three biological replicates. (I) Model of localized TNF 
negative regulation of NF-kB signaling.  
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3.4 Discussion 

 

Here, we utilize CRISPR-based pooled genetic screening to reveal genes 

important for both macrophage viability and inflammation. For the viability screen, 

we utilized both MW U test analysis as well as the MAGeCK analysis pipelines to 

identify significant hits. 88% of significant genes identified in the MAGeCK 

analysis were also identified in the MW U test. A larger proportion of significant 

hits were identified by MW test, which could repre- sent true positives or that the 

more stringent MAGeCK pipeline identifies fewer false positives. We identified 

macrophage-specific viability genes enriched in NF-kB signaling (Figures 1F and 

S2). Additionally, we identified and validated viability phenotypes for 3' UTR-

targeting guides, which may reveal important cis-elements involved in mRNA 

stability (discussed further later). In a separate screen, we utilized our NF-kB -

reporter cells to perform a FACS-based screen, resulting in the identification of 

positive and negative regulators of NF-kB signaling. We go on to describe an 

unexpected role for TNF as a locally acting negative regulator of NF-kB. Very few 

miRNAs were identified as hits in either screen (Tables S3, S4, S9, S10, and S11). 

Although we targeted ~500 miRNAs, it is possible that many of these are not 

expressed in macrophages or that the sgRNAs targeting the miRNAs did not work.  
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3.4.1 Macrophage-Specific Genes Involved in Viability  

Numerous viability screens have been performed in a wide range of cell 

types and have demonstrated that the catalog of essential genes can vary 

significantly among distinct cell types (Wang et al., 2014, 2017). Cell-type-specific 

differences in viability can be due to genetic differences that could render some 

pathways inactive, forcing dependency on other pathways. Indeed, Wang et al. 

(2017) compared essential genes across 14 acute myeloid leukemia (AML) lines 

and found certain genes to be essential only for a specific subset of the AML lines 

with certain genotypes. Moreover, a typical cell expresses approximately two thirds 

of its genes (Hart et al., 2013). Therefore, whether a gene or set of genes is essential 

can be context specific, varying upon different growth conditions or treatments, etc. 

(Hart et al., 2015; Viswanatha et al., 2018). In our screen, we identified 61 genes 

with distinct essentiality in macrophages compared to a database collection of ~421 

cell-line CRISPR screens (Figure 1E). We selected 6 of the top candidates that 

acted as either essential genes or growth suppressors and could validate 4. Not 

surprisingly, we identified and validated the myeloid-specific transcrip- tion factor 

Irf8 as a macrophage-specific essential gene (Figure 1F). Interestingly, Irf8 has 

roles in both myeloid cell viability and inflammatory response (Langlais et al., 

2016). Additionally, the macrophage-specific essential genes included ones 

involved in NF-kB signaling, suggesting that this pathway, similar to Irf8, may be 

important for both viability and inflammatory activation (Figure S2). Indeed, a 

significant fraction of them (~10 proteins)—including Syk and Mtmr9, which we 
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validated (Figure 1F)—are predicted to physically interact supporting a 

macrophage-specific regulation of protein complexes that control cell viability. In 

summary, understanding the pathways that control viability in macrophages is 

essential for development of novel gene targets to control macrophage proliferation 

in scenarios where the inflammatory response is not properly controlled.  

3.4.2 3' UTR-Targeting Guides and Identification of Potential cis-Elements  

UTRs of messages are important for regulating stability, translation, and 

localization (Mayr, 2019). Sequences within the UTRs (cis-elements) can function 

in miRNA binding, structure, and/or protein binding (Mayr, 2017). Furthermore, 

cell-type-specific expression differences in miRNAs and RNA binding proteins 

(RBPs) allow for specificity in regulating mRNAs (Erson-Bensan, 2016). Given 

the rich source of regulation that occurs within the 3'  UTR, we built into our library 

design sgRNAs targeting 3' UTRs within known essential genes with the goal of 

systematically identifying cis-elements that contribute to the regulation of essential 

genes. For these genes, sgRNAs targeting coding sequences resulted in decreased 

fitness, as expected. Within these genes, we focused on 3' UTR-sgRNAs that 

resulted in increased fitness, which could represent the disruption of destabilizing 

cis-elements, such as miRNA binding sites, sites of inter- action with RBPs or AU-

rich elements, etc. CRISPR targeting of these destabilizing cis-elements may result 

in stabilization of the mRNA. We determined whether there were any overlapping 

miRNA target sites using TargetScan, but we did not find any with significant 

overlap, suggesting that there are other mechanisms of regulation at play besides 
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miRNA targeting. However, Cdk13-utr3-g1 and Pias1-utr3-g1 (Figure 2G) did 

target regions near (<50–80 bp) the miRNA binding sites for mir-124 and mir-10, 

respectively, which could potentially disrupt secondary structure, mir binding, or 

both (Table S9). Another 3'  UTR-targeting guide 1 for Arcn1, is predicted to target 

near a mushashi element, which is known to negatively regulate RNA stability 

(Bennett et al., 2016). Given that the majority of our 3' UTR targeting guides 

resulted in no phenotype, an alternative method to try in future studies would be to 

use 2 sgRNAs to create larger deletions (Zhao et al., 2017). In summary, we have 

functionally vali- dated potential 3' UTR cis-elements and provided a rich resource 

for future work aimed at dissecting how these elements contribute to gene 

expression.  

3.4.3 Dissection of the Complex Biology of TNF  

We utilized the MW U analysis to identify hits from our FACS- based NF-

kB reporter screen. Sorting screens are inherently noisier than viability screens, due 

to the fact that significant hits are going to be proportional to the sgRNA 

enrichment, and with our single (LPS) treatment of cells, there is no ability to enrich 

over time. Here, we activated the NF-kB iBMDM reporter cells for 24 h with LPS 

and then sorted for the GFP low and high hits (top and bottom 20%) that represent 

positive and negative regulators of the pathway. Newer tools are beginning to be 

developed to help with the analysis of these complex pooled sorting-based screens. 

Recently, de Boer et al. 2020 published a tool, ‘‘MAUDE,’’ that is specifically 

designed for sorting screens, which could be beneficial for future studies of these 
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complex assays. Nevertheless, we could show, using MW analysis, that the GO 

terms for the top 150 hits included ‘‘NF-kappaB signaling,’’ and we confirmed 16 

additional NF-kB regulators using individually cloned lines measuring Il6 

production as a secondary readout.  

One of the surprising findings from our NF-kB screen was the identification 

of TNF as a negative regulator of NF-kB (anti-inflammatory). We were surprised 

for two reasons: (1) TNF is an extensively studied pro-inflammatory cytokine with 

established roles in driving NF-kB-related inflammation (Bradley, 2008). (2) TNF 

is a secreted protein; therefore, a pooled CRISPR screen would not be expected to 

capture its biology. Numerous studies spanning decades of research have revealed 

that TNF biology is much more complex. TNF can exist as both soluble (17 kDa) 

and membrane-bound (26 kDa) forms, and multiple groups have shown that 

membrane-bound TNF functions as a negative regulator of inflammation in contrast 

to its soluble form (Alexopoulou et al., 2006; Ardestani et al., 2013). The dual 

functions of TNF can also be explained, in part, by its binding to two receptors: 

Tnfrsf1a (p55) and Tnfrsf1b (p75), which have opposing effects on inflammation 

(Peschon et al., 1998). Interestingly, the membrane-bound form of TNF has been 

shown to preferably bind to the inhibitory receptor, p75, allowing for localized 

regulation of inflammation (Grell et al., 1995). Here, we reveal the complex 

regulatory biology of TNF, providing evidence that membrane-bound TNF 

functions as a negative regulator of NF-kB likely through its binding to p75 in 

macrophages. Our results also support a model in which membrane-bound TNF can 
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function in an autocrine manner, acting within the cell that produces it. In this study, 

we bring together decades of research on TNF biology and its role in inflammation 

using this single-screening approach. Anti-TNF therapy remains one of the most 

effective methods for the treatment of various autoimmune diseases, including 

rheumatoid arthritis (RA) and irritable bowel disease (IBD) (Hyrich et al., 2009; 

Peyrin-Biroulet, 2010), yet as many as 20%– 40% of patients do not respond to 

treatment (Lopetuso et al., 2017). Our findings show that editing of TNF resulted 

in elevated Il6 levels, which is another important pro-inflammatory cytokine and 

might explain the lack of response to anti-TNF therapy. Yimin and Kohanawa 

(2006) demonstrated that a TNF knockout mouse showed elevated levels of Il6, 

which is consistent with our findings. More importantly, they presented data 

showing that production of TNF and IL6 can be negatively regulated by each other 

(Yimin and Kohanawa, 2006). Therefore, the targeting of TNF could lead to 

elevated levels of Il6, which may result in elevated inflammation in patients. Our 

data showed that editing p55 inhibits NF-kB-driven Il6 production (Figures 4D and 

4E), while editing p75 caused an increase in Il6 (Figure 4F). Blocking p55 (via 

antibody or small molecule) could be an alternative that could block the pro-

inflammatory effects of p55 while allowing Tnf to, instead, bind to p75 to promote 

anti-inflammatory signaling (Yang et al., 2018). In summary, with one pooled 

CRISPR screen, we have revealed interesting complexities of TNF regulation and 

have presented evidence for alternative therapeutic strategies.  
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3.4.4 Future Directions  

Here, we have demonstrated the power of CRISPR screening in revealing 

important macrophage biology probing both viability and inflammatory pathways. 

Macrophages are critical cells of the innate immune system providing one of the 

first lines of defense against invading microbes. The ability for macrophages to 

function optimally requires their ability to proliferate and migrate to reach the site 

of infection and appropriately engage their inflammatory program. Here, we found 

60 macrophage-specific viability genes and uncovered 115 additional regulators of 

NF-kB. The future characterization of these genes will likely yield novel regulatory 

insights into the complex regulation of viability and inflammatory pathways. From 

a therapeutic point of view, it would be interesting to explore whether there are 

drugs that may target some or any of our screen candidates (Wishart et al., 2018). 

In conclusion, we have revealed important biology insights related to macro- phage 

function and believe that this work represents a significant resource for the 

macrophage research community.  

 

3.5 Methods 

3.5.1 Experimental Model and Subject Details  

Male immortalized bone-marrow-derived macrophages (iBMDMs) with 

the NF-kB reporter and Cas9 (iBMDM-NFKB-Cas9) cells (previously described in 

Covarrubias et al., 2017). Cas9 activity was validated via GFP kd (~75% kd) prior 
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to beginning the screen. Cells were cultured in DMEM, supplemented with 10% 

low-endotoxin fetal bovine serum (ThermoFisher) and 1X penicillin/strepto- mycin 

and incubated at 37°C in 5% CO2.  

THP-1 cells were cultured in RPMI 1640 supplemented with 10% low-

endotoxin fetal bovine serum (ThermoFisher), 1X penicillin/ streptomycin and 2-

mercaptoethanol (0.05 mM, Sigma-Aldrich, M6250), and incubated at 37°C in 5% 

CO2.  

3.5.2 sgRNA Library Design and Cloning  

We created genome-scale sgRNA library consisting of over 270,000 total 

sgRNAs (12 sgRNAs per gene) targeting every RefSeq-an- notated (mm9) coding 

gene, as well as all microRNAs and select 3' UTRs. The library contains > 5,000 

non-target control sequences (NTC). The earliest possible ‘‘constitutive’’ exon of 

each transcript variant was targeted. The criteria for sgRNA selection and the 

cloning strategy protocol have been previously described (Boettcher et al., 2018, 

2019). All sgRNA sequences are shown in Table S1.  

3.5.3 Lentiviral Production  

HEK293T cells were seeded at 6,000,000 cells per plate in 15 cm dishes in 

20 mL media (DMEM, 10% FBS) and incubated overnight at 37°C, 5% CO2. The 

next morning, 8 mg sgRNA library plasmid, 4 mg psPAX2 (Addgene #12260), 4 
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mg pMD2.G (Addgene #12259) and 80 mL lipofectamine2000 (Invitrogen) were 

mixed into 1 mL serum-free OptiMEM (GIBCO), vortexed and incubated for 20 

min at RT and added to the cells. At 72 h post-transfection, supernatant was 

harvested, passed through 0.45 um filters (Millipore, Stericup) and aliquots were 

stored at 80°C.  

3.5.4 CRISPR Screen  

iBMDM-NFKB-Cas9 cells were infected with the sgRNA genome-scale 

library at a at low multiplicity of infection (MOI = 0.3). Three days post infection, 

cells were puromycin-selected (10 mg/ml) for 5 days to obtain cherry-positive 

(sgRNA) cells and were maintained at > 1000X coverage at all times.  

3.5.5 Growth Screen  

Prior to puro-selection, we collected a day 0 time point, consisting of 1000X 

coverage (270 million cells). We then collected a day 21 time point (also 1000X 

coverage). Cells from both time points were cryo-preserved in 90% FBS, 10% 

DMSO for later processing.  

3.5.6 FACS Screen  

Library infected and selected iBMDM-NFKB-Cas9 cells were expanded to 

2000X coverage. Cells were stimulated with 200 ng/ml of LPS for 24 h to induce 

expression of GFP (NF-kB responsive). Prior to sorting, cells were collected in 
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FACS buffer (1XPBS, 1%FBS, 5mM EDTA). Stimulated cells were analyzed by 

flow cytometry alongside unstimulated cells to ensure the mean fluorescence 

intensity (MFI) of stimulated cells was > 10-fold compared to unstimulated cells. 

All flow cytometry experiments and screening were con- ducted on a BD 

FACSAria II. GFP was excited using a 488-nm laser and detected using a 525/50-

nm filter. Sorting was conducted using 4-way purity into 2 tubes and a 100-mm 

nozzle. Cells were gated by forward (FSC-A) and side scatter (SSC-A) for live 

cells, then for single cells using FSC-A/FSC-H. Lastly, we evaluated GFP 

expression (SSC versus GFP), FACS sorted and collected the top/bot- tom 20% 

into separate tubes. At least 100 cells/sgRNA (100X coverage) for each sorted 

population were collected and cryo-pre- served in 90% FBS, 10% DMSO for later 

processing.  

sgDNA processing, PCR and sequencing. Genomic DNA was collected 

from cell pellets (270 millions cells, 1000X coverage) or (27 millions cells, 100X 

coverage for sorted cells) and was extracted by methods described previously 

(Boettcher et al., 2018, 2019). A nested PCR strategy was used to 1) allow 

amplification sgRNA repertoire and 2) to add appropriate Illumina adapters for 

NGS (detailed protocol is described in Boettcher et al. (2019). For the 100X 

coverage sorted samples, we scaled the gDNA extraction volumes 1:5 (i.e., 2ml 

instead of 20ml). Quality and purity of the PCR product were assessed by 

bioanalyzer (Agilent), and sequencing was performed on an Illumina HiSeq 2500 

platform using paired end 50 kits with the custom sequencing primer 50-
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GAGACTATAAG- TATCCCTTGGAGAACCACCTTGTTGG-3' for reading the 

sgRNA sequence. Data was submitted to GEO. All tables can be accessed through 

Mendeley Reserved DOI: 10.17632/vtvxykv2cr.1.  

3.5.7 Macrophage specific viability genes and 3' UTR guide validation (Mix-cell 

growth assay) 

sgRNA-infected cells (cherry-pos) were mixed with uninfected cells 

(cherry-neg) at a 1:1 ratio in triplicate. We used Flow cytometry to monitor the ratio 

of cherry-pos to cherry-neg cells at 0- and 21-days post plating. All validation 

cytometry was performed on the Attune NxT Flow Cytometer.  

3.5.8 NFkB guide Validation (qRT-PCR) 

iBMDM-NFkB-Cas cells infected with indicated guide-expressing 

lentivirus and were stimulated with LPS (200 ng/ml) for 6 h prior to harvesting for 

RNA. Total cellular RNA from BMDM cell lines was isolated using the Direct-zol 

RNA MiniPrep Kit (Zymo Research) according to manufacturer’s instructions. 

RNA was quantified and controlled for purity with a nanodrop spectrometer. 

(Thermo Fisher). For RT-qPCR, 500-1000 ng were reversely transcribed (iScript 

Reverse Transcription Supermix, Biorad) followed by RT- PCR (iQ SYBRgreen 

Supermix, Biorad) using the cycling conditions as follows: 50C for 2 min, 95°C for 

2 min followed by 40 cycles of 95°C for 15 s, 60°C for 30 s and 72°C for 45 s. 

qRT-PCR primer sequences are list below.  
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3.5.9 ELISA Analysis  

For the ELISA, iBMDMs were stimulated with LPS for 24 h and 

supernatant was collected from triplicate wells. Supernatant was diluted 1:3 and 

Tnf-alpha levels were measured using the mouse TNF-alpha DuoSet ELISA (R&D 

Systems) kit following manufacturer’s protocol.  

3.5.9 Antibody staining for FACS  

For intracellular staining, iBMDMs were LPS-stimulated for 0 or 6 h and 

were treated with Brefeldin A for the last 5 hours of stimulation. Cells were then 

collected, fixed with 4% PFA and permeabilized with perm buffer (3% BSA, 0.2% 

Triton-X, 1XPBS), followed by antibody staining with PEcy7 anti-mouse Tnf-

alpha (1:150, Thermofisher) or isotype control (1:150, Biolegend). For surface 

staining, iBMDMs were LPS-stimulated for 0, 6, 24 h. Cells were collected in 

sorting media (2% Fetal Calf Serum, 5mM EDTA, 1XPBS), treated with Fc 

receptor block (1:250, BD PharMingen) and were then stained with same Tnf and 

isotype antibodies used above, all done in sorting media.  

3.5.10 RNA isolation and cDNA synthesis and RT-qPCR  

Total cellular RNA from THP1 cell lines was isolated using the Direct-zol 

RNA MiniPrep Kit (Zymo Research) according to manufacturer’s instructions. 

RNA was quantified and controlled for purity with a nanodrop spectrometer. 

(Thermo Fisher). For RT-qPCR, 500- 1000 ng were reversely transcribed (iScript 



 

 137 

Reverse Transcription Supermix, Biorad) followed by RT-PCR (iQ SYBRgreen 

Supermix, Biorad) using the cycling conditions as follows: 50°C for 2 min, 95°C 

for 2 min followed by 40 cycles of 95°C for 15 s, 60°C for 30 s and 72°C for 45 s. 

The melting curve was graphically analyzed to control for nonspecific 

amplification reactions.  

3.5.11 RNA-Sequencing  

For generation of RNA-Sequencing libraries the human THP1 cells, RNA 

was isolated from control or Pam3CSK40-stimulated cells as described above and 

the RNA integrity was tested with a BioAnalyzer (Agilent Technologies). For 

RNA-Sequencing target RIN score of input RNA (500-1000ng) usually had a 

minimum RIN score of 8. RNA-Sequencing libraries were prepared with TruSeq 

stranded RNA sample preparation kits (Illumina), depletion of ribosomal RNA was 

performed by positive selection of polyA+ RNA. Sequencing was performed on 

Illumina HighSeq or NextSeq machines.  

3.5.12 Quantification and Statistical Analysis  

RNA-Sequencing  

RNA-seq 50 bp reads were aligned to the human genome (assembly 

GRCh37/hg19) using TopHat. The Gencode V32 gtf was used as the input 

annotation. Differential gene expression specific analyses were conducted with the 

DESeq R package. Specifically, DESeq was used to normalize gene counts, 
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calculate fold change in gene expression, estimate p values and adjusted p values 

for change in gene expression values, and to perform a variance stabilized 

transformation on read counts to make them amenable to plotting.  

Screen Analysis and generation of hit list  

fastq.gz files were analyzed using the gRNA_tool: 

https://github.com/quasiben/gRNA_Tool. All guide RNA (sgRNA) + barcode 

reads were collapsed to obtain raw sgRNA counts. Counts were normalized to the 

median and fold-changes were calculated for each sgRNA. To identify significant 

genes for the growth screen, the Mann-Whitney U test was performed comparing 

fold- changes for sgRNAs targeting each gene to non-targeting controls (described 

in Gilbert et al., 2014) or by following the MAGeCK analysis pipeline (as described 

in Li et al., 2014). MAGeCK analysis was performed on the full dataset as well as 

on the data binned into four separate samples (insample replicates) based on the 1st 

basepair of the random barcode (bins A,T,G, and C). The data was then used as 

input into the MAGeCK analysis pipeline. For the growth screen, the Day 21 

sample was compared to the Day 0 sample. To identify significant genes for the for 

the FACS screen, GFP low (bottom 20%) sorted cells were compared to GFP high 

(top 20%) sorted cells.  
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sgRNA selection for screen validation  

For the macrophage specific viability genes, we selected 6 targets for 

validation out of possible 61 hits. We choose 5 essential genes and one growth 

suppressor. We chose the candidates based on their rankings according to P value. 

For the 3' UTR-targeting guides, we selected guides with > 3-fold positive 

enrichment (Day 21 versus Day 0) that targeted the 3' UTRs of essential genes with 

significant negative enrichment. The criteria for our NF-kB candidate selection was 

as follows: 1) Most significant: We selected candidates with the lowest Mann-

Whitney U test p value (using a p value cut off of < 0.01). 2) Novelty: We focused 

on genes, which were not previously known to be involved in NF-kB signaling. We 

used several databases including KEGG, String-DB and Cell Signaling TLR-

signaling gene list to determine novelty of gene. 3) Expression: We evaluated 

expression and confirmed > 10 FPKM for either un-stimulated or LPS-stimulation 

conditions. 4) Viability: We confirmed that our candidates did not have a significant 

viability phenotype. We targeted a total of 18 coding genes selecting guides with 

the strongest enrichment (2 guides/gene). We targeted microRNAs that showed > 

3- fold positive enrichment for at least 2 gRNAs. For positive controls we used 

guides targeting Tlr4.  
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Supplemental information for Appendix 3 

 

Supplemental Figure 2.1- Comaparing Analysis Screening Tools. Related to 
Figure 1. A. Breakdown of all genes targeted by our custom mouse sgRNA library 
is displayed.. B. Venn diagram. Significant genes were determined by Mann-
Whittney U- test and MAGeCK analysis (FDR<0.05). 88% of significant genes 
identified in the MAGeCK analysis were also identified in the Mann-Whittney U-
Test. C. Venn diagram. Significant genes were determined on unsplit and insamples 
replicates by MAGeCK analysis. 80% of the significant genes in the unsplit 
samples were also identified in the replicate samples.  
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Supplemental Figure 2.2- Comparison of Current Screen to CRISPR Screen 
Database. Related to Figure 1. Genes with opposite phenotypes in our screen 
compared to the GenomeCRISPR database are displayed visually using String- DB. 
KEGG pathway Go-term enrichment is also shown.  
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Supplemental Figure 2.3- Expression of p-65-binding of NFkB Screen Hits. 
Related to Figure 3. A-B. NF-κB FACS screen gating strategy for unstimulated 
cells (A) or 24 h LPS stimulated cells (B). C. Differentially expressed genes in 6 h 
LPS vs unstimulated BMDMs are displayed as log2 fold-change vs. adjusted p-
value volcano plot from previously published data (Zhang et al., 2017). Expression 
of top 50 positive regulators (blue) and top 50 negative regulators (yellow) is 
shown. D-E. All p65 targets were determined using the ChIP-seq data from (Lam 
et al., 2013). Positive p65 binding was called if a p65 peak was greater than 10 and 
was within 1kb of the annotated transcription start site (TSS). P65 promoter binding 
was then assessed for the top negative (D) and positive (E) regulators.  
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Supplemental Figure 2.4- Expression of TNF and TNF receptors in human 
cells. Related to Figure 4. A. Differentially expressed genes were determined for 
6h Pam3CSK4-stimulated or unstimulated THP1 (ATCC). Normalized counts +/- 
SD are displayed for TNF, TNFRSF1A and TNFRSF1B.  
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Supplemental Tables- supplemental tables are available for download in the 
published manuscript::https://doi.org/10.1016/j.celrep.2020.108541  
 
Table S1. sgRNA Library Sequences, Related to Figure 1 
Table S2. All Targeted Genes, Related to Figure 1 
Table S3. Viability Screen Hits, Related to Figure 1 
Table S4. Phenotype sgRNAs Viability Hits, Related to Figure 1 
Table S5. MAGeCK Analysis for Viability Screen Counts, Related to Figure 1 
Table S6. MAGeCK Analysis for Viability Screen Genes, Related to Figure 1 
Table S7. Viability Screen in Sample Rep Counts 2020, Related to Figure 1 
Table S8. MAGeCK Analysis in Sample Rep Gene Summary, Related to Figure 1 
Table S9. Elements within Targeted 3’ UTRs, Related to Figure 2 
Table S10. Full NFkB Screen Hit List, Related to Figure 3 
Table S11. Phenotpe sgRNA NFkB Screen, Related to Figure 3 
Table S12. Known Genes in TLR-NFkB Signaling, Related to Figure3 
Table S13. NFkB Screen Candidate Localization, Related to Figure 3 
Table S14. Validation sgRNA Sequences, Related to Figure 3 
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