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Abstract

Inference in high dimensions with applications to the analysis of single-cell transcriptomic
and bacterial genetic data

by

Hector Roux de Bézieux

Doctor of Philosophy in Biostatistics

and the Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Sandrine Dudoit, Chair

English version

Over the last two decades, technological improvements have led to a tremendous reduction in
the cost and speed of DNA sequencing. This has opened the door to many new applications,
including the quantification of transcriptomes at the resolution of single cells (scRNA-Seq),
and the discovery of genetic features associated with phenotypes of interest, also known as
genome-wide association study (GWAS).

scRNA-Seq has emerged in just 10 years as a major tool to investigate biological diversity.
The ability to assess gene expression for individual cells enables the study of a range of
biological processes at new levels of resolution. This can have many interesting applica-
tions, including the identification of novel cell types, defined by their unique transcriptomic
signatures. Drawing from the clustering literature, many methods have been developed to
group cells together based on their gene expression characteristics. However, all those algo-
rithms require the tuning of hyper-parameters based on typically ad hoc recommendations.
Moreover, the direct validation of the discovered cell types is generally difficult, if not im-
possible. The grouping of cells is also not unique for a given biological system, and there
often exists a hierarchy of cell types, with ever-finer levels of resolutions. Because of all this,
the discovery of reliable, replicable cell types remains a major challenge. In Chapter 2, we
will delve deeper into this issue and introduce a new method called Dune that tackles the
resolution-replicability trade-off in clustering.

scRNA-Seq data also enable the tracking of continuous developmental changes, without the
need for arbitrary discretization that stemmed purely from the data collection protocol.
This allows to investigate processes such as the cell cycle, the differentiation of stem cells
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into different cell types, or the cellular response to a drug over time. In Chapter 3, we
will investigate how to characterize patterns of gene expression along such developmental
trajectories, to identify dynamic genes and drivers of differentiation, using the tradeSeq
method. In Chapter 4, we will provide a general workflow called condiments for analyzing
such dynamic systems in the presence of multiple conditions, such as treatment/control.

GWAS represent another field that has gained major attention following the emergence
of cheaper high-throughput sequencing technologies. In human populations, the problem
has been extensively studied, mainly in the context of diseases such as diabetes. However,
GWAS can also be applied to bacterial genomes, especially in the context of antibiotic
resistance. Some concepts from the human GWAS literature are applicable in bacteria.
However, characteristics of bacterial genome mean that other concepts, such as that of a
reference genome, are inappropriate and irrelevant. New methods need to be developed for
this specific problem. In Chapter 5, we present a new subgraph enumeration method named
CALDERA that leverages the structure of the data to provides more robust analyses and
facilitate the interpretation of bacterial GWAS data.
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Version en français

Au cours des deux dernières décennies, des avancées technologiques ont permis une réduction
drastique du coût et du temps nécessaire pour séquencer l’ADN. Ce bouleversement a con-
tribué au développement de nombreuses applications, dont la quantification du transcrip-
tome pour chaque cellule individuelle, et la découverte d’éléments génétiques associés à un
phénotype étudié, aussi connu sous le nom d’études d’association pangénomiques.

Depuis sa première itération en 2009, le séquençage de l’ARN en cellule unique s’est rapi-
dement implanté comme un outil majeur pour découvrir les variations au sein d’un système
biologique. Mesurer le niveau d’expression des gènes dans chaque cellule séparément permet
une compréhension de nombreux processus biologiques à une résolution précédemment in-
accessible. Cette résolution permet notamment de découvrir de nouveaux types cellulaires,
caractérisés par une signature transcriptomique unique. Tirant partie d’une littérature im-
portante sur la partition des données, de nombreuses méthodes ont été développées pour
regrouper les cellules en fonction du niveau d’expression de leurs gènes. Cependant, tous ces
algorithmes nécessitent des hyper-paramètres qui doivent être spécifiés, selon des recomman-
dations souvent ad hoc. De plus, la validation de ces nouveaux types cellulaires reste difficile.
Enfin, pour de nombreux systèmes biologiques, il existe une hiérarchie de types cellulaires,
représentant des niveaux de résolutions de plus en plus fins, plutôt qu’une partition fixe et
unique des cellules en groupes distincts et uniques. Pour toutes ces raisons, la découverte de
types cellulaires fiables et réplicables est encore un vrai chantier. Dans le chapitre 2, nous
explorerons plus en détail ce problème et nous présenterons une nouvelle méthode nommée
Dune qui explore le compromis entre résolution et réplicabilité inhérent aux méthodes de
partitions des données.

Grâce au séquençage de l’ARN en cellule unique, il est aussi possible de suivre de manière
continue les processus de développement, sans avoir besoin de procéder à une discrétisation
arbitraire qui découlerait uniquement du procédé de collection des données. Cela permet
d’étudier correctement des phénomènes comme le cycle cellulaire, la différentiation de cellules
souches en types cellulaires distincts, ou la réponse de cellule à un médicament au cours du
temps. Dans le chapitre 3, nous montrerons comment décrire les profils d’expression des
gènes le long de ces trajectoires de développement, pour identifier les gènes qui évoluent
dynamiquement ou sont moteurs, avec notre méthode tradeSeq. Dans le chapitre 4, nous
présenterons une procédure appelée condiments qui permet d’adapter les méthodes d’analyses
de ce type de système dynamique en présence de conditions multiples, par exemple un
traitement et son contrôle.

L’étude d’association pangénomique est un autre domaine qui a connu un regain d’attention
important suite à l’émergence du séquençage d’ADN abordable et à haut débit. Chez
l’humain, les recherches se sont concentrées principalement sur l’identification de prédispositions
génétiques à des maladies, comme le diabète de type 2. Cependant, ce type d’études peut
aussi concerner des populations bactériennes, notamment dans le contexte croissant de la
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résistance microbienne aux antibiotiques. Si certaines méthodologies sont directement trans-
posables, d’autres se heurtent aux particularités des génomes bactériens. En particulier,
chez les bactéries et microbes, le concept d’un génome de référence est souvent insuffisant ou
non pertinent. De nouvelles méthodes appropriées doivent donc être développées. Dans le
chapitre 5, nous présenterons une méthode d’énumération de sous-graphes appelée CALDERA
qui utilise la structure des données des génomes bactériens pour produire des analyses plus
robustes et faciliter l’interprétation des résultats des études d’association pangénomiques
bactériennes.
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Chapter 1

Introduction

This introduction provides background, context and motivation for the consecutive chapters.
The rise of next generation sequencing will be explored and discussed, and its application
to both single-cell transcriptomic profiling and genome-wide association studies will be ex-
plained. Examples of relevant applications and discoveries that stem from those fields as well
as the statistical challenges that are inherent to the type of data collected will be presented.

1.1 Next-Generation Sequencing and its applications

Next-Generation Sequencing

Next-Generation Sequencing methods (NGS) encapsulate a series of technological advances
that have occurred since the turn of the century, which have combined to produce a staggering
effect. The Human Genome Project, which relied on the Sanger sequencing method [128],
i.e., first-generation sequencing, to sequence the entirety of a human genome, cost $100M to
finish. Nowadays, modern technologies allow for the sequencing of massive amounts of DNA
reads in parallel: the price of sequencing of a human genome had dropped to $20,000 by
2010 and is now around $1,000, a 105-fold decrease in the span of two decades [169]. This
drastic reduction in cost impacted many aspects of genomics and genetics. Here, we will
focus on two: single-cell transcriptomics and genome-wide association studies for bacteria
and metagenomes.

Single-cell transcriptomics

Transcriptomics can be defined broadly as the measurement of messenger RNA (mRNA) in
tissues and cells, and the downstream analyses that can be conducted using those measure-
ments. Measuring the abundance of mRNA molecules provides insight into gene regulation
mechanisms and details about underlying biology [87]. NGS technologies enabled a new
type of assays measuring mRNA expression, known as RNA-sequencing (RNA-Seq) [165].
Those assays provided a major improvement over previous micro-array assays [114, 101, 129]:
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they can profile the whole transcriptome at once, instead of a set of pre-specified genes, and
provide for example accurate quantification of entire human transcriptome. Methods varied
between technological platforms [99, 9]. The most common platforms for datasets used here
are Illumina [99] and 10X Genomics [183]. Details of how those methods work are outside the
scope of this thesis but both companies provide very educational videos on their respective
websites.

The first micro-arrays and RNA-Seq assays focused on RNA abundance for large pools
of cells such as entire tissues. This bypassed the issue of isolating cells one-by-one and
provided valuable insight into tissue level dynamics [171]. However, some biological settings
require profiling at the single-cell level, e.g., the study of embryogenesis, where the number
of available cells is limited. In 2009, Tang et al. [146] sequenced the transcriptomic profile of
five individual mouse cells, and then 34 one year later [147]. A decade later, datasets with
over 2M cells have been reported [27, 26, 120]. This explosion in size is once again linked to
technological advances, both in micro-fluidic and in mRNA isolation and amplification [73].

Genome-Wide Association Studies

Very generally, Genome-Wide Association Studies (GWAS) encompass a field that looks for
genetic features associated with a phenotype of interest. The advent of NGS has allowed one
to sequence entire genomes at scale, instead of being limited to only querying a few genes of
interest, and assess the genetic diversity of the population. In humans, this whole-genome
approach has often focused on single-nucleotide polymorphisms (SNPs) as the main driver
of genetic diversity [28]. Visscher et al. [163] offer a review of GWAS successes in humans,
listing the discovery of drug candidates for Type 2 diabetes, rheumatoid arthritis, or LDL
cholesterol.

Methods tailored for human data have been heavily developed and validated. However,
they are often not appropriate for bacterial sequencing data. Indeed, many species are not
well-known and lack a reference genome that can be used to then define polymorphisms [51].
Moreover, genetic variations are not restricted to SNPs but can also represent higher level
changes such as absence / presence of entire genes that are accessory but can impact fitness
under certain conditions [135, 31]. Jaillard et al. [63] show that in Pseudomonas aeruginosa,
over half of genetic features linked to antibiotic resistance are found in the accessory genome,
i.e., the part that is not present in all species. This latter question is especially pressing,
given the major increase in antibiotic resistance over the last decade [66, 170].
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1.2 Analysis of single-cell transcriptomics data

(scRNA-Seq)

Data structure

After pre-processing [107, 19, 183] the output from sequencing machines, the data format
that we will use in the following chapters follows a common structure. We represent the gene
expression data for n cells from a species whose genome contains G genes as a count matrix
Y with G rows and n columns (Fig 1.1a). The value yg,i of the gth row and ith column is
an integer, generally describing the number of reads from the sequencing platform that are
assigned to gene g in cell i.

Identification of cell types

In some datasets, the type of each single cell is evident at the sample collection stage. For
example, in an embryogenesis dataset [36], the type of each sample can be observed by
counting the number of cells in each embryo. However, in most settings, cells are collected
in a batch which represent a mix of cell types. This can be the case when an entire organ is
collected and sequenced at the single-cell level, for example the liver [10, 130], the brain [149,
176] or the olfactory system [44, 46]. There, cells come from a mixture of various cell types.

The most common way, by far, to identify cell types has been to rely on clustering
methods [70, 39]. Broadly defined, clustering aims to partition a dataset in groups of samples
such that samples within the same group are more similar to each other than to samples in
other groups. Clustering methods are varied but, in the scRNA-Seq context, they usually
rely on a low-dimensional representation of the data, which is an n by d matrix X such that
d � G, but which preserves distances between cells. Note that, in Y, columns correspond
to cells, while for X, rows correspond to cells. For example, in Figure 1.1b, we display the
data from Deng et al. [36] with d = 2, using Principal Components Analysis (PCA). The 258
cells are colored according to their known label. Values of d = 2 or d = 3 are frequently used
for visualisation (Figure 1.1b-c and Figure 1.2a-b) but higher values of d can be used when
performing clustering. Different loss functions and search spaces yield different values of
X, with non-linear stochastic methods such as t-distributed stochastic neighbor embedding
(t-SNE) [159, 160, 75] and uniform manifold approximation and projection (UMAP) [93, 11]
more recently replacing PCA [145].

Depending on the mathematical definition of similarity between two samples and two
groups, clustering algorithms can yield different results. In the context of cell-type discovery,
clustering is used to identify subsets of cells that are defined by a common and separate
transcriptomic signature. Clustering methods are widely used in the field. Indeed, using a
curated database, Svensson, da Veiga Beltrame, and Pachter [145] show that around 90% of
studies using this type of assays performed a clustering step. An example of the result of
clustering using the algorithm from Tasic et al. [149] on the 123, 155 mouse brain cells of Yao
et al. [176] is also displayed in Figure 1.1c. Although the reduced dimensions coordinates
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Figure 1.1: Schematics of the first steps of a scRNA-Seq analysis. The initial data takes the
form of a count matrix with the cells as columns and the genes as rows (a). Using the count
matrix, the samples are projected on a reduced-dimensional space, which can be used for
visualization and downstream analysis. For example, in (b), the 258 embryo cells from Deng
et al. [36] are displayed using the first two principal components. The reduced dimensions
can also be used as input to clustering algorithms. For example, in (c), the 123, 155 mouse
brain cells [176] are clustered [149] and displayed using t-SNE.

shown here are not used for clustering, they are consistent with the results: in that reduced
space, cells that are close together are more likely to be clustered (i.e. colored) together.

Dynamic systems

Starting in 2014, Trapnell et al. [154] proposed a new framework to study dynamic biological
systems. Clustering usually bins cells into discrete groups, which is usually not appropriate
in developmental settings, where the underlying biology is more of a continuum than a
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Figure 1.2: Example of trajectory inference. We show two datasets, projected in a reduced
two-dimensional space. Using slingshot [141], we also infer a trajectory and plot it (black
curve). (a) The 258 embryo cells from Deng et al. [36] are displayed using the first two
principal components and colored by stage of development. Then, a single-lineage trajectory
is inferred, starting from the Zygote stage and showing progression until late blastocyst. (b)
The 2, 660 cells from Paul et al. [108] are displayed using UMAP [11, 93] and colored using
the cluster labels from the original publication. A branching trajectory with two lineages
is inferred, starting from the multipotent progenitor cells. Lineage 1 tracks development of
cells into neutrophils while Lineage 2 focuses on erythrocytes.

succession of discrete and separate cell states. Leveraging this key insight, they proposed
Monocle, the first method to infer a trajectory on scRNA-Seq datasets. Since then, more
than 50 methods have been proposed for trajectory inference (TI) [126].

In Figure 1.2a, we show the output of trajectory inference on the 258 mouse embryo cells
from Deng et al. [36] used previously. Here, the trajectory is displayed as a smooth continuous
curve that follows the known biological developmental process, although that information
was not provided to the TI algorithm (here, we used slingshot [141]). The progression of
each cell along that process can be measured alongside the curve, from start to end, and is
referred to pseudotime. In this setting, each cell is associated with one pseudotime value.
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This example represents the simplest possible developmental setting. It contains a single
lineage, with a clear start and end (in the observed dataset).

To illustrate a more complex trajectory, we rely on a dataset of 2, 660 bone marrow cells
from Paul et al. [108]. In Figure 1.2b, we show those cells in reduced dimension (using
UMAP [11, 93]). The developmental process starts in the multipotent progenitor cluster,
in purple, around the middle of the plot. Cells then differentiate into two possible paths
called lineages. Along the first path (going to the top left), cells differentiate as GMP then
basophils, monocytes, and finally neutrophils. Along the second path (toward bottom right),
cells differentiate as erythrocytes. In this trajectory with two lineages, each cell is given two
pseudotime values, representing how far they have differentiated along each lineage. Indeed,
especially at the beginning of the trajectory, cells cannot be definitively assigned to one
lineage or another. Instead, each cell is also assigned two weights, representing how close
they are to a given lineage. More details on this will be given in Chapters 3 and 4.

More generally, trajectory inference methods take as input the count matrix Y (or
a reduced-dimensional representation X) and return, for each cell, a set of observational
weights and associated pseudotimes. In the general setting, the trajectory, which consists of
a set of lineages, can also be a circle, when representing, for example, the cell cycle. There
is also no requirements that all lineages start at the same place. For example, Cao et al.
[27] study organo-genesis by collecting cells from mouse embryos after at least 9.5 days of
gestation. At that stage, the initial pluripotent cell stage that gives rise to the different
organs is not observed anymore: each set of lineages for a given organ will have a separate
root.

Organisation of the next chapters

Chapters 2, 3, and 4 have either been published in refereed journals or released in preprint
format. They have been adapted for this dissertation and are structured in similar fashion:
an introduction that motivates the problem and provides background, a results section that
provides an upper-level description of the method developed, as well as its performances
on both synthetic and real datasets, a discussion outlining the conclusions, limitations, and
possible future directions of the work, and a methods section that provides greater details
and mathematical rigor for the method being developed.

Chapter 2 dives deeper into recent challenges in the clustering of scRNA-Seq data, es-
pecially the issue of finding cell types that are replicable between datasets, and presents a
method called Dune that focuses on this issue. Chapter 3 focuses on downstream analysis
following trajectory inference and the issue of finding genes with dynamic expression associ-
ated with the trajectory. It presents tradeSeq, a statistical method to estimate smooth gene
expression profiles and perform differential expression analysis between and within-lineages
to answer various biologically-relevant questions. Chapter 4 takes another look at the full
trajectory inference question in a setting where the dynamic system is studied under different
conditions, such as a control and treatment, and present a framework named condiments to
conduct analyzes in such a setting.
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Figure 1.3: Simple example of bacterial genome-wide association study data.(a) We consider
just two samples. The first bacterium is sensitive to antibiotic (y1 = 0) while the second
is resistant (y2 = 1). Each sample is associated with just one read of length 10. The base
that differs between the two is highlighted in color. (b) Each read can be broken-down
into 4-mers and the table of presence/absence of all 4-mers in the two groups is shown. (c)
The De Buijn Graph of all the 4-mers is constructed and then compacted to reduce linear
sequences to larger nodes called unitigs. (d) The table of presence/absence of all unitigs in
the two groups is shown.

Supplementary figures and tables for each chapter can be found in appendices but they
are also properly referenced and introduced when relevant in the main chapters. A full
workflow using the R implementation of Dune can also be found in an appendix.

1.3 Bacterial Genome-Wide association Studies

Input data

We will restrict ourselves to the study of binary phenotypes. We can assign to each of
the n samples a binary phenotype value yi that takes on values in {0, 1}. For example, in
the setting of antibiotic resistance, we consider that each sample can be either sensitive or
resistant to a given antibiotic. Although a continuous phenotype pi can be binarized by
choosing a cutoff value c such that yi = 1pi≥c, this can create artifacts (see Sugiyama and
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Borgwardt [143] for examples). We therefore restrict ourselves to settings where the two
groups are clearly distinct.

For each sample, we also have a set of reads from sequencing. This consists of a set of
strings from the four-letter alphabet A, T, C, and G. The size of each string and the number
of string are random and depend mostly on sequencing characteristics such as sequencing
depth and technology.

As a simple example, we show in Figure 1.3a two samples. The first bacterium (in green)
is sensitive to an antibiotic, i.e., its phenotype y1 = 0. Associated with that bacterium, we
have one unique read AATGTCGATA. Likewise, the second bacterium is resistant (in orange) to
the antibiotic (y2 = 1) and has one associated read AATGACGATA. The two reads differ only
by one letter at the 4th position.

Representing genetic diversity

As mentioned above, representing genetic diversity by comparison to a reference genome
is mostly inappropriate for bacterial samples. Other methods have tried to identify genes
in each sample and build a presence / absence table using a selected set of genes [40, 63]
or all identified genes [104]. However, they rely on the correctness of gene identification
algorithms and cannot identify variants outside the coding regions, such as regions involved
in transcriptional regulation [14].

More recently, other methods have focuses on the study of k-mers [135, 40]. k-mers are
defined as all the substrings of length k present in the reads. By enumeration all the k-mers
in all the samples, it is then possible to build the vector of presence / absence of each k-mer
among all n samples. In Figure 1.3b, we see all the k-mers associated with all three possible
vectors of presence / absence ({(1, 1), (1, 0), (0, 1)}). The vectors of presence / absence can
then be tested for association with the phenotype of interest. Such approaches offer several
advantages. They are very fast and scale extremely well, both to increasing sequencing depth
and number of samples. However, the short size of the k-mers lead both to redundancy of
the information and to a lack of interpretability of the results [116, 113].

To circumvent those issues, Jaillard et al. [62] proposed focusing on the De Bruijn
Graph [35]. This graph is built using the k-mers as nodes and drawing an edge between
two nodes if the k-mers are found consecutively in the samples. The De Bruijn graph of our
example can be found in Figure 1.3c. If a set of nodes in the graph form a linear sequence
(i.e., all the nodes only have two edges), then they can be compacted into one new node called
a unitig. This creates the compacted De Bruijn Graph, as shown in Figure 1.3c. De Bruijn
Graphs have a long history as a relevant data structure for genome assembly [180, 110]. As
evidenced in Jaillard et al. [62], De Bruijn graphs provide a more compact representation of
the data. Unitigs are often much longer than k-mers, providing easier interpretation without
any loss of information (Figure 1.3d). Unitigs also maintain genetic context: variation in a
promoter region can be identified as such by mapping neighbouring nodes to a gene database.

However, focusing only on the individual node limit the type of signal that can be de-
tected. For example, consider a gene associated with the phenotype. Non-coding genetic
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variation in that gene will mean that it is is represented by more than one node, thereby di-
luting the signal. This is even more true for larger structures such as plasmids. In chapter 5,
we will expend on the DBGWAS method of Jaillard et al. [62], by presenting CALDERA, an
enumeration and testing scheme that focuses not only on nodes of the De Bruijn Graph, but
also on subgraphs of that graph and can therefore identify large genetic features associated
with the phenotype of interest.
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Chapter 2

Improving replicability in cell type
discovery

As discussed in chapter 1, an essential part of scRNA-Seq analysis pipeline is cell type
discovery and identification. In this chapter, we will focus on a crucial aspect of this step:
assessing and improving the replicability of the results from clustering algorithms. A version
of this work has been released in preprint format [125] 1.

1I would link to deeply thank my collaborators. Kelly Street and Stephan Fischer were involved in
conducting the study, which was also designed with supervision from John Ngai, Elizabeth Purdom, Davide
Risso, Jesse Gillis and Sandrine Dudoit. Koen Van den Berge and Rebecca Chance also provided crucial
feedback on the manuscript
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2.1 Introduction

Improvements in single-cell transcriptome sequencing (scRNA-Seq) over the last decade have
allowed the characterization of gene expression in collections of thousands to hundreds of
thousands of cells. As datasets have grown in size by several orders of magnitude, cell type
identification remains a primary step in data analysis [145]. We will focus here on the task
of unsupervised clustering, which can be broadly defined as partitioning observations into
clusters based on a set of features, without using any prior knowledge on the groupings.
In the scRNA-Seq context, clustering aims to identify groups of cells that are defined by a
unique and consistent transcriptomic signature. Such groups of cells can represent either
transient features, such as cellular states, or more permanent features, such as cellular types.

Many clustering algorithms have been proposed for scRNA-Seq, most of which are adap-
tations from the clustering literature at large. Popular methods include SC3 [71], Seurat
[142], and Monocle [27]. Duò, Robinson, and Soneson [39] offers a recent review of some
scRNA-Seq clustering algorithms, identifying SC3 and Seurat as the best-performing meth-
ods across a wide range of benchmark settings. However, clustering remains a complex task.
Kiselev, Andrews, and Hemberg [70] outline the various challenges – both biological and
computational – of this step, including technical noise, biological heterogeneity, and the im-
pact of tuning parameters (or hyper-parameters) for the clustering algorithms. While some
methods, including SC3, provide a way of selecting the optimal values of their main tuning
parameters, most do not, leaving the choice to the user. Consensus methods try to bypass
this issue [121, 71], but they also rely on meta-parameters which can still have substan-
tial impact on the results. Overall, replicating clustering results across datasets remains a
difficult task. In this work, we declare clusters to be replicable if running the exact same
clustering algorithm with the same tuning parameters on a related dataset yields similar
clusters.

Additionally, the aforementioned clustering algorithms identify a pre-specified number
of clusters either directly, as in k-means, or indirectly, through another tuning parameter.
They implicitly assume that there is only one relevant level of clustering resolution, i.e., an
optimal number of clusters, in the dataset. We argue that this is often not the case, since cell
types usually have a hierarchy. For example, Tasic et al. [149] propose a tree structure for the
mouse anterolateral motor (ALM) and primary visual (VISp) cortical areas. At the higher
levels, cells can be clustered as neurons and non-neurons. Then, neurons can be further
split into GABAergic and glutamatergic neurons and so on and so forth. This hierarchical
structure means that the concept of an “optimal” number of clusters is not appropriate.
Instead, many datasets can be better characterized by ever-finer levels of resolution. At
the highest level, cells are grouped into broad clusters that are quite coarse, but are easily
identifiable and very replicable across datasets. As the resolution increases, distinguishing
between reproducible stable cell types and artifacts of the data becomes more challenging.
Indeed, these clusters are more likely to reflect over-partitioning (cf. overfitting) of the data
or the presence of transient states. This resolution-replicabilty trade-off is not obvious to
quantify and is heavily dataset-dependent: it is not only influenced by the biological setting
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under study and its complexity, but also highly dependent on technical properties of the
data, such as sequencing depth and number of cells [145].

By far the most common method to establish a hierarchy for pre-defined clusters is
agglomerative hierarchical clustering, a bottom-up method in which clusters are merged
one-by-one until they are all merged into a single cluster. This procedure yields a tree
structure linking clusters that are merged together. The tree can also be defined by merging
clusters according to the fraction of differentially expressed (DE) genes between them [121,
149]. While several extensive benchmarks of clustering methods have been proposed [39,
45], these only focus on the resulting partitions rather than the full hierarchical structure;
and mostly assume that the correct number of clusters is known. Zappia and Oshlack [177]
propose a representation of clustering trees to visually describe hierarchies, but this type of
analysis relies heavily on user-supervision.

Here, we present Dune, an ensemble method that aims to reconcile multiple clustering re-
sults and extract the common structure that they all capture. Dune relies on the assumption
that, while different clustering algorithms run with different tuning parameters will naturally
provide discrepant clusters, all good clustering methods should be able to identify a com-
mon higher-level clustering that is robust to the choice of tuning parameters. This represents
a level of resolution that can be analyzed with high confidence given the biology and the
dataset’s characteristics. Dune identifies this common higher level of resolution shared by all
methods without requiring any tuning by the user. Examining this level can both provide
useful biological insight and help to compare various clustering methods.

In this manuscript, we first introduce the Dune algorithm. We then demonstrate that
Dune outperforms agglomerative merging methods over a variety of simulation scenarios, as
well as real scRNA-Seq and snRNA-Seq datasets from different sequencing platforms. We
also discuss the value of Dune’s stopping point and assess Dune’s robustness and limitations.

2.2 Results

Scope of Dune

We wish to delineate at the outset the scope of Dune, i.e., its underlying assumptions, its
required inputs, and how to interpret and use its outputs. In practice, researchers often
try multiple clustering algorithms to explore different aspects of their data (e.g., resolution
levels) and assess robustness of their clustering results. Dune’s main assumption is that there
is a common higher-level of clustering that should be identifiable by most decent clustering
methods. Dune requires as input a set of clusterings, i.e., results from a variety of pre-
processing steps, clustering algorithms, and associated tuning parameters applied to a given
dataset, that all somewhat capture this higher level. It returns as output merged versions of
each of these clusterings, obtained by producing hierarchies of clusters by merging clusters
within each partition using information borrowed from the other partitions. As such, it
is not a new clustering algorithm and it requires the user to make a number of subjective
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choices about both its input and its output. In particular, the user needs to select the set
of input clusterings. They also need to select which of its outputs, i.e., which of the merged
clusterings, to retain for downstream analysis.

As demonstrated in this manuscript, what Dune accomplishes, however, is to (1) improve
upon each of the input clusterings (according to a wide-range of metrics) and (2) lessen the
impact of the choice of input clusterings and output clusterings on downstream analysis, by
reducing the variability in the quality of the output compared to the input. In other words,
the user is left to choose between improved clusterings and their choice is not as critical as
if they were to select between the input clusterings.

The Dune algorithm

The Dune algorithm is a general framework that increases the agreement between different
clusterings of the same dataset through iterative merging. It takes as input R sets of cluster-
ing results, generally produced from running R clustering algorithms (or the same algorithm
with different tuning parameter values) on the same dataset. An example can be seen in Fig-
ure 2.1a, where a small subset of the AIBS snRNA-Smart dataset [176] (see the “Methods,
Case Studies” section) is used to demonstrate some of the main concepts underlying Dune.
The first row displays three examples of clusterings (i.e., sets of cluster labels) produced by
three different clustering algorithms applied to the same dataset, reduced to two dimensions
using t-distributed stochastic neighbor embedding (t-SNE) [160, 159, 75]. All three methods
identify similar – but not identical – clusters. Indeed, the algorithms output partitions with
different levels of resolution. For example, Monocle splits the bottom region (on the t-SNE
plot) into two clusters, while the other two methods find three clusters. Likewise, Monocle
and SC3 find two clusters in the top region, while Seurat only finds one. These differences
can be summarized using confusion matrices (second row of Figure 2.1a), where the overlap
between two clusters from any pair of clusterings is displayed both in terms of the number
of cells in the intersection and by the Jaccard index (i.e., the cardinality of the intersection
of the two clusters over the cardinality of their union; [59]). Rows and columns are ordered
so as to maximize, as much as possible, the sum of the diagonal entries. Confusion ma-
trices can be further summarized using the normalized mutual information (NMI). NMI is
a commonly used measure for the agreement between two sets of clustering labels, see the
“Methods, NMI” section for more details. As can be seen in the confusion matrices, SC3
and Seurat have the highest level of agreement. Indeed, this is also reflected in the fact that
they have the highest NMI of any pair.

Dune merges clusters within each of the R partitions so that the R clustering results more
closely match each other. An example of the merging is displayed in Figure 2.1b. Clusters
20 and 21 from SC3 are merged together, resulting in one larger cluster named 20. Doing
so increases the agreement between SC3 and Monocle in the confusion matrix, as reflected
by an increase in NMI from 0.7 to 0.73. This merge also improves the NMI between SC3
and Seurat (from 0.86 to 0.91) and hence increases the overall agreement between the three
clusterings. This is the main idea behind Dune. Specifically, Dune performs an iterative



CHAPTER 2. IMPROVING REPLICABILITY IN CELL TYPE DISCOVERY 14

Figure 2.1: Measuring and improving the concordance between clusterings. We used a subset
of the AIBS snRNA-Smart dataset [176] as an example. Panel a. SC3, Monocle, and Seurat
were run on the dataset and their results are displayed using scatterx of the first two t-
SNE components, where the color of the plotting symbol corresponds to the cluster label.
Each pair of clusterings was then compared using a confusion matrix, resulting in three such
matrices. For a pair of clusterings/partitions, a confusion matrix is a contingency table,
where each entry corresponds to the number of observations in both a cluster from the
first partition and a cluster from the second. The size of the dot represents the number of
observations in both clusters and the color corresponds to the Jaccard index. Each confusion
matrix produces one NMI value. Panel b. Merging Clusters 20 and 21 from SC3 into one
cluster changes the confusion matrix and increases the NMI.
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search where, at each iteration, it identifies the partition and pair of clusters within this
partition that, when merged, most improve the average of the normalized mutual information
over all pairs of clusterings (NMI). Thus, the Dune algorithm can be viewed as an iterative
algorithm for maximizing the average pairwise NMI of a collection of clustering results. A
more formal definition of the algorithm is provided in the “Methods, Dune” section. Note
that the NMI is only one of a variety of criteria that could be used to guide merging. The
current implementation of Dune is flexible and allows for other measures. In particular, all
benchmarks have also been conducted using the adjusted Rand index or ARI [118, 58], see
Sections 2.4 and A.

We demonstrate how the Dune algorithm works in Figure 2.2, using the AIBS scRNA-
Smart dataset, a scRNA-Seq dataset of 6,300 mouse brain cells described in the “Methods,
Case Studies” section. For this example, we ran SC3, Seurat, and Monocle to obtain our
initial clustering results for input into Dune (R = 3). Figure 2.2a displays the confusion
matrix for a pair of clusterings (SC3 and Monocle) before any merging and Figure 2.2b
displays a pseudocolor image of the matrix of all pairwise NMIs for the three clusterings
before any merging. The agreement between the three methods is moderate. Indeed, the
pairwise NMIs vary between 0.75 and 0.85 in Figure 2.2b. However, as can be seen in the
confusion matrix, the clusterings do capture a shared underlying structure, which will serve
as grounding for the Dune merging. Figure 2.2d shows the confusion matrix for the same
two partitions as in 2.2a, after merging with Dune. We can see that we have, by design,
fewer clusters in both partitions, but also that the concordance between the two partitions
is greatly improved (as indicated by the color of the plotting symbols, which represents the
Jaccard Index). This is further evidenced in Figure 2.2e, where the pairwise NMIs between
the three partitions are displayed. The average NMI after all merging steps increased from
0.79 to 0.86. Figures 2.2c and 2.2f demonstrate the evolution of the average NMI and of the
number of clusters per partition through the Dune merging process. At each step, we merge
the pair of clusters that leads to the greatest increase in average NMI. Hence, at each step,
the average NMI increases (Fig. 2.2c) and the number of clusters in one of the partitions
decreases by one (Fig. 2.2f). The final partitions are achieved when the average NMI can no
longer be improved.

We compare the performance of Dune to other methods of merging, referred to as Dist
and DE. Both are hierarchical methods, that start by building a tree between the clusters.
The Dist method then merges clusters in a bottom-up manner, starting with the two clusters
that are closest in the tree and then iteratively until all clusters are merged. The second
approach, DE, follows the method implemented in RSEC and merges clusters bottom-up
based on the percentage of DE genes between clusters. It uses the limma package [122],
where a gene is declared DE if its nominal false discovery rate (FDR) adjusted p-value is
below 0.05 [13]. Pairs of clusters with less than a certain fraction of DE genes are merged.
Increasing this threshold from 0 to 1 leads to an iterative merging procedure. More details
on these two procedures can be found in the “Methods” section.

In the following sections, we evaluate Dune and compare it to the two hierarchical tree
merging methods, using five simulated datasets and four real datasets. We use the simu-
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Figure 2.2: Illustrating Dune on a dataset with three sets of cluster labels. We used the
AIBS scRNA-Smart dataset [176] as an example. Before any merging, the sets of cluster
labels – or partitions – resulting from running SC3, Seurat, and Monocle have a moderate
agreement. Panel a displays the confusion matrix between two of the partitions, where each
entry corresponds to the number of observations in both a cluster from Partition 1 and a
cluster from Partition 2. The confusion matrix shows that while many cells are similarly
clustered in the two partitions, i.e., along the main diagonal, many others are not. This
can be summarized by the NMI between Partitions 1 and 2. Panel b displays a pseudocolor
image of the matrix of all pairwise NMIs between the three partitions. Panel c illustrates
that the average NMI between partitions increases as pairs of clusters are merged when
applying Dune. After running Dune, the confusion matrix in Panel d and the pairwise NMI
matrix in Panel e both show that the partitions are indeed more similar. Panel f shows that,
at each merging step, the number of clusters in one of the partitions is decreased by one, in
Dune’s greedy procedure to improve the average NMI by merging pairs of clusters.

lated datasets to investigate the value of Dune’s stopping rule. Then, we demonstrate the
superiority of Dune on real datasets over a wide range of metrics. Finally, we investigate the
stability of the Dune algorithm to the clustering inputs and the sample size.
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Figure 2.3: Dune stops at a meaningful level. Each of the three merging methods is applied to
a simulated dataset and the ARI with the ground truth is tracked as the number of clusters
decreases. Panel a. For Dataset 2 and tSNE+kMeans, Dune stops merging right where the
concordance is maximal, while the other methods do not. Panel b. Over all clustering
methods and datasets, Dune stops merging at one point, which always coincide with high
agreement with the ground truth.

Dune has a natural stopping point

Unlike other merging methods, Dune provides a meaningful unsupervised stopping point:
it merges clusters until no improvement in average NMI occurs, and then stops. Dune’s
stopping point identifies the level of resolution where all clustering algorithms are close to
full agreement. By contrast, the two hierarchical merging methods continue to merge until
there is only one cluster, which is not biologically meaningful or interesting.

We demonstrate the stopping rule on simulated data. Using Splatter [178], we generated
five simulated datasets of various complexity (see “Methods, Simulations” section for more
details), each with 30 clusters. These datasets are simpler than in real settings. As such,
methods such as Seurat and Monocle are able to assign cells to the correct clusters with
close-to-perfect accuracy over a wide range of simulation parameters. To allow for merg-
ing, we therefore relied on simpler methods, where we can specify the number of clusters
and purposefully over-cluster. Following Duò, Robinson, and Soneson [39], we applied SC3
without the sc3 estimate k function, as well as kMeans, using as input 3D representations
of the data obtained by running either UMAP or t-SNE on the normalized counts. Cluster
labels were then merged with Dune, DE, and Dist.

In Figure 2.3a, for example, we merged the clusters obtained from running tsne+kMeans
on Dataset 2. For all three merging methods, as merging occurs, the resolution (i.e., num-
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ber of clusters) decreases and the concordance with the ground truth increases at first, as
measured with the adjusted Rand index (ARI,[118, 58]). Dune then stops when the agree-
ment between cluster labels is at its peak. In this example, this coincides with the maximal
agreement with the ground truth. On the other hand, DE and Dist keep on merging until
there is only one cluster.

This result holds over all clustering methods and simulated datasets, as shown in Fig-
ure 2.3b. Note that the DE method is at an advantage here since it assumes the statistical
model that is used to simulate the counts in Splatter. On the other hand, Dune does not
assume such a model but performs on par with DE until Dune’s stopping point in 14 out of
15 cases.

Dune outperforms other methods on real datasets

Datasets. Our evaluations rely on four datasets. Two are mouse brain datasets from the
Allen Institute [176], one single-cell and one single-nucleus RNA-seq dataset, named AIBS
scRNA-Smart and AIBS snRNA-Smart, respectively. Cluster labels for each of these
datasets were computed using in-house iterative clustering performed by the authors [149].
The third is a human pancreas dataset [10], referred to as Baron, where cells are clustered
using hierarchical clustering with a final manual merging step. The last is also a human
pancreas dataset [130], referenced as Segerstople, where cells were assigned to manually
defined clusters using prior biological knowledge. For each of these datasets, we ran R = 3
popular [145] clustering methods: SC3, Seurat, and Monocle, with various tuning parameters.
The first two have been consistently ranked as some of the best performing clustering algo-
rithms in benchmark studies [39, 45], while the last relies on the same clustering algorithm
as Seurat, but with different pre-processing choices and parameter tuning.

Comparison with gold-standard clustering. To evaluate Dune, we first considered
how well the resulting merged clusters compare to the published labels. At each merge (i.e.,
iteration), we computed the ARI between the gold standard and the merged clusters. This
led to curves similar to those in Figure 2.3a. The entire ARI curve can be summarized
by computing the area under it, referred to herein as the area under the curve (AUC), as
depicted in Figure 2.4a.

Measuring clustering replicability across datasets. We then considered the repli-
cability of the clusters found by Dune compared to the other two merging strategies. We
measured replicability by evaluating whether the method finds similar clusters for multiple
independent datasets – for example, datasets on the same biological system but from differ-
ent labs or technologies. We considered pairwise comparisons of the clusterings for each of
the two mouse brain datasets and for each of the two human pancreas datasets. To measure
replicability, we relied on the MetaNeighbor algorithm from Crow et al. [33], which identifies
replicable clusters between pairs of datasets (see “Methods, MetaNeighbor” for description).
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Figure 2.4: Comparison of methods. Panel a. SC3 was run on the AIBS scRNA-Smart
dataset for θsc3 = 0 and merged with Dune (with θMonocle = 45 and θSeurat = 1.2, for
Dune). The ARI with the labels from the original publication, treated as gold standard, was
computed at each step of all three merging procedures. The area under this ARI curve was
then computed. Panel b. SC3, Seurat, and Monocle were run on mouse brain datasets, for a
wide range of tuning parameter values. Then, the MetaNeighbor method was used to find the
clusters that are replicable between these two datasets and replicability was defined as the
fraction of cells in replicable clusters. There is an apparent trade-off between resolution and
replicability. Panel c. Repeating the procedure from a. for three clustering methods, each
with three different values of their respective tuning parameter θ, and four datasets yields
36 comparisons of AUC. The resulting 36 AUC are displayed in the pseudocolor image, after
being scaled to have a column mean of zero and column variance of 1. This was done to
make AUC values comparable across datasets, clustering methods, and parameter values,
since the AUARIC can have different scales across scenarios. d. Similarly, replicability is
tracked as clusters are merged and AUC are computed. This yields 18 comparisons. The
color legend is shared between both panels.

The replicability of a clustering was then defined as the fraction of cells in replicable clusters.
We used this measure to compare Dune to other merging procedures.
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Illustration of the trade-off between cluster resolution and replicability. Fig-
ure 2.4b displays replicability vs. resolution for a wide range of clustering results, where
three clustering methods (SC3, Seurat, and Monocle) were run with a large grid of tuning
parameter values, on the pair of mouse brain datasets. This clearly demonstrates the trade-
off between replicability and resolution: as the number of clusters increases, the fraction of
cells in replicable clusters decreases, regardless of the clustering method used. While the
actual trade-off is specific to the biological context and the pair of datasets that are being
considered, it should be stressed that a similar trade-off is clearly visible when applying the
same type of analysis to the human pancreas datasets (Figure A.3). Note that although it
might be tempting to use this figure to contrast and benchmark clustering methods, this
would not be appropriate. Indeed, pre-processing steps were not identical between the three
methods – as described in “Methods, Data analysis” – and, as such, no direct comparison is
possible.

As pairs of clusters are merged, the resolution decreases, so a well-performing merging
method is one that improves the replicability of the clusters. Therefore, a natural way to
benchmark merging methods is to measure how and if replicability improves as the number
of clusters is reduced. Similar to the comparison with the gold-standard datasets, an area
under the replicability curve can be computed to compare all three merging methods.

Comparison of merging methods. While Dune stops merging when the average NMI
can no longer be improved, the hierarchical merging procedures have no meaningful stopping
point and continue merging until only one cluster is left, as mentioned before. To provide a
reasonable stopping point, we stopped the other methods when merging no longer improves
the NMI, similar to the requirement of Dune, which means we did not penalize these methods
for not providing a natural stopping point. Note that this provides these methods with more
information than they would otherwise have had and therefore biases the comparison in their
favor.

Figure 2.4c shows the results of benchmarking the merging methods using the ARI with
respect to the gold-standard labels, over a multiplicity of scenarios. Dune and the other merg-
ing methods rely on one or multiple clustering results – in this work, clusterings from SC3,
Seurat, and Monocle. Because each of these three clustering methods has tuning parameters
than can affect its performance, we ran each method on a grid of tuning parameter values
for each of the four datasets, as described in the “Methods, Data analysis” section. The
AUC for the three merging methods across these 36 scenarios are displayed in Figure 2.4c
, with column-wise scaling to allow for easier display. Dune clearly outperforms the other
two merging methods, ranking consistently first. For the replicability benchmark, since we
considered pairs of datasets, the number of comparisons is halved. In Figure 2.4d, Dune
outperformed the other two merging methods in all 18 comparisons. Given these results, we
forgo further comparisons and focus on Dune in the remainder of the manuscript.
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Dune increases the confidence of annotation

While cluster replicability is important in itself, producing robust and replicable clusters has
other biologically meaningful applications, including cell type annotation. We investigated
how Dune can be used to improve this task. Cell type annotation is a form of supervised
classification, where labels learned on one dataset are used to annotate cells from another
referred to as target dataset. Here, we relied on the annotation method of Stuart et al.
[142], since it also scores the confidence of annotation with a value between 0 and 1, with
higher values corresponding to a more confident cell type assignment. We could therefore
compute how the average score among all cells of the target dataset evolved when using a
clustering method before and after merging. Repeating this across all clustering methods,
choices of tuning parameters, and reference datasets (more detail in the “Methods, cell type
annotation” section) led to 36 scenarios. We found that merging with Dune consistently
improved the confidence of the annotation: the average score increased by 20% for the
mouse brain datasets and 10% for the pancreas datasets.

Empirical robustness of Dune

Dune is a semi-supervised method in the sense that it still requires users to select its input:
which and how many clustering methods to use, and with which tuning parameters. While
Dune does not entirely alleviate the need to make these choices, it provides a higher level
of robustness and stability, compared to individual clustering methods. Using both the
simulated and real datasets, we evaluated how much the output of Dune is impacted by
upstream choices. As detailed below, Dune not only improves the overall quality of the
individual clusterings, but importantly lessens the impact of the choice of input and output
clusterings.

Robustness to sample size. Dune is very stable to downsampling. Decreasing the num-
ber of cells, either before clustering (Figure 2.5a) or after clustering but before Dune (Fig-
ure 2.6b), by up to 90% has little negative effect on the quality of the merged cluster labels.
For example, on simulated data, the ARI with the ground truth on a dataset with n = 500
cells is never less than 97% of its value for a dataset of n = 5, 000 cells, as shown in Fig-
ure 2.5a. Dune is also very stable to adding more clustering inputs. Using a variety of
algorithms and associated tuning parameters as input to Dune on the simulation data, we
can measure the impact of increasing the number of inputs from R = 2 to R = 9. For R ≥ 3,
increasing the number of of clustering inputs does not change the quality of the methods
(Figure 2.5c). Note, however, that computational times are increased, as Dune scales as R2

(Section 2.4). For this reason, we have found that in practice using R = 3 inputs works best.
More details on these evaluations can be found in the “Methods, robustness” section and
Section 2.4.
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Figure 2.5: Dune robustness analysis on simulated datasets. ’Simple’ simulated datasets
with a DE proportion of .1 are generated. Clusterings from SC3, tSNE+kMeans, and
UMAP+kMeans are used as inputs to Dune. Panel a. There are R = 3 inputs, k = 40
for each clustering method, and the number of cells n varies from 100 to 5, 000. The quality
of the final clusterings is stable to downsampling up to 90%. Panel b. Keeping R = 3 and
n = 500, the tuning parameter is changed from k = 30 up to k = 50. Nearly all partitions
are improved by Dune. If there is no over-partitioning (k = 30), Dune has very little impact
on the quality of clusterings, i.e., there is little room for improvement. The initial ranking
of methods is mostly left unchanged by Dune. Panel c. Keeping n = 5, 000, the number
of partitions used as input is changed, with partitions being randomly drawn from those
described above. Once R ≥ 3, adding more clusterings as input has a limited effect on the
results of Dune.

Robustness to quality of input clusterings. Dune, however, relies on the quality of
the input clusterings. As shown in Figure 2.5b-c, the ranking of clusterings before merging is
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mostly conserved after merging. Using Dune to polish a poor-quality partition might improve
it enough to outperform a high-quality one without merging, but the high-quality partition
with Dune merging will nearly always produce better results. Finally, Dune relies on merging
to identify a common level of resolution. If all input clusterings represent under-partitioning
of the data, little merging will be done, as reflected in Figure 2.5b. As such, inputs to Dune
should err on the side of over-partitioning to allow merging to be effective and this should
be taken into consideration when selecting tuning parameters.

Selection of output clustering. Finally, Dune merges clusters to improve concordance
between its input, but it does not select one more preferably. At this point, as is the case
with any clustering workflow, user intervention is needed to select which set of cluster labels
to use for downstream analysis. Dune ensures that this step is more stable and less critical
by increasing concordance between methods. Indeed, we can assess the variability in quality
before and after merging, as measured by the ARI with the ground truth. Over all 53
simulations conducted, the variance in quality after merging with Dune is on average a third
of the original variance, and is increased only in one case, when n = 100.

Selecting the specific clustering output to retain is outside of the scope of Dune and other
criteria need to be used. On simulated datasets, selecting the partition based on the average
silhouette width leads to the best method 80% of the time, as measured by ARI or NMI with
the ground truth, and never leads to the worst. Likewise, on the mouse brain datasets, when
evaluating with either replicability or ARI with the gold standard, selecting a clustering
based on the average silhouette width leads to the best method 75% of the time and the
second best the remaining 25%. However, for the human pancreas dataset, the clustering
with the highest average silhouette width has the lowest replicability and concordance with
the gold-standard labels. Overall, there is no single metric that will work all the time. Visual
inspection or relying on external biological insight, such as known marker genes, is often the
best guide. To demonstrate this, we provide a full workflow, explaining how to use Dune
in practice to improve fully off-the-shelf clustering results and illustrating how to select the
final output.

2.3 Discussion

We have introduced Dune, a new ensemble method which aggregates clustering results from
multiple algorithms. Dune improves upon each of the input clusterings over a variety of met-
rics, and in particular can correctly navigate the resolution-replicability trade-off in cluster
analysis. In this regard, Dune outperforms more commonly used hierarchical merging meth-
ods. We stress that Dune is not a new clustering algorithm; instead, it relies on different
clustering methods to identify the highest resolution at which cluster quality (i.e., replica-
bility across datasets) remains high. In doing so, Dune identifies the commonalities of the
input clusterings and uses this to improve each of these clusterings. lessens the impact of
the choice of input clusterings and output clusterings on downstream analysis, by reducing
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the variability in the quality of the output compared to the input. That is, the user is left to
choose between improved clusterings but their choice is not as critical as if they were to select
between the input clusterings. Furthermore, as a result of merging clusters, Dune provides a
sensible hierarchy on the clusters based on their commonality across different methods. As
we go up in this hierarchy, the number of clusters is reduced, but their replicability improves.

Dune automatically stops at a meaningful resolution level, where all clustering algorithms
are in close agreement, while the other methods either keep merging until all clusters are
merged into one or require user supervision to stop early. This feature helps users in identi-
fying reliable structure in their scRNA, snRNA, or similar datasets. In contrast, the manual
choice of a stopping point is difficult since, in practice, it is often impossible to measure
replicability given the lack of a second appropriate dataset.

We focused on the normalized mutual information (NMI) to decide which clusters to
merge. The current implementation of Dune also allows users select the ARI as merging
criterion; other merging criteria could be implemented. Dune also allows for some cells
to remain unclustered, such as currently implemented in RSEC [121]. Possible extensions
include clustering methods that do not cluster all cells unambiguously, e.g., soft or fuzzy
clustering methods which may assign some cells to multiple clusters based on weights. For
now, using such methods as input to Dune would require forcing hard assignments of the
cells to clusters (possibly to their nearest cluster). Extensions of the NMI to fuzzy clustering
have been proposed [6] and could be evaluated.

This manuscript concerns the question of unsupervised clustering. Recent work in super-
vised clustering [179, 181, 38, 164] has proposed labeling cells in a new dataset by relying
on information contained in other datasets or even cell atlases. In practice, these methods
define marker genes for known cell types and build classifiers to assign new cells to these cell
types. In particular, Garnett [112] allows a hierarchical clustering structure, but one that
needs to be predefined, and scClassify [81] uses the HOPACH [77] algorithm to establish a
hierarchy in the training dataset. Most of these algorithms can also identify new cell types
not present in the reference. It is therefore possible to use Dune in a supervised cluster-
ing context, where one first identifies the cells that have known cell types and, if these do
not provide information to help cluster the rest of the cells, one removes them and applies
unsupervised clustering methods and Dune to the remaining cells.

While Dune has only been benchmarked on scRNA-Seq and snRNA-Seq datasets, it is a
general framework that can be applied to any clustering setting.

2.4 Methods

Consider a – possibly high-dimensional – dataset of n observations, X = {x1, . . . , xn}, where
xi ∈ RJ , i = 1, . . . , n. For instance, in scRNA-Seq, xi corresponds to the J gene expression
measures (i.e., normalized read counts) of cell i. Represent the results of any (non-fuzzy) clus-
tering method as a partition, P, which splits the set of n observations into k disjoint subsets
or clusters, {C1, . . . , Ck}, where: 1) Ci ∩ Cj = ∅, ∀i, j ∈ {1, . . . , k}, and 2) ∪i∈{1,...,k}Ci = X.
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Accordingly, a collection of R clustering results may be represented as multiple partitions,
P1, . . . ,PR, with partition Pr containing kr clusters, r = 1, . . . , R. For each observation xi,
denote by ci,r ∈ {Cr1 , . . . , Crkr} the cluster to which it belongs in partition Pr.

The focus of the present manuscript is to develop a general approach to combine clusters
within the different partitions, P1, . . . ,PR, in order to balance the trade-off between cluster
resolution and replicability. In the remainder of this section, we first present the mutual
information, a well-known measure of concordance between two partitions, and its normal-
ized version. We also review popular clustering methods in the scRNA-Seq literature and
alternative approaches to merge clusters. Finally, we formalize the two key notions of cluster
resolution and cluster replicability.

Normalized mutual information

Consider two partitions of a dataset, P1 and P2. These specify a discrete joint distribution
defined by the contingency table with (i, j)th entry ni,j defined as the number of observations
both in cluster i of partition P1 and cluster j of partition P2 (Table 2.1). Examples of
contingency tables between two partitions can be found in Figures 2.1a, 2.1b, 2.2a, and
2.2d.

Table 2.1: Contingency table for two partitions P1 and P2.

C21 C22 . . . C2k2 Sums
C11 n1,1 n1,2 . . . n1,k2 a1
C12 n2,1 n2,2 . . . n2,k2 a2
...

...
...

. . .
...

...
C1k1 nk1,1 nk1,2 . . . nk1,k2 ak1

Sums b1 b2 . . . bk2

In general, the mutual information [118] of two random variables measures their concor-
dance. For partitions P1 and P2, the mutual information is defined as

I(P1,P2) =H(P1)−H(P1|P2)

=H(P2)−H(P2|P1),

where H is the entropy function. In terms of the contingency table notation, the mutual
information is computed as

I(P1,P2) = −
k1∑
i=1

ai log(ai) +

k1∑
i=1

k2∑
j=1

ni,j log
(ni,j
bj

)
. (2.1)
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The mutual information can be normalized to yield a value between zero and one. While
several variants exist, we selected the following definition for the normalized mutual infor-
mation (NMI)

NMI(P1,P2) =
2× I(P1,P2)

H(P1) + H(P2)
. (2.2)

For R partitions, the overall level of concordance can be quantified by the average NMI
for all possible pairs of partitions

NMI(P1, . . . ,PR) =
1(
R
2

) ∑
{(r,s)∈{1,...,R}|r<s}

NMI(Pr,Ps). (2.3)

Note that, in the case of R = 2 partitions, this is simply the NMI between the two
partitions. If one considers the matrix of pairwise NMIs between partitions, such as displayed
in Figures 2.2b and e, then the average NMI is defined as the mean of the upper(or lower)-
triangular matrix.

Dune with NMI merging

Given R partitions (possibly the result of different clustering algorithms or different tuning
parameter values for the same clustering algorithm, or both), P1, . . . ,PR, with Pr contain-
ing kr clusters, r = 1, . . . , R, Dune seeks to improve the overall agreement among these,
as measured by the average NMI, through an iterative process of merging clusters within
partitions.

Specifically, Dune searches over each partition Pr and over each of
(
kr
2

)
pairs of clusters

in Pr for the pair which produces the largest improvement in NMI when merged, i.e.,

(r∗, i∗, j∗) := arg max
r∈{1,...,R}
i,j∈{1,...,kr}

∑
{s∈{1,...,R}|s 6=r}

NMI(Pi∪j
r ,Ps)− NMI(Pr,Ps), (2.4)

where Pi∪j
r is the partition created by merging clusters Cri and Crj in partition Pr, i.e.,

Pi∪j
r :=Pr\{Cri , Crj } ∪ {Cri ∪ Crj }

={Cr1 , . . . , Cri−1, Cri+1, . . . , Crj−1, Crj+1, . . . , Crkr , C
r
i ∪ Crj }.

Dune amounts to a greedy algorithm for maximizing the average NMI, NMI. At each
step, we find the pair of clusters that, when merged, lead to the greatest improvement in
NMI. Once we have identified this pair of clusters, we update the collection of partitions:
{P1, . . . ,PR} → {P1, . . . ,P

i∗∪j∗
r∗ , . . . ,PR}. We continue iterating until no beneficial merge

can be identified, that is, we stop updating when

max
r,i,j

∑
s 6=r

NMI(Pi∪j
r ,Ps)− NMI(Pr,Ps) < 0.
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This greedy approach means that each update step is constrained to merging a single pair
of clusters from a single partition. As such, we never merge three clusters together in one
iteration or two pairs of clusters in the same or in separate partitions. This ensures that, in
our applications, we do not converge to the naive optimal solution of merging all clusters,
which does represent a full agreement between the partitions but is of no practical interest.
We discuss in greater detail Dune’s greedy search strategy in the Supplementary Material
(Section 2.4).

While Dune provides a natural stopping point for merging, it is also possible to stop
earlier in the merging process, by tuning the merging parameter mDune, which is defined as
the fraction of NMI improvement over the total NMI improvement. For example, mDune = .5
means that Dune returns the merged partitions that have a mean NMI halfway between the
mean NMI of the original partitions and the mean NMI of the final ones.

Dune’s search strategy

Computational scalability using contingency tables. Computing contingency tables
for n pairs of labels scales as O(n), since each observation must be assigned to a cell of
the table. For large datasets, computing contingency tables for all pairs of cluster labels
over all possible merges can be a very slow process. However, when merging two clusters,
the contingency table can be easily updated by summing the appropriate two rows (or
columns). Therefore, updating the contingency table scales as at most O(K) and computing
the NMI scales as less than O(K2). Since we have fewer than

(
K
2

)
= O(K2) possible merges,

identifying the best merge at each step is at most O(R × K4). There are at most R × K
merges. So, overall, Dune scales as O(R2 ×K5).

On the other hand, if the contingency table were recomputed at each step, or if the
merging criterion did not rely on contingency tables but scaled as O(n), the algorithm would
scale as O(R2× (n+K2)×K3). In practice, K � n. Indeed, Svensson, da Veiga Beltrame,
and Pachter [145] find that, to a first approximation, K = O(log(n)). Thus, using the trick of
merging based on contingency tables, we go from O(R2×n(log(n)3) to O(R2×(log(n)5). For
large datasets with n = O(106), this translates in practice to a 100-fold acceleration. Using
merging criteria based on contingency tables makes Dune scalable to such large datasets and
hence justifies our choice of the ARI or NMI.

Computational scalability using a greedy search. Dune only tries to merge two clus-
ters at a time in just one of the partitions. This is an obviously greedy approach. To
understand why such an approach is necessary, let us rephrase the problem Dune is trying
to solve: Given a set of R clustering labels, maximize the average NMI by merging any set
of clusters in one or more partitions. The general solution to this problem is to merge all
clusters for all partitions. This leads to an average NMI of 1, but this degenerate solution is
of no practical interest.

To eliminate this issue, an option would be add a penalization term Λ that increases
as more merging occurs, such that the function to maximize becomes NMI(P1, . . . ,PR) −
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Λ(k1, . . . , kR). This becomes a discrete optimization problem and we will show that the naive
enumeration of all possible solutions is not feasible.

Solving by enumeration requires identifying all possible merges of any combination of
clusters in all partitions at once. The number of possible merges in a partition Pr is the
number of possible ways to groups clusters together. This can be redefined as the total num-
ber of possible ways to partition the set of clusters, that is, the Bell number B(kr) [12]. Then,
since we have R partitions, we have ΠR

r=1B(kr) possible merging combinations. Computing
the change in NMI resulting from such a merge still scales as O(K2), relying on the trick from
the previous paragraph. Overall, switching from a greedy to a full-enumeration search means
scaling from O(R2 × K5) to O(K2 ×

∏R
r=1B(kr)). We can use the following inequality to

have a lower bound on the growth rate of the Bell number: ∀k,B(k+1) ≥ (k
2
)k/4. Therefore,

the growth of the Bell number is more than exponentially larger than k3. Fully enumerating
all possibilities is not feasible in practice and the solution of the penalized problem is not
easily found. Since, in practice, the greedy approach of Dune finds an appropriate balance
between improving clustering concordance and merging all clusters in reasonable time, we
select this approach for our implementation.

Dune merging with ARI

The Rand index [118] measures the concordance between two partitions, P1 and P2. Denote
by a = |{(xi, xj) ∈ X2|(ci,1 = cj,1)&(ci,2 = cj,2)}| the number of pairs of observations that
are in the same cluster for both partitions P1 and P2 and by b = |{(xi, xj) ∈ X2|(ci,1 6=
cj,1)&(ci,2 6= cj,2)}| the number of pairs of observations that are in different clusters for both
partitions P1 and P2. The Rand index is then the ratio of a + b over the total number of
pairs of observations

RI(P1,P2) =
a+ b(
n
2

) ∈ [0, 1]. (2.5)

Thus, intuitively, the Rand index is the proportion of pairs of observations for which the two
partitions are in agreement.

However, the Rand index does not account for the fact that a pair of observations might
be in the same (different) cluster(s) in the two partitions purely by chance. The adjusted
Rand index (ARI) [58] adjusts for the level of concordance expected by chance, yielding a
value between −1 and +1. Specifically, considering P a fixed partition and R a random
permutation of P, then E[ARI(P, R)] = 0, where the expected value is over all cluster
permutations (i.e., permutations of the cluster assignments of the observations, while keeping
the number of clusters and the sizes of the clusters fixed). Negative values indicate less than
the expected level of concordance and positive values indicate more than the expected level
of concordance. The ARI relies on the contingency table of two partitions P1 and P2, with
the (i, j)th entry ni,j defined as the number of observations both in cluster i of partition P1

and cluster j of partition P2 (Table 2.1). Given the contingency table notation, the adjusted
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Rand index is defined as

ARI(P1,P2) =

∑
i,j

(
ni,j

2

)
− 1

(n
2)

∑
i

(
ai
2

)∑
j

(
bj
2

)
1
2

(∑
i

(
ai
2

)
+
∑

j

(
bj
2

))
− 1

(n
2)

∑
i

(
ai
2

)∑
j

(
bj
2

) . (2.6)

For R partitions, the level of concordance can be quantified by the average ARI for all
possible pairs of partitions

ARI(P1, . . . ,PR) =
1(
R
2

) ∑
{(r,s)∈{1,...,R}|r<s}

ARI(Pr,Ps). (2.7)

Note that, in the case of R = 2 partitions, this is simply the ARI between the two partitions.
If one considers the matrix of pairwise ARIs between partitions, such as displayed in Fig-
ures 2.2b and e, then the average ARI is defined as the mean of the upper(or lower)-triangular
matrix.

Software implementation and run time

The Dune algorithm is implemented in an open-source R package released through the Biocon-
ductor Project (https://bioconductor.org/packages/release/bioc/html/Dune.html).
It is implemented in a fully-parallel and efficient manner. Run time for a large dataset of
∼ 100, 000 cells, with 3 partitions, is under 15 minutes with 10 CPUs. The package also
contains plotting functions, which were used to create many of the figures in the present
paper and provide options to create GIFs and track the evolution of the average NMI or
confusion matrices over the merging steps.

Clustering algorithms for scRNA-Seq data

Any combination of clustering algorithms and associated tuning parameters, applied to an
appropriate dataset, can produce a set of partitions that can be used as input to Dune.
However, as our work was motivated by the classification of cells based on transcriptomic
signatures, we will focus on this particular setting to benchmark Dune.

In the descriptions below, we use the notation from the original publications to describe
the tuning parameters of each clustering method; the same notation may therefore correspond
to different parameters depending on the algorithm.

SC3 [71] is a consensus clustering method that involves performing k-means clustering on
different dimensionality reductions of the input dataset. A hierarchical clustering method is
then applied to the resulting consensus matrix. The main tuning parameter is the number
of clusters k, which is used both in k-means and to cut the hierarchical clustering tree. The
method provides an estimate of the optimal value of this parameter, k0, based on the number
of eigenvalues of the centered and scaled distance matrix that are significantly different from
0 (see Kiselev et al. [71] for more details). For large datasets, there exists a hybrid version

https://bioconductor.org/packages/release/bioc/html/Dune.html
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of the algorithm, where the full SC3 clustering method is run on only a fraction of the cells
to identify the clusters and the rest of the cells are assigned to the clusters using a support
vector machine (SVM) algorithm.

Seurat’s clustering algorithm (SEURAT,RRID : SCR 007322) has evolved over the
different versions of the software; here, we focus on version 3 [142] (we specifically use
version 3.1.1). The algorithm first reduces the dimension of the data by selecting the first p
principal components (PCs) and then computes a k-nearest neighbor (k-NN) graph. After
refining the graph, it groups cells using, as default, the Louvain algorithm [15]. The two
main tuning parameters are the number of neighbors k used to build the k-NN graph and
the resolution parameter for the Louvain algorithm.

Monocle’s clustering algorithm has also changed and we focus on version 3 [27] (imple-
mented in the Monocle3 package, although we keep the name Monocle for simplicity; we
specifically use version 0.1.3). Monocle’s clustering algorithm is similar to the one imple-
mented in Seurat, with a few differences. After initial dimensionality reduction based on
principal component analysis (PCA), Monocle performs another dimensionality reduction
step using uniform manifold approximation and projection (UMAP) [11, 93] and relies on
that representation to build the k-NN graph. It then clusters cells using, by default, the
Leiden algorithm [153].

Resampling-based sequential ensemble clustering (RSEC [121]) is a consensus method
over user-supplied clustering algorithms and their associated tuning parameters. In order
to improve the stability and tightness of the clusters, it also provides the option to perform
clustering on subsamples of the observations, as well as sequential clustering. However, in
this paper, we mainly use RSEC for its final step of hierarchical merging, see section “Existing
methods to merge clusters”.

Tuning parameters

For each method, we only tune the main parameter. For Seurat, however, there are two
main tuning parameters. The k parameter controls the number of neighbors used to build
the k-NN graph, while the resolution parameter defines the neighborhood in the Louvain
clustering algorithm. In practice, the k parameter has much less impact than the resolution
parameter (see Figure A.1). Moreover, depending on the value of the resolution, increasing
k either increases or decreases the final number of clusters. Accordingly, we only consider
changing the resolution parameter.

For ease and generality of notation, we will denote each method’s main tuning parameter
by θ and define θ such that increasing θ increases the number of clusters. Thus, for the
methods described above, θSC3 = k, θSeurat = Resolution, and θMonocle = −k. Each combi-
nation Θ = {θSC3, θSeurat, θMonocle} of the three parameters defines a set of partitions that
serves as input for Dune.
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Existing cluster merging methods

Once a set of clusters has been identified, one can build a hierarchical tree for these clusters
and then merge clusters that are similar. This involves specifying a measure of distance or
similarity between individual observations (i.e., cells) as well as between clusters. It should
be noted that the distance used to build the tree of clusters need not be the same as the
distance used to merge clusters.

For scRNA-Seq datasets, commonly-used between-cell distance measures include the Eu-
clidean distance and one minus the Spearman correlation coefficient. Between-cluster dis-
tances include classical linkage measures used in hierarchical clustering, e.g., maximum /
minimum / average of all pairwise distances between observations in two clusters or distance
between the cluster averages or medoids. For scRNA-Seq, another sensible between-cluster
distance measure is the proportion of differentially expressed (DE) genes between clusters
[121, 149]. A detailed discussion of such measures is out of the scope of this manuscript[69].

Here, we consider two possible merging approaches. In both cases, we compute the cluster
medoids (median of observations within the cluster) based on the log-transformed count
matrix (adding 1 to avoid taking the log of zero). We then build a hierarchical tree of clusters
using the Euclidean distance between the cluster medoids. The first merging approach
directly uses this tree to decide how to merge clusters. Specifically, clusters are merged
bottom-up, starting with the two clusters that are closest in the tree and then iteratively
until all clusters are merged. The parameter mDist = nmerges, the number of merges (between
0 and the initial number of clusters minus one), controls the amount of merging. The second
approach follows the method implemented in RSEC. It computes the percentage of DE genes
between clusters, using the limma package [122] (LIMMA,RRID : SCR 010943), where
a gene is declared DE if its nominal FDR adjusted p-value is below 0.05 [13]. The main
tunable parameter is mDE = α ∈ [0, 1], the threshold for the percentage of DE genes below
which we merge. We name these two methods Dist and DE, respectively.

Cluster replicability using MetaNeighbor

We quantify the replicability of clusters across datasets by applying a modified version of
unsupervised MetaNeighbor [33] (MetaNeighbor,RRID : SCR 016727). MetaNeighbor
requires as input two unnormalized datasets, two set of cluster labels, and a set of highly
variable genes. One of the datasets is treated as a test dataset, where all cluster labels are
hidden, the other dataset is treated as a training dataset, whose labels are propagated to
the test dataset through a cell-cell similarity network.

To identify replicating clusters, we computed replicability scores using the MetaNeighborUS
function with parameters “one-vs-best=TRUE” and “symmetric output=FALSE”. Briefly,
Each pair of clusters (one in the training dataset, the other in the test dataset) receives a
score based on how well the training cluster predicts the labels from the test cluster. Each
cluster from the training dataset is then assigned a unique best matching cluster in the test
set: the one it can predict the best. Finally, we compute a final score for each training set
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cluster by reducing the test set to the two best matching clusters using the original score.
Therefore, the final score measures how well a training cluster predicts a specific test cluster
compared to its closest neighbour. Then the role of the test and training datasets are re-
versed. Each cluster from the two dataset is therefore assigned a target in the other dataset,
and an associated score.

A cluster is considered replicable if there is a cluster in the other dataset such that the
clusters are reciprocal best hits with score > 0.6 both ways. See Crow et al. [33] for more
details and benchmark of this method. Finally, the replicability score of a clustering
is defined as the fraction of cells contained in replicable clusters. More specifically, for a
comparison of two datasets, we enumerate replicable clusters in each dataset, then deduce
the number of cells that are in replicable clusters, sum this number across datasets, and
divide by the total number of cells.

We used MetaNeighbor’s variableGenes procedure to select genes that are highly vari-
able across all datasets. For computational cost reasons, the variableGenes procedure was
applied to a random subset of 50,000 cells for datasets exceeding that size. However, the full
datasets were used for the rest of the analysis. In the end, we obtained a set of 541 highly
variable genes for the brain datasets and 2, 147 genes for the pancreas datasets.

Simulation studies

Simulation study design. To generate simulated datasets with known ground truth,
we relied on the Splater package [178]. Datasets of n = 5, 000 cells and J = 104 genes
were generated with 30 cell types. No batch effects were added, given that benchmarking
of normalization procedures was of no interest for our purpose. The average proportion
of differentially expressed genes between clusters, DE, was tuned between datasets. We
generated two types of datasets. ‘Simple’ datasets had balanced numbers of cells per cluster,
i.e., each cluster had 5, 000/30 ≈ 166 cells, and the DE proportion (one-versus-all) was the
same for every cluster. ‘Hard’ datasets had unbalanced designs, i.e., cells were randomly
assigned to each cluster, and the DE proportion was sampled from a uniform distribution
U [.75 ∗ DE, 1.25 ∗ DE].

Simulations parameters for each dataset. Therefore, each dataset is defined by the
DE parameter and a label ‘hard’ or ‘simple’. Datasets with the same parameters are however
only identical if the random seed is set to an identical value.

Data analysis. Outlier genes and cells were removed and the data were normalized using
the Seurat workflow. UMAP 2D plots of each dataset can be found in the supplementary
figures A.2a-e. k-means was run with k = 40 on either UMAP or t-SNE reduced dimensions.
SC3 was also run with k = 40. Then, clusters were merged using either Dune (with ARI or
NMI as merging criteria), the DE, or Dist methods.
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Table 2.2: Simulation parameters.

DE Type
Dataset 1 .1 ‘Simple’
Dataset 2 .1 ‘Simple’
Dataset 3 .05 ‘Simple’
Dataset 4 .1 ‘Hard’
Dataset 5 .05 ‘Hard’

Case studies

AIBS Smart mouse brain datasets

We used the two AIBS Smart datasets produced as part of the Brain Initiative Cell Census
Network (BICCN: RRID : SCR 015820) and described in Yao et al. [176], one corresponds
to single-cell sequencing (Zeng sn SSv4 https://assets.nemoarchive.org/dat-k7p82j4)
and the other to single-nucleus sequencing (Zeng sc SSv4 https://assets.nemoarchive.

org/dat-55mowp9). We use the original publication’s subclass labels as gold-standard cluster
labels for these datasets. The datasets can be downloaded from the Neuroscience Multi-omics
Archive (RRID : SCR 002001; nemoarchive.org). More details on the parent dataset
(https://assets.nemoarchive.org/dat-ch1nqb7) and data access can be found in Yao
et al. [176].

Human pancreas datasets

We focus on two datasets from [10] (8, 568 cells) and [130] (3, 514 cells), which we name
Baron and Segerstople, respectively. Both datasets were downloaded from https://hemberg-
lab.github.io/scRNA.seq.datasets/ on October 1st, 2018. We use the clusters from the orig-
inal publications as gold-standard cluster labels.

Data analysis

Except when otherwise specified, all methods and algorithms were run with default parame-
ters or, if no available default, with the parameters recommended in the vignette or tutorial.

Pre-processing. Count matrices were filtered to remove lowly-expressed genes with fewer
than i reads in j cells. See Table 2.3 for values of i and j for each dataset.

As indicated below, we follow different normalization strategies before running Seurat
and Monocle in order to obtain more diverse clustering results. This is appropriate, as the
goal of the manuscript is not to compare different clustering methods, but rather different
merging methods for given clustering results. The merging methods that Dune is compared

https://assets.nemoarchive.org/dat-k7p82j4
https://assets.nemoarchive.org/dat-55mowp9
https://assets.nemoarchive.org/dat-55mowp9
nemoarchive.org
https://assets.nemoarchive.org/dat-ch1nqb7
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to rely on only one clustering input; we therefore seek to benchmark merging methods using
a variety of clustering inputs.

Seurat. Following the tutorial, we run FindVariableFeatures and ScaleData to normal-
ize the data. Counts are log-transformed (adding 1 to avoid taking the log of zero) and
normalized by sequencing depth. For the two pancreas datasets, batches are also normalized
for using the scaleData function. Following principal component analysis, FindNeighbors
and FindClusters are run for a number of neighbors k in {30, 50, 70} and resolution θ from
0.3 to 2.5 in increments of 0.1.

SC3. The algorithm is run on a dataset normalized as above with the Seurat pipeline. The
optimal value of k, k0, is computed using the sc3 estimate k function. The parameter θ is
transformed to be θSC3 = k − k0. SC3 is then run for values of θ ranging from −15 to +15.

Monocle. zinbwave [121] is first used for normalization and dimensionality reduction on the
filtered count data. For the two pancreas datasets, batches are included as model covariates.
We select K, the number of reduced dimensions, based on a visual representation for each
dataset, see Table 2.3. This first step of dimensionality reduction is followed by another using
UMAP [93] with two dimensions. The resulting two-dimensional representation is then used
to build the k-NN graph, with k ranging from 10 to 150 in increments of 10.

Dune. For a given set of values for Θ = {θSC3, θSeurat, θMonocle}, we get three sets of cluster
labels that we can use as input to Dune.

Building the hierarchical tree. The output of each clustering method is used as input to
RSEC’s makeDendogram function. Then, we either cut the tree using R’s cutree function (for
the Dist merging method) or RSEC’s mergeClusters function (for the DE merging method).

Cell type annotation. Each dataset is normalized as described in the Seurat paragraph.
For each pair of datasets (mouse brain or human pancreas), one dataset is used as reference
and the other as target for which cells are to be labeled. The reference dataset is labeled
using the cluster labels either before or after merging with Dune, for all values of θ described
above. Each cell in the target dataset is assigned a label and a score using the Seurat
TransferData function. The average score across all cells is used to evaluate the quality of
the annotation.

Producing “bad” clusters. For each value of the tuning parameters Θ, on the pancreas
datasets, we add fully random inputs to Dune. That is, we create “bad” clusterings by
randomly assigning each cell a number (or cluster label) between 1 and (kSC3 + kMonocle +
kSeurat)/3, where k denotes the number of clusters for a particular clustering algorithm.
Since cells are assigned randomly, the size of the clusters will vary, but all clusters have the
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same expected size. To account for the stochastic nature of this procedure, we repeat this
10 times.

Downsampling. Downsampling the number of cells at the beginning of the analysis
pipeline would affect both the quality of the input clusterings and the quality of the merging
with Dune. As such, to test only the stability of Dune to the number of cells, we down-
sample the cells just before running Dune, that is, the clustering algorithms are run on the
full dataset but only a subset of the dataset is used to decide which clusters to merge and
in which order. Afterwards, cells that are not in the subsample are assigned to the merged
clusters based on their original cluster labels. That is, if Clusters 1 and 2 are merged, all cells
that were originally in Cluster 1 or Cluster 2, even those not selected in the downsampling
and not used as input to Dune, are assigned to the merged cluster.

Most of the code was run using xsede [152].

Table 2.3: Parameters for pre-processing the datasets. Each dataset is filtered such that we
keep all genes with a least i reads in j samples. Then, zinbwave is run with K dimensions.

Dataset i j K
AIBS scRNA-Smart 50 50 30
AIBS snRNA-Smart 50 50 14

Baron 5 5 10
Segerstople 5 5 20

Pre-processing parameters

Robustness analysis

Robustness on simulated datasets

Simulation settings. All simulations presented in the robustness analysis are for scenarios
of type ’Simple’ with a DE proportion of .1, just as Datasets 1 and 2 of the simulation
benchmark.

Downsampling. We generated datasets of n ∈ {100, 200, 500, 1, 000, 2, 000, 5, 000} cells.
On these datasets, we used SC3, tSNE+kMeans, and UMAP+kMeans (all with k = 40) as
input to Dune. Then, the ARI with the ground truth was computed as merging occurs.
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Figure 2.6: Dune robustness analysis on real datasets. Panel a. Adding an increasing number
of random clustering inputs to Dune impacts only slightly the resolution-replicability area
under the curve when merging the other correct clusters. Panel b. Likewise, Dune is stable
to decreasing the number of input cells, as low as 10% of the original sample size.

Varying tuning parameters. For the dataset with n = 5, 000 cells generated above, we
used SC3, tSNE+kMeans, and UMAP+kMeans as input to Dune. The tuning parameter was
identical for all methods and varied between k = 39 and k = 50. Then, the ARI with the
ground truth was computed as merging occurs.

Changing the input clusterings. For the dataset with n = 5, 000 cells generated above,
we used SC3, tSNE+kMeans, and UMAP+kMeans, with k ∈ {35, 40, 45}. We randomly
sampled a set of R (between 2 and 9) clustering inputs among the 9 methods. This process
was repeated at least 5 times for each value of R, or until all possible combinations were
selected if

(
9
R

)
< 5. Then, the ARI with the ground truth was computed as merging occurs.

To facilitate presentation, we take the average over all repetitions for a given clustering
method with a given tuning parameter value and given value of R.

Robustness on real datasets

Robustness to poor clustering inputs. Since Dune takes as input the results from
clustering algorithms, its results depend on the quality of the clusterings produced by these
algorithms. In general, Dune will not be able to produce good clusters when merging only
clusters that capture no underlying biological signal. However, we showed that Dune is
robust to a mix of “good” clustering inputs and “bad” clustering inputs. We used as “good”
inputs the results of SC3, Seurat, and Monocle that are assumed to capture some common
signal, and as “bad” inputs fully random clusters that will not have any commonality (see
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the “Methods, Data analysis” section). Then, the replicability of the “good” clusterings
was measured as merging happened and the AURC was computed and compared to the
AURC when there were no “bad” inputs. As more and more “bad” clusters were added
(Figure 2.5b), Dune still improved the replicability of the “good” clusters as it merged
them, even when half of the clusters used as inputs were random. Hence, Dune can recover
from very poor clustering inputs.

Robustness to sample size. We investigated how Dune handles datasets with an ever-
smaller number of cells. To simulate such datasets, we downsampled the two pancreas
datasets. Downsampling could affect both the quality of input clusters and the merging
procedure of Dune. To disentangle these two effects, we downsampled the two human pan-
creas datasets after running SC3, Seurat, and Monocle, but before running Dune. We then
measured how and whether merging still improved the cluster replicability by computing
the AURC and constrasting it to its value without downsampling (see the “Methods, Data
analysis” section for more details).

When the datasets were downsampled to between 90% and 10% of the original num-
ber of cells, Dune still correctly navigated the trade-off between resolution and replicability
(Fig. 2.5c). Only when fewer than 10% of the cells were used (which amounts to datasets
of fewer than 200 cells) did Dune’s capacity to improve clustering replicability worsened
noticeably. This demonstrates that the method is very stable to the number of cells.

Data availability

The Pancreas datasets were downloaded from the Hemberg group website, https://hemberg-lab.
github.io/scRNA.seq.datasets/human/pancreas/, on October 1st, 2018. The AIBS datasets
can be obtained from the Neuroscience Multi-omics Archive (RRID : SCR 002001; nemoarchive.
org), Zeng sn SSv4 at https://assets.nemoarchive.org/dat-k7p82j4 and Zeng sc SSv4
at https://assets.nemoarchive.org/dat-55mowp9.

Code availability

The results from this paper can be reproduced using code from the following GitHub
repository: https://github.com/HectorRDB/Dune_Paper. The Dune method is imple-
mented in an open-source R package released through the Bioconductor Project (http:
//www.bioconductor.org/packages/release/bioc/html/Dune.html).

Notation. Following the “Methods” section, we consider a – possibly high-dimensional –
dataset of n observations, X = {x1, . . . , xn}, where xi ∈ RJ , i = 1, . . . , n. For instance, in
scRNA-Seq, xi corresponds to the J gene expression measures (i.e., normalized read counts)
of cell i. Represent the results of any (non-fuzzy) clustering method as a partition, P, which
splits the set of n observations into k disjoint subsets or clusters, {C1, . . . , Ck}, where: 1)

https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/
https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/
nemoarchive.org
nemoarchive.org
https://assets.nemoarchive.org/dat-k7p82j4
https://assets.nemoarchive.org/dat-55mowp9
https://github.com/HectorRDB/Dune_Paper
http://www.bioconductor.org/packages/release/bioc/html/Dune.html
http://www.bioconductor.org/packages/release/bioc/html/Dune.html
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Ci ∩ Cj = ∅, ∀i, j ∈ {1, . . . , k}, and 2) ∪i∈{1,...,k}Ci = X. Accordingly, a collection of R
clustering results may be represented as multiple partitions, P1, . . . ,PR, with partition Pr

containing kr clusters, r = 1, . . . , R. For each observation xi, denote by ci,r ∈ {Cr1 , . . . , Crkr}
the cluster to which it belongs in partition Pr. We also let K = maxr{kr}, i.e., the largest
number of clusters among all partitions.
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Chapter 3

Trajectory-based differential
expression analysis

The importance of trajectory inference was discussed in chapter 1. In this chapter, we will
focus on how to conduct gene differential expression downstream of trajectory inference. A
version of this work has been published at Nature Communications [158] 1.

1I would link to deeply thank my collaborators. Koen Van den Berge spearheaded this project, with deep
involvement by Kelly Street, under supervision by Sandrine Dudoit and Lieven Clement. Wouter Saelens,
Robrecht Cannoodt and Yvan Saeys provided crucial help designing the simulation studies
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3.1 Introduction

Single-cell RNA sequencing (scRNA-seq) has revolutionized modern biology by allowing
researchers to profile transcript abundance at the resolution of an individual cell. This has
opened new avenues to study cellular pathways during the cell cycle, cell type differentiation,
or cellular activation. Indeed, scRNA-seq can provide a snapshot of the transcriptome of
thousands of single cells in a cell population, which are each at distinct points of the dynamic
process under study. This wealth of transcriptional information, however, presents many data
analysis challenges. Until recently, statistical and computational efforts have focused mostly
on trajectory inference (TI) methods, which aim to first allocate cells to lineages and then
order them based on pseudotimes within these lineages. A wide range of TI methods have
been proposed; 45 of which are extensively benchmarked in Saelens et al. [126]. Note that
we use the term trajectory to refer to the collection of lineages for the process under study.

Most TI methods share a common workflow: dimensionality reduction followed by infer-
ence of lineages and pseudotimes in the reduced-dimensional space [24]. In that reduced-
dimensional space, a cell’s pseudotime for a given lineage is the distance, along the lineage,
between the cell and the origin of the lineage. As such, while pseudotime can be interpreted
as an increasing function of true chronological time, there is no guarantee that the two follow
a linear relationship. While early methods were limited to inferring trajectories comprised
of a single linear lineage, recent developments have allowed the inference of trajectories that
might bifurcate multiple times and consist of several smooth lineages, or that might have
cyclic patterns [141, 84, 115]. These advances in TI methods enable researchers to study
dynamic biological processes, such as complex differentiation patterns from a progenitor
population to multiple differentiated cellular states [23, 56], and have the promise to provide
transcriptome-wide insights into these processes.

Unfortunately, statistical inference methods are lacking to identify genes associated with
lineage differentiation and to unravel how their corresponding transcriptional profiles are
driving the dynamic processes under study. Indeed, differential expression (DE) analysis
of individual genes along lineages is often performed on discrete groups of cells in the de-
velopmental pathway, e.g., by comparing clusters of cells along the trajectory or clusters of
differentiated cell types. Such discrete DE approaches do not exploit the continuous expres-
sion resolution that can be obtained from the pseudotemporal ordering of cells along lineages
provided by TI methods. Moreover, comparing cell clusters within or between lineages can
obscure interpretation: it is often unclear which clusters should be compared, how to prop-
erly combine the results of several pairwise cluster comparisons, or how to account for the
fact that not all these comparisons are independent of each other. Inevitably, the number
of cluster comparisons also increases rapidly with the number of lineages of interest, leading
to multiple testing issues at the gene level [157] and further decreasing the reproducibility
of scRNA-seq DE results.

A number of methods have been developed for the analysis of bulk RNA-seq time-series
data, which can exploit the continuous resolution of samples assayed at different times [102,
127, 5]. Nueda, Tarazona, and Conesa [102] requires multiple observations for each time-
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point and estimates the mean expression for each time-point. However, in scRNA-seq, cells
are never at the exact same pseudotime value. Other approaches assume a piecewise linear
[5] or polynomial [127] relationship of mean expression with time, which provides insufficient
flexibility to model the complex relationship between gene expression and pseudotime ob-
served in scRNA-seq datasets. Often, these methods are also restricted to the estimation of
only one or two functions for each gene.

A few methods have been been published with the aim of improving trajectory-based dif-
ferential expression analysis by modeling gene expression as a smooth function of pseudotime
along lineages. Monocle [154] tests whether gene expression is associated with pseudotime
by fitting additive models of gene expression as a function of pseudotime. However, the
method can only handle a single lineage. A similar approach has been adopted by TSCAN
[64]. GPfates [84] relies on a mixture of overlapping Gaussian processes [79], where each
component of the mixture model represents a different lineage. For each gene, the method
tests whether a model with a bifurcation significantly increases the likelihood of the data as
compared to a model without a bifurcation, essentially testing whether gene expression is
differentially associated with the two lineages. Similarly, the BEAM approach in Monocle 2
[115] allows users to test whether differences in gene expression are associated with particular
branching events on the trajectory. These trajectory-based methods improve upon discrete
cluster-based approaches by: (1) exploiting the continuous expression resolution along the
trajectory and (2) comparing lineages using a single test based on entire gene expression
profiles. However, both GPfates and Monocle 2 lack interpretability, as they cannot pinpoint
the regions of the gene expression profiles that are responsible for the differences in expres-
sion between lineages. Moreover, the GPfates model is restricted to trajectories consisting
of just one bifurcation, essentially precluding its application to biological systems with more
than two lineages (i.e., a multifurcation or more than one bifurcation). BEAM is restricted to
the few dimensionality reduction methods that are implemented in the Monocle 2 software,
namely, independent component analysis (ICA) and DDRTree [115]. Hence, novel methods
to infer differences in gene expression patterns within or between transcriptional lineages
with complex branching patterns are vital to further advance the field.

In this manuscript, we introduce tradeSeq, a method and software package for trajectory-
based differential expression analysis for sequencing data. tradeSeq provides a flexible frame-
work that can be used downstream of any dimensionality reduction and TI method. Unlike
previously proposed approaches, tradeSeq provides several tests that each identify a dis-
tinct type of differential expression pattern along a lineage or between lineages, leading to
clear interpretation of the results. In practice, tradeSeq infers smooth functions for the gene
expression measures along pseudotime for each lineage using generalized additive models
and tests biologically meaningful hypotheses based on parameters of these smoothers. By
allowing cell-level weights for each individual count in the gene-by-cell expression matrix,
tradeSeq can handle zero inflation, which is essential for dealing with dropouts in full-length
scRNA-seq protocols [156].

As it is agnostic to the dimensionality reduction and TI methodology, the approach scales
from simple to complex trajectories with multiple bifurcations: tradeSeq only requires the
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original expression count matrix of the individual cells, estimated pseudotimes, and a hard or
soft assignment (weights) of the cells to the lineages to infer the lineage-specific smoothers.
For within-lineage differential expression, tradeSeq provides both global tests to screen for
genes with overall DE along a lineage, as well as specific tests to pinpoint relevant variation in
gene expression profiles within the lineage. Likewise, for between-lineage comparisons, trade-
Seq provides both global tests to compare expression patterns between entire lineages (useful
for initial screening of interesting genes), as well as specific tests that allow researchers to
pinpoint relevant differences in expression profiles between lineages. If multiple hypotheses
are assessed for each gene, one can use our stageR package [157] to conduct an omnibus test
(e.g., there are no differences in expression profiles across multiple lineages) prior to post hoc
tests that identify the relevant specific differences (e.g., all pairwise comparisons between
lineages). We benchmark our method against current state-of-the-art methods using simu-
lated datasets (with cyclic, bifurcating, and multifurcating trajectories) and demonstrate its
functionality and versatility on four real datasets. These case studies highlight the enhanced
interpretability of tradeSeq’s results, which lead to improved understanding of the underlying
biology.

3.2 Results

In this Section, we first evaluate tradeSeq on simulated datasets with trajectories that span
different topologies. Next, we demonstrate how tradeSeq can also be applied to bulk RNA-
seq time course data, and how the method improves biological interpretation of trajectory
inference results by applying it to three real datasets, a MARS-Seq dataset for mouse bone
marrow [108], a SMART-Seq dataset for the mouse olfactory epithelium [44] and a 10X
Genomics dataset on adipocyte differentiation [95].

Simulation study

To benchmark relevant differential expression methods, we generated multiple datasets, span-
ning three distinct trajectory topologies, using the independently developed dynverse toolbox
[126]. We first generated 10 datasets (see Figure 3.1a for a representative dataset) corre-
sponding to a single lineage contributing to a cyclic trajectory. Next, we considered a
bifurcating topology, where a common lineage bifurcates into two differentiating lineages,
and likewise generated 10 datasets (see Figure 3.1b for a representative dataset). Finally,
we considered a multifurcating topology (Figure 3.1c). Note that the simulated datasets are
relatively “clean”, as reflected by the high sensitivity and specificity of most methods. In
particular, cells are approximately uniformly distributed along each lineage and often bal-
anced between lineages. The datasets are, however, still useful to provide a relative ranking
of the methods.

We demonstrate the versatility of tradeSeq by using it downstream of three trajectory
inference methods, slingshot [141], Monocle 2 [115], and GPfates [84], which will be denoted
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by tradeSeq slingshot, tradeSeq Monocle2, and tradeSeq Gpfates, respectively. However, we
find that GPfates fails to recover the expected trajectory topology if run in an unsupervised
way (Supplementary Figure C.3a). Feeding the true pseudotimes as input to GPfates may,
however, result in meaningful trajectories (Supplementary Figure C.3b). We therefore adopt
this approach in the simulation study, but note that this may provide an a priori competitive
advantage to GPfates over other TI methods and that this would be impossible for real
datasets.

Existing frameworks for differential expression analysis are not modular, in the sense that
the DE method is tied to the TI method implemented in the same software package. Because
of this, the comparison of DE methods is confounded with the quality of the upstream
trajectory inference. We therefore also evaluate all trajectory-based DE methods by using
the simulation ground truth as input for the DE analysis, which avoids such a confounding.
GPfates was left out of this comparison, since we were not able to input the simulation ground
truth to the method.

Within-lineage DE. First, we look for genes whose expression is associated with pseudo-
time for datasets with a cyclic topology (e.g., Figure 3.1a). We compare the associationTest
of a tradeSeq slingshot analysis to the Moran’s I test implemented in Monocle 3. We apply
tradeSeq using 5 knots, as determined using the AIC (Supplementary Figure C.4). We only
consider Monocle 3 because it is the only method that provides a test to assess the association
between gene expression and pseudotime within a single lineage. For each TI method, we
use the default/recommended dimensionality reduction method, which is PCA for slingshot
and UMAP for Monocle 3.

Monocle 3, however, often fails to reconstruct the cyclic topology and instead may fit
a disconnected or branching trajectory (Supplementary Figure C.5). The Moran’s I test
still has reasonably high sensitivity, possibly because it relies on nearest neighbors in the
reduced dimensional space and not on the inferred trajectory. tradeSeq downstream of sling-
shot provides superior performance to discover genes whose expression is associated with
pseudotime (Figure 3.1d). We also compared both methods using the same dimensional-
ity reduction input, by having slingshot infer trajectories in the UMAP space that is used
by Monocle 3. The performance of tradeSeq was generally similar for both dimensional-
ity reduction methods, except for 2 out of 10 datasets (Supplementary Figure C.6). In all
datasets, tradeSeq had better performance than Monocle 3. Finally, we evaluate an edgeR-
based associationTest through fitting the NB-GAMs with edgeR instead of with mgcv
(method edgeR assoc, see Methods for details), and note that its performance is similar to
the tradeSeq associationTest (Supplementary Figure C.7). This could be expected because
few basis functions were selected for this simulation setting. In applications that require a
rich basis, however, the edgeR implementation will be prone to overfitting.

Between-lineage DE. For the bifurcating datasets (Figure 3.1b), we assess differential
expression between lineages using the diffEndTest and the patternTest from tradeSeq,



CHAPTER 3. TRAJECTORY-BASED DIFFERENTIAL EXPRESSION ANALYSIS 44

downstream of TI methods slingshot, Monocle 2, and GPfates. We apply tradeSeq with 4
knots, as determined using the AIC (Supplementary Figure C.8). We compare these tests
with available approaches for trajectory-based differential expression analysis, namely, BEAM
(implemented in Monocle 2), GPfates, and ImpulseDE2. Furthermore, we compare against
the discrete DE method edgeR, where we supervise the test to assess DE between the clusters
at the true endpoints of each lineage, as derived through k-means clustering in PCA space.
For each TI method, we use the default/recommended dimensionality reduction, which is
PCA for slingshot, GPLVM for GPfates, and DDRTree for Monocle 2. For ImpulseDE2, we
use the same input as for tradeSeq, i.e., derived by slingshot TI.

Monocle 2 and GPfates fail to detect the correct topology of the trajectory (i.e., a bi-
furcation) in, respectively, 3 and 4 out of the 10 datasets (Supplementary Figures C.9 and
C.10). In addition, out of the remaining 7 datasets, Monocle 2 misplaces the bifurcation in 4
of them, causing the two simulated lineages to be merged into the same lineage and creating
another incorrect lineage (Supplementary Figure C.9). This strongly obscures the DE testing
results. slingshot, on the other hand, correctly identifies the topology and reconstructs the
trajectory for all 10 datasets.

Figure 3.1e shows performance curves for the three datasets for which all methods are
able to recover the true topology of the simulated trajectory. The tradeSeq patternTest

has superior performance regardless of the TI method. Only edgeR achieves a similar perfor-
mance. This is not surprising since the edgeR analysis is supervised to compare the true cell
populations at the endpoints of the lineages. Interestingly, tradeSeq’s diffEndTest based
on the slingshot trajectory performs comparably to a supervised edgeR analysis. This is es-
pecially encouraging, since the diffEndTest is a smoother-based analog of discrete DE. For
TI methods Monocle 2 and GPfates, diffEndTest performs poorly, which is not surprising
since the endpoints are typically ill-defined or artificially extended in the inferred trajectories
for those methods (Supplementary Figures C.9 and C.10). In general, BEAM, ImpulseDE2,
and GPfates are outperformed by the other methods. Across all methods, tradeSeq slingshot
has the best performance. Finally, we recapitulate that the performance curves in Figure
3.1e do not provide a complete view of method performance, since 7 out of 10 datasets were
not used because at least one method failed to recover the simulated trajectory. Supple-
mentary Figure C.11 shows mean performance curves across all 10 datasets for all methods,
which clearly demonstrates the superiority of tradeSeq as a DE method and of slingshot as
an upstream TI method. The performance and trajectories for all 10 individual datasets are
shown in Supplementary Figure C.12.

In order to avoid the comparison of DE methods being obscured by differences in the
upstream dimensionality reduction and trajectory inference methods, we compared tradeSeq,
BEAM, and ImpulseDE2 on the simulation ground truth. We fit the tradeSeq NB-GAM once
with 3 knots, for comparability with the BEAM approach that also uses 3 knots, and once
with 4 knots, which was found to be optimal according to the AIC (Supplementary Figure
C.8). The tradeSeq patternTest is unaffected by the change in the number of knots and out-
performs all other methods for differential expression analysis (Supplementary Figure C.13).
The performance of the tradeSeq diffEndTest is somewhat sensitive to the number of knots,
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Figure 3.1: Simulation study results. PCA plots for the (a) cyclic, (b) bifurcating, and (c)
multifurcating simulated trajectories. The plotting symbol for each cell is colored according
to its true pseudotime; trajectories (in black) were inferred by princurve in (a) and slingshot
in (b) and (c). (d-f) Scatterplot of the true positive rate (TPR) vs. the false discovery rate
(FDR) or false discovery proportion (FDP) for various DE methods applied to the simulated
datasets. Panel (d) displays the average performance curves of DE methods across seven out
of 10 cyclic datasets for which all DE methods worked (Monocle 3 errored on three datasets).
The associationTest from tradeSeq has superior performance for discovering genes whose
expression is associated with pseudotime, as compared to Monocle 3. When investigating
differential expression between lineages of a trajectory, the patternTest of tradeSeq con-
sistently outperforms the diffEndTest across all three TI methods, since it is capable of
comparing expression across entire lineages. Panel (e) displays the average performance
curves across the three bifurcating datasets where all TI methods recovered the correct
topology. Here, all tradeSeq patternTest workflows, tradeSeq slingshot end, and edgeR have
similar performance and all are superior to BEAM, ImpulseDE2, and GPfates. Note that the
performance of tradeSeq Monocle2 end deteriorates as compared to tradeSeq slingshot end;
the curve for tradeSeq GPfates end is not visible in this panel due to its low performance.
For the multifurcating dataset of panel (f), tradeSeq slingshot has the highest performance,
closely followed by tradeSeq Monocle2 and edgeR.
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but still better than that of ImpulseDE2 and BEAM. Generally, ImpulseDE2 performs better
than the BEAM approach.

For the multifurcating dataset, we forego a comparison with GPfates, since it is restricted
to discovering only a single bifurcation (Supplementary Figure C.14). We fit tradeSeq with
3 knots, as determined using the AIC (Supplementary Figure C.15). The patternTest

from tradeSeq slingshot and tradeSeq Monocle2 have highest performance, closely followed
by edgeR and the diffEndTest for those respective TI methods (Figure 3.1f). BEAM was
found to have the lowest performance.

Taken together, these results suggest that tradeSeq is a powerful and flexible procedure
for assessing DE along and between lineages. Although tradeSeq is modular and can be used
downstream of any TI method that provides pseudotime estimates, the choice of dimension-
ality reduction and TI method is crucial for the performance of the downstream analysis.
The best performance was found for a tradeSeq slingshot analysis, so we will mainly focus on
slingshot as TI method for the real datasets.

Computation time and memory usage benchmark

To assess time and memory requirements, scRNA-seq datasets with a bifurcating trajec-
tory were simulated using the same simulation framework as in the simulation study. Three
datasets with 100, 1, 000, and 10, 000 cells were simulated (small, medium, and large datasets),
each consisting of 5, 000 genes. For BEAM and GPfates, only the fitting and DE testing part
was assessed for each method, not the trajectory inference part. All methods were ran with
default options. For tradeSeq, the fitGAM function was assessed with 4 knots, as determined
in the simulation study. The different tests implemented in tradeSeq were benchmarked
separately (Supplementary Figure C.16). Their running times are very small (always below
30 seconds), as compared to the fitGAM function, and do not increase for datasets with
increasing numbers of cells.

To benchmark time requirements, the microbenchmark package was used, and each method
was run 10, 2, and 2 times on respectively the small, medium, and large datasets. Varia-
tions in running times were very small (always under the minute), especially in comparison
to between methods differences. Methods that reached the 4-hour mark without finishing
were killed. This is the case for ImpulseDE2 on the datasets with 103 and 104 cells, and for
GPfates on the largest dataset. Memory benchmark was assesses using the Rprof function;
maximum memory usage was recorded.

Results are shown in Figure 3.2. ImpulseDE2 is by far the slowest, taking over 3.5 hours
to finish on a small dataset of 100 cells. GPfates runs in about 30s on the small dataset
but scales poorly. BEAM, edgeR and tradeSeq are quite fast and scale very well, even to
large datasets, with BEAM scaling the best. In terms of memory requirements, all methods
scale well to 10, 000 cells. It should also be noted that tradeSeq, ImpulseDE2, and BEAM can
utilize multiple cores but were benchmarked using only one core.
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Figure 3.2: Benchmark of computation time and memory usage. Datasets with 100, 1, 000
and 10, 000 cells are simulated and each method is evaluated respectively 10, 2 and 2 times on
each dataset to assess computation time and memory usage. The average across iterations is
plotted for each method. Methods that went over a 4-hour mark were stopped and deemed
taking too long.

Case studies

Bulk RNA-seq time-course dataset

While in this manuscript we focus on DE analysis downstream of TI, the applicability of
tradeSeq extends beyond this setting. We demonstrate this by using tradeSeq on a bulk
RNA-seq time-course study from Kiselev et al. [72], where we compare gene expression
between wild type and PIK3CA H1047R cell lines upon stimulation of epidermal growth
factor (EGF). Gene expression was measured for three replicates in each condition over over
six time-points, ranging from 0 to 300 minutes post EGF stimulation. The original analysis
in the manuscript assessed DE between the cell lines for each time-point separately using
DESeq2, and found 7, 486 DE genes at a 1% nominal FDR level (Benjamini, Yoav ; Hochberg
[13] FDR-controlling procedure). We perform an analogous analysis using tradeSeq, by
modeling gene expression measures as smooth functions of time and looking for differences
in expression patterns with patternTest. This yields 7, 184 DE genes at a 1% nominal
FDR level. Around 89% of these genes overlap with the original DE list of 7, 486 genes,
demonstrating that the utility of tradeSeq goes beyond scRNA-seq applications.
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Mouse bone marrow dataset

Paul et al. [108] study the evolution of gene expression for myeloid progenitors in mouse
bone marrow. They construct a reference compendium of marker genes that are indicative
of development from myeloid multipotent progenitors to erythrocytes and several types of
leukocytes.

In order to compare our approach with BEAM, we are restricted to the dimensionality
reduction procedures implemented in Monocle 2. We therefore first used ICA as dimen-
sionality reduction method (Figure 3.3a) in the ‘Discovering cell type markers’ paragraph,
but observed that this approach does not fully preserve the underlying biology. Indeed, a
2-dimensional visualization of the ICA dimensionality reduction shows that there is a seem-
ingly large gap between the multipotent progenitors and the remaining cell types, and that a
number of erythrocytes and granulocyte-macrophage progenitors (GMP) are misclassified as
multipotent progenitors. In addition, megakaryocytes, which are thrombocyte progenitors
and as such should not belong to any of the two lineages, seem to be split between the ery-
throcyte and leukocyte lineages. However, when applying UMAP dimensionality reduction
(Figure 3.3b), these issues are resolved and the underlying biology seems better preserved
than with ICA. In subsequent sections, we will therefore demonstrate the powerful inter-
pretation of a tradeSeq slingshot analysis based on UMAP dimensionality reduction. This
additionally illustrates the flexibility of tradeSeq (and slingshot) to be applied downstream
of any dimensionality reduction method.

In this case study, we apply tradeSeq with 6 knots, as found to be optimal by the AIC
(Supplementary Figure C.17). We first identify marker genes for the progenitor and differ-
entiated cell types in the ‘Discovering cell type markers’ paragraph. Next, we assess which
genes behave differently along the two lineages in the ‘Discovering progenitor population
markers’ paragraph. Finally, we demonstrate how one can group genes in clusters that share
similar expression patterns in the ‘Gene expression families’ paragraph.

Discovering cell type markers. tradeSeq provides the flexibility to test several interest-
ing and distinct hypotheses for this dataset, that cannot always be considered with other
methods. For instance, we can find marker genes for the progenitor cell population vs. the
differentiated leukocytes or erythrocytes with the startVsEndTest procedure (results shown
in Supplementary Figure C.18). We can also discover marker genes for the differentiated cell
types by comparing the differentiated leukocyte and erythrocyte cells themselves by con-
trasting the endpoints of the smoothers with the diffEndTest procedure. For the latter,
tradeSeq finds 2, 233 significantly differentially expressed genes at a 5% nominal FDR level,
while BEAM discovers 584 genes at a 5% nominal FDR level when testing whether the asso-
ciation between gene expression and pseudotime depends on the lineage (Benjamini, Yoav ;
Hochberg [13] FDR-controlling procedure).

Since the identification of a larger set of DE genes does not necessarily imply more
relevant biology, we select carefully constructed gene sets from Graaf et al. [47] to perform
gene set enrichment analysis (GSEA) on blood cell types. As we are comparing erythrocytes
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Figure 3.3: Mouse bone marrow case study [108]. (a) Two-dimensional representation of a
subset of the data using independent components analysis (ICA). The myeloid trajectory
inferred by slingshot is displayed. (b) Two-dimensional representation of a subset of the
data using UMAP. The myeloid trajectory inferred by slingshot is displayed. The UMAP
dimensionality reduction method better captures the smooth differentiation process than
ICA. (c) Estimated smoothers for the top six genes identified by the tradeSeq patternTest

procedure on the trajectory from (b). (d) Six clusters for the top 500 genes with different
expression patterns between the two lineages (as identified by patternTest from tradeSeq).

with a mixture of leukocytes, we expect gene sets related to erythrocytes to be significant.
Indeed, the erythrocyte gene set is the only one to be found significant by fgsea [132] for
the tradeSeq analysis (FDR adjusted p-value < .001, with normalized enrichment score of
1.49), while no significant gene sets are found for the BEAM analysis (as reference, the FDR
adjusted p-value for the erythrocyte gene set is 0.58). In this case, tradeSeq is therefore
better able to recover a meaningful biological signal (Supplementary Figure C.19).

If one assumes that the cell type labels are known for all cells in the dataset, a cluster-
based comparison is possible, where the different clusters correspond to the identified cell
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types. We use edgeR [91] to assess differential expression between erythrocytes and neu-
trophils, since this comparison is most analogous to tradeSeq’s diffEndTest. Only edgeR
finds evidence for gene sets related to eosinophils and T-cells (FDR adjusted p-values of
0.042 and 0.049, respectively), however, the eosinophil cells were removed from this dataset
prior to analysis (see Methods, subsection ‘Case studies: Mouse bone marrow dataset’). The
GSEA results for edgeR also provide less evidence for erythrocytes (FDR adjusted p-value
= 0.043, normalized enrichment score=1.21) as compared to the tradeSeq analysis (Supple-
mentary Figure C.19). None of the methods, however, recover evidence for the neutrophil
cell types that are identified at the end of the lineage (Figure 3.3b; FDR adjusted p-values
ptradeSeq = 0.99, pBEAM = 0.86, and pedgeR = 0.81).
A tradeSeq analysis can thus provide relevant biological results without using the cell type
labels. Moreover, while a cluster-based comparison can be powerful in some cases, many
hypotheses are difficult to assess with discrete DE, as we demonstrate in the following para-
graphs.

Discovering progenitor population markers. In addition to looking for markers at
the differentiated cell type level, we could also look for markers of developing myeloid cells.
tradeSeq can accommodate this by identifying genes with significantly different expression
patterns between lineages. Remarkably, the top six genes (Mpo, Prtn3, Ctsg, Car2, Elane,
and Srgn, Figure 3.3b) are all confirmed as biomarkers in the extensive analysis of the orig-
inal manuscript of Paul et al. [108], confirming the relevant ranking of patternTest in
tradeSeq. Indeed, Prtn3 was found to be monocyte-specific, while Mpo and Car2 discrimi-
nated between erythroid lineage progenitors and myeloid lineage progenitors. The cluster of
genes Elane, Prtn3, and Mpo were the strongest markers for myeloid lineage progenitors and
monocytes. In summary, all six top genes were labelled as “key genes” for hematopoiesis
[108].

It might also be interesting to examine genes with significantly different expression pat-
terns, that show little evidence for DE at the endpoints. We therefore select genes with both
a high Wald test statistic (low p-value) for the patternTest and a low test statistic (high
p-value) for the diffEndTest. Following the approach described in ‘Case studies: Mouse
bone marrow dataset’ (Methods), we assign a score for each gene. Remarkably, within the
top eight genes, four genes (Erp29, Irf8, Psap, and ApoE ) were previously found to be major
regulators of hematopoiesis. Indeed, Irf8 has previously been identified as a major transcrip-
tion factor involved in myeloid lineage commitment [76, 108]. Erp29 and Psap are direct
targets of the Irf8 transcription factor [108, 136, 90], while ApoE regulates stem cell prolif-
eration in atherosclerotic mice [98] and was also identified as a marker gene in the original
manuscript of Paul et al. [108]. The remaining four genes include Nedd4, Srrm2, Gatm, and
Acin1. Note that this analysis is not possible with any other method available, since these
only test for global differential gene expression between lineages.
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Gene expression families. Modeling gene expression in terms of smooth functions of
pseudotime opens the door for additional downstream interpretation of results that are im-
possible with discrete DE methods, such as the clustering of genes based on their fitted
expression patterns. In general, we found that RSEC clustering provides a more stable clus-
tering than Partitioning around medoids (PAM) (Supplementary Figure C.20), the latter of
which is also used by Monocle to cluster genes. For example, we can cluster the expression
patterns for genes that were deemed significant by tradeSeq’s patternTest (see Methods,
section ‘Clustering gene expression patterns’). This identifies gene families that have simi-
lar expression patterns within every lineage, and also similar fold-changes between the two
lineages (Figure 3.3c shows six clusters). These gene sets can then be further screened for
interesting patterns and validated by the biologist. Note that, for instance, the expression
smoothers can be used to assess specific transient changes in expression during development,
the signal for which might be diluted in cluster-based DE.

Mouse olfactory epithelium dataset

Fletcher et al. [44] study the development of horizontal basal cells (HBC) in the olfactory
epithelium (OE) of mice. They activate the HBCs to be primed for development, which
subsequently give rise to three different cell types: sustentacular cells, microvillous cells,
and olfactory sensory neurons (Figure 3.4a,b). The olfactory sensory neurons are connected
to the olfactory bulb for signal transduction of smell and the sustentacular cells are general
supportive cells in the OE. The function of microvillous cells, however, is not well understood;
while some cells have axons ranging to the olfactory bulb, potentially indicating a sensory
neuron function, others lack a basal process or axon [54]. The samples from Fletcher et al.
[44] were processed using the Fluidigm C1 system with SMART-Seq library preparation,
hence we expect zero inflation to be present in this dataset. We therefore fit ZINB-GAMs to
analyze the data using tradeSeq downstream of slingshot. Zero inflation weights are estimated
with the ZINB-WaVE method [121], using the cluster labels and batch as covariates. We fit
tradeSeq with 6 knots, as determined using the AIC (Supplementary Figure C.21). We were
unable to fit a model for 0.8% of all 14,261 genes due to convergence issues of the ZINB-GAM.
Note that, currently, no other trajectory-based DE method can account for zero inflation
or provide the range of tests available in tradeSeq; hence, we forgo a comparison with other
methods aside from a ZINB-edgeR analysis [156].
In this case study, we first consider differential expression within each lineage in the ‘Within-
lineage DE’ paragraph, after which we assess differences between the three developmental
lineages in the ‘Between-lineage DE’ paragraph.

Within-lineage DE. We first consider differential expression along the neuronal lineage
(the orange lineage in Figure 3.4a). Using the associationTest implemented in tradeSeq,
we recover 2, 730 genes at a 5% nominal FDR level. Within the top DE genes, clear clusters
of expression can be observed (Figure 3.4c), that are more active either at the beginning
of the lineage, at specific locations along the lineage, or at the end of the lineage. Since
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Fletcher et al. [44] observed that cells associated with the neuronal lineage undergo mitotic
division during differentiation, we investigate whether we can recover the cell cycle biology
using the associationTest. Indeed, many of the top genes are related to the cell cycle
(Supplementary Figure C.22).

We also seek biological markers that differentiate the progenitor cells from the differenti-
ated cell types in any of the three lineages using the startVsEndTest procedure as part of a
global test (i.e., gene expression is compared between the start and end states for each lineage
and the evidence is aggregated across the three lineages using a global test; see Methods)
and then look for enriched gene sets for the top 250 genes. The results for the top 20 gene
sets (Supplementary Table C.1) clearly reflect the biology of the experiment. The HBCs
were primed for differentiation and the top gene sets include responses to (organic, external,
and endogenous) stimuli. In addition, neurogenesis and tissue development are the first and
third most significant gene sets, respectively, while the remaining list contains sets related
to cell development, differentiation, and epithelium development, amongst others. Although
the neuronal and microvillous cell lineages undergo mitotic division, it is worth noting that
cell cycle related gene sets are absent from the startVsEndTest results, since this process
occurs during differentiation, but not in the resting HBC or differentiated cell populations.

Between-lineage DE. We compare the three lineages by assessing differences in their
expression patterns through stage-wise testing with the patternTest procedure (see Meth-
ods). At the screening stage, we first test whether any two lineages have significantly different
expression patterns. The genes that pass the screening stage are then further assessed to
discover which specific pair of lineages are deviating in their expression pattern. The screen-
ing stage identifies 3, 275 genes that have different expression patterns between any pair of
lineages, at a 5% nominal FDR level (as reference, the top six genes are plotted in Sup-
plementary Figure C.23). As could be expected, a large majority of the genes (2, 481) are
significant in the neuronal-sustentacular lineage comparison. However, remarkably, we dis-
cover more DE genes when comparing the microvillous and neuronal lineages (2, 149 genes)
than when comparing the microvillous and sustentacular lineages (1, 374 genes), even though
the microvillous lineage shares a longer path with the neuronal lineage. Out of all significant
genes, 827 genes were identified in all three pairwise comparisons. Investigating the top 20
enriched gene sets based on the MSigDB database reveals that 12/20 of the top gene sets are
related to the mitotic cell cycle (Supplementary Table C.2). This is reassuring, since only
the neuronal and microvillous lineages go through the cell cycle, according to Fletcher et al.
[44]. In addition, we find gene sets related to neurogenesis, referring to the development of
olfactory sensory neurons. The functional interpretation of the results from the combined
ZINB and tradeSeq analysis hence confirms the biology of the experiment and the battery
of possible tests unlock a more detailed and meaningful interpretation of the results.

None of the previously developed trajectory-based methods for assessing differential ex-
pression between lineages can currently accommodate zero inflation. The only relevant
comparison is between the diffEndTest procedure from tradeSeq and a discrete DE test
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Figure 4: Mouse olfactory epithelium case study [Fletcher et al., 2017]. (a) Three-dimensional PCA plot
of the scRNA-seq data, where cells are colored according to their cluster membership as defined in the
original paper (see Methods). The simultaneous principal curves for the lineages inferred by slingshot
are displayed. (b) Schematics of the cell types and their ordering along the lineages. (c) Heatmap for
the top 200 genes that are associated with the neuronal lineage, as identified with the associationTest

procedure from tradeR. Five clear gene clusters can be identified, each with a di↵erent region of activity
during the developmental process. (c) Four out of a total of 16 genes that are significant in all pairwise
comparisons with earlyDETest between pseudotimes of knots 2 and 4, which are indicated with vertical
dashed lines. All 16 genes are plotted in Supplementary Figure S11

focus only on the earlyDETest results like in paragraph below this one, or compare with appropriate test
where smoother-based means are compared within a lineage, i.e. using startVsEndTest. We can also
use the earlyDETest to identify genes that drive the branching. In the original paper, Fletcher et al.
[2017] provide a table for genes that are deemed DE between successive clusters belonging to the same
lineage. Therefore, we expect the genes that are DE in the �HBC2/GBC contrast or in the �HBC2/iSUS
contrasts to overlap with the genes which are DE based on the earlyDETest applied around the first
branching point (see Figure 4). We contrast the neuronal lineage to the sustentacular lineage and find
238 DE genes (with option ‘knots = 2-4‘). Out of the 238 genes, 130 (54.6%) are also DE in at least the
�HBC2/GBC or �HBC2/iSUS contrasts. An additional 24 (10.1%) are detected in contrasts just before
(�HBC1/�HBC2) or just after (either iSUS/mSUS, GBC/INP1 or GBC/MV1) the branching. The rest
are either only linked to much earlier or much later contrasts (10.5%), or not present in the original table
(24.8%) at all. Overall, 64.7% of the genes found by the earlyDETest procedure for the first branching
are also found, with coherent contrasts *** LC: contrasts are not coherent, in Fletcher et al. [2017] based
on pairwise-cluster comparisons. The gap is not surprising since the contrast that would be the closest to
our test is the GBC/iSUS, which is not reported. Indeed, our test is contrasting di↵erent lineages while
Fletcher et al. [2017] compare clusters from the same lineage.

By analyzing the results of the test in greater detail, we discover 804 genes to be DE between any of the
three lineages using an omnibus test at a 5% nominal FDR level. Using stage-wise testing [Van den Berge
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Figure 3.4: Mouse olfactory epithelium case study [44]. (a) Three-dimensional PCA plot of
the scRNA-seq data, where cells are colored according to their cluster membership as defined
in the original paper (see Methods). The simultaneous principal curves for the lineages
inferred by slingshot are displayed. (b) Schematic of the cell types and their ordering along
the lineages. (c) Heatmap for the top 200 genes that are associated with the neuronal
lineage, as identified with the associationTest procedure from tradeSeq. Five clear gene
clusters can be identified, each with a different region of activity during the developmental
process. (d) Four transcription factors involved in epithelial cell differentiation that are
discovered by the earlyDETest between the pseudotimes of knots 1 and 3 (knots indicated
with vertical dashed lines).

between the differentiated cell types using ZINB-edgeR as introduced in Van den Berge et al.
[156]. For both methods, we use a global test to compare mean expression between all three
differentiated cell types. While a ZINB-edgeR analysis discovers 1, 984 genes, the ZINB-
tradeSeq analysis discovers 3, 719 genes, which include ∼ 86% of the genes also discovered
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by the ZINB-edgeR analysis. In order to assess the relevance of the extra 1, 994 genes dis-
covered with ZINB-tradeSeq, we perform GSEA on this gene set (Supplementary Table C.3).
The top 20 significant gene sets contain relevant biological processes for the system under
study, such as “regulation of multicellular organismal development”, “positive regulation of
biosynthetic process”, and “tissue development”.

We can also identify genes that drive the branching based on the earlyDETest applied
around the first branching point, i.e., between knots 1 and 3 (see Supplementary Figure
C.24 and Figure 3.4d). We apply stage-wise testing [157] (see Methods) to first assess any
difference across the three lineages using a global test. We discover 2, 083 genes to be DE
between any of the three lineages at a 5% nominal FDR level. Among those 2, 083 genes,
we then discover 634 significant genes between the neuronal and microvillous lineages, 1, 068
significant genes between the microvillous and sustentacular lineages, and 1, 312 significant
genes between the neuronal and sustentacular lineages (Supplementary Figure C.25). In
total, 151 genes are significant in all pairwise comparisons (Supplementary Figure C.25),
and these genes may be potentially important regulators of the transcriptional program
involved in olfactory epithelium development. In these early stages of development, one
could expect transcription factors to drive the differences between the three developmental
lineages. Out of all 2, 083 significant genes, we recover 84 transcription factors, as identified
by TFcheckpoint [29]. Interestingly, aside from their general functionality as regulators
of gene expression, the list of 84 transcription factors is enriched for gene sets related to
epithelial cell differentiation, cell fate commitment, neuron differentiation, amongst other
relevant gene sets (Supplementary Table C.4).

Adipocyte differentiation dataset

As final case study, we reanalyze a 10x Genomics scRNA-seq dataset from Merrick et al. [95],
studying adipocyte differentiation from the developing sub-cutaneous inguinal white adipose
tissue (iWAT) of 12-day-old mice. We use tradeSeq to fit NB-GAMs with 8 knots (Supple-
mentary Figure C.26) based on the trajectory inferred by slingshot in 2D UMAP space. As in
the original manuscript, the progenitor cells differentiate into two different cell populations
(Supplementary Figure C.27). While we confirm Dpp4+ and Wnt2 as interstitial progenitor
markers, we discover several other markers as top genes from our startVsEndTest procedure
that are even more pronounced, e.g., Pi16, Akr1c18, Fn1, and Fbn1 (Supplementary Figure
C.28). In addition, we search for markers distinguishing between the two differentiated cell
populations. Since these are relatively large heterogeneous groups of cells, diffEndTest is
not representative for the entire set of cells. However, earlyDETest can be used to discover
DE across their developmental range. This reveals several interesting patterns, such as genes
upregulated in the adipocyte precursor stage and subsequently downregulated in only a sin-
gle differentiated cell population (e.g., Mgp and Meox2 ; Supplementary Figure C.29), as well
as genes that are sporadically highly expressed across the entire lineage for one of the two
differentiated cell populations (e.g., H19 and Col14a1 ; Supplementary Figure C.30)).
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3.3 Discussion

We have proposed tradeSeq, a novel suite of tests for identifying dynamic temporal gene
regulation using single-cell RNA-seq data. These tests allow researchers to investigate a
range of hypotheses related to temporal gene expression, ranging from the general to the
highly specific. Whereas previous methods only provide global tests of differential expression
along or between lineages, tradeSeq offers a highly flexible framework that can be adapted to
a single lineage, multiple lineages, or specific points or ranges along lineages. The flexibility
provided by tradeSeq is crucial, as trajectory-based DE is often the final (or near final) step
in a much longer analysis pipeline.

Our analyses are based on the NB-GAM of Equation (3.1) which conditions on cell pseu-
dotimes and hence ignores the fact that pseudotimes are typically inferred random variables.
We therefore expect some uncertainty in pseudotime values which may or may not be quanti-
fied by a particular TI method. Even when measures of pseudotime variability are available,
neither tradeSeq nor other methods such as BEAM and GPFates currently make use of this
information. Instead, all of these methods treat the pseudotimes as fixed and known. The
BranchedGP method allows for uncertainty in the assignment of cells to lineages and relies
on branching Gaussian processes to identify gene-specific branching dynamics [18]. However,
it is computationally very intensive, with reported computation time of 2 minutes per gene
on a dataset that has been subsampled to 467 cells [18]; we therefore did not consider this
method in our evaluation.

While we generally assume that pseudotime values are on similar scales across lineages,
this may not always be the case. Furthermore, Trapnell et al. [154] noted that any trajectory
inference method can produce pseudotime values that are not necessarily reflective of true
biological time. At best, pseudotime values represent some monotonic transformation of the
true maturity of each cell. Therefore, some authors have proposed the use of dynamic time
warping to align pseudotime values from different experiments on potentially different scales
[1]. This approach can be beneficial in cases where, for example, one lineage is much longer or
shorter than another. If a gene, in reality, has a similar pattern of expression along two such
lineages, this pattern could, for instance, consume 75% of the shorter lineage, but only 25%
of the longer lineage. As such, the gene could be called DE by the patternTest procedure.
However, applying the same test after dynamic time warping may yield a negative result.
Since tradeSeq only requires the estimated pseudotimes as input, which could be warped or
not, it is compatible with any form of warping between lineages. We urge users to carefully
consider whether pseudotime values across lineages are comparable and, if not, consider such
warping strategies before comparing patterns of expression with tradeSeq.

Moving forward, it may be possible to fit ZINB-GAMs in a single step by numerically
maximizing the ZINB-GAM likelihood. This could improve upon the two-step approach
that we have taken in this paper, where (i) posterior probabilities of zero inflation are first
estimated using ZINB-WaVE and (ii) subsequently used to unlock the NB-GAM for DE
analysis in the presence of excess zeros.

In this manuscript, we have demonstrated tradeSeq on several scRNA-seq datasets. How-
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ever, the tests that we provide downstream of the fitGAM function are applicable beyond
this setting. Indeed, the framework may also be applicable to, e.g., downstream analysis of
chromatin accessibility trajectories in scATAC-seq datasets (e.g., Chen et al. [30]) or bulk
RNA-seq time-course studies; we have demonstrated the latter in the Results.

While we propose a number of tests based on the NB-GAM, it is important to realize that
users may also implement their own statistical tests related to their specific hypotheses of
interest. For example, it may be of interest to investigate whether the speed or acceleration
in transcription varies significantly along or between lineages. This can be assessed in the
tradeSeq framework using first or second derivatives of the linear predictor in Equation (3.1),
respectively. The derivatives are linear combinations of the parameters in the basis function
expansion, i.e.,

∑K
k=1 βglkb

′
k(t), where the derivatives of the basis functions b′k(t) often have

a closed-form expression (e.g., cubic splines) or otherwise can be approximated using finite
differencing (e.g., thin-plate splines) [172]. Genes that significantly increase (decrease) in
their rate of expression along a lineage can then, for example, be discovered by testing
whether the first derivative is significantly higher (lower) than zero. We therefore welcome
contributions of new tests to the GitHub repository of the package.

Single-cell RNA-seq tends to produce noisy data requiring long analysis pipelines in
order to glean biological insight. While “all-in-one” tools that simplify this analysis may be
attractive from a user’s standpoint, they are not guaranteed to offer the best methods for
each individual step. We therefore propose a more modular approach that expands upon
previous work and opens up new classes of questions to be asked and hypotheses to be
tested.

3.4 Methods

In this Section, we first present a negative binomial generalized additive model for expression
measures along a trajectory. Building on this model, we then describe a general and flexible
framework for identifying genes that are differentially expressed either within or between
lineages of a given trajectory.

Negative binomial generalized additive models

We build on the generalized additive model (GAM) methodology to model gene expression
profiles as non-linear functions of pseudotime for the different lineages in a complex trajec-
tory. In our GAM framework, each lineage is represented by a separate cubic smoothing
spline, i.e., a linear combination of cubic basis functions of pseudotime. The flexibility of
GAM also allows us to easily adjust for other covariates or confounders such as treatment and
batch. The discrete nature and the over-dispersion of read counts is addressed by modeling
the expression measures Ygi, for a given gene g ∈ {1, . . . , G} across cells i ∈ {1, . . . , n}, using
a negative binomial (NB) distribution with cell and gene-specific means µgi and gene-specific
dispersion parameters φg. Hence, we propose the following gene-wise negative binomial gen-

https://github.com/statOmics/tradeSeq
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eralized additive model (NB-GAM)
Ygi ∼ NB(µgi, φg)

log(µgi) = ηgi

ηgi =
L∑
l=1

sgl(Tli)Zli + Uiαg + log(Ni),
(3.1)

where the mean µgi of the NB distribution is linked to the additive predictor ηgi using
a logarithmic link function. The gene-wise additive predictor consists of lineage-specific
smoothing splines sgl, that are functions of pseudotime Tli, for lineages l ∈ {1, . . . , L}. The
binary matrix Z = (Zli ∈ {0, 1} : l ∈ {1, . . . , L}, i ∈ {1, . . . , n}) assigns every cell to a
particular lineage based on user-supplied weights (e.g., from slingshot [141] or GPfates [84],
see details in Supplementary Methods). We let Ll = {i : Zli = 1} denote the set of cells
assigned to lineage l. In addition, we allow the inclusion of p known cell-level covariates (e.g.,
batch, age, or gender), represented by an n × p matrix U, with ith row Ui corresponding
to the ith cell, and regression parameters αg of dimension p × 1. Differences in sequencing
depth or capture efficiency between cells are accounted for by cell-specific offsets Ni.

The smoothing spline sgl, for a given gene g and lineage l, can be represented as a linear
combination of K cubic basis functions,

sgl(t) =
K∑
k=1

bk(t)βglk,

where the cubic basis functions bk(t) are enforced to be the same for all genes and lineages.
Our default computational implementation sets K = 6. Thus, for each gene and each lineage
in the trajectory, we estimate K = 6 regression coefficients βglk. The number of parameters
in the gene-wise model is L×K + p+ 1, which is typically much lower than the number of
cells n in the dataset.

The NB-GAM is fitted gene by gene using the fitGAM function from the tradeSeq pack-
age, which relies on the mgcv package in R. We build upon recent developments in mgcv that
allow the joint estimation of the NB regression parameters in µgi and dispersion parameter
φg [174]. In order to control the smoothness of the spline, the coefficients βglk are shrunken
by substracting a penalty λgβ

T
g Sβg from the log-likelihood function, where βg denotes the

concatenation of the L K-dimensional column vectors βgl of lineage-specific smoother coef-
ficients and S is an (LK)× (LK) diagonal matrix that indicates which coefficients in βg are
to be penalized. The magnitude of penalization is controlled by the smoothing parameter
λg, which is selected using generalized cross-validation [172]. Note that we enforce identical
basis functions between lineages, i.e., bk does not depend on l, as well as identical smoothing
parameter λg, in order to ensure that the smoothers are comparable across lineages.

Importantly, the model of Equation (3.1) can accommodate zero-inflated counts typical
for full-length scRNA-seq protocols by using observation-level (i.e., cell-level) weights ob-
tained, for instance, from the zero-inflated negative binomial (ZINB) approach of Van den
Berge et al. [156] and Risso et al. [121].
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Choosing an appropriate number of knots

Ideally, the number of knots K should be selected to reach an optimal bias-variance trade-off
for the smoother, where one explains as much variability in the expression data as possible
with only a few regression coefficients (see Supplementary Figure C.1). In practice, the
number of knots K may be selected by evaluating the Akaike Information Criterion (AIC)
using the evaluateK function implemented in tradeSeq. We have deliberately chosen the
AIC as evaluation criterion, since the Bayesian Information Criterion (BIC) seemed to favor
overly complex models (i.e., an excessively high number of knots). The knots are by default
positioned according to the quantiles of the pseudotime values. For example, if a smoother is
fit with 3 knots, then there will be a knot at the minimum, median, and maximum pseudotime
values. The knots may be interpreted as relative markers of progress along the trajectory.
However, it is important to realize that this might not necessarily linearly correlate with
true chronological time.

Statistical inference

We propose a general and flexible testing framework for (linear combinations of) the param-
eters βg, which allows us to pinpoint specific types of differences in gene expression both
within and between lineages; see Figure 3.6 for an overview. We first present the general
approach and then detail the implementation and interpretation of specific DE tests.

All proposed DE procedures involve testing null hypotheses of the form H0 : CTβg = 0
using Wald test statistics

Wg = β̂
T

g C(CT Σ̂β̂g
C)−1CT β̂g, (3.2)

where β̂g denotes an estimator of βg, Σ̂β̂g
represents an estimator of the covariance matrix

Σβ̂g
of β̂g, and C is an (LK)×C matrix representing the C contrasts of interest for the DE

test.
For each gene, we compute p-values based on the nominal chi-squared asymptotic null

distribution of the Wald statistics (with degrees of freedom equal to the column-rank of
C). Rather than attaching strong probabilistic interpretations to the p-values (which, as
in most RNA-seq applications, would involve a variety of hard-to-verify assumptions and
would not necessarily add much value to the analysis), we view the p-values simply as
useful numerical summaries for ranking the genes for further inspection. There are five tests
currently implemented in the tradeSeq package, which are introduced in detail in the sections
below. Figure 3.5 provides a visual overview of the scope of each test.

Within-lineage comparisons

associationTest. A relevant first question is whether gene expression is associated with
pseudotime along a given lineage, i.e., whether the smoother is flat or varying along pseu-
dotime. To address this question, the associationTest tests the null hypothesis that all
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Figure 3.5: Tests currently implemented in the tradeSeq package. Each column corresponds
to a test. Tests are broken down into two categories, depending on whether they concern a
within-lineage comparison, i.e., properties of the orange curve, or a between-lineage compar-
ison, i.e., contrasting the blue and orange curves. For each test, we have two toy examples
of gene expression patterns. The top one corresponds to a differentially expressed gene
according to the test, while the bottom one does not.

smoother coefficients within the lineage are equal, i.e., H0 : βglk = βglk′ for all k 6= k′ ∈
{1, . . . , K}. This null hypothesis can be encoded in several ways; here, we chose the contrast
matrix C to be an LK × L(K − 1) matrix, where each column corresponds to a contrast
between two consecutive βglk and βgl(k+1) and where we have K − 1 contrasts per lineage for
a total of L(K − 1) contrasts.

startVsEndTest. By default, the startVsEndTest compares mean expression at the pro-
genitor state (i.e., the start of the lineage) to mean expression at the differentiated state
(i.e., the end of the lineage). Specifically, C is an (LK) × L matrix, whose entry in
row k + (l − 1)K and column l encodes the contrast for lineage l and knot k and is de-
fined by bk

(
Tl,max

)
− bk

(
Tl,min

)
, where Tl,max = max

{i:i∈Ll}
Tli and Tl,min = min

{i:i∈Ll}
Tli denote,

respectively, the maximum and minimum pseudotime across all cells assigned to lineage
l. Other entries of C are set to zero. Therefore, the lth element of the vector CTβg is∑K

k=1

(
bk(Tl,max) − bk(Tl,min)

)
βglk = sgl

(
Tl,max

)
− sgl

(
Tl,min

)
, which contrasts mean expres-

sion at the beginning and at the end of the lineage. Note that contrasting the start and
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end points of a lineage is a special case of a more general capability of tradeSeq to compare
the mean expression between any two regions of a given lineage. As such, this test can be
considered a generalization of cluster-based discrete DE within a lineage (e.g., Risso et al.
[121]).

Between-lineage comparisons

diffEndTest. The diffEndTest compares average expression at the differentiated states
of multiple lineages, i.e., it compares the endpoints of different lineage-specific smoothers.
It can be viewed as an analog of discrete DE for the differentiated cell types. The test is
implemented using a Wald test statistic, as described above, where C is an (LK)×L(L−1)/2
matrix. Each column of C encodes a pairwise contrast between the endpoints of two lineages,
such that the corresponding element of CTβg is sgl1

(
Tl1,max

)
− sgl2

(
Tl2,max

)
for lineages l1

and l2.

patternTest. This test compares the expression patterns along pseudotime between lin-
eages by contrasting a fixed set of equally-spaced pseudotimes (M = 100 by default). First
selecting the pseudotimes and subsequently comparing their expression levels between lin-
eages, allows for comparisons between smoothers of different lengths. Specifically, for lineage
l, let Plm denote the mth equally-spaced pseudotime between Tl,min and Tl,max. The contrast
of M points corresponds to testing the null hypothesis that a gene has the same expression
pattern along pseudotime across the lineages under comparison, while normalizing for the
length of the lineages. The test is implemented using a Wald test statistic, as described
above, where C is an (LK) × L(L − 1)M/2 matrix. Each column of C encodes a pairwise
comparison between two pseudotimes of two different lineages, such that the corresponding
element of CTβg is sgl1

(
Pl1m

)
− sgl2

(
Pl2m

)
for lineages l1 and l2 and m ∈ {1, . . . ,M}. The

test is implemented through the eigendecomposition of the estimated variance-covariance
matrix of the contrasts to avoid singularity problems [138] (see Supplementary Methods). It
should be noted that this test is a general test, able to identify both differences in patterns
of expression as well as genes with similar patterns but different mean expression across the
pseudotime range. It is therefore most useful as a screening test to identify any form of
differential expression between the lineages.

earlyDETest. The earlyDETest aims to identify genes that are differentiating around a
branching of the trajectory. It is similar to the patternTest, in that it also compares the
expression patterns along pseudotime between lineages by contrasting a fixed set of equally-
spaced pseudotimes (M = 100 by default). However, instead of using points distributed
from the beginning Tl,min to the end Tl,max of the lineages as in the patternTest, it relies on
points over a shorter range of time. In the current implementation, this range is delimited
by the pseudotimes of two user-specified knots. The knots should be chosen to enclose the
branching event (or any event of interest) and do not need to be consecutive.
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Global testing

While the statistical tests introduced above can assess DE within one lineage or between
a pair of lineages, one may want to investigate multiple (i.e., more than two) lineages.
For example, if a trajectory consists of three lineages, one may wish to test the global null
hypothesis that, for each of the three lineages, there is no association between gene expression
and pseudotime using the associationTest. The null hypothesis that would be tested can
be expressed as H0 : ∀l and ∀k 6= k′, βglk = βglk′ , i.e., within each of the three lineages, all
K regression coefficients are equal. We refer to such a test as a “global test”. The tradeSeq
package provides functionality for global testing for each of the within and between-lineage
tests described above. For within-lineage tests, the user can specify whether the test should
be done for each lineage individually or at the global level (i.e., for all lineages). For between-
lineage tests, the user can specify if a global test should be assessed or whether all pairwise
comparisons should be performed.

Stage-wise testing

For the olfactory epithelium case study [44] detailed below, we apply stage-wise testing, as
implemented in stageR [55, 157], to assess DE between lineages using multiple tests for each
gene. Stage-wise testing aims to control the overall false discovery rate (OFDR) [55], i.e.,
the expected proportion of genes with at least one falsely rejected null hypothesis among all
genes declared DE. In our case, the OFDR can be interpreted as a gene-level FDR [157].
Stage-wise testing is performed in two stages, a screening and a confirmation stage. At the
screening stage, each gene is screened by performing a global test across all null hypotheses
of interest, essentially testing whether at least one of these hypotheses can be rejected. At
that stage, the FDR is controlled across genes at level αI . At the confirmation stage, each
specific hypothesis is assessed, but only for the genes that have passed the screening stage.
For each gene, the family-wise error rate (FWER) is controlled across hypotheses at level
αII = R

G
αI , where R denotes the number of genes that had their global null hypothesis

rejected at the screening stage and G the total number of genes assessed. Heller et al. [55]
proved that this procedure controls the overall FDR at level αI . It should be noted that,
while the stage-wise testing paradigm theoretically controls the OFDR (given underlying
assumptions are satisfied), the resulting p-values might still be too liberal since the same
data are used for trajectory inference and differential expression. As mentioned before, we
use p-values simply as numerical summaries for ranking the genes for further inspection.

Eigenvalue decomposition of Σ̂β̂g

Let C correspond to the (LK) × L(L − 1)M/2 matrix that defines the linear contrasts of
interest for the patternTest, i.e., every column of C corresponds to the comparison of two
points for a pair of lineages. Tests for the contrasts are performed using a Wald test statistic
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defined as
Wg = β̂

T

g C(CT Σ̂β̂g
C)−1CT β̂g,

with Σ̂β̂g
the estimated variance-covariance matrix of the estimated smoother coefficients.

Letting α̂g = β̂
T

g C and Σ̂α̂g = CT Σ̂β̂g
C, we can rewrite the Wald statistic as

Wg = α̂g(Σ̂α̂g)−1α̂T
g .

Taking the eigendecomposition of Σ̂α̂g ,

Wg = α̂gV̂
T

g Λ̂
−1
g V̂gα̂

T
g ,

where V̂g is an L(L − 1)M/2 × L(L − 1)M/2 matrix with columns corresponding to the

L(L− 1)M/2 eigenvectors of Σ̂α̂g and Λ̂g the L(L− 1)M/2×L(L− 1)M/2 diagonal matrix

of eigenvalues λi ∈ [0, 1] of Σ̂α̂g , in decreasing order. Note that, since Λ̂g is a diagonal
matrix, we can simply invert its diagonal elements instead of inverting the full matrix. We
determine the rank r of Σ̂α̂g by calculating the number of eigenvalues that are larger than

1e−8λ1, with λ1 corresponding to the largest eigenvalue. When the rank r of Σ̂α̂g is less than

L(L−1)M/2 (i.e., the matrix is not of full rank), we only use the first r eigenvectors from V̂g,

associated with the largest r eigenvalues from Λ̂g. This provides an efficient computation
of the test statistic and avoids singularity problems with the estimated variance-covariance
matrix of the contrasts [138].

Defining Z based on user-supplied weights

If one has user-supplied weights W = (Wli ∈ [0, 1] : l ∈ {1, . . . , L}, i ∈ {1, . . . , n}) for the
assignment of cells to lineages, one can construct the binary matrix Z from W as follows.

First, note that the weights W may be defined differently depending on the TI method
that was used to estimate them. For example, slingshot [141] defines weights based on the
distance from a cell to a particular lineage; hence, the sum of the weights across all lineages
for a particular cell may be greater than 1. As such, these weights cannot be interpreted as
probabilities. GPfates [84], however, does return posterior probabilities that a cell i belongs

to a particular lineage l, where
L∑
l=1

Wli = 1 for each i. We therefore first normalize the

weights for each cell, such that, for normalized weights W ∗
li, the sum across lineages equals

one, i.e.,
L∑
l=1

W ∗
li = 1 for each cell i. Next, we assign each cell i to a lineage by sampling

one observation from a Multinomial distribution with L groups and probabilities W ∗
li. The

lineage assignments are then encoded in the L × n matrix Z, by setting all elements of the
ith column equal to zero except for a 1 in the row corresponding to the sampled lineage for
cell i.
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The multinomial sampling to assign each cell to a lineage may introduce variability in
the results if the models are fit multiple times, due to differing cell allocations. This is
especially so if there is a high uncertainty about the lineage allocation (e.g., a cell is equally
likely to belong to each of two lineages), which typically occurs around the inception of a
trajectory. While we ensure reproducibility by setting a seed in the software, the results may
vary slightly over different seeds. To quantify this variability, we use the data of Paul et al.
[108] and allocate cells to lineages using 10 different seeds. Since we expect the variability
across different assignments to be largest at the inception of the lineage, we evaluate DE
using tradeSeq’s startVsEndTest. Using a global test across the two lineages, the number
of DE genes at a 5% nominal FDR level varied between 1, 990 and 2, 049, with 1, 739 DE
genes shared across all 10 assignments (Supplementary Figure C.31). For each assignment,
at least 93% of the top 1, 000 DE genes are shared with the top 1, 000 DE genes of any other
assignment.

Clustering gene expression patterns

The NB-GAM can also be used to cluster genes according to their expression patterns, as
shown in Figure 3.6. Specifically, for each gene, we extract a number of fitted values for each
lineage (100 by default). We can then use resampling-based sequential ensemble clustering
(RSEC), as implemented inclusterExperiment [121], to perform the clustering based on (the
top principal components of) the standardized fitted values matrix (i.e., the fitted values are
standardized to have zero mean and unit variance across cells for each gene). Importantly,
we allow for any clustering algorithm that is built-in into clusterExperiment or chosen by
the user to perform the clustering. This clustering approach is implemented in the tradeSeq
package (clusterExpressionPatterns function) for downstream analysis facilitating the
interpretation of DE genes.

Implementation

The above described fitting procedure, DE tests and clustering of expression patterns are
implemented in the open-source R package tradeSeq, available through the Bioconductor
Project (http://www.bioconductor.org/packages/release/bioc/html/tradeSeq.html).
We provide an extensive vignette along with the package, as well as a cheat sheet describing
the different types of DE patterns detected with each test.

Methods comparison

slingshot is a fast and robust method for TI that was shown to be among the top-performing
methods in a recent large-scale benchmarking study [126]. Hence, we evaluate tradeSeq
downstream of a slingshot analysis, which can work with any dimensionality reduction and
clustering methods. slingshot builds a cluster-based minimum spanning tree (MST) to infer
the global lineage topology and make an initial assignment of cells to lineages. This structure

http://www.bioconductor.org/packages/release/bioc/html/tradeSeq.html
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Figure 3.6: Overview of tradeSeq functionality. (a) A scatterplot of expression measures
vs. pseudotimes for a single gene, where each lineage is represented by a different color (top
left). (b) A NB-GAM is fitted using the fitGAM function. The locations of the knots for the
splines are displayed with gray dashed vertical lines. (c) The NB-GAM can then be used to
perform a variety of tests of differential expression within or between lineages. In the table,
we assume that the earlyDETest is used to assess differences in expression patterns early
on in the lineage, e.g., with option knots = c(1, 2), meaning that we test for differential
patterns between the first and second dashed grey lines from Panel (b). (d) Interesting genes
can finally be clustered to display the different patterns.
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is then smoothed by fitting simultaneous principal curves, which refine the assignment of cells
to lineages. This process results in lineage-specific pseudotimes and weights of assignment
for each cell.

GPfates [84] is a Python package that adopts Gaussian processes in reduced dimension
to infer trajectories. Dimensionality reduction is performed using Gaussian process latent
variable models (GPLVM) [78]. GPfates is able to identify bifurcation points and assess how
well a bifurcation fits the expression pattern for every gene, i.e., whether the patterns of
gene expression are different between the lineages. This allows us to compare a slingshot +
tradeSeq analysis with a GPfates analysis. In addition, we also evaluate a tradeSeq analysis
downstream of TI with GPfates, since GPfates also calculates posterior probabilities that
each cell belongs to a particular lineage. We then compare the complete GPfates (TI and
DE) analysis to a GPfates + tradeSeq analysis.

Monocle 2 [115] applies reverse graph embedding to infer trajectories and yields a principal
graph that is allowed to branch. It provides a similar approach as tradeSeq with the branch
expression analysis modeling (BEAM) method. It assumes a gene-wise negative binomial
model for gene expression, where the mean is expressed in terms of lineage-dependent smooth
functions of pseudotime, i.e.,

log(µgi) =
L∑
l=1

(β0gl + sgl(Tli)). (3.3)

In this model, the lineage-specific intercepts β0gl account for mean differences in expression
between lineages, while the lineage-specific smoothers sgl(t) model the expression change
along pseudotime. To test for lineage-dependent expression, the full model is compared to a
null model of the form

log(µgi) = βg0 + sg(Ti)

using a likelihood ratio test. Thus, BEAM tests whether the smooth functions of gene
expression along pseudotime are different between lineages. Importantly, the BEAM method
is restricted to the dimensionality reduction methods that are implemented in Monocle 2,
namely DDRTree [115] and Independent Components Analysis (ICA). Additionally, it only
provides a screening test (like the patternTest in tradeSeq), as it only allows testing for
any difference in expression profiles between lineages and does not specify the exact type of
divergence.

An alpha release for Monocle 3 is available online (downloaded August 30, 2018 from the
Monocle GitHub repository) which, unlike Monocle 2, performs uniform manifold approx-
imation and projection [93] dimensionality reduction upstream of the trajectory inference.
Additionally, Monocle 3 implements the Moran’s I test to discover genes whose expression is
significantly associated with pseudotime; a functionality that is unavailable in Monocle 2.

ImpulseDE2 [41] also assumes a gene-wise negative binomial model for the expression
counts, where the mean is expressed as a weighted combination of two sigmoid functions.
This model essentially allows the estimation of three “state-specific expression values”, where

https://github.com/cole-trapnell-lab/monocle-release/tree/monocle3_alpha
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the transitions between the states are modeled with the two sigmoid functions. The DE
method is not linked to any trajectory inference procedure since it assumes that the pseudo-
time for each cell is known. In this manuscript, we use ImpulseDE2 downstream of slingshot.
Prior to the fitting, ImpulseDE2 relies on DESeq2 for normalization and estimation of the
NB dispersion parameter. However, the DESeq2 procedure cannot handle datasets where
each gene has at least one zero count, which is common in scRNA-seq. In such a scenario,
we therefore “manually” estimate size factors and dispersion parameters using the DESeq2
poscounts normalization, which was developed to deal with this issue [94, 156].

edgeR [91] is a discrete differential expression method, where the groups under comparison
must be defined a priori. It is therefore useful for assessing DE between, for example,
annotated clusters or different treatment groups. For such comparisons, edgeR is a powerful
method with high sensitivity. Note that, while edgeR was originally developed for group-
based differential expression, it would be possible to incorporate the basis functions of the
smoothers as continuous covariates in the model. However, no regularization would be
performed on the estimation of the smoother regression coefficients, hence the model would
be prone to overfitting. A similar approach was evaluated in Fischer, Theis, and Yosef [41],
where DESeq2 [86] was used to fit splines by incorporating natural cubic basis functions in
the linear predictor. Hence, while it is possible to fit smoothers by using edgeR, instead of
mgcv, we emphasize that this would merely be an alternative approach to fitting the NB-
GAMs we propose in our manuscript. Indeed, edgeR does not provide an implementation of
the DE tests in tradeSeq. Only the associationTest is readily available in edgeR by testing
whether all basis function parameters are equal to zero and the other tests would require a
similar development as presented in tradeSeq.

Simulation study

The simulation study evaluates methods that (differentially) associate gene expression with
pseudotime for three different trajectory topologies, i.e., a cyclic, a bifurcating, and a multi-
furcating trajectory. As independent evaluation, we use the extensive trajectory simulation
framework dynverse that previously served for benchmarking trajectory inference methods
in Saelens et al. [126]. Interested readers should refer to the original publication for details
on the data simulation procedure. Dataset characteristics are listed in Table 3.1.

For each of the cyclic and bifurcating topologies, we generate and analyze 10 datasets.
Since the multifurcating topology is very variable across simulations due to its flexible def-
inition, its analysis requires substantial supervision. Therefore, we analyze only one repre-
sentative multifurcating dataset.

Prior to trajectory inference, the simulated counts are normalized using full-quantile
normalization [16, 21]. For TI with slingshot, we apply principal component analysis (PCA)
dimensionality reduction to the normalized counts and k-means clustering in PCA space.
For the bifurcating and multifurcating trajectories, the start and end clusters of the true
trajectory are provided to slingshot to aid it in inferring the trajectory. For the edgeR
analysis, we assess DE between the end clusters that are also provided to slingshot. The
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Table 3.1: Overview of simulated datasets. Each dataset is simulated using one of the
frameworks from the dynverse toolbox (dyngen or dyntoy), which are designed to simulate
scRNA-seq data according to trajectory topologies. Every dataset can be characterized by
the topology of the trajectory, as well as the number of cells and genes. Low-dimensional
representations of representative datasets can be found in Figure 3.1. Note that the cyclic
datasets have some variation in the numbers of genes and cells and in the amount of differ-
ential expression, which is inherent to the dyngen simulation framework.

Cyclic dataset Bifurcating dataset Multifurcating dataset
Simulation framework dyngen dyntoy dyntoy

Number of cells 505− 508 500 750
Number of genes 312− 444 5, 000 5,000

% of DE genes 42− 47% 20% 20%
Number of lineages 1 2 3

Topology Cyclic Bifurcating Multifurcating
Number of datasets 10 10 1

BEAM method can only test one bifurcation point at a time. For the multifurcating dataset,
we therefore assessed both branching points separately and aggregated the p-values using
Fisher’s method [42]. For the tradeSeq and edgeR analyses of the multifurcating dataset, we
perform global tests across all three lineages.

We assess performance based on scatterplots of the true positive rate (TPR) vs. the false
discovery proportion (FDP), according to the following definitions

FDP =
FP

max(1, FP + TP )

TPR =
TP

TP + FN
,

where FN , FP , and TP denote, respectively, the numbers of false negatives, false positives,
and true positives. FDP-TPR curves are calculated and plotted with the Bioconductor R
package iCOBRA [139].

Case studies

Bulk RNA-seq time-course dataset

As proof-of-principle case study, we analyze a bulk RNA-seq time-course dataset from
Kiselev et al. [72] with tradeSeq. The data were downloaded from the GitHub repository
at https://github.com/daniel-spies/rna-seq_tcComp, and the original differential ex-

https://github.com/dynverse/dyngen
https://github.com/dynverse/dyntoy
https://github.com/dynverse/dyntoy
https://github.com/daniel-spies/rna-seq_tcComp
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pression results were downloaded from https://github.com/wikiselev/rnaseq.mcf10a/

tree/master/data.

Mouse bone marrow dataset

We use as second case study the mouse haematopoiesis scRNA-seq dataset of Paul et al.
[108]. Two small cell clusters corresponding to the dendritic and eosinophyl cell types were
removed from the trajectory inference and downstream DE analysis, since these are outlying
cell types that do not seem to belong to any particular lineage (Supplementary Figure C.2).
We use the same dataset as the Monocle 3 vignette, which was prefiltered to contain genes
with relatively high expression. After filtering, the dataset consists of 3, 004 genes and 2, 660
cells.

tradeSeq downstream of slingshot is compared to the BEAM approach from Monocle 2.
Since BEAM is restricted to the dimensionality reduction methods implemented in the pack-
age, we use independent components analysis (ICA) for both slingshot and Monocle 2 in this
comparison. For Monocle 2, we specify the argument num paths=2 to aid it in inferring two
lineages.

Subsequently, we demonstrate a tradeSeq analysis downstream of slingshot by performing
dimensionality reduction using UMAP [93], following the data processing pipeline described
in the Monocle 3 vignette, since this better reflects the biology of the experiment.

In this case study, we show how one can perform multiple tests to identify genes with
distinct types of behavior, specifically, genes that are deemed DE for one test (test 1) but

not another (test 2). Let W
(τ)
g denote the test statistic for gene g in test τ ∈ {1, 2} and

rk(τ)
g denote the rank (in terms of ordering from low to high) of W

(τ)
g among all G test

statistics associated with the G genes. Then, define a score for each gene g as scoreg =

(rk(1)
g )2 + (G − rk(2)

g )2. Genes with high scores are genes which are expected to be DE for
test 1 but not DE for test 2 and vice versa. This is used to identify genes that are DE with
the patternTest (test 1) but not the diffEndTest (test 2), i.e., genes that are transiently
DE between lineages. Note that the procedure only provides a ranking of the genes and not
an evaluation of statistical significance.

Mouse olfactory epithelium dataset

The olfactory epithelium (OE) dataset from Fletcher et al. [44] is our third case study. We
use the lineages discovered in the original manuscript. Prior to the analysis, the dataset
is filtered to retain genes with reasonably high expression, and we consider 14, 261 genes
and 616 cells for downstream analysis. In brief, counts are normalized using full-quantile
normalization [16, 21] followed by regression-based adjustment for quality control variables
[44]. Dimensionality reduction is performed through PCA on the normalized log-transformed
counts that are offset by 1 to avoid taking the log of zero, i.e., log(y + 1). Clustering is
performed through k-means on the first 50 principal components by varying the number of
clusters k ∈ {4, . . . , 15}; stable clusters are derived using clusterExperiment [121], yielding a

https://github.com/wikiselev/rnaseq.mcf10a/tree/master/data
https://github.com/wikiselev/rnaseq.mcf10a/tree/master/data
http://cole-trapnell-lab.github.io/monocle-release/monocle3/#tutorial-1-learning-trajectories-with-monocle-3
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final repertoire of 13 cell clusters. Next, slingshot is used to infer trajectories with the initial
cluster chosen by known marker genes of horizontal basal cells (HBC), an adult stem cell
population. A double bifurcation is discovered, with the first giving rise to sustentacular
cells and two more lineages that split into microvillous cells and olfactory sensory neurons.
The data were downloaded from GEO with accession number GSE95601.

Adipocyte differentiation dataset

As final case study, we reanalyze a 10x Genomics scRNA-seq dataset from Merrick et al.
[95], studying adipocyte differentiation from the developing sub-cutaneous inguinal white
adipose tissue (iWAT) of 12-day-old mice. The gene expression counts were downloaded
from GEO with accession number GSE128889. We focus the analysis on the single cells
collected from 12-day old mice. The raw dataset consists of 27, 998 genes and 11, 423 cells.
We only retain genes with a count of at least 2 in at least 400 cells, and normalize the
data using full quantile normalization [16]. Since not all cells in the dataset are involved in
the adipocyte differentiation process, we first identify the relevant clusters of cells using the
marker genes described in the original manuscript. We apply k-means clustering (k = 10)
on the top 8 principal components of log-transformed counts. Using this clustering, we
identify the relevant clusters based on the reported markers, and subsequently apply UMAP
dimensionality reduction [11, 93] on the top 20 principal components for that subset of cells.
The processed dataset consists of 2, 851 genes and 8, 071 cells. We use slingshot [141] for
trajectory inference in 2-dimensional UMAP space.

We use tradeSeq to fit NB-GAMs with 8 knots (Supplementary Figure C.26) based on
the trajectory inferred by slingshot in 2D UMAP space. As in the original manuscript,
the progenitor cells differentiate into two different cell populations (Supplementary Figure
C.27). While we confirm Dpp4+ and Wnt2 as interstitial progenitor markers, we discover
several other markers as top genes from our startVsEndTest procedure that are even more
pronounced, e.g., Pi16, Akr1c18, Fn1, and Fbn1 (Supplementary Figure C.28). In addition,
we search for markers distinguishing between the two differentiated cell populations. Since
these are relatively large heterogeneous groups of cells, diffEndTest is not representative
for the entire set of cells. However, earlyDETest can be used to discover DE across their
developmental range. This reveals several interesting patterns, such as genes upregulated in
the adipocyte precursor stage and subsequently downregulated in only a single differentiated
cell population (e.g., Mgp and Meox2 ; Supplementary Figure C.29), as well as genes that
are sporadically highly expressed across the entire lineage for one of the two differentiated
cell populations (e.g., H19 and Col14a1 ; Supplementary Figure C.30)).

Code availability

The code to reproduce the analyses, figures, and tables in the paper is available on GitHub at
https://github.com/statOmics/tradeSeqPaper. The tradeSeq open-source R package is

https://github.com/statOmics/tradeSeqPaper
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available through the Bioconductor Project at http://www.bioconductor.org/packages/
release/bioc/html/tradeSeq.html.

Data availability

The code to generate all simulated datasets is included in the GitHub repository of the paper
at https://github.com/statOmics/tradeSeqPaper. The data for the mouse bone mar-
row case study were downloaded from http://trapnell-lab.gs.washington.edu/public_

share/valid_subset_GSE72857_cds2.RDS. The raw data for the olfactory epithelium case
study are available on GEO with accession number GSE95601.

http://www.bioconductor.org/packages/release/bioc/html/tradeSeq.html
http://www.bioconductor.org/packages/release/bioc/html/tradeSeq.html
https://github.com/statOmics/tradeSeqPaper
http://trapnell-lab.gs.washington.edu/public_share/valid_subset_GSE72857_cds2.RDS
http://trapnell-lab.gs.washington.edu/public_share/valid_subset_GSE72857_cds2.RDS


71

Chapter 4

Trajectory inference across multiple
conditions

The importance of trajectory inference was discussed in chapter 1. In this chapter, we will
focus on how to perform a full trajectory inference analysis when the dynamic system is
being studied under several conditions (e.g. treatment / control, or Wild-type / knockout).
A version of this work has been released in preprint format [123] 1.

1I would link to deeply thank Koen Van den Berge and Kelly Street which were of crucial help in this
project, as well as Sandrine Dudoit for her advises and supervision
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4.1 Introduction

The emergence of RNA sequencing at the single-cell level (scRNA-Seq) has enabled a new
degree of resolution in the study of cellular processes. The ability to consider biological
processes as continuous phenomena instead of individual discrete stages has permitted a
finer and more comprehensive understanding of dynamic processes such as embryogenesis and
cellular differentiation. Trajectory inference was one of the first applications that leveraged
this continuum [154] and a consequential number of methods have been proposed since
then [141, 84, 65]. Saelens et al. [126] offer an extensive overview and comparison of such
methods. Analysis of scRNA-Seq datasets using a curated database reveals that about half
of all datasets were used for trajectory inference (TI) [145]. At its core, TI represents a
dynamic process as a directed graph. Distinct paths along this graph are called lineages.
Individual cells are then projected onto these lineages and the distance along each path is
called pseudotime. In this setting, developmental processes are often represented in a tree
structure, while cell cycles are represented as a loop. Following TI, other methods have
been proposed to investigate differential expression (DE) along or between lineages, either
as parts of TI methods [115, 84] or as separate modules that can be combined to create a
full pipeline [158].

More recently, other methods have emerged to answer an orthogonal problem, focusing on
systems under multiple conditions. This includes, for example, situations where a biological
process is studied both under a normal (or control) condition and under an intervention such
as a treatment [92, 100, 167] or a genetic modification [106]. In other instances, one may
want to contrast healthy versus diseased [117] cells or even more than two conditions [8]. In
such settings, one might look for differential abundance, i.e., cell population shifts between
conditions. Initial analytical approaches ignored the continuous nature of biological processes
and binned cells into discrete clusters before looking at differences in composition between
clusters. Borrowing from the field of mass cytometry [88], milo [34], and DAseq [182] rely on
low-dimensional representations of the observations and define data-driven local neighbor-
hoods in which they test for differences in compositions. Each of these methods show clear
improvements in performance over cluster-based methods, and provide a more principled
approach that better reflects the nature of the system.

However, many studies with multiple conditions, if not most, actually involve processes
that can be described by a trajectory. Utilizing this underlying biology could increase either
the interpretability of the results or the ability to detect true and meaningful changes between
conditions. In this manuscript, we present the condiments workflow, a general framework to
analyze dynamic processes under multiple conditions that leverages the concept of a trajec-
tory structure. condiments has a more specific focus than milo or DAseq, but it compensates
for this by improving the quality of the differential abundance assessment and its biological
interpretation. Our proposed analysis workflow is divided into three steps. In Step 1, condi-
ments considers the trajectory inference question, assessing whether the dynamic process
is fundamentally different between conditions, which we call differential topology. In Step
2, it tests for differential abundance of the different conditions along lineages and between
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lineages, which we respectively call differential progression and differential differentiation.
Lastly, in Step 3, it estimates gene expression profiles similarly to Van den Berge et al.
[158] and tests whether gene expression patterns differ between conditions along lineages,
therefore extending the scope of differential expression.

In this manuscript, we first present the condiments workflow, by detailing the underly-
ing statistical model, and providing an explanation and intuition for each step. We then
benchmark condiments against more general methods that test for differential abundance
to showcase how leveraging the existence of a trajectory improves the assessment of differ-
ential abundance. Finally, we demonstrate the flexibility and improved interpretability of
the condiments workflow in three case studies that span a variety of biological settings and
topologies.

4.2 Results

General model and workflow

Data structure and statistical model. We observe gene expression measures for J genes
in n cells, resulting in a J×n count matrix Y. For each cell i, we also know its condition label
c(i) ∈ {1, . . . , C} (e.g.,“treatment” or “control”, “knock-out” or “wild-type”). We assume
that, for each condition c, there is an underlying developmental structure Tc, or trajectory,
that possesses a set of Lc lineages.

For a given cell i with condition c(i), its position along the developmental path Tc(i)
is defined by a vector of Lc(i) pseudotimes Ti and a unit-norm vector of Lc(i) weights Wi

(||Wi||1 = 1) (i.e., there is one pseudotime and one weight per lineage), with

Ti ∼ Gc(i) and Wi ∼ Hc(i). (4.1)

The cumulative distribution functions (CDF) Gc and Hc are condition-specific and we make
limited assumptions on their properties (see the method section for details). The pseudotime
values represent how far a cell has progressed along each lineage, while the weights represent
how likely it is that a cell belongs to each lineage. The gene expression model will be
described below. Using this notation, we can properly define a trajectory inference (TI)
method as a function that takes as input Y – and potentially other arguments – and returns
estimates of Lc, T, W, and eventually Tc.

Step 1 - Differential Topology: Should we fit a common trajectory? The first
question to ask in our workflow is: Should we fit a common trajectory to all cells regardless
of their condition? Or are the developmental trajectories too dissimilar between conditions?
To demonstrate what this means, consider two extremes. For a dataset that consists of a
mix of bone marrow stem cells and epithelial stem cells, using tissue as our condition, it
is obvious that the developmental trajectories of the two conditions are not identical and
should be estimated separately. On the other hand, if we consider a dataset where only a
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Figure 4.1: Illustrating the first two steps of the condiments workflow with several scenar-
ios (a.) The examples are all built on a similar wild-type backbone, i.e., two lineages that
slowly diverge in the absence of knocking out. Cells either originate from a wild-type (WT,
blue) or a knock-out (KO, orange) condition. In (b.), the knock-out has no effect, all three
tests fail to reject their null hypothesis. In (c.), the knock-out partly blocks differentiation
along Lineage 2, meaning that fewer cells develop along that lineage. In this case, while the
topologyTest fails to reject the null, we have both differential progression along Lineage
2 and differential differentiation. In (d.), the knock-out speeds development, so there are
more orange cells toward the end of both lineages. This leads to both differential progression
and differentiation. In (e.), the knock-out modifies the intermediate stage for Lineage 1 and
changes where the lineages bifurcates; based on the topologyTest, we fit one trajectory per
condition. However, the skeleton structure is unchanged, so there is a mapping between the
two trajectories and we can still test for differential progression and differentiation. In both
cases, we fail to reject the null. Finally, in (f.), the knock-out fully disrupts the develop-
mental process: all cells in the knock-out condition progress along a new lineage. Here, we
fit separate trajectories and these cannot be reconciled easily, so we cannot proceed to Steps
2 and 3.
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few genes are differentially expressed between conditions, the impact on the developmental
process will be minimal and it is sensible to estimate a single common trajectory.

Indeed, we favor fitting a common trajectory for several reasons. Firstly, fitting a common
trajectory is a more stable procedure since more cells are used to infer the trajectory. Sec-
ondly, our workflow still provides a way to test for differences between conditions along and
between lineages even if a common trajectory is inferred. In particular, fitting a common
trajectory between conditions does not require that cells of distinct conditions differenti-
ate similarly along that trajectory. Finally, fitting different trajectories greatly complicates
downstream analyses since we may need to map between distinct developmental structures
before comparing them (i.e., each lineage in the first trajectory must match exactly one
lineage in the second trajectory). Therefore, our workflow recommends fitting a common
trajectory if the differences between conditions are small enough.

To quantify what small enough is, we rely on two approaches. The first is a qualitative
diagnostic tool called imbalance score. It requires as input a reduced-dimensional represen-
tation X of the data Y and the condition labels. Each cell is assigned a score that measures
the imbalance between the local and global distributions of condition labels. Similarly to
Burkhardt et al. [22] and Dann et al. [34], the neighborhood of a cell is defined using a
k-nearest neighbor graph on X, which allows the method to scale very well to large values of
n. Cell-level scores are then locally scaled using smoothers in the reduced-dimensional space
(see the Methods section).

However, visual representation of the scores may not always be enough to decide whether
or not to fit a common trajectory in less obvious cases. Therefore, we introduce a more prin-
cipled approach, the topologyTest. This test assesses whether we can reject the following
null hypothesis:

H0 : ∀(c1, c2) ∈ {1, . . . , C}2, Tc1 = Tc2 . (4.2)

Under the null, the trajectory is common among all conditions and can therefore be estimated
using all cells. Therefore, an estimation of the pseudotime vectors done by inferring a
trajectory for each condition should be equivalent to the same procedure after permuting
the condition labels. This is what is done for the topologyTest. A set of pseudotime
vectors is estimated with the true condition labels. Another set is generated using permuted
labels. Under the null, these two distributions should be equal. We can therefore test
hypothesis (4.2) by testing for the equality in distributions of pseudotime using a variety of
statistical tests (see the Methods section for details). Since we want to favor fitting a common
trajectory and we only want to discover cases that are not only statistically significant but
also biologically relevant, the tests typically include a minimum magnitude requirement for
considering the difference between distributions to be significant (similar to a minimum log-
fold-change for assessing DE). More details and practical implementation considerations are
discussed in the Methods section.

In practice, the topologyTest requires maintaining a mapping between each of the tra-
jectories, both between conditions and between permutations (see the Methods section where
we define a mapping precisely). Trajectory inference remains a semi-supervised task, that
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generally cannot be fully automated. In particular, the number of estimated lineages might
change between different permutations for a given condition, precluding a mapping. As
such, the topologyTest is only compatible with certain TI methods that allow for the spec-
ification of an underlying skeleton structure [141, 65], where the adjacency matrix can be
pre-specified, as well (optionally) start and/or end states.

In the examples from Fig 4.1, the skeleton of the trajectory is represented by a series of
nodes and edges. In examples 4.1b-d, the knock-out has no impact on this skeleton compared
to the wild-type. In example 4.1e, the knock-out (KO) modifies the skeleton, in that the
locations of the nodes change. However, the adjacency matrix does not change and the two
skeletons represent isomorphic graphs: the skeleton structure is preserved.

For some TI methods [141, 65], it is possible to specify and preserve this skeleton struc-
ture. This means that the mapping of lineages can be done automatically. The topologyTest
utilises this, and is thus restricted to such TI methods. This common skeleton structure can
also be used if the null of the topologyTest is rejected. The availability of a mapping
between lineages means that the next steps of the workflow can be conducted as if we had
failed to reject the null hypothesis, as done in Fig 4.1e. The third case study will also present
an example of this.

Even if the null is rejected by the topologyTest and separate trajectories must be fitted
for each condition, a common skeleton structure can still be used to map between trajectories.
This mapping means that the next steps of the workflow can be conducted as if we had failed
to reject the null hypothesis, as done in Fig 4.1e. The third case study will also present an
example of this. In cases where no common skeleton structure exists, such as Fig 4.1f, no
automatic mapping exists. Differential abundance can be assessed but requires a manual
mapping. Differential expression can still be conducted as well.

Step 2 - Differential abundance: What are the global differences between con-
ditions? The second step of the workflow focuses on differences between conditions at
the trajectory level. It requires either a common trajectory, or multiple trajectories and a
mapping. We can then ask whether cells from different conditions behave similarly as they
progress along the trajectory. To facilitate the interpretation of the results, we break this
into two separate questions. Note that, at this step and the next, we are no longer limited
to specific TI methods. Moreover, the mapping can be partial. In that case, Step 2 will be
restricted to the parts (or subgraphs) of the trajectories that are mappable. See the Methods
section for proper definitions of mapping and partial mapping.

Step 2a: Differential Progression. Although the topology might be common, cells
might progress at different rates along the lineages for different conditions. For example,
a treatment might limit the differentiation potential of the cells compared to the control,
or instead speed it up. In the first case, one would expect to have more cells at the early
stages and fewer at the terminal state, when comparing treatment and control. Using our
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statistical framework, testing for differential progression amounts to testing:

H0 : ∀(c1, c2) ∈ {1, . . . , C}2, Gc1 = Gc2 . (4.3)

This test can also be conducted at the individual-lineage level. If we denote by Glc the
lth component of the distribution function Gc, we can test for differential progression along
lineage l by considering the null hypothesis:

H0 : ∀(c1, c2) ∈ {1, . . . , C}2, Glc1 = Glc2 . (4.4)

We can assess either or both null hypotheses in the progressionTest, which relies on
non-parametric tests to compare two or more distributions, e.g., the Kolmogorov-Smirnov
test [137] or the classifier test [85]. More details and practical implementation considerations
are discussed in the Methods Section.

Step 2b: Differential Differentiation. Although the topology might be common, cells
might also differentiate in varying proportions between the lineages for different conditions.
For example, an intervention might lead to preferential differentiation along one lineage over
another, compared to the control condition; or might alter survival rates of differentiated
cells between two end states. In both cases, the weight distribution will be different between
the control and treatment. Assessing differential differentiation at the global level amounts
to testing, in our statistical framework, the null hypothesis

H0 : ∀(c1, c2) ∈ {1, . . . , C}2, Hc1 = Hc2 . (4.5)

This test can also be conducted for a single pair of lineages (l, l′):

H0 : ∀(c1, c2) ∈ {1, . . . , C}2, [Hlc1 , Hl′c1 ] = [Hlc2 , Hl′c2 ]. (4.6)

The above null hypotheses can again be tested by relying on non-parametric test statis-
tics. We also discuss specific details and practical implementation in the Methods section.

The progressionTest and differentiationTest are quite linked since the functions Gc

and Hc are correlated and will therefore often return similar results. However, they do answer
somewhat different questions. In particular, looking at single-lineage (progressionTest)
and lineage-pair (differentiationTest) test statistics will allow for a better understanding
of the global differences between conditions. Differential differentiation does not necessarily
imply differential progression and vice versa.

Step 3 - Differential Expression: Which genes have different expression patterns
between conditions? Steps 1 and 2 focus on differences at a global level (i.e., aggre-
gated over all genes) and will detect large changes between conditions. However, such major
changes are ultimately driven by underlying differences in gene expression patterns. Fur-
thermore, even in the absence of global differences, conditions might still have some more
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subtle impact at the gene level. In the third step, we therefore compare gene expression
patterns between conditions for each of the lineages. Step 3 is even more general than Step
2, in that it can be used without mapping between trajectories, i.e., some or all lineages
could be condition-specific.

Following the tradeSeq manuscript by Van den Berge et al. [158], we consider a general
and flexible model for gene expression, where the gene expression measure Yji for gene j in
cell i is modeled with the negative binomial generalized additive model (NB-GAM) described
in Equation (4.13). We extend the tradeSeq model by additionally estimating condition-
specific average gene expression profiles for each gene. We therefore rely on lineage-specific,
gene-specific, and condition-specific smoothers, sjlc. With this notation, we can introduce
the conditionTest, which, for a given gene j, tests the null hypothesis that these smoothers
are identical across conditions:

H0 : sjlc1 = sjlc2 , ∀(c1, c2),∀l. (4.7)

As in tradeSeq, we rely on the Wald test to test H0 in terms of the smoothers’ regression
coefficients. We can also use the fitted smoothers to visualize gene expression along lineages
between conditions or cluster genes according to their expression patterns.

Simulations

We generate multiple trajectories using the simulation framework provided by Cannoodt
et al. [25]. Within this framework, it is possible to knock out a specific gene. Here, we knock
out a master regulator that drives differentiation into the second lineage. The strength of this
knock-out can be controlled via a multiplier parameter m. If m = 0, the knock-out is total.
If 0 < m < 1, we have partial knock-out. If m > 1, the master regulator is over-expressed
and cells differentiate much faster along the second lineage.

Three types of datasets are generated: Simple branching trajectories (two lineages, e.g.,
Fig. 4.2a) of 3, 500 cells, with equal parts wild-type and knock-out; trajectories with two
consecutive branchings (and thus three lineages, e.g., Fig. 4.2b) of 3, 500 cells, with equal
parts wild-type and knock-out; and branching trajectories (two lineages) of 5, 000 cells with
three conditions, wild-type, knock-out with multiplier m, and induction with multiplier 1/m
(Fig. 4.2c).

The simulation framework cannot, however, generate distinct trajectories for the different
conditions, so we start the condiments workflow at Step 2, downstream of slingshot. We
compare the progressionTest and differentiationTest from condiments to methods that
also do not rely on clustering, but instead take into account the continuum of differentiation.
milo [34] and DAseq[182] both define local neighborhoods using k-nearest neighbors graphs
and look at differences of proportions in these neighborhood to test for differential abundance.
These methods returns multiple tests per dataset (i.e., one per neighborhood), so we adjustfor
multiple hypothesis testing using the Benjamini-Hochberg procedure [13]. By applying milo,
DAseq, and condiments on the simulated datasets, we can compare the results of the tests
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Figure 4.2: Simulation results. Three types of datasets are generated, with respectively
two, three, and two lineages, and two, two, and three conditions. Reduced-dimensional
representations of these datasets, for a multiplier value of m = .5, are presented in (a.), (b.),
and (c.), respectively. After generating multiple versions of the datasets for a range of values
of m, we compare the performance of the progressionTest and differentiationTest with
that of DAseq[182] and milo[34], when controlling the false discovery rate at nominal levels
1% and 5% using the Benjamini-Hochberg [13] procedure. In (d.), each cell represents
the performance measure associated with one test on one dataset for one nominal FDR
level. Cells are also colored according to the performance. Overall, with two conditions,
the progressionTest ranks first, followed by DAseq and the differentiationTest. With
three conditions, the differentiationTest ranks first. DAseq is limited to two conditions.
Exact simulation parameters and metrics are specified in the Methods section.
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versus the values of m: We count a true positive when a test rejects the null and m 6= 1,
and a true negative if the test fails to reject the null and m = 1.

We compare the methods’ ability to detect correct differences between conditions using
five metrics: The true negative rate (TNR), positive predictive value (PPV), true positive
rate (TPR), negative predictive value (NPV), and F1-score, when controlling the FDR at
two nominal levels of 1% and 5%. More details on the simulation scenarios and metrics can
be found in the Methods section. Results are displayed in Fig. 4.2d.

On all simulations, all methods display excellent results for the TNR and PPV (ex-
cept for the differentiationTest with level 1% on the branching dataset). However,
the performances for the TPR (power), NPV, and F1-rate vary quite widely. On the two
types of datasets with two conditions, the ranking is uniform over all metrics and levels:
progressionTest, DAseq, differentiationTest, and milo. On the third simulation setting
with three conditions, we cannot benchmark DAseq since its testing framework is restricted
to two conditions. Here, also, the ranking is uniform but the differentiationTest outper-
forms the progressionTest. Looking more closely at the results, we can see (Fig D.2) that
this mostly stems from increased power for the differentiationTest when m is close to 1.

Overall, the tests from the condiments workflow offer a flexible approach that can handle
various scenarios and still outperform competitors.

Case studies

We consider three real datasets as case studies for the application of the condiments workflow.
Table 4.1 gives an overview of these datasets and summary results. These case studies aim
to demonstrate the versatility and usefulness of the condiments workflow, as well as showcase
how to interpret and use the tests in practice.

TGFB dataset

McFaline-Figueroa et al. [92] studied the epithelial-to-mesenchymal transition (EMT), where
cells migrate from the epithelium (inner part of the tissue culture dish) to the mesenchyme
(outer part of the tissue culture dish) during development. The developmental process there-
fore is both temporal and spatial. As cells differentiate, gene expression changes. Moreover,
the authors studied this system under two settings: a mock (control) condition and a condi-
tion under activation of transforming growth factor β (TGFB).

After pre-processing, normalization, and integration (see details in the supplementary
methods), we have a dataset of 9, 268 cells, of which 5, 207 are mock and 4, 241 are TGFB-
activated. The dataset is represented in reduced dimension using UMAP[11] (Fig. 4.3a).
Adding the spatial label of the cells (Fig. 4.3b) shows that the reduced-dimensional repre-
sentation of the gene expression data captures the differentiation process.

We can then run the condiments workflow. The imbalance score of each cell is com-
puted and displayed in Fig. 4.3c. Although some regions do display strong imbalance, there
is no specific pattern along the developmental path. This is confirmed when we run the
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Table 4.1: Summary of all case study datasets. We report the name, number of cells n,
number of conditions C, number of lineages L of each dataset, as well as the p-value resulting
from testing for differential topology, progression and differentiation and the number of
differentially expressed genes between conditions according to the conditionTest

Dataset n C L topology progression differentiation DE

TGFB[92] 9, 268 2 1 0.38 ≤ 2.2× 10−16 NA 1, 993
TCDD[100] 9, 951 2 1 0.07 ≤ 2.2× 10−16 NA 2, 144
KRAS[175] 10, 177 3 3 ≤ 2.2× 10−16 ≤ 2.2× 10−16 ≤ 2.2× 10−16 363

topologyTest. The nominal p-value of the associated test is 0.38. We clearly fail to re-
ject the null hypothesis and we consequently fit a common trajectory to both conditions
using slingshot with the spatial labels as clusters. This single-lineage trajectory is shown in
Fig. 4.3d.

Next, we can ask whether the TGFB treatment impacts the differentiation speed. The
developmental stage of each cell is estimated using its pseudotime. Plotting the per-condition
kernel density estimates of pseudotimes in Fig. 4.3e reveals a strong treatment effect. The
pseudotime distribution for the mock cells is trimodal, likely reflecting initial, intermediary,
and terminal states. However, the first mode is not present in the TGFB condition, and the
second is skewed towards higher pseudotime values. This is very consistent with the fact
that the treatment is a growth factor that would increase differentiation, as shown in the
original publication. Testing for equality of the two distributions with the progressionTest
confirms the visual interpretation. The nominal p-value associated with the test is smaller
than 2.2×10−16 and we reject the null that the distributions are identical. Since the trajectory
is limited to one lineage, there is no possible differential differentiation between pairs of
lineages.

Then, we proceed to identifying genes whose expression patterns differ between the mock
and TGFB conditions. After gene filtering, we fit smoothers to 10, 549 genes, relying on
the model described in Equation (4.13). We test whether the smoothers are significantly
different between conditions using the conditionTest. Testing against a log-fold-change
threshold of 2, we find 1, 993 genes that are dynamically differentially expressed between the
two conditions when controlling the false discovery rate (FDR) at a nominal level of 5%.
Fig. 4.4a and b show the two genes with the highest Wald test statistic. The first gene,
LAMC2, was also found to be differentially expressed in the original publication and has
been shown to regulate EMT [109]. The second gene, TGFBI or TGFB-induced gene, is
not surprising, and was also labelled as differentially expressed in the original publication.
In contrast, the gene that is deemed the least differentially expressed exhibits no differences
between the smoothers (Fig. 4.4c.). Looking at all 1, 993 DE genes, we can cluster and
display their expression patterns along the lineage for both conditions (Fig. 4.4) and identify
several groups of genes that have different patterns between the two conditions.
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Figure 4.3: TGFB dataset: Differential topology and differential progression. After nor-
malization and projection on a reduced-dimensional space (using UMAP), the cells can be
colored either by treatment label (a.) or spatial origin (b.). Using the treatment label and
the reduced-dimensional coordinates, an imbalance score is computed and displayed (c.).
The topologyTest fails to reject the null hypothesis of no differential topology and a com-
mon trajectory is therefore fitted (d.). However, there is differential progression between
conditions: the pseudotime distributions along the trajectory are not identical (e.) between
conditions and we reject the null using the progressionTest.
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Finally, we perform a gene set enrichment analysis on all the genes that are differentially
expressed between the conditions. The full results are available in Supplementary Table S1.
Top annotations include gene sets involved in cell motility, adhesion, and morphogenesis,
which are consistent with the expected biology.

TCDD dataset

Nault et al. [100] collected a dataset of 16, 015 single nuclei to assess the hepatic effects
of 2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD. In particular, they focused on the effect
of TCDD on the 9, 951 hepatocytes cells along the central-portal axis. This dataset is not
a developmental dataset per se but still exhibits continuous changes along a spatial axis,
demonstrating the versatility of the trajectory inference framework in general, and of the
condiments workflow in particular.

Fig. D.3a shows a reduced-dimensional representation of the dataset, with cells labelled
according to treatment/control condition, while Fig. D.3b shows the same plot colored by
cell type, as derived by the authors of the original publication. The cells are aligned in a
continuum, from central to mid-central and then mid-portal and portal. The imbalance score
shows some spatial pattern (Fig. D.3c). However, the nominal p-value associated with the
topologyTest is .07. We therefore fail to reject the null and we infer a common trajectory
using slingshot on the spatial clusters. This results in a single-lineage trajectory that respects
the ordering of the spatial clusters (Fig. D.3d). Note that, since the trajectory reflects
a spatial continuum rather than a temporal one, the start of the trajectory is arbitrary.
However, inverting the start and end clusters amounts to an affine transformation of the
pseudotimes for all the cells. Step 2 and 3 are fully invariant to this transformation, so we
can pick the Central cluster as the start of the trajectory.

The densities of the treatment and control pseudotime distributions differ greatly visually
(Fig. D.3e), with the TCDD density heavily skewed toward the start of the trajectory. Indeed,
the progressionTest has a nominal p-value ≤ 2.2× 10−16. This coincides with the finding
of the original publication which highlighted the periportal hepatotoxicity of TCDD.

The ability of the progressionTest to correctly find large-scale changes in the spatial
distribution of cells between conditions underscores why we favor fitting a common trajectory.
Indeed, the p-value of the topologyTest in Step 1 is rather small and would have been
below .05 if we had not conducted a test against a threshold. However, testing against a
threshold and thus fitting a common trajectory does not stop the workflow from finding
large-scale differences between conditions in Step 2 and results in a more stable estimate of
the trajectory.

After gene filtering, we test 8, 027 genes for spatial differential expression between condi-
tions and we find 2, 114 DE genes when controlling the FDR at a nominal level of 5%. The
genes with the largest, second largest, and smallest test statistics are displayed in Fig.D.4a-
c. Similarly to Nault et al. [100], we obtain a list of zonal genes from Halpern et al. [52].
The proportion of zonal genes among the DE genes is twice their proportion among non-DE
genes.
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Figure 4.4: TGFB dataset: Differential expression. The tradeSeq gene expression model is
fitted using the trajectory inferred by slingshot. Differential expression between conditions
is assessed using the conditionTest and genes are ranked according to the test statistics.
The genes with the highest (a.), second highest (b.), and smallest (c.) test statistics are
displayed. After adjusting the p-values to control the FDR at a nominal level of 5%, we
display genes for both conditions using a pseudocolor image (d.) after scaling each gene to
a [0, 1] range.

KRAS dataset

Xue et al. [175] studied the impact of KRAS(G12C) inhibitors at the single-cell level on
three models of KRAS(G12C) lung cancers. Specifically, they examined how various cell
populations react to these inhibitors and how some cells can return in proliferation mode
shortly after the end of the treatment. Here, we want to investigate how the three cancer
models (H358, H2122, and SW1573) differ in their response to the KRAS(G12C) inhibitors.

We use the reduced-dimensional representation from the original paper to display the
10, 177 cells from the various types (Fig 4.5a). Using the cancer type labels and the reduced-
dimensional coordinates, an imbalance score can be computed (Fig 4.5b); some regions clearly
show an imbalance. This is further confirmed by the topologyTest, with p-value smaller
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Figure 4.5: KRAS dataset: Differential topology, differential progression, and differential
differentiation. Using the reduced-dimensional representation of the original publication (t-
SNE), the cells can be colored by cancer type (a.). Using the cancer type label and the
reduced-dimensional coordinates, an imbalance score is computed and displayed (b.). The
topologyTest rejects the null hypothesis of a common trajectory, we thus fit one trajectory
per condition (c.). However, the skeleton graphs have the same structure (d.), so we can
progress to the next steps in the condiments workflow. There is differential progression (d.)
and we indeed reject the null of identical pseudotime distributions along the trajectory using
the progressionTest. Similarly, there is differential differentiation (e.) and we reject the
null of identical weight distributions along the trajectory using the differentiationTest.
Here, we summarize the distributions by looking at the average weight for each lineage in
each condition, which already shows some clear differences.

than 2.2×10−16. We therefore do not fit a common trajectory to all cancer types (Fig 4.5c).
Note that this does not necessarily imply that the trajectory of reaction to the KRAS(G12C)

inhibitors is different between cancer types. Indeed, this may also reflect strong batch effects
between conditions, which the normalization scheme was unable to fully remove when inte-
grating the three cancer types in one common reduced-dimensional representation. Thus, it
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is not really possible to draw a biological conclusion at this first step. However, this does
mean that a separate trajectory should be fitted to each condition.

Here, the trajectories, although different, are similar enough that we can still use an
underlying common skeleton (Fig 4.5d). Indeed, we keep the tree structure derived by
computing the minimum spanning tree (MST) on the clusters using all cells. This way, it is
possible to derive a one-to-one mapping between the lineages of the three trajectories and we
respect the assumptions detailed in Section 4.4 that are necessary for the progressionTest

and differentiationTest.
Using this common mapping, we can then proceed to the progressionTest. At the global

trajectory level, the nominal p-value is smaller than 2.2 × 10−16, showing clear differential
progression. At the lineage level, all three lineages show strong differential progression, with
p-values of 2.2× 10−16, 1.2× 10−12, and 1.2× 10−14, respectively. The density plots for the
pseudotime distributions at the single-lineage level (Fig 4.5e) indicate that the differential
progression is driven by a group of cells from cancer type H2122A. This matches the top
left part of the reduced-dimensional plot, the region where cells exit the initial inhibition
stage to enter the reactivation stage. The second lineage also shows a difference between
H2122A and the two other models. The pseudotime distribution is heavily skewed toward
earlier points in that model compared to the other two. Lineage 2 represents differential
progression to a drug-induced state. In Lineage 3, it is the SW1573A model that displays
more differential progression.

The differentiationTest also has a p-value smaller than 2.2 × 10−16. Although all
pairwise comparisons are significant, the test statistics are much higher for the Lineage 2 vs.
1 and Lineage 2 vs. 3 comparisons. This again suggests that one model differentiates less
into the drug-induced path, compared to the other two. Since the weights have to sum to
1, the 3-dimensional distribution can be fully summarized by any two components. Fig D.5
shows clear differences in distributions but visually interpreting different 2D distributions is
still challenging. A simpler way to compare the distributions is to look at the average weight
in each condition for each lineage (Fig 4.5f). This ignores the correlation between lineages
but still allows for some interpretation. We can see in particular that Lineages 1 and 3 have
greater weights for H2122A than for the other two conditions, which is consistent with the
different pairwise statistics.

With the mapped trajectories, we can also perform gene-level analysis using the conditionTest.
When comparing genes across all lineages and conditions, we find 363 differentially expressed
genes when controlling the FDR at nominal level 5%. We show the genes with the highest,
second highest, and smallest test statistics in Fig. D.6a-c. Displaying these global patterns
across all three lineages and all three conditions makes it hard to interpret. We therefore
focus on the first (and longest) lineage. In that lineage, we find 366 DE genes and we show
their expression patterns along Lineage 1 in all three cancer models in Fig. D.6d.
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4.3 Discussion

In this manuscript, we have introduced condiments, a full workflow to analyze dynamic sys-
tems under multiple conditions. By separating the analysis into several steps, condiments
offers a flexible framework with increased interpretability. Indeed, we follow a natural pro-
gression through a top-down approach, by first studying overall differences in trajectories
with the topologyTest, then differences in abundances at the trajectory level with the
progressionTest and differentiationTest, and finally gene-level differences in expres-
sion with the conditionTest.

As demonstrated in the simulation studies, taking into account the dynamic nature of
systems via the trajectory representation enables condiments to better detect true changes
between conditions. The flexibility offered by our implementation, which provides multiple
tests for non-parametric comparisons of distributions, also allows us to investigate a wide
array of scenarios. This is evident in the three case studies presented in the manuscript.
Indeed, in the first case study we have a developmental system under treatment and control
conditions, while in the second case study the continuum does not represent a developmental
process but spatial separation. In the third case study, the conditions do not reflect different
treatments but instead different cancer models. This shows that condiments can be used to
analyze a wide range of datasets.

Often, the different conditions also represent different batches. Indeed, some interventions
cannot be delivered on a cell-by-cell basis and this creates unavoidable confounding between
batches and conditions. Normalization and integration of the datasets must therefore be done
without eliminating the underlying biological signal. This balance can be hard to strike, as
discussed in Zhao et al. [182]. Proper experimental design – such as having several batches
per condition – or limiting batch effects as much as possible – for example, sequencing a mix
of conditions together – can help lessen this impact. Still, some amount of confounding is
sometimes inherent to the nature of the problem under study.

The tests used in the workflow (e.g., Kolmogorov-Smirnov test) assume that the pseu-
dotime and weight vector are known and independent observations for each cell. However,
this is not the case: they are estimated using TI methods which use all samples to infer
the trajectory, and each estimate inherently has some uncertainty. Here, we ignore this
dependence, as is the case in other differential abundance methods, which assume that the
reduced-dimensional coordinates are observed independent random variables even thought
they are being estimated using the full dataset. We stress that, rather than attaching strong
probabilistic interpretations to p-values (which, as in most RNA-seq applications, would
involve a variety of hard-to-verify assumptions and would not necessarily add much value
to the analysis), we view the p-values produced by the condiments workflow as useful nu-
merical summaries for guiding the decision to fit a common trajectory or condition-specific
trajectories and for exploring trajectories across conditions and identifying genes for further
inspection.

Splitting the data into two groups, where the first is used to estimate the trajectory
and the second is used for pseudotime and weight estimation could, in theory, alleviate the
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dependence issue, at the cost of smaller sample sizes. However, this would ignore the fact
that, in practice, users perform exploratory steps using the full data before performing the
final integration, dimensionality reduction, and trajectory inference. Moreover, results on
simulations show that all methods considered keep excellent control of the false discovery
rate despite the violation of the independence assumptions. This issue of “double-dipping”
therefore seems to have a limited impact.

The two issues raised in the previous paragraphs highlight the need for independent
benchmarking. Simulation frameworks such as dyngen [25] are crucial. They also need to be
complemented by real-world case studies, which will become easier as more and more datasets
that study dynamic systems under multiple conditions are being published. condiments has
thus been developed to be a general and flexible workflow that will be of use to researchers
asking complex and ever-changing questions.

4.4 Methods

Tests for equality of distributions

General setting

Consider a set of n i.i.d. observations, X, with Xi ∼ P1, and a second set of m i.i.d.
observations, Y, with Yj ∼ P2, independent from X. For example, in our setting, X and
Y may represent estimated pseudotimes for cells from two different conditions. We limit
ourselves to the case where X and Y are random vectors of the same dimension d.

The general goal is to test the null hypothesis that X and Y have the same distribution,
i.e., H0 : P1 = P2.

Univariate case: The weighted Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov test. Consider the case where Xi and Yj are
scalar random variables (i.e., d = 1). The associated empirical cumulative distribution
functions (ECDFs) are denoted, respectively, by F1,n and F2,m. The univariate case occurs,
for example, when there is only one lineage in the trajectory(ies), so that the pseudotime
estimates are scalars.

In this setting, one can test H0 using the standard Kolmogorov-Smirnov test [137], with
test statistic defined as:

Dn,m ≡ sup
x

∣∣F1,n(x)− F2,m(x)
∣∣

= sup
x∈X∪Y

∣∣F1,n(x)− F2,m(x)
∣∣.

The rejection region at nominal level α is[√
−1

2
× log

α

2
× n+m

n×m
,∞

)
.
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That is, we reject the null hypothesis at the α-level if and only if Dn,m ≥
√
−1/2× logα/2× n+m

n×m .

The two-sample weighted Kolmogorov-Smirnov test. Consider a more general set-
ting where we have weights w1,i ∈ [0, 1] and w2,j ∈ [0, 1] for each of the observations. In
trajectory inference, the weights may denote the probability that a cell belongs to a partic-
ular lineage in the trajectory. Following Monahan [97], we modify the Kolmogorov-Smirnov
test in two ways. Firstly, the empirical cumulative distribution functions are modified to
account for the weights

F1,n(x) =
1∑n

i=1w1,i

n∑
i=1

w1,i × I(−∞,x](Xi)

F2,m(x) =
1∑m

j=1w2,j

m∑
j=1

w2,j × I(−∞,x](Yj).

Secondly, the definition of Dn,m is unchanged, but the significance threshold is updated, that
is, the rejection region is [√

−1

2
× log

α

2
× n′ +m′

n′ ×m′
,∞

)
,

where

n′ =

( n∑
i=1

w1,i

)2
n∑
i=1

w2
1,i

and m′ =

( m∑
j=1

w2,j

)2
m∑
j=1

w2
2,j

.

Multivariate case: The classifier test

Concept. Suppose that we have a classifier δ(·), which could be, for example, a multinomial
regression or SVM classifier. This classifier is a function from the support of X and Y into
{1, 2}. The data are first split into a learning and a test set, such that the test set contains
ntest observations, equally-drawn from each population, i.e., there are ntest/2 observations
X(test) from X and ntest/2 observations Y(test) from Y. Next, the classifier is trained on the

learning set. We denote by Acc ≡ |{i : δ(X
(test)
i ) = 1}

⋃
{j : δ(Y

(test)
j ) = 2}| the number of

correct assignations made by the classifier on the test set.
If n = m, under the null hypothesis of identical distributions, no classifier will be able

to perform better on the test set than a random assignment would, i.e., where the predicted
label is a Bernoulli(1/2) random variable. Therefore, testing the equality of the distributions
of X and Y can be formulated as testing

H0 : E[Acc] =
ntest

2
vs. H1 : E[Acc] >

ntest

2
.
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Under the null hypothesis, the distribution of Acc is:

Acc ∼H0 Binom(ntest, 1/2).

As detailed in Lopez-Paz and Oquab [85], one can use the classifier to devise a test that will
guarantee the control of the Type 1 error rate.

The classifier test in practice. In practice, we make no assumptions about the way in
which the distributions we want to compare might differ, which means the classifier needs
to be quite flexible. Following Lopez-Paz and Oquab [85], we chose to use either a k-nearest
neighbor classifier (k-NN) or a random forests classifier [20], since such classifiers are fast
and flexible. Hyper-paramters are chosen through cross-validation on the learning set. To
avoid issues with class imbalance, we downsample the distribution with the largest number
of samples first so that each distribution has the same number of observations. That is, we
have n′ = min(m,n) observations in each condition (or class). A fraction (by default 30%,
user-defined) is kept as test data, so that ntest = .3× n′. We then train the classifier on the
learning data, and select the tuning parameters through cross-validation on that learning
set. Finally, we predict the labels on the test set and compute the accuracy of the classifier
on that test set. This yields our classifier test statistic.

Power of the classifier test. It is interesting to note that the classifier test is valid no
matter the classifier chosen. However, the choice of classifier will have obvious impact on
the power of the test.

Multivariate case: Other methods

Although we have found that the classifier test performs best in practice, there are many
methods that test for the equality of two multivariate distributions. We have implemented a
few such methods in condiments, in case users would like to try them: The two-sample kernel
test [48] and the permutation test relying on the Wasserstein distance. These methods were
found to be less efficient in initial benchmarking, but are implemented in case users want to
use them.

Multivariate case: The two-sample kernel test

Mean maximum discrepancy. The two-sample kernel test was defined by Gretton et al.
[48] and relies on the mean maximum discrepancy (MMD). Considering a kernel function

k : Rd × Rd → R
(x, y) 7→ k(x, y)

the MMD is then defined as

MMD2(P1,P2, k) ≡ EP1,P1 [k(X,X ′)] + EyP2,P2 [k(Y, Y ′)]− 2EP1,P2 [k(X, Y )].

For a properly defined kernel, we have MMD2(P1,P2, k) = 0 i.i.f. P1 = P2.
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Unbiased statistic. Following Gretton et al. [48], we define the unbiased MMD statistic:

MMD2
u(X,Y) ≡ 1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(Xi,Xj)+
1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(Yi,Yj)−
2

mn

n∑
i=1

m∑
j=1

k(Xi,Yj).

Linear statistic for faster computations. While the MMD2 offers fast convergence, it
can be burdensome to compute when m and n get large. Gretton et al. [48] propose a linear
statistic in the case m = n. We can extend this in the general setting by just sampling a
fixed fraction of the terms of each sum. This lowers kernel computation costs drastically.

Null distribution of the statistic. For some kernels, theMMD2
u follows some theoretical

inequalities under the null that allows one to define rejection regions. However, this is not
always the case. Therefore, in practice, we instead rely on permutations to compute a null
distribution for the test statistic. Under the null, Xi and Yj are from the same distribution
so they can be swapped in the sums. We can therefore generate an empirical distribution
and use it to define rejection regions.

Multivariate case: Optimal transport

We consider the Wasserstein distance [166, 37], also known as earth’s mover distance, be-
tween the two distributions, estimated using the samples X and Y. We can generate a null
distribution for this metric by permuting observations in the combined X and Y datasets,
thereby obtaining a valid test for H0 : P1 = P2. This works in any number of dimensions,
but is limited to the two-sample case.

Extending the setting by considering more than two conditions

Consider C ≥ 2 sets of samples, such that, for c ∈ {1, . . . , C}, we have nc i.i.d. observations

X(c) with X
(c)
i ∼ Pc. We want to test the null hypothesis:

H0 : Pc1 = Pc2 , ∀c1, c2 ∈ {1, . . . , C} and c1 6= c2.

While extensions of the Kolmogorov-Smirnov test [68] and the two-sample kernel test [7]
have been proposed, we choose to focus only on the framework that is most easily extended
to C conditions, namely, the classifier test. Indeed, the C-condition classifier test requires
choosing a multiple-class classifier instead of a binary classifier (which is the case for the
k-NN classifier and random forests), selecting ntest/C observations for each class in the test
set, and testing:

H0 : E[Acc] =
ntest

C
vs. H1 : E[Acc] >

ntest

C
.
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Under the null distributions, the distribution of Acc is:

Acc ∼H0 Binom(ntest, 1/C).

Extending the setting by considering an effect size

Effect size for the Kolmogorov-Smirnov test. The null hypothesis of the (weighted)
Kolmogorov-Smirnov test is H0 : P1 = P2. We can modify this null hypothesis by considering
an effect size threshold t, such that H0(t) : supx

∣∣P1(x) − P2(x)
∣∣ ≤ t. The test statistic is

then modified as:
D′

n,m ≡ max(Dn,m − t, 0)

and the remainder of the testing procedure is left unchanged.

Effect size for the classifier test. Similarly, the null and alternative hypotheses of the
classifier test can be modified to test against an effect size threshold t as follows

H0 : Acc ≤ ntest

C
+ t vs. H1 : Acc >

ntest

C
+ t.

General statistical model for the trajectories

Consider a set of condition labels c ∈ {1, . . . , C} (e.g.,“treatment” or “control”, “knock-out”
or “wild-type”). For each condition, there is a given topology/trajectory Tc that underlies
the developmental process. This topology is generally in the form of a tree, with a starting
state which then differentiates along one or more lineages; but one can also have a circular
graph, e.g., for the cell cycle. In general, a trajectory is defined as a directed graph.

We denote by Lc the number of unique paths – or lineages – in the trajectory Tc and by
Cc the set of cells that belong to condition c. For example, for a tree structure, paths go
from the root node (stem cell type) to the leaf nodes (differentiated cell type). For a cell
cycle, any node can be be used as the start. A cell i from condition ci is characterized by
the following features:

Ti ∼ Gci : A vector of pseudotimes, one per lineage of Tci
Wi ∼ Hci : A vector of weights, one per lineage of Tci , s.t. ||Wi||1 = 1.

Note that the distribution functions are condition-specific. We further make the following
assumptions:

• All Gc and Hc distributions are continuous;

• The support of all Gc is bounded in RLc ;

• The support of all Hc is [0, 1]Lc .

The gene expression model will be discussed below, in the differential expression section.
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Trajectory inference. Many algorithms have been developed to estimate lineages from
single-cell data [126]. Most algorithms provide a binary indicator of lineage assignment, that
is, the Wi vectors are composed of 0s and 1s, so that a cell either belongs to a lineage or
it does not (note that when cells fall along a lineage prior to a branching event, this vector
may include multiple 1s, violating our constraint that the Wi have unit norm. In such cases,
we normalize the weights to sum to 1).

Mapping between trajectories. Many of the tests that we introduce below assume that
the cells from different conditions follow “similar” trajectories. In practice, this means that
we either have a common trajectory for all conditions or that there is a possible manual
mapping from one lineage to another. The term “mapping” is more rigorously defined as
follows.

Definition 1 The trajectories {Tc : c ∈ {1, . . . , C}} have a mapping if and only if
∀(c1, c2) ∈ {1, . . . , C}2, Tc1 and Tc2 are isomorphic.

If there is a mapping, this implies in particular that the number of lineages Lc per
trajectory Tc is the same across all conditions c and we call this this value L. Since a graph
is always isomorphic with itself, a common trajectory is a special case of a situation where
there is a mapping.

Definition 2 The trajectories {Tc : c ∈ {1, . . . , C}} have a partial mapping if and
only if ∀(c1, c2) ∈ {1, . . . , C}2, there is a subgraph T ′c1 ⊂ Tc1 and a subgraph T ′c2 ⊂
Tc2 that are isomorphic.

Essentially, this means that the size of the changes induced by the various conditions
do not disturb the topology of the original trajectory too much. The above mathematical
definitions aim to formalize what too much is. Indeed, if the conditions lead to very drastic
changes, it will be quite obvious that the trajectories are different and comparing them will
mostly be either non-informative or will not require a complex framework. We aim to build
a test that retains reasonable power in more subtle cases.

Differential topology

Imbalance score. Consider a set of n cells, with associated condition labels ci ∈ {1, . . . , C}
and coordinate vectors Xi in d dimensions, usually corresponding to a reduced-dimensional
representation of the expression data obtained via PCA or UMAP[11, 93].

Let p = {pc}c∈{1,...,C} denote the “global” distribution of cell conditions, where pc is the
overall proportion of cells with label c in the sample of size n. The imbalance score of a
cell reflects the deviation of the “local” distribution of conditions in a neighborhood of the
cell compared to the global distribution p. Specifically, for each cell i, we compute its k-
nearest neighbor graph using the Euclidean distance in the reduced-dimensional space. We
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therefore have a set of k neighbors and a set of associated neighbor condition labels ci,κ for
κ ∈ {1, . . . , k}. We then assign to the cell a z-score, based on the multinomial test statistic
P ({ci,κ}κ∈{1,...,k},p), as defined in Section 4.4. Finally, we smooth the z-scores in the reduced-
dimensional space by fitting s cubic splines for each dimension. The fitted values for each
of the cells are the imbalance scores. Thus, the imbalance scores rely on two user-defined
parameters, k and s. We set default values of 10 for both parameters. However, since this is
meant to be an exploratory tool, we encourage users try different values for these parameters
and observe the changes to better understand their data.

General setting for the topologyTest. The imbalance score only provides a qualitative
visual inspection of local imbalances in the distribution of cell conditions. However, we need
a more global and formal way to test for differences in topology between condition-specific
trajectories. That is, we wish to test the null hypothesis

H0 : Tc1 = Tc2 , ∀(c1, c2) ∈ {1, . . . , C}2. (4.8)

In practice, in order to test H0, we have a set of cells i with condition labels ci. We can
estimates the pseudotimes of each cell when fitting a trajectory for each condition. We then
want to compare this distribution of pseudotimes to a null distribution. To generate this
null distribution, we use permutations in the following manner

a) Estimate Ti for all i by inferring one trajectory per condition, using any trajectory
inference method.

b) Randomly permute the condition labels ci to obtain new labels c′i, re-estimate T′
i for

each i.

c) Repeat the permutation r times (by default, r = 100).

Under the null hypothesis, the n Ti should therefore be drawn from the same distribution
as the r×n T′

i. We can test this using the weighted Kolmogorov-Smirnov test (if L = 1), the
kernel two-sample test (if C = 2), or the classifier test (any C). This is the topologyTest.

The aforementioned tests require that the samples be independent between the two dis-
tributions under comparison. However, here, the two distributions correspond to different
pseudotime estimates for the same cells so the samples are not independent between distribu-
tions. Even within distributions, the independence assumption is violated: the pseudotimes
are estimated using trajectory inference methods that rely on all samples. Moreover, within
the T′

i, we have r pseudotime estimates of each cell.
The first two violations of the assumptions are hard to avoid and are further addressed

in the discussion section. However, we can eliminate the third one by simply taking the
average T′

i for each cell. We then compare two distributions each with n samples. Both
options (with and without averaging) are implemented in the condiments R package, but the
default is the average.
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Furthermore, rather than attaching strong probabilistic interpretations to p-values (which,
as in most RNA-seq applications, would involve a variety of hard-to-verify assumptions and
would not necessarily add much value to the analysis), we view the p-values produced by the
condiments workflow simply as useful numerical summaries for exploring trajectories across
conditions and identifying genes for further inspection.

Running the topologyTest in practice. Under the null, there should exist a mapping
between trajectories, both within conditions and between permutations. However, in prac-
tice, most trajectory inference methods will be too unstable to allow for automatic mapping
between the runs. Indeed, they might find a different number of lineages for some runs.
Moreover, even if the number of lineages and graph structure remained the same across
all permutations, mapping between permutations would break even more the independence
assumption since the condition labels would need to be used.

Therefore, for now, the topologyTest test is limited to two trajectory inference methods,
slingshot [141] and TSCAN [65], where a set graph structure can be prespecified. Both meth-
ods rely on constructing a minimum spanning tree (MST) on the centroids of input clusters
in a reduced-dimensional space to model branching lineages. In TSCAN, a cell’s pseudotime
along a lineage is determined by its projection onto a particular branch of the tree, and its
weight of assignment is determined by its distance from the branch. slingshot additionally
fits simultaneous principal curves. A cell’s pseudotime along a lineage is determined by its
projection onto a particular curve and its weight of assignment is determined by its distance
from the curve. We therefore construct the MST on the full dataset (i.e., using all the cells
regardless of their condition label), based on user-defined cluster labels. Then, we keep the
same graph structure as input to either TI method: the nodes are the centers of the clusters,
but restrained to cells of a given condition. This way, the path and graph structure are
preserved. Note however, that there no guarantee that the graph remains the MST when it
is used for TI on a subset of cells.

Testing for differential progression

The differential progression test requires that a (partial) mapping exists between trajectories.
If the mapping is only partial, we restrict ourselves to the mappable parts of the trajectories
(i.e., subgraphs).

Testing for differential progression for a single lineage. For a given lineage l, we want
to test the null hypothesis that the pseudotimes along the lineage are identically distributed
between conditions, which we call identical progression. Following the above notation, we
want to test that the lth components Glc of the distribution functions Gc are identical across
conditions

H0 : Glc1 = Glc2 , ∀(c1, c2). (4.9)
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Testing for global differential progression. We can also test for global differences
across all lineages, that is,

H0 : Gc1 = Gc2 , ∀(c1, c2). (4.10)

Possible tests. If C = 2, all tests introduced in Section 4.4 can be used to test the
hypothesis in Equation (4.9). If C > 2, we need to rely on the classifier test.

If L = 1, the hypotheses in Equations (4.9) and (4.10) are identical. However, for L > 1,
the functions Gc are not univariate distributions.

Using the Kolmogorov-Smirnov test in the L > 1 setting. For L > 1, we can
use lineage-level weights as observational weights for each individual lineage, which is an
appealing property. Two settings are possible.

• Test the null hypothesis in Equation (4.9) for each lineage using the Kolmogorov-
Smirnov test and perform a global test using the classifier test or the kernel two-sample
test.

• Test the null hypothesis in Equation (4.9) for each lineages using the Kolmogorov-
Smirnov test and combine the p-values pl for each lineage l using Stouffer’s Z-score
method [140], where each lineage is associated with observational weightsWl =

∑n
i=1 Wi[l].

The nominal p-value associated with the global test is then

pglob ≡

L∑
l=1

Wlpl√∑L
i=1W

2
l

.

Note that the second setting violates the assumption of Stouffer’s Z-score method, since
the p-values are not i.i.d. However, this violation does not seem to matter in practice and
this test outperforms others so we set it as default.

Testing for differential differentiation

The differential progression test requires that a (partial) mapping exists between trajectories.
If the mapping is only partial, we restrict ourselves to the mappable parts of the trajectories.

Testing for differential differentiation for a single pair of lineages. For a given pair
of lineages l, l′, we want to test the null hypothesis that the cells differentiate between l and l′

in the same way between all conditions, which we call identical differentiation. Following the
above notation, we want to test that the lth and l′th components of the distibution function
Hc are the same

H0 : ∀(c1, c2), [Hlc1 , Hl′c1 ] = [Hlc2 , Hl′c2 ]. (4.11)
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Testing for global differential differentiation. We can also test for a global difference
across all pairs of lineages, that is,

H0 : ∀(c1, c2), Hc1 = Hc2 (4.12)

Possible tests. Since all variables are multivariate, we cannot use the Kolmogorov-Smirnov
test. By default, this test relies on the classifier test with random forest as a classifier.

Testing for differential expression

Notation. The gene expression model does not require a mapping or even a partial map-
ping. Indeed, it can work as well with a common trajectory, different trajectories, or even a
mix where some lineages can be mapped between the trajectories for various conditions and
others cannot. To reflect this, we consider all Ltot lineages together. We introduce a new
weight for each cell

Zi = {Zilc}l∈{1,...,Ltot},c∈{1,...,C} s.t.


Zilc = 0, if i 6= Cc or l /∈ Tci

{Zilci}l∈{1,...,C} ∼ M(Wi), otherwise
,

whereM(Wi) is a binary (or one-hot) encoding representation of a multinomial distribution
with proportions Wi as in tradeSeq.

Likewise, we modify the pseudotime vector to have length Ltot such that

Tli =

{
0, if l /∈ Tci
Ti[l], otherwise

.

Gene expression model. We adapt the model from Van den Berge et al. [158] to allow
for condition-specific expression. For a given gene j, the expression measure Yji for that gene
in cell i can be modeled thus:

Yji ∼ NB(µji, φj)
log(µji) = ηji

ηji =
Ltot∑
l=1

C∑
c=1

sjlc(Tli)Zilc + Uiαj + log(Ni)
, (4.13)

where the mean µji of the negative binomial distribution is linked to the additive predictor
ηji using a logarithmic link function. The U matrix represents an additional design matrix,
representing, for example, a batch effect.

The model relies on lineage-specific, gene-specific, and condition-specific smoothers sjlc,

which are linear combinations of K cubic basis functions, sjlc(t) =
∑K

k=1 bk(t)βjlck.
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Testing for differential Expression. With this notation, we can introduce the conditionTest,
which, for a given gene j, tests the null hypothesis that the smoothers are identical across
conditions:

H0 : ∀(c1, c2),∀k,∀l, βjlc1k = βjlc2k. (4.14)

We fit the model using the mgcv package [173] and test the null hypothesis using a Wald
test for each gene. Note that, although the gene expression model can be fitted without
any mapping, the conditionTest only exists for lineages with at least a mapping for two
conditions.

Simulation study

Simulating datasets

The simulation study relies on the dyngen framework of Cannoodt et al. [25] and all datasets
are simulated as follows. 1/ A common trajectory is generated, with an underlying gene
network that drives the differentiation along the trajectory. 2/ A set of NWT cells belonging
to the wild-type condition (i.e., with no modification of the gene network) is generated. 3/
One master regulator that drives differentiation into one of the lineages is impacted, by
multiplying the wild-type expression rate of that gene by a factor m. If m = 1, there is no
effect; if m > 1, the gene is over-expressed; and if m < 1, the gene is under-expressed, with
m = 0 amounting to a total knock-out. 4/ A set of NKO = NWT cells is generated using
the common trajectory with the modified gene network. 5/ A common reduced-dimensional
representation is computed.

We generate three types of datasets, over a range of values of m: a simple trajectory
with L = 2 lineages and C = 2 conditions (WT and KO) named T1 ; a trajectory with two
consecutive branchings with L = 3 lineages and C = 2 conditions (WT and KO) named
T2; and a simple trajectory with L = 2 lineages and C = 3 conditions (WT, KO, and UP)
named T3. For the latter case, Steps 3-4/ are repeated twice, with values of m for KO and
1/m for UP.

For T1 and T2, we use values of m ∈ {.5, .8, .9, .95, 1, 1/.95, 1/.9, 1/.8, 1/.5}, such that at
the extremes the KO cells fully ignore some lineages. Values of .95 and 1/.95 represent the
closest to no condition effect (m = 1), where the effect was still picked out by some tests.
For T3, since the simulation is symmetrical in m, we pick m ∈ {.5, .8, .9, .95, 1}. We have
one large dataset per value of m and per trajectory type. We use those large datasets to
generate smaller ones of size n, by sampling 10% of the cells from each condition 50 times
and applying the various tests on the smaller datasets. The reason for first generating a large
dataset and then smaller ones by subsampling instead of generating small ones straightaway
are computational: the generation of the datasets is time-consuming and the part that scales
with NWT can be parallelized. Hence, it is almost as fast to generate a large dataset than a
small one with dyngen. We pick NWT = 20, 000 (for the large dataset) and thus n = 2, 000.

Since we generate many datasets with true effect (m 6= 1) but only one null dataset,
the size of NWT for m = 1 is doubled to 40, 000. To be comparable, the fraction of cells
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sampled is decreased to 5% so that n = 2, 000 and we perform 100 subsampling. Table 4.2
recapitulates all this.

Table 4.2: Summary of all simulated datasets. We report the name, number of cells nWT

for values of m 6= 1 and m = 1, number of conditions C, number of lineages L, impacted
master regulator, and figure numbers for the associated gene network and an example of
low-dimensional representation.

Dataset
NWT n L C

Impacted Gene Network Reduced Dimension
m 6= 1 m = 1 Regulator Figure Representation

T1 20, 000 40, 000 2, 000 2 2 B3 Fig D.1a Fig.4.2a
T2 20, 000 40, 000 2, 000 3 2 D2 Fig D.1b Fig.4.2b
T3 20, 000 40, 000 2, 000 2 3 B3 Fig D.1a Fig.4.2c

Measuring the performance of the tests on the simulated datasets

To run the condiments workflow, we first estimate the trajectories using slingshot with the
clusters provided by dyngen. Then, we run the progressionTest and the differentiationTest
with default arguments.

We compare condiments to two other methods. milo [34] and DAseq[182] both look at
differences in proportions within local neighborhoods, using k-nearest neighbor graphs to
define this locality. Then, milo uses a negative binomial GLM to compare counts for each
neighborhood, while DAseq uses a logistic classifier test. Therefore, both methods test for
differential abundance in multiple regions. To account for multiple testing, we adjust the
p-values using the Benjamini, Yoav ; Hochberg [13] FDR-controlling procedure.

We select two adjusted p-value cutoffs, .01 and .05, which amount to controlling the FDR
at nominal level 1% and 5%, respectively. For a given cutoff c and a given dataset, we can
look at the results of each test on all simulated datasets for all values of m. For each test,
the number of true positives (TP) is the number of simulated datasets where m 6= 1 and
the adjusted p-value is smaller than c, the number of true negatives (TN) is the number of
simulated datasets where m = 1 and the adjusted p-value is larger than c, the number of false
positives (FP) is the number of simulated datasets where m = 1 and the adjusted p-value is
smaller than c, and the number of false negatives (FN) is the number of subsampled datasets
where m 6= 1 and the adjusted p-value is larger than c. We then examine 5 metrics built on
these four variables:
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True Negative Rate (TNR) =
TN

TN + FP

True Positive Rate (TPR) =
TP

TP + FN

Positive Predictive Value (PPV) =
TP

TP + FP

Negative Predictive Value (NPV) =
TN

TN + FN

F1-score = 2
PPV × TPR
PPV + TPR

.

Case studies: Processing.

TGFB. The two conditions are normalized separately using SCTransform [50] and then
integrated using Seurat [142]. The reduced-dimensional representation is computed using
UMAP [11] on the top 50 principal components (PC). The imbalance score is computed
with parameters k = 20 and smooth = 40. The trajectory is estimated using slingshot. The
topologyTest is run with 100 permutations with the Kolmogorov-Smirnov test and default
threshold of .01. The progressionTest is run with defaults. All genes with at least 2 reads
in 15 cells are kept. The smoothers are fitted for each gene using 7 knots as recommended by
the evaluateK function. Gene set enrichment analysis is done using the fgsea [74] package
on the GO Biological Process ontology sets.

TCCD. The dataset is first filtered using the cell type assignments from the original pub-
lication to only retains cells labelled as hepatocytes. The count matrix is scaled using
Seurat [142] and reduced-dimensional coordinates are computed using UMAP [11] on the
top 30 PCs. The imbalance score is computed with default k and smooth = 5. The trajec-
tory is estimated using slingshot. The topologyTest is run with 100 permutations with the
Kolmogorov-Smirnov test and default threshold of .01. The progressionTest is run with
defaults. All genes with at least 2 reads in 15 cells are kept; all genes with at least 3 reads
in 10 cells are kept. The smoothers are fitted for each gene using 7 knots as recommended
by the evaluateK function.

KRAS. The reduced-dimensional coordinates were obtained from the original publication.
The imbalance score is run with defaults and the topologyTest is run with 100 permutations
with the classifier test and default threshold of .01. The trajectories are estimated using sling-
shot with parameters reweight = FALSE and reassign = FALSE. The progressionTest
and differentiationTest are run with defaults. All genes with at least 5 reads in 10 cells
are kept. The smoothers are fitted for each gene using 6 knots as recommended by the
evaluateK function.
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Mutinomial test

We consider a set of categories arbitrarily numbered from 1 to C. Additionally, we consider
a null distribution C0, defined on 1 to C by a vector of probabilities p = {pc}Cc=1. Then,
given a set of n i.i.d. realizations (c(1), . . . , c(n)) of a random variable C, we can test the
null hypothesis H0 : C ∼ C0 or, equivalently, H0 : P(C = c) = pc,∀c ∈ {1, . . . , C}. Under
the null, P(ci) = pci and the associated p-value of the multinomial test can be defined as:

P (x,p) =
∑

y∈{1,...C}n:PH0
(y)≤PH0

(x)

PH0(y).

It verifies: ∀α ∈ [0 : 1],PH0(P (x,p) ≤ α) ≤ α.

Data and code availability

The results from this chapter can be fully reproduced by following along the vignettes at
https://hectorrdb.github.io/condimentsPaper. These also contain the code needed to
recreate the datasets used for the simulations, as well as processed versions of all three
datasets used in the case studies, augmented by metadata and functions to recreate the
processed versions, using raw counts obtained from GEO (TGFB dataset: GSE114687,
TCDD dataset: GSE148339, KRAS dataset: GSE137912).

The condiments workflow is available as an R package from Github (https://github.
com/HectorRDB/condiments) and will be made available through the Bioconductor Project.

All the methods to test for equality of two (or k) distributions have been put together
for use by others in an R package called Ecume, available through CRAN and that can be
explored at https://hectorrdb.github.io/Ecume.

https://hectorrdb.github.io/condimentsPaper
https://github.com/HectorRDB/condiments
https://github.com/HectorRDB/condiments
https://hectorrdb.github.io/Ecume
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Chapter 5

Enumeration of Closed Connected
Subgraphs

As discussed in chapter 1, in bacterial genome-wide association studies, the sequences can
be correctly represented using a compacted De Bruijn Graph that reflects the granularity
of genetic variation. Here, we present CALDERA, an enumeration algorithm that can find all
significant closed connected subgraphs at scale. The following sections will further motivated
the problem in a more general context, provide background on existing methods. We will
then introduce the CALDERA methods, show results on both real and simulated data, and
discuss those. Finally, we provide the proofs for the theorems used in this chapter. A
shorter version of this work was presented in poster format at the Machine Learning for
Computational Biology (MLCB) conference in November 2020 [124]1.

1I would link to deeply thank my collaborators. Laurent Jacob was central both conducting and super-
vising the entirety of this project. Arnaud Mary provided essential ideas and rigour for the design of the
method. Fanny Perraudeau and Sandrine Dudoit also provided feedback and support
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5.1 Introduction

Networks are pervasive in molecular biology, where they are used to represent, for instance,
gene regulations or interactions between proteins or metabolic pathways. They are also a
major opportunity for statistical analysis, as many applications involve few samples and
many descriptors, leading to high-dimensional problems. Exploiting the domain structure
encoded in the network allows to both reduce the dimension and enforce more interpretable
solutions in a variety of contexts ranging from classification of expression profiles [119, 61,
89] to the detection of disrupted pathways [60, 162, 161, 4]. In many such cases, the re-
sulting formal problem is to test the association between an outcome and a large number of
covariates defined from all connected subgraphs of the full network. This network connects
binary covariates describing the data, and for every connected subgraph, a new covariate
is created by taking a disjunction or a conjunction over its vertices, leading to a new data
representation that embeds information encoded in the network. In genome-wide associa-
tion studies (GWAS), for example, one seeks genes or positions along the genome whose
mutation is associated with a phenotype of interest—e.g., a human disease or crop yield—in
a dataset for which both the phenotype and all mutation statuses are observed. Given a
network encoding known metabolic pathways, one may be interested in finding subnetworks
such that mutating any of the genes involved in the corresponding set of reactions affects
the phenotype [134]. As different mutations along the same pathway can lead to the same
effect, the subnetwork is a more relevant unit for GWAS than the individual gene. Similarly,
if the network is a simple chain representing a linear genome, this approach detects genome
segments whose mutation is associated to the phenotype [82, 83].

Testing all subgraphs seems doomed for two reasons: (1) their number grows exponen-
tially with the number of nodes in the network, making the task computationally intractable
for most cases of interest, and (2) adjusting for multiple testing over this very large number
of tests leaves little to no power to detect associations. Both problems have been addressed
in comparable situations by exploiting the concept of testability introduced in [148]. The
underlying idea of Tarone’s testing procedure is that many of the tested covariates can be
discarded by inspecting quantities that do not affect the test statistic. In the context of
subgraphs, the procedure is also well suited to pruning strategies because most testability
criterions verify a monotonicity property, and all subgraphs including a non-testable one can
be safely ignored.

Most existing procedures are restricted to a particular type of graph. [151, 96] considered
all possible interactions in a set of covariates, which amounts to considering a complete graph.
[105] extended this procedure to tests that can control for a categorical feature, an essential
point in GWAS, where confounders such as population structure can lead to many false
discoveries. Llinares-López et al. [82, 83] introduced efficient methods to test the association
between a phenotype and mutations anywhere in a genomic interval, corresponding to a
linear graph. [144] extended this idea to frequent subgraph mining, a related task where the
goal is to detect subgraphs whose presence in a larger graph is associated with a property
of this graph. Finally, [134] described an algorithm to test all closed connected subgraphs
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(CCS), i.e., connected subgraphs such that adding any neighbor does not affect the created
covariate. Their algorithm combined the testability-based procedure LAMP of [151] with
COIN [133], an enumeration method for CCSs. While no experiment was provided in [134]
we found—using an improved version of LAMP [96, 82]—that this combination could find
all significant CCSs in graphs with up to 20000 nodes in a day. A more scalable method is
however warranted to make CCSs testing amenable to important modern applications such
as bacterial GWAS, that involve millions of nodes [62]. Compared to linear and complete
graphs, a major additional challenge for general graphs is enumeration and its interplay
with pruning. Here, we introduce CALDERA, a scalable testing procedure for CCSs in general
graphs. We rely crucially on a novel enumeration scheme that leads to more pruning than
COIN when combined with Tarone’s procedure.

Our contributions are the following: We introduce a novel, provably complete and
non-redundant enumeration scheme for CCSs. We also improve an existing pruning crite-
rion for the Cochran-Mantel-Haenszel test. We show that combining these contributions
with Tarone’s testability-based procedure makes it possible to find all significant CCSs in a
large graph, making it suited to applications such as bacterial GWAS, a critical and contem-
porary problem for human health. We provide—in the Supplementary material—the first
implementation of a procedure finding all significant CCSs.

Notation and goal We consider a set of n samples, (xi, yi, ci)
n
i=1, where xi ∈ {0, 1}p

are p binary covariates describing sample i, yi ∈ {0, 1} denotes a binary phenotype, and
ci ∈ {1, . . . , J} assigns sample i to one population among J . We denote n1 and n2 the number
of samples such that yi = 0 and 1 respectively. Furthermore, we consider an undirected
unweighted connected graph G = (V , E), where V = {v1, . . . , vp} and each vertex vj ∈ V
is associated with one of the p binary covariates represented in x. We denote by I(vj) =
{i : xji = 1}. For i ∈ [1 : n], we note Vi = {v ∈ V : i ∈ I(v)}. For any connected
subgraph S = (V ′, E ′), such that V ′ ⊆ V and E ′ ⊆ E, we let I(S) =

⋃
v∈S I(v). The set

of all connected subgraphs of G is denoted by A. Of note, this framework addresses both
disjunctions and conjunctions, as the latter can simply be obtained by replacing each xi
by its complement. We now properly define the notion of closed connected subgraph. The
validity of this operation is proved in Supplementary 5.7.

Definition 3 A connected subgraph S ∈ A is closed if and only if there exists no edge
(v1, v2) ∈ E such that v1 ∈ S, v2 /∈ S, and I(S

⋃
{v2}) = I(S). We denote by C ⊆ A the set

of all closed connected subgraphs of G.

Assuming that (xi, yi, ci)
n
i=1 are n i.i.d. realizations of random variables X,Y, and C,

our objective is to test null hypotheses of the form HS0 (X,Y,C) :
(
I(S) ⊥ Y)|C for all

S ∈ C, while controlling the family-wise error rate (FWER, i.e., the chance of at least
one Type I error or false positive) at level α. Translated in the context of GWAS, we
want to test the association between the pattern I(S) of each closed connected subgraph
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S with the phenotype Y, while controlling for the population structure C. We denote
H0(S) = HS0 (X,Y,C) in the remainder of this manuscript, as X, Y and C are common for
all elements of C.

5.2 Background on significant subgraph detection

using testability

Here, we describe the important concept of minimal attainable p-value proposed by [148],
and how it can be used to sharpen the threshold required to control the family-wise error rate
compared to the Bonferroni correction, leading to more rejections. We also discuss how the
same idea can be used in pruning strategies, leading to computationally efficient procedures,
and how these ideas extend to test statistics that adjust for a categorical covariate.

Using minimal attainable p-values for a tighter FWER control

The Bonferroni correction [17] is a common procedure to control the FWER at a level α.
A null hypothesis is rejected if its p-value is smaller than α

N
, where N is the total number

of tested null hypotheses. In our context, the smallest p-value therefore needs to be smaller
than α

|C| for the procedure to reject at least one hypothesis. As described in Tarone [148],
discrete tests admit a minimal attainable p-value p?, which can be used to control the FWER
with a substantially smaller correction factor than N . Since the distribution only takes a
finite number of values, this minimal p-value can be strictly larger than zero for some tests.
For example, Fisher’s exact test [43] relies on 2 × 2 contingency table, conditioning on the
observed margins–in our case, for a given n, the number of samples with phenotype 1 and
the number of samples such that i ∈ I(S). Under the null hypothesis, the two represented
factors are independent. Given the margins, only a finite number of cell count partitions
are possible and the p-value of Fisher’s test can only take on a finite number of values, the
smallest of which is strictly positive (Fig E.1). Importantly, this minimal attainable p-value
p? is entirely determined by the margins of the contingency table: given these margins, p? is
the minimum over a finite number of possible partitions, and is independent from the actual
cell counts.

The Bonferroni correction is motivated by a simple union bound: the FWER is upper-
bounded by the sum of the rejection probabilities over the N tested hypotheses. Since each
of the individual tests is controlled at level α

N
, the sum is upper-bounded by α. However,

rejection can only occur for the subset of m hypotheses such that p? < α
N

. Since p? only
depends on the data through margins and because inference is made conditional on these
margins, this subset is deterministic and the FWER is actually controlled at level mα

N
≤

α. This suggests that using a lower threshold than the Bonferroni α
N

could still control
the FWER at level α while rejecting more hypotheses. Defining m(k) as the number of
hypotheses such that p? < α

k
, the lowest threshold guaranteeing such a control is α

k0
, where

k0 is the smallest k such that m(k) ≤ k.
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Variable i ∈ I(S) i /∈ I(S) Rows totals
yi = 1 aS,j n1,j − aS,j n1,j

yi = 0 xS,j − aS,j n2,j − xS,j + aS,j n2,j

Cols Totals xS,j nj − xS,j nj

Table 5.1: Association table in community j for subgraph S, used for the CMH test.

Using minimal attainable p-values to efficiently explore C
Provided that enough CCSs have sufficiently large p?, Tarone’s procedure could therefore
address the loss of power incurred when exploring C. However, naively finding k0 requires to
compute the minimal p-values for all |C| CCSs, leaving the computational problem unsolved.
In practice, non-exhaustive strategies have been proposed to determine k0. The most efficient
one [82, 96] starts from k = 1 and increments a set R of testable hypotheses, i.e., of elements
with p? < α

k
. When |R| becomes larger than k, k is incremented to |R|. All hypotheses

that are not testable anymore under the new threshold—i.e., such that α
|R| ≤ p? < α

k
—are

removed from |R|, and the exploration continues until the point where all testable hypotheses
are in R and k = k0.

In addition to avoiding a full enumeration by stopping when enough testable hypotheses
have been found, this search algorithm for k0 is well suited to pruning strategies—a fact
already used in [82, 96]. Let p?(S) be the minimal p-value associated with H0(S) for a test
at hand. Assuming that for some pairs of subgraphs S1,S2, S1 ⊆ S2 ⇒ p?(S1) ≤ p?(S2), we
can stop exploring all subgraphs including S1 as soon as S1 itself is found non-testable. This
monotonicity property is verified when using Fisher’s exact test to test H0(S): provided that
|I(S)| ≥ max(n1, n2), p

? is strictly increasing in |I|, and adding nodes to S can only increase
|I| (Figure E.2).

Controlling for a categorical covariate: the
Cochran-Mantel-Haenszel (CMH) test

When testing for associations, controlling for confounders is essential to avoid spurious
discoveries. This is particularly important in bacterial GWAS, where strong population
structures can lead to large sets of clade-specific variants to be found associated with a
phenotype. The CMH test can be used to test associations of two binary variables while
controlling for a third categorical variable. It relies on J two-by-two association tables
such as the one in Table 5.1, with j ∈ {1, . . . , J}, aS,j =

∣∣{i : yi = 1, i ∈ I(S), ci = j}
∣∣,

xS,j =
∣∣{i : i ∈ I(S), ci = j}

∣∣ and n1,j =
∣∣{i : yi = 1, ci = j}

∣∣.
Like Fisher’s exact test, the CMH test is done conditional on all margins (xS,j, n1,j, n2,j)

J
j=1.

Papaxanthos et al. [105] furthermore demonstrated that this minimal p-value could be com-
puted in O(J) (proof also in Supplementary 5.7) using the margins. However, the minimal p-



CHAPTER 5. ENUMERATION OF CLOSED CONNECTED SUBGRAPHS 107

value of the CMH test does not verify the monotonicity property S1 ⊆ S2 ⇒ p?(S1) ≤ p?(S2)
which is required to prune while exploring C. Papaxanthos et al. [105] introduced the en-
velope, a lower bound on p?(S), which verifies the monotonicity property. It can also be
computed in O(J log(J)) for all S such that, for all categories j, xS,j ≥ max(n1,j, n2,j). This
allows for a valid pruning strategy. The condition on xS,j is the CMH analogous of the
|I(S)| ≥ max(n1, n2) condition of Fisher’s test, and can decrease the number of prunable
subgraphs as it must be verified for all J groups.

5.3 Speeding up the detection of all significant CCSs

with CALDERA

We are now ready to present our contributions for scalable detection of significants elements
in C: an efficient exploration algorithm and an improved envelope for the CMH test, allowing
for more pruning in the presence of imbalanced populations.

Critical properties for a fast, Tarone-aware enumeration of C
The testing procedure described in Section 5.2 relies on an exploration of the set of hypotheses—
in our setting, one for each element of C. The scalability of the testing procedure is affected by
both the computational behavior—speed and memory footprint–of the exploration scheme
itself, and its ability to take advantage of the pruning opportunity offered by the Tarone
procedure.

We exploit several factors to provide a fast exploration. First, we ensure that it is non-
redundant, i.e., that each element of C is enumerated exactly once. More precisely, we define
a tree structure whose nodes are the elements of C and propose an algorithm to traverse this
tree. Second, the tree is directly built over C, as opposed to the set A ⊃ C of connected
subgraphs. The latter option, as proposed in [133] is more straightforward to define and
to explore and would still induce a tree over C, but would yield a much larger object and
result in a more expensive traversal. Third, we propose an exploration scheme that does not
to rely on a mechanism maintaining subgraph connectivity such as a block-cut tree [168].
Such a mechanism is efficient to build a tree over connected subgraphs but is costly to
compute. Finally, we also minimize the reliance on itemtables to store visited elements,
therefore limiting the memory footprint of our exploration. Scalability also depends on the
ability of the exploration of C to exploit the pruning opportunity offered by the testing
procedure. As highlighted by [96, 82], exploration should follow subgraph inclusion, i.e.,
ensure that all subgraphs S ′ explored from a subgraph S are such that S ′ ) S. This way,
the exploration can be stopped from any element that is found non-testable. In order to
enforce this behavior, our tree over S must be such that the children of a node representing
S ∈ C always represent subgraphs S ′ ( S.

Haraguchi et al. [53] and Okuno et al. [103] define a tree on C, but the root of the
tree corresponds to the entire graph G: the inclusion relationship along edges of the tree is
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Algorithm 1 Children of S
1: procedure Children(S, Sp, i, T )
2: children← ∅
3: for k,G in enumerate(EqGroups(S)) do
4: v ← G[0]
5: S ′ ← cl(S

⋃
{v})

6: if i is NULL then
7: if (S,S ′) verify (1-3) then
8: Add S ′ to siblings
9: Add Children(S ′,S, iS′ , T = ∅) to children

10: end if
11: else if (Sp,S ′) verify (1-3) then
12: if iS′ = i and {I ∈ T : I ⊂ I(S ′)} = ∅ then
13: T ′ = T

⋃
{I1(S ′), . . . , Ik−1(S ′)}

14: Add Children(S ′,Sp, iS′ , T ′) to children
15: end if
16: end if
17: end for
18: return children
19: end procedure

the opposite to the one we need, making their exploration unsuited to our problem. The
COIN/COPINE algorithm described in Seki and Sese [131] and Sese, Seki, and Fukuzaki [133]
builds a tree over the set of connected subgraphs, which induces a tree over C. COIN maintains
an itemtable to enforce a tree structure by avoiding the enumeration of the same element
twice. This itemtable has an important memory footprint, and only guarantees a tree struc-
ture when exploring in depth first. Finally, the enumeration of connected subgraphs requires
to maintain a list of articulation points along each explored branch, a costly operation. We
now describe an exploration scheme that verifies the properties listed in this section.

Defining and exploring the tree over C
In order to build a tree over C rooted on the empty CCS, we use a reverse search, introduced
in [3]. Reverse search relies on a reduction operation, which takes one element of the set to be
enumerated, and returns a unique, strictly smaller element of the same set. This operation
necessarily defines a tree over the elements of the set, by ensuring a unique path between
any element and the empty one—the root of the tree. This reduction operation defines the
unique parent of every element in the tree. In order to traverse the tree from the root, one
needs to inverse the reduction operation, i.e. in our setting, given a CCS S to recover all
CCSs that lead to S by reduction. Here we introduce a reduction operation over C, as well
as its inversion. We consider the parent operation P given by Definition 4 for any element
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of C, and show that it defines a valid reduction as introduced above.

Definition 4 For a subgraph S ∈ C, we denote J (S)i =
⋂
v∈S I(v).

• If I(S) = J (S), then the parent of S, P(S) is ∅.

• Else we note iS = max(I(S) \J (S)). The parent P(S) of S is the connected subgraph
of S \ ViS that contains maxS \ ViS .

Lemma 1 The function P defines a valid reduction over C.

Note that we have S ) P(S) for all S so this structure allows pruning. Lemma 2 then
provides necessary and sufficient conditions for S ′ ∈ C to be a child of S ∈ C:

Lemma 2 For S,S ′ ∈ C, S = P(S ′) if and only if the three following conditions are verified:

(C1) iS′ /∈ I(S)

(C2) max{v′ ∈ S ′ \ ViS′
} = maxS

(C3) {v′ ∈ S ′ \ ViS′
: v′ ∈ Ne(S)} = ∅

Interestingly, the reduction itself is never used in the exploration, only its inverse. Besides,
using (C1–3) in Lemma 2 to check whether S = P(S ′) for any S ′ does not require to identify
the connected components of S ′ \ViS′

, even though the reduction P itself does rely on these
connected components. This property of the inverse reduction is critical for the scalability
of CALDERA, as repeatedly identifying or maintaining these components would be very costly.
It results from the fact that the reduction operation P does not maintain connectivity—it
only retains one of the components obtained by removing nodes with iS . Doing so comes at
a price: finding the children of S is not straightforward, as we must identify and reconnect
all the connected components involved: Lemma 2 only provides a way to check if a candidate
S ′ is a child of S.
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Algorithm 2 List significant closed connected subgraphs

1: procedure List sig closed subgraphs(G, α)
2: Q← Children(∅, ∅,NULL, ∅)
3: R ← ∅
4: k ← 1
5: while Q 6= ∅ do
6: S ← Dequeue(Q)
7: if p?(S) ≤ α/k then
8: R ← R∪ {S}
9: end if

10: if
∣∣R∣∣ > k then

11: k ← k + 1
12: R ← {S ∈ R : p?(S) ≤ α/k}
13: end if
14: if p̃?(S) ≤ α/k then
15: for S ′ ∈ Children(S,S,NULL, ∅) do
16: Enqueue(S ′, Q)
17: end for
18: end if
19: end while
20: Solutions← ∅
21: for S ∈ R do
22: if p(S) ≤ α/k then
23: Add S to Solutions
24: end if
25: end for
26: return Solutions
27: end procedure

For any subgraph S, we further note Ne(S) = {v ∈ G\S : ∃v1 ∈ S, (v, v1) ∈ E} the set of
neighbouring nodes of S. We can partition Ne(S) in equivalence groups of neighbours with
regard to the pattern. An equivalence group Gk(S) ⊂ Ne(S) verifies: v1, v2 ∈ Gk(S) =⇒
I(S

⋃
{v1}) = I(S

⋃
{v2}). We name Ik(S) the pattern of the equivalence group Gk(S).

With this notation, we define Algorithm 1. By Theorem 1, Algorithm 1 solves the problem
of inverting the reduction, and therefore of building a tree structure on C.

Theorem 1 For any S ∈ C, Algorithm 1 returns the set {S ′ ∈ C : S = P(S ′)}.

Efficient implementation of CALDERA

In practice, we do not need to store the full table T in order to verify the second condition
of Algorithm 1, Line 12. We rely on a concept from [155] to reduce memory footprint.
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We consider a subgraph S ′ created following Algorithm 1, in the second case. We therefore
have S,Sp such that: P(S ′) = P(S) = Sp and iS′ = iS . After creating S ′, we explore its
children, with an itemtable T . All elements of Children(S ′,Sp, iS′ , T ) will have a pattern
which includes I(S ′). Moreover, by definition of the equivalence groups, we already know
that {I ∈ T : I ⊂ I(S ′)} = ∅. Therefore, when constructing S ′′ ∈ Children(S ′,Sp, iS′ , T ),
only the elements in I(S ′′) \ I(S ′) need to be considered.

We store T as a matrix of binary patterns. Therefore, some columns can be deleted
without loss of information: in Line 13 of algorithm 1, we only keep the columns that are
not in I(S). As the Children function is called recursively, the itemtable T will grow in the
number of patterns saved (i.e number of rows) but the memory footprint of each pattern
will be smaller (i.e fewer columns).

A breadth-first-search enumeration

We argue that exploring any tree structure on C in breadth first will often allow for more
pruning than in depth first. At any level, even if the CCSs visited along a branch do increase
k and therefore lower the testability threshold, all the other CCSs of the level will need to
be visited regardless of their testability. By contrast, the increase of k gained by visiting
all CCSs of the same level in the tree will lower the threshold α/k for all CCS at the next
level, making more branches prunable. Section 5.4 provides illustrations of this phenomenon
on simplified examples and we demonstrate this in section 5.5 on simulation and real-world
data. A search in breadth is also easily parallelized since the computation of the minimal
p-value, the envelope and the childrens of every CCS of a given level can be done in parallel,
before increasing k and updating R. By contrast, a parallelized search in depth-first would
need to share and regularly update k and R, which negates the advantages of parallelization.

Algorithm 2 explores C through a BFS traversal of the tree defined by the reduction P ,
exploiting Algorithm 1 (L.15) to invert the reduction and using this exploration to apply
the Tarone testing procedure described in Section 5.2 (L7-12, 14), before finally testing the
testable CCS(L21-25).

Pruning more CCSs when controlling for an imbalanced
categorical covariate

The envelope p̃?(S) = minx′≥xS p
?(S) introduced in Papaxanthos et al. [105] verifies the

monotonicity for any subgraph S because S ′ ⊇ S ⇒ xS′ ≥ xS . However, the O(J log J)
algorithm to compute this envelope only applies to the so called potentially prunable sub-
graphs which are such that xS,j ≥ max(n1,j, n2,j) for all subgroups j = 1, . . . , J defined by
the categorical covariate adjusted for by the CMH test. Pruning can therefore not be done
from subgraphs for which at least one of the J groups has few occurrences of the corre-
sponding covariate. This limitation arises in Lemma 2 of Papaxanthos et al. [105], which
characterizes the argmin of the envelope of a subgraph S. Lemma 3 lifts this restriction:
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Lemma 3 For any connected subgraph S, the envelope p̃? is attained for an optimum x∗S′
such that x∗S′,j ∈ {max(xS,j, n1,j),max(xS,j, n2,j), nj}.

The proof is provided in the latter section 5.7. Lemma 3 exploits a cruder bound for
groups that are not in the increasing regime of the minimal p-value. Accordingly, it recovers
the Lemma 2 of Papaxanthos et al. [105] for potentially prunable subgraphs, while offering
an additional pruning opportunity for the other ones. If a subgraph was not potentially
prunable only because it was missing the xS,j ≥ max(n1,j, n2,j) condition for one small group
j, it may still be actually prunable since small groups of samples only affect the CMH test
statistic marginally. On the other hand if the condition is not verified for a large group or
several small ones, the resulting envelope will be very lose and will not allow for pruning in
practice. We illustrate this phenomenon in the next section through an example.

Generating the simulated dataset

For a given value of n and p, we first generate n samples with phenotype yi ∈ {0, 1} such
that P(yi = 0) = 0.5. Then, we generate p nodes. 10% of the nodes will be associated with
the phenotype. For each node in the remaining 90%, we randomly generate 3 edges between
this node and another in the 90%. The average degree is therefore 6. For those nodes vj,
the associated pattern I(vj) is a random vector such that P(i ∈ I(vj)) = 0.5.

Then, we generate the remaining 10% of the nodes associated with the phenotype. We
first generate associated patterns Isig such that P(i ∈ Isig|yi = 1) = 0.95 and P(i ∈
Isig|yi = 0) = 0.05. Then, those patterns are split into 10 significant nodes sigj such that
P(i ∈ I(sigj)|i ∈ Isig) = 0.9 and I(

⋃
j∈[1...10]) = Isig.

5.4 Examples

Benefits of the new envelope

To demonstrate the situations where the new envelope introduced in 3is beneficial, and
where it is not, we consider a situation where n = 280, J = 2. Then, we look at two cases:
n1 = n2 = 140 and n1 = 13×n2 = 260. In both settings, we compute the envelope as defined
in [105] and in our case. Then, for α = 10−8 (a value that we used in practice) and for all
possible values of {xS,1, xS,2}, we consider whether we would prune (for k = 1) using the
definition of the envelope from Papaxanthos et al. [105] or the extended new bound defined
in this paper. The new bound nearly doubles the space of prunable subgraphs when there is
a clear imbalance, as evidenced in Fig 5.1b, while it has no effect when the two populations
are perfectly balanced, as in Fig 5.1a.
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Figure 5.1: Intuition for the effectiveness of the new bound We consider the space of all
possible patterns for n = 280, J = 2 and two cases: a) n1 = n2 = 140 and b) n1 = 260 =
13 × n2. The phenotypes are well balanced in each population and alpha = 10−8. The
extended lower bound increases the number of prunable subgraphs when the populations are
imbalanced.

Benefit of breadth-first search

First example: simplified scenario

We consider a very simple graph with p = 3 nodes, J = 1 population and n = 12 samples.
The graph is displayed in Fig 5.2a. Using the reduction from CALDERA, we generate a tree
structure on C, displayed in Fig 5.2b.

Then we can explore this structure in depth-first or breadth-first, while pruning using
α = 1. The order resulting from an exploration in depth-first can be found in Table 5.2 and
the order from the exploration in breadth-first can be found in Table 5.3. In this simple
setting, exploring in breadth only visits 4 subgraphs while exploring in depth visits 7. This
is because the BFS enumerates testable subgraphs more quickly, thereby increasing k and
lowering the threshold, which means that the branch starting at {v1} is pruned earlier in the
exploration.
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Subgraph explored Number of subgraphs explored Value of the threshold Testable subgraphs

{v1} 1 .15 {{v1}}
{v1, v2} 2 .15/2 {{v1}, {v1, v2}}
{v1, v2, v3} 3 .15/2 {{v1}, {v1, v2}}
{v1, v3} 4 .15/3 ∅
{v2} 5 .15/3 {{v2}}
{v2, v3} 6 .15/3 {{v2}, {v2, v3}}
{v3} 7 .15/3 {{v2}, {v2, v3}, {v3}}

Table 5.2: Order of exploration of the elements of C while exploring depth-first

Subgraph explored Number of subgraphs explored Value of the threshold Testable subgraphs

{v1} 1 .15 {{v1}}
{v2} 2 .15/2 {{v1}, {v2}}
{v3} 3 .15/3 {{v2}, {v3}}
{v2, v3} 4 .15/3 {{v2}, {v2, v3}, {v3}}

Table 5.3: Order of exploration of the elements of C while exploring breadth-first

Second example: more general setting

We consider a very simple graph model where, for v ∈ V and i ∈ {1, . . . , n}, i ∈ I(v) ∼
Binom(prop) and the patterns are independent across nodes . We have no population struc-
ture, which means that we consider Fisher’s exact test. For a given level α, we want to
compute f(α, prop) = P(p?({v}) > α, ∀v ∈ V), that is the probability that no subgraph is
testable at the first stage of our tree on C.

Since we consider Fisher’s exact test, there is a bijection between p?({v}) and x{v}
so p?({v}) > α =⇒ x{v} ≥ σ(α). Moreover, x{v} ∼ B(prop, n), so f(α, prop) =
1 −

(
FB〉\om(prop,n)(σα)

)p
with FB〉\om(prop,n) the cumulative distribution function of the bi-

nomial (prop, n). Since the nodes are independent, the distribution of xS at any stage of the
tree can be computed by recursion. We furthermore assume that the graph structure is such
that the number of closed subgraphs is s× p at stage s.

In Fig 5.2c, we display the probability that any subgraph is 1-testable or prunable at
stage s, for s ∈ {1, 2, 3}, p = 100 and α = 10−4.

For most of the range of values, there is at least one testable subgraph in the first stage.
So, by exploring in a BFS manner, we start the second stage with a much lower threshold
(i.e., a much higher value of k) which leads to more pruning. For very low values of prop,
there might be no testable subgraphs at the first stage but there will be at the second stage,
which still justifies an exploration in depth. Note that for large p, we can see that there is no
testable subgraph at the stages 2 and 3. That is because all such subgraphs have a pattern
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(a) A simple graph example with p = 3,
J = 1 and N = 12 which we explore using
CALDERA with pruning, and α = .15

(b) Order on elements of C from the graph in
a), according to the reduction of definition 4
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(c) n = 100, p = 100, α = 10−4. For a simple model described in 5.4 where i ∈ I(v) ∼ Binom(prop),
we plot the probability that any subgraph is 1-testable or prunable as a function of prop

Figure 5.2: Simple examples where the search in breadth-first is much more efficient that
depth-first

that is too large. While there may be not testable subgraphs, there are many prunable ones.
In that case, an exploration in breadth-first or depth-first would be identical.

This example simplifies two aspects which have opposite effects. The first is that, in
practice, the probability of i ∈ I(v) is of course not uniform across the graph. It is a
distribution with much heavier tails which means that, even if the average number of 1
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Figure 5.3: Results of CALDERA. a. Runtimes for CALDERA and COIN+LAMP on graphs with
various values of p. In this setting, n = 100. b. Number of subgraphs explored when pruning
using the envelope from FACS or the new envelope, depending on the ratio n1/n2. In this
setting, n = 200 and p = 3000. c, d. The two most significant subgraph found when running
CALDERA on P. Aeruginosa

might be small, it is still quite likely that at least one subgraph is testable. The second is
that the patterns of neighbouring nodes are correlated. As such, the patterns cannot increase
by as much between stages, which limits both the increase in testable pattern discovery, and
the pruning.

5.5 Experiments

Speed benchmark on simulated data

Benefit of CALDERA’s exploration scheme We generate datasets with n = 100 samples
represented by p ∈ [100 : 200000] covariates, and a graph connecting these covariates, to test
the speed of our algorithm. As a baseline, we include COIN with the improved LAMP algorithm
of [96], which we denote COIN+LAMP2. For simplicity, we do not include a confounding
covariate in the simulation model. The simulation framework was described in section 5.3.
In addition to COIN+LAMP2, we benchmark 3 versions of CALDERA. The first one, closest to
COIN+LAMP2, is the DFS implementation. The second one is the BFS implementation, where
we modify the enumeration order of the elements of C to promote pruning. The last is a
parallelized BFS implementation, using 5 cores.

The ranking in speed is uniform over all value of p, with COIN+LAMP2 being by far the
slowest, followed by the DFS and BFS implementation. On average, parallelizing with 5
cores offer a 3.2× speed-up compared to non-parallelized BFS version of CALDERA. The ratio
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of runtime between CALDERA in its BFS version with 5 cores, and COIN+LAMP2 is on average
30 and is at least 8.5 (for p = 100). For p = 20000, COIN+LAMP2 takes more than a day to
run while the best version of CALDERA took 40 minutes.

Benefit of CALDERA’s lower-bound on runtime for imbalanced population We gen-
erate a dataset with n = 200 and p = 3000. Samples are furthermore assigned to one of
two strongly imbalanced populations, such that n2/n1 � 1. For extreme ratios— below
0.02—the new lower bound allows much more pruning and enumerates an order of magni-
tude fewer elements of C. Up to a ratio of 0.1, the new lower bound leads to a decrease of
at least 10% in the number of explored subgraphs. Such an imbalance might seem extreme
but is not uncommon in applications—the application in 5.5 involved three population with
n3/n = 6%.

Network-guided GWAS on A. thaliana genomes

We now demonstrate how CALDERA performs on a medium-size GWAS dataset. We obtained
over 6 millions SNPs and a ”date to flowering” phenotype for n = 936 A. thaliana genomes
from easyGWAS [49]. We also obtained 137 A. thaliana metabolic pathways from KEGG [67]
using the KEGGrest [150] and DEGraph [60] R packages. The union of the pathways involved
p = 3150 genes and the average degree of the resulting graph is ∼ 21.2. We mapped each
SNP to the closest gene using snpEff [32] and defined each gene to be mutated in a sample
if it contained at least one mutation mapping to the gene. Runtime was under a minute
using 8 cores. k0 = 70 and 10 subgraphs are found to be significant. In particular, these
subgraphs involve pathways ATH00260:Glycine, serine and threonine metabolism and 03013:
RNA transport, which respectively contains the first and second most significant subgraphs,
were previously linked to flower development [57, 111].

Bacterial GWAS

When dealing with bacterial genomes that are poorly suited to alignment and therefore to
a description by SNPs, GWAS is often performed by detecting k-mers whose presence in
a genome is associated with the phenotype [135, 80]. [62] further proposed to exploit the
De Bruijn graph (DBG) to guide the interpretation of selected k-mers. The nodes of the
DBG are k-mers, and two nodes are connected if the corresponding k-mers have an overlap
of length k − 1. The DBG therefore provides a genomic context for every tested k-mers.
However, the association is still tested at the k-mer level, and the DBG is only exploited
in a postprocessing step. CALDERA makes it possible to directly test the association of a
phenotype with a union of profiles of neighboring k-mers, which could typically represent
a polymorphic genetic determinant. We consider the n = 280 Pseudomonas Aeruginosa
genomes used in DBGWAS software Jaillard et al. [62], along with their amikacin resistance
phenotype. The bacteria are partitioned based on their phylogenetic tree into three distinct
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groups. The DBG is constructed using the k-mers with k = 31 using DBGWAS, leading to a
graph with over 2.3 million nodes and average degree ∼ 2.7.

The full exploration of all elements of C for this graph is not computationally feasible,
even for CALDERA. We therefore limited our search to the first 5 stages of the tree con-
structed on C. Exploring that space took approximately 5 hours to CALDERA, that identified
k0 = 2.8 × 106 testable subgraphs for an FWER level α = 10−8. For comparison, after
running for 24h, COIN+LAMP2 was exploring the tree structure with a value of k = 105. 35 of
the testable subgraphs were actually significantly associated to amikacin resistance at this
FWER level. We restricted ourselves to the 17 ones that were not fully included in another
significant subgraph, and annotated the corresponding k-mers using blast [2] against both
the NCBI database and a resistance database provided with DBGWAS. The two subgraphs
with lowest p-values contained the AAC(6’) gene and the pHS87b plasmid, which were the
only two confirmed resistance determinants identified by DBGWAS (as its first and third hit
respectively). Figure 5.3c and d show these subgraphs which are formed by a succession of
small bubbles typical of polymorphic regions as described by [62]. DBGWAS identified similar
graphs by testing individual k-mers (nodes) and heuristically adding their neighbors. By
contrast, CALDERA allows inference on the subgraph itself—corresponding to an entire gene
or plasmid–which paves the way for more powerful and principled bacterial GWAS.

5.6 Discussion

This article presented CALDERA, an algorithm to enumerate all significant closed connected
subgraphs. CALDERA easily scales to large datasets, relying on an efficient structure on C and
an exploration scheme that leverages the pruning opportunity offered by discrete statistics.
Future work will focus on incorporating pre-processing schemes before CALDERA that could
compact the graph to both reduce its size and facilitate pruning by increasing the average
|I(vj)|.

5.7 Proofs

Lemma 4: correctness of the closure

Lemma 4 provides that the operator cl is well defined on connected subgraphs.

Lemma 4 For any connected subgraph S of G, there exists a unique subgraph S ′ ∈ C such
that I(S) = I(S ′) and S ⊆ S ′.

Proof of Lemma 4 First let’s show that there exists S ′ ∈ C such that I(S) = I(S ′) and
S ⊆ S ′. Let S ′ be a (inclusionwise) maximal connected subgraph containing S and such that
I(S) = I(S ′). By maximality of S ′, for every edge (v1, v2) ∈ E with v1 ∈ S ′ and v2 /∈ S ′, we
have I(S ′ ∪ {v2}) 6= I(S) = I(S ′), thus S ′ ∈ C.
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Now let’s show that such a subgraph is unique. Assume that there exits two different
subgraphs S1 and S2 in C such that S ⊆ S1 and S ⊆ S2 with I(S) = I(S1) = I(S2). Since
S1 6= S2, at least one of the subgraphs S1 \ S2 and S2 \ S1 is not empty. Assume without
loss of generality that S1 \ S2 6= ∅. Since S1 is connected and since S1 ∩ S2 ⊇ S 6= ∅, there
is at least one edge (u, v) with u ∈ S1 ∩ S2 and v ∈ S1 \ S2. This leads to a contradiction
since the edge (u, v) is such that u ∈ S2, v /∈ S2 and I(S2 ∪ v) = I(S) = I(S2), which is in
contradiction with S2 ∈ C.

Lemma 1: P is a valid reduction

Case if I(S) = J (S): Then, either S = ∅ which has trivially no parent by this reduction.
Or all nodes of S contain exactly the same pattern. For any v ∈ S, S = cl(v). S is a root
of our exploration. Its parent is ∅ ⊆ S. Note that, to avoid enumerating those roots more
than once, we only start from vmax = maxS.

Case if iS is defined: Then, iS ∈ I(S) so S
⋂
ViS 6= ∅ and iS /∈ I(S) so S \ Vi 6= ∅.

Therefore, there is at least one connected component in S \ Vi. Moreover, any connected
component of S \ Vi is included but not equal to S. From [53], Lemma 1, we know that,
if S ∈ C, any connected component of S \ Vi is also in C. So any connected component of
S \ Vi can be defined as a parent of S. To identify a unique parent, we select the one with
the highest node number, Sp. This proves that reduction defines a unique parent. It is a
strictly smaller subgraph by inclusion. Indeed, note that since S \Vi 6= ∅ and Sp ⊂

(
S
⋂

Vi

)
,

then Sp ⊆ S.

Lemma 2: conditions (C1-3) are necessary and sufficient for
S = P(S ′)
Proof that for any S ′, (S = P(S ′),S ′) verify (C1− 3)

S ⊂ S ′ \ ViS′
so iS′ /∈ I(S). This proves (1). max{v′ ∈ S ′ \ ViS′

} ∈ S by construction of
the parent so max{v′ ∈ S ′ \ ViS′

} ≤ maxS. Moreover, S ⊂ S ′ \ ViS′
so maxS ≤ max{v′ ∈

S ′ \ ViS′
}. So max{v′ ∈ S ′ \ ViS′

} = maxS, this proves (2).
Suppose (3) is false. Then, we have v ∈ Ne(S)

⋂
(S ′ \ ViS′

). S2 = cl(S
⋃
{v}) ⊂ S ′,

maxS2 = max{v′ ∈ S ′ \ ViS′
} since S ⊂ S2 and S2

⋂
ViS′

= ∅ so S2 ⊂ P(S ′). But
S2 ) S = P(S). This is not possible. So (3) is true.

This proves the implication in the first sense.

Proof that for any (S,S ′) that verify (C1− 3), S = P(S ′)

We consider two closed connected subgraph S,S ′ ∈ C that verify (1-3). We want to prove
that P(S ′) = S. Point (1) insures that S ⊆ (S ′ \ ViS′

). Since S ∈ C and contains the
maximal node (from (2)), this ensures that S ⊆ P(S ′).
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Suppose S ( P(S ′). Then, P(S ′) \ S 6= ∅. In particular, since S and P(S ′) are both
connected subgraphs, there exists v′ ∈

(
P(S ′)\S

)⋂
Ne(S). Since this neighbour is in P(S ′),

it is also in S ′ \ ViS′
}. That is impossible from (3). So S = P(S ′). (Note that point (3)

includes the fact that iS′ ∈ I(v)).
This proves the converse implication.

Theorem 1: Algorithm 1 correctly inverts the reduction

We consider a subgraph S ′ ∈ S and its parent S = P(S ′).
We first show two lemmas

Lemma 5 For two subgraphs S1,S2 ∈ C, if S1 ⊂ S2, then iS1 ≤ iS2.

Proof:

S1 ⊂ S2 =⇒ I(S1) ⊂ I(S2) and (5.1)

S1 ⊂ S2 =⇒ J (S2) ⊂ J (S1) (5.2)

(1) and (2) =⇒ (I(S1) \ J (S1)) ⊂ (I(S2) \ J (S2)) (5.3)

=⇒ iS1 ≤ iS2 (5.4)

Lemma 6 For a subgraph S ′ ∈ C such that S = P(S ′) 6= ∅, any subgraph S2 ∈ C that
verifies:

• S ( S2

• S2 ⊂ S ′

is a child of S, that is P(S2) = S

Proof: We know that S ( S2 so Ne(S)
⋂
S2 6= ∅. Since S2 ⊂ S ′, Ne(S)

⋂
S2 ⊂ S ′ so,

from (3) for S,S ′, we have Ne(S)
⋂
S2 ⊂ ViS′

. So iS′ ∈ I(S2). iS′ /∈ I(S) so iS′ /∈ J (S2).
Therefore, iS′ ≤ iS2 . But since S2 ⊂ S ′, iS′ ≥ iS2 . So iS′ = iS2 . Then, we know that S,S2
verifies (1). Since S ( S2, we also have (2). Finally {v′ ∈ S2 \ ViS2

: v′ ∈ Ne(S)} = {v′ ∈
S2 \ ViS′

: v′ ∈ Ne(S)} ⊂ {v′ ∈ S ′ \ ViS′
: v′ ∈ Ne(S)} = ∅. This proves (3). Since we have

(1-3), we know that P(S2) = S.

Main proof: Now let us prove the main result: Assume that we cannot generate S ′ with
the procedure from algorithm 1. Let’s then consider the largest S ′′ ( S ′ generated with the
algorithm 1, that is the one with the largest number of nodes. Since S = P(S ′), we at least
have Sd ⊂ S ′ so at minimum we can take S ′′ = Sd.

By assumption, S ′′ ( S ′. Therefore, there exists a neighbour v ∈ Ne(S ′′)
⋂
S ′ since

S ′ and S ′′ are connected subgraphs. Note that we know that iS′′ = iS′ by construction.
Moreover, (S,S2 = cl(S ′′

⋃
{v})) verify (1-3) by Lemma 2.
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Case 1: I(cl(S ′′
⋃
{v})) does not include any pattern of forbidden (S ′′): Since

S2 ⊂ S ′, iS2 ≤ iS′ . However, since S ′′ ⊂ S2, iS2 ≥ iS′′ = iS′ . So iS2 = iS′ . Moreover, we
already know that (S,S2) verify (1-3). That means we can create S2 ) S ′′ which contradicts
our assumption that S ′′ is the largest closed subgraph strictly included in S ′ that could be
generated.

Case 2: I(cl(S ′′
⋃
{v})) includes one of the pattern of forbidden (S ′′): We note

v1, . . . , vl the sequence that created S ′′ from Sd. At one point in that process, we added a
pattern to forbidden(S ′′) that is now contained in I(cl(S ′′

⋃
{v})), let’s say when adding

vk. This pattern was linked to another equivalence group. If we consider v′ a node from
that group, we will then construct a subgraph using the sequence v1, . . . , vk−1, v

′, vk, . . . , ...vl.
Note that since at each new addition, the constructed graph is included in S2, it’s also in-
cluded in S ′. Moreover, each one contains S and a node from ViS′

by construction (since it
contains Sd). So, using Lemma 2, we know that those additions all respect (1-3), i.e they are
valid additions according to our algorithm. This way, we can create a subgraph that contains
S ′′ and v′ with our procedure. This contradicts our assumption that S ′′ is the largest closed
subgraph strictly included in S ′ that could be generated.

This proves that all S ′ will be generated from S and therefore that we have properly
inverted the reduction

Proof of Lemma 3

The next two lemmas are directly taken from [105].

Minimal p-value of the CMH test

Lemma 7 (Papaxanthos et al. [105]) The minimal p-value of the CMH test can be com-
puted in O(J).

Proof The p-value associated with the CHM test, conditioning on the margins of all the
tables, is:

pCMH(S,Y,C) =1− Fχ2
1

( (∑J
j=1 aS,j −

xS,jn1,j

nj

)2∑J
j=1

n1,j

nj−1
n2,j

nj
xS,j(1− xS,j

nj
)

)

=1− Fχ2
1

( (
aS −

∑J
j=1

xS,jn1,j

nj

)2∑J
j=1

n1,j

nj−1
n2,j

nj
xS,j(1− xS,j

nj
)

)
=1− Fχ2

1

(
TS(aS , xS)

)
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Since Fχ2
1

is monotonically increasing, the minimal p-value is obtained for the smallest
value TS(aS , xS . This is a function of aS that is quadratic with a positive definite hessian[105]
so the function is maximal for min aS or max aS . We have that aS,j,min = 0 if xS,j ≤ n2,j and
aS,j,min = xS,j − n2,j; and aS,j,max = xS,j for xS,j ≤ n1,j and aS,j,max = n1,j otherwise. So,
Tmax
S (xS) = max(T lS , T

r
S) where

T lS =

(∑J
j=1 aS,j,min − xS,jn1,j

nj

)2∑J
j=1

n1,j

nj−1
n2,j

nj
xS,j(1− xS,j

nj
)

T rS =

(∑J
j=1 aS,j,max − xS,jn1,j

nj

)2∑J
j=1

n1,j

nj−1
n2,j

nj
xS,j(1− xS,j

nj
)

Computing the envelope

Definition 5 For each S ∈ C, the envelope of S is defined as p̃?(S) ≡ minS′′:xS′′≥xS p
∗(S ′′).

Lemma 8 (Papaxanthos et al. [105]) If a subgraph is prunable, i.e p̃?(S) > α/k, then
any subgraph S ′ ⊃ S is also prunable

Proof :

S ′ ⊃ S =⇒ {S ′′ : xS′′ ≥ xS} ⊃ {S ′′ : xS′′ ≥ x′S}
=⇒ min

S′′:xS′′≥xS
p∗(S ′′) ≤ min

S′′:xS′′≥x′S
p∗(S ′′)

p̃?(S) > α/k and above =⇒ p̃?(S ′) > α/k

Proof of Lemma 3 We consider the function

Tl(x
′
S) =

(
aS′,min −

∑J
j=1

xS′,jn1,j

nj
)
)2∑J

j=1
n1,j

nj−1
n2,j

nj
xS′,j(1−

xS′,j
nj

)

with xS,j ≤ xS′,j ≤ nj and we will look at the partial derivatives. We add a few notations:
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µ =
n1,j

nj − 1

n2,j

nj

K =
J∑
j=1

n1,j

nj − 1

n2,j

nj
xS′,j(1−

xS′,j
nj

)

K−i =
J∑

j=1,j 6=i

n1,j

nj − 1

n2,j

nj
xS′,j(1−

xS′,j
nj

)

S =
J∑
j=1

xS′,jn1,j

nj
− aS,j,min

S−i =
J∑

j=1,j 6=i

xS′,jn1,j

nj
− aS,j,min

a′S,min =
∂aS,min

∂xS′,i

We then have

∂Tl(xS′)

∂xS′,i
=Nl(xS′)×Dl(xS′) where

Nl(xS′) =2(
n1,i

ni
− a′S,min)K − (1− 2

xS′,i
ni

)µS and

Dl(xS′) =
S

K2

For all j,
xS′,jn1,j

nj
− aS,j,min ≥

xS′,jn1,j

nj
− xS′,j + n2,j = n2,j(1 −

xS′,j
nj

) ≥ 0 so Dl(xS′) ≥ 0.

We only need look at Nl(xS′) to find maxima. We can also note that consequently, S ≥ 0
and S−i ≥ 0.

Nl(xS′) =2(
n1,i

nj
− a′S,min)K − (1− 2

xS′,i
nj

)µS

=2
n1,i

ni
K−i + 2

n1,i

ni
µxS′,i(1−

xS′,i
ni

)− 2a′S,minK−i − 2a′S,minµxS′,i(1−
xS′,i
ni

)−

µS−i − µ(
xS′,in1,i

ni
− aS,i,min) + 2

xS′,i
ni

µS−i + 2
xS′,i
ni

µ(
xS′,ixn1,i

ni
− aS,i,min)

=
[
2
n1,i

ni
K−i − 2a′S,minK−i − µS−i

]
+ xS′,i

[
2µ
n1,i

ni
− 2a′S,minµ− µ

n1,i

ni
+ 2

µ

ni
S−i
]
+

− 2
n1,i

n2
i

µx2S′,i + 2
n1,i

n2
i

µx2S′,i + 2a′S,minµ
x2S′,i
ni
− 2aS,i,minµ

xS′,i
ni

+ µaS,min

We then have two cases:
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xS′,i ≤ n2,i: Then, aS,i,min = 0 and a′S,min = 0. So

Nl(xS′) =
[
2
n1,i

ni
K−i − µS−i

]
+ xS′,i

[
µ
n1,i

ni
+ 2

µ

ni
S−i
]

It is an affine function with a positive slope. Moreover, at the boundary at n2,i, the
function is positive. So the function is maximal at n2,i.

xS′,i ≥ n2,i: Then, aS,i,min = xS′,i − n2,i and a′S,min = 1. So

Nl(xS′) =
[
2
n1,i

ni
K−i − 2K−i − µS−i − µn2,i

]
+ xS′,i

[
µ
n1,i

ni
− 2µ+ µ+ 2µ

n1,i

ni
+ 2

µ

ni
S−i
]
+

2µ
x2S′,i
ni
− 2µ

x2S′,i
ni

=
[
2
n1,i

ni
K−i − 2K−i − µS−i

]
+ xS′,i

[
µ
n2,i

ni
+ 2

µ

ni
S−i
]

So Nl(xS′) is an affine by-piece function of xS′,i, whose slope Al(xS′,−i) ≥ 0. So, the only
possible maxima are at the boundary, where xS′,i = n2,i or xS′,i = ni. Since this is true for
all values of xS′,−i, we know that we can only achieve a maximum for Tl at the boundaries.
So the only two possible maxima are n2,i and ni. Note that, in the case where xS′,i ≥ n2,i,
then the possible maxima becomes xS′,i and ni so in general, the two possible maxima for
Tl(x

′
S) are max{n2,i, xS′,i} and ni.

The same proof holds for Tr (given the symmetry of the expressions), where the maxima
is in {max(xS,i, n1,i), ni}. This proves the lemma.We have reduced the space of possibilities
from O(mJ) to O(2J) (with m the geometric mean of xS′).

We now need to show how to compute this value in O(J log(J)). For this, we rely on the
following theorem.

Lemma 9 ([105]) Let S be a potentially testable subgraph and define βlS′,1 =
n1,jxS′,j

n2
j

and

βlS′,1 =
n2,jxS′,j

n2
j

, for j ∈ {1, . . . , J} Let πl and πr be permutations of {1, . . . , J} such that

βlS′,πl(1) ≤ . . . ≤ βlS′,πl(J) and βrS′,πr(1) ≤ . . . ≤ βrS′,πr(J), respectively.

Then, there exist κ ∈ {1, . . . , J} such that the optimum x∗S′ satisfies either

• x∗S′,πl(j) = xS,πl(j) for j ≤ κ and x∗S′,πl(j) = nj otherwise

or

• x∗S′,πr(j) = xS,πr(j) for j ≤ κ and x∗S′,πr(j) = nj otherwise
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Proof of lemma 9 We will do the proof for Tl(x
′
S). The proof for Tr(x

′
S) is identical, up

to notation.
We can note that since the optimal is at least equal to n2,j, the value of aS,j,min is

xS′,j − n2,j. We note βj =
n1,jx

∗
S′,j

n2
j

. We also note l(βj) = n1,jnj(1 − njβj
n1,j

) = n2,j(1 −
x∗S′,j
nj

).

With those notations, we can write

Tl(x
′
S) =

∑J
j=1 l(βj)∑J
j=1 βjl(βj)

It is straightforward to see that, if x∗S′,j = nj, then l(βj) = 0. We are then exactly in the
setting of Papaxanthos et al. [105] and we refer the reader to the proof in the supplementary,
p.3-6.

This shows that we can compute the envelope in J log(J)
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[39] Angelo Duò, Mark D. Robinson, and Charlotte Soneson. “A systematic performance
evaluation of clustering methods for single-cell RNA-seq data”. In: F1000Research 7
(2018), pp. 377–382. issn: 1759796X. doi: 10.5256/f1000research.17093.r36544.
url: https://f1000researchdata.s3.amazonaws.com/manuscripts/17687/

49bacf17 - 03b0 - 4f80 - bde4 - e892c8c3e22f % 7B % 5C _ %7D15666 % 7B % 5C _ %7D -

%7B%5C_%7Dcharlotte%7B%5C_%7Dsoneson%7B%5C_%7Dv2.pdf?doi=10.12688/

f1000research.15666.2%7B%5C&%7DnumberOfBrowsableCollections=17%7B%5C&

%7DnumberOfBrowsableInstitutionalCollections=4%7B%5C&%7DnumberOfBrows.

[40] Sarah G. Earle et al. “Identifying lineage effects when controlling for population
structure improves power in bacterial association studies”. In: Nature Microbiology
1.5 (2016), pp. 1–8. issn: 20585276. doi: 10.1038/nmicrobiol.2016.41. arXiv:
1510.06863. url: http://dx.doi.org/10.1038/nmicrobiol.2016.41.

https://doi.org/10.1038/s41467-019-09670-4
http://www.nature.com/articles/s41467-019-09670-4
http://www.nature.com/articles/s41467-019-09670-4
https://doi.org/10.1016/j.mib.2015.03.002
https://doi.org/10.1038/s41467-018-03282-0
http://www.nature.com/articles/s41467-018-03282-0
http://www.nature.com/articles/s41467-018-03282-0
https://doi.org/10.1101/2020.11.23.393769
https://doi.org/10.1101/2020.11.23.393769
https://doi.org/10.1101/2020.11.23.393769
https://doi.org/10.1126/science.1245316
https://doi.org/10.1186/s12859-019-2951-x
https://doi.org/10.1186/s12859-019-2951-x
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2951-x
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2951-x
https://doi.org/10.5256/f1000research.17093.r36544
https://f1000researchdata.s3.amazonaws.com/manuscripts/17687/49bacf17-03b0-4f80-bde4-e892c8c3e22f%7B%5C_%7D15666%7B%5C_%7D-%7B%5C_%7Dcharlotte%7B%5C_%7Dsoneson%7B%5C_%7Dv2.pdf?doi=10.12688/f1000research.15666.2%7B%5C&%7DnumberOfBrowsableCollections=17%7B%5C&%7DnumberOfBrowsableInstitutionalCollections=4%7B%5C&%7DnumberOfBrows
https://f1000researchdata.s3.amazonaws.com/manuscripts/17687/49bacf17-03b0-4f80-bde4-e892c8c3e22f%7B%5C_%7D15666%7B%5C_%7D-%7B%5C_%7Dcharlotte%7B%5C_%7Dsoneson%7B%5C_%7Dv2.pdf?doi=10.12688/f1000research.15666.2%7B%5C&%7DnumberOfBrowsableCollections=17%7B%5C&%7DnumberOfBrowsableInstitutionalCollections=4%7B%5C&%7DnumberOfBrows
https://f1000researchdata.s3.amazonaws.com/manuscripts/17687/49bacf17-03b0-4f80-bde4-e892c8c3e22f%7B%5C_%7D15666%7B%5C_%7D-%7B%5C_%7Dcharlotte%7B%5C_%7Dsoneson%7B%5C_%7Dv2.pdf?doi=10.12688/f1000research.15666.2%7B%5C&%7DnumberOfBrowsableCollections=17%7B%5C&%7DnumberOfBrowsableInstitutionalCollections=4%7B%5C&%7DnumberOfBrows
https://f1000researchdata.s3.amazonaws.com/manuscripts/17687/49bacf17-03b0-4f80-bde4-e892c8c3e22f%7B%5C_%7D15666%7B%5C_%7D-%7B%5C_%7Dcharlotte%7B%5C_%7Dsoneson%7B%5C_%7Dv2.pdf?doi=10.12688/f1000research.15666.2%7B%5C&%7DnumberOfBrowsableCollections=17%7B%5C&%7DnumberOfBrowsableInstitutionalCollections=4%7B%5C&%7DnumberOfBrows
https://f1000researchdata.s3.amazonaws.com/manuscripts/17687/49bacf17-03b0-4f80-bde4-e892c8c3e22f%7B%5C_%7D15666%7B%5C_%7D-%7B%5C_%7Dcharlotte%7B%5C_%7Dsoneson%7B%5C_%7Dv2.pdf?doi=10.12688/f1000research.15666.2%7B%5C&%7DnumberOfBrowsableCollections=17%7B%5C&%7DnumberOfBrowsableInstitutionalCollections=4%7B%5C&%7DnumberOfBrows
https://doi.org/10.1038/nmicrobiol.2016.41
https://arxiv.org/abs/1510.06863
http://dx.doi.org/10.1038/nmicrobiol.2016.41


BIBLIOGRAPHY 130

[41] David S Fischer, Fabian J Theis, and Nir Yosef. “Impulse model-based differential
expression analysis of time course sequencing data”. In: Nucleic Acids Research 46.20
(Aug. 2018), e119–e119. issn: 0305-1048. doi: 10.1093/nar/gky675. url: https:
//academic.oup.com/nar/advance-article/doi/10.1093/nar/gky675/5068248.

[42] RA Fisher. Statistical methods for research workers. Edinburgh: Oliver & Boyd, 1925.
url: https : / / scholar . google . com / scholar _ lookup ? title = Statistical %

20methods%20for%20research%20workers&author=RA.%20Fisher&publication_

year=1932.

[43] Ronald A Fisher. “On the Interpretation of χ 2 from Contingency Tables, and the
Calculation of P”. In: Journal of the Royal Statistical Society 85.1 (1922), pp. 87–94.
issn: 09528385. doi: 10.2307/2340521.

[44] Russell B. Fletcher et al. “Deconstructing Olfactory Stem Cell Trajectories at Single-
Cell Resolution”. In: Cell Stem Cell 20.6 (June 2017), pp. 817–830. issn: 19345909.
doi: 10.1016/j.stem.2017.04.003. url: http://www.ncbi.nlm.nih.gov/

pubmed / 28506465 % 20http : / / www . pubmedcentral . nih . gov / articlerender .

fcgi?artid=PMC5484588%20https://linkinghub.elsevier.com/retrieve/pii/

S1934590917301273.

[45] Saskia Freytag et al. “Comparison of clustering tools in R for medium-sized 10x ge-
nomics single-cell RNA-sequencing data”. In: F1000Research 7 (2018). issn: 1759796X.
doi: 10.12688/f1000research.15809.1.

[46] Levi Gadye et al. “Injury Activates Transient Olfactory Stem Cell States with Diverse
Lineage Capacities”. In: Cell Stem Cell 21.6 (Dec. 2017), 775–790.e9. issn: 18759777.
doi: 10.1016/j.stem.2017.10.014.

[47] Carolyn A. de Graaf et al. “Haemopedia: An Expression Atlas of Murine Hematopoi-
etic Cells”. In: Stem Cell Reports 7.3 (Sept. 2016), pp. 571–582. issn: 22136711.
doi: 10.1016/j.stemcr.2016.07.007. url: http://www.ncbi.nlm.nih.gov/
pubmed / 27499199 % 20http : / / www . pubmedcentral . nih . gov / articlerender .

fcgi?artid=PMC5031953%20http://linkinghub.elsevier.com/retrieve/pii/

S221367111630131X.

[48] A. Gretton et al. “A Kernel Two-Sample Test”. In: undefined (2012).

[49] Dominik G. Grimm et al. “easyGWAS: A Cloud-Based Platform for Comparing the
Results of Genome-Wide Association Studies”. In: The Plant Cell 29.1 (2017), pp. 5–
19. issn: 1040-4651. doi: 10.1105/tpc.16.00551. eprint: http://www.plantcell.
org/content/29/1/5.full.pdf. url: http://www.plantcell.org/content/29/
1/5.

https://doi.org/10.1093/nar/gky675
https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gky675/5068248
https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gky675/5068248
https://scholar.google.com/scholar_lookup?title=Statistical%20methods%20for%20research%20workers&author=RA.%20Fisher&publication_year=1932
https://scholar.google.com/scholar_lookup?title=Statistical%20methods%20for%20research%20workers&author=RA.%20Fisher&publication_year=1932
https://scholar.google.com/scholar_lookup?title=Statistical%20methods%20for%20research%20workers&author=RA.%20Fisher&publication_year=1932
https://doi.org/10.2307/2340521
https://doi.org/10.1016/j.stem.2017.04.003
http://www.ncbi.nlm.nih.gov/pubmed/28506465%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5484588%20https://linkinghub.elsevier.com/retrieve/pii/S1934590917301273
http://www.ncbi.nlm.nih.gov/pubmed/28506465%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5484588%20https://linkinghub.elsevier.com/retrieve/pii/S1934590917301273
http://www.ncbi.nlm.nih.gov/pubmed/28506465%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5484588%20https://linkinghub.elsevier.com/retrieve/pii/S1934590917301273
http://www.ncbi.nlm.nih.gov/pubmed/28506465%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5484588%20https://linkinghub.elsevier.com/retrieve/pii/S1934590917301273
https://doi.org/10.12688/f1000research.15809.1
https://doi.org/10.1016/j.stem.2017.10.014
https://doi.org/10.1016/j.stemcr.2016.07.007
http://www.ncbi.nlm.nih.gov/pubmed/27499199%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5031953%20http://linkinghub.elsevier.com/retrieve/pii/S221367111630131X
http://www.ncbi.nlm.nih.gov/pubmed/27499199%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5031953%20http://linkinghub.elsevier.com/retrieve/pii/S221367111630131X
http://www.ncbi.nlm.nih.gov/pubmed/27499199%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5031953%20http://linkinghub.elsevier.com/retrieve/pii/S221367111630131X
http://www.ncbi.nlm.nih.gov/pubmed/27499199%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5031953%20http://linkinghub.elsevier.com/retrieve/pii/S221367111630131X
https://doi.org/10.1105/tpc.16.00551
http://www.plantcell.org/content/29/1/5.full.pdf
http://www.plantcell.org/content/29/1/5.full.pdf
http://www.plantcell.org/content/29/1/5
http://www.plantcell.org/content/29/1/5


BIBLIOGRAPHY 131

[50] Christoph Hafemeister and Rahul Satija. “Normalization and variance stabilization of
single-cell RNA-seq data using regularized negative binomial regression”. In: Genome
Biology 20.1 (Dec. 2019), p. 296. issn: 1474760X. doi: 10.1186/s13059-019-1874-1.
url: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-
019-1874-1.

[51] Daniel H. Haft et al. “RefSeq: An update on prokaryotic genome annotation and cura-
tion”. In: Nucleic Acids Research 46.D1 (Jan. 2018), pp. D851–D860. issn: 13624962.
doi: 10.1093/nar/gkx1068. url: https://www.ncbi.nlm.nih.gov/refseq/..

[52] Keren Bahar Halpern et al. “Single-cell spatial reconstruction reveals global division
of labour in the mammalian liver”. In: Nature 542.7641 (Feb. 2017), pp. 1–5. issn:
14764687. doi: 10.1038/nature21065. url: https://www.nature.com/articles/
nature21065.

[53] Kazuya Haraguchi et al. “COOMA: A components overlaid mining algorithm for
enumerating connected subgraphs with common itemsets”. In: Journal of Graph Al-
gorithms and Applications 23.2 (2019), pp. 434–458. issn: 15261719. doi: 10.7155/
jgaa.00497. url: http://jgaa.info/vol.

[54] Colleen C Hegg et al. “Microvillous cells expressing IP3 receptor type 3 in the ol-
factory epithelium of mice.” In: The European journal of neuroscience 32.10 (Nov.
2010), pp. 1632–45. issn: 1460-9568. doi: 10.1111/j.1460-9568.2010.07449.x.
url: http : / / www . ncbi . nlm . nih . gov / pubmed / 20958798 % 20http : / / www .

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4331646.

[55] Ruth Heller et al. “A flexible two-stage procedure for identifying gene sets that
are differentially expressed.” In: Bioinformatics (Oxford, England) 25.8 (Apr. 2009),
pp. 1019–25. issn: 1367-4811. doi: 10.1093/bioinformatics/btp076. url: http:
//www.ncbi.nlm.nih.gov/pubmed/19213738.

[56] Charles A Herring et al. “Unsupervised Trajectory Analysis of Single-Cell RNA-Seq
and Imaging Data Reveals Alternative Tuft Cell Origins in the Gut.” In: Cell systems
6.1 (Jan. 2018), pp. 37–51. issn: 2405-4712. doi: 10 . 1016 / j . cels . 2017 . 10 .

012. url: http://www.ncbi.nlm.nih.gov/pubmed/29153838%20http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5799016.

[57] Holger Hesse and Rainer Hoefgen. “Molecular aspects of methionine biosynthesis”.
In: Trends in Plant Science 8.6 (June 2003), pp. 259–262. issn: 13601385. doi: 10.
1016/S1360-1385(03)00107-9.

[58] Lawrence Hubert and Phipps Arabie. “Comparing partitions”. In: Journal of Clas-
sification 2.1 (Dec. 1985), pp. 193–218. issn: 1432-1343. doi: 10.1007/BF01908075.
url: https://doi.org/10.1007/BF01908075.

[59] Paul Jaccard. “Distribution de la Flore Alpine dans le Bassin des Dranses et dans
quelques régions voisines.” In: Bulletin de la Societe Vaudoise des Sciences Naturelles
37 (Jan. 1901), pp. 241–72. doi: 10.5169/seals-266440.

https://doi.org/10.1186/s13059-019-1874-1
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1874-1
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1874-1
https://doi.org/10.1093/nar/gkx1068
https://www.ncbi.nlm.nih.gov/refseq/.
https://doi.org/10.1038/nature21065
https://www.nature.com/articles/nature21065
https://www.nature.com/articles/nature21065
https://doi.org/10.7155/jgaa.00497
https://doi.org/10.7155/jgaa.00497
http://jgaa.info/vol
https://doi.org/10.1111/j.1460-9568.2010.07449.x
http://www.ncbi.nlm.nih.gov/pubmed/20958798%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4331646
http://www.ncbi.nlm.nih.gov/pubmed/20958798%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4331646
https://doi.org/10.1093/bioinformatics/btp076
http://www.ncbi.nlm.nih.gov/pubmed/19213738
http://www.ncbi.nlm.nih.gov/pubmed/19213738
https://doi.org/10.1016/j.cels.2017.10.012
https://doi.org/10.1016/j.cels.2017.10.012
http://www.ncbi.nlm.nih.gov/pubmed/29153838%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5799016
http://www.ncbi.nlm.nih.gov/pubmed/29153838%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5799016
https://doi.org/10.1016/S1360-1385(03)00107-9
https://doi.org/10.1016/S1360-1385(03)00107-9
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
https://doi.org/10.5169/seals-266440


BIBLIOGRAPHY 132

[60] Laurent Jacob, Pierre Neuvial, and Sandrine Dudoit. “More power via graph-structured
tests for differential expression of gene networks”. In: Ann. Appl. Stat. 6.2 (June 2012),
pp. 561–600. doi: 10.1214/11-AOAS528. url: https://doi.org/10.1214/11-
AOAS528.

[61] Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. “Group Lasso with
overlaps and graph Lasso”. In: In Proceedings of the 26th International Conference
on Machine learning. 2009.

[62] Magali Jaillard et al. “A fast and agnostic method for bacterial genome-wide associa-
tion studies: Bridging the gap between k-mers and genetic events.” In: PLoS genetics
14.11 (2018), e1007758. issn: 1553-7404. doi: 10.1371/journal.pgen.1007758.
url: http://www.ncbi.nlm.nih.gov/pubmed/30419019.

[63] Magali Jaillard et al. “Correlation between phenotypic antibiotic susceptibility and
the resistome in Pseudomonas aeruginosa”. In: International Journal of Antimi-
crobial Agents 50.2 (Aug. 2017), pp. 210–218. issn: 18727913. doi: 10.1016/j.

ijantimicag.2017.02.026.

[64] Zhicheng Ji and Hongkai Ji. “TSCAN: Pseudo-time reconstruction and evaluation in
single-cell RNA-seq analysis”. In: Nucleic Acids Research 44.13 (July 2016), e117–
e117. issn: 0305-1048. doi: 10.1093/nar/gkw430. url: https://academic.oup.
com/nar/article-lookup/doi/10.1093/nar/gkw430.

[65] Zhicheng Ji and Hongkai Ji. “TSCAN: Pseudo-time reconstruction and evaluation in
single-cell RNA-seq analysis”. In: Nucleic Acids Research 44.13 (July 2016), e117–
e117. issn: 0305-1048. doi: 10.1093/nar/gkw430. url: https://academic.oup.
com/nar/article-lookup/doi/10.1093/nar/gkw430.

[66] Olga B Jonas et al. Drug-resistant infections : a threat to our economic future (Vol. 2) :
final report (English). Tech. rep. 3. HNP/Agriculture Global Antimicrobial Resistance
Initiative Washington, D.C. : World Bank Group., 2017, p. 141. arXiv: License:

CreativeCommonsAttributionCCBY3.0IGO. url: http://documents.worldbank.
org/curated/en/323311493396993758/final-report.

[67] M Kanehisa and S Goto. “KEGG: kyoto encyclopedia of genes and genomes”. In:
Nucleic Acids Res 28.1 (Jan. 2000), pp. 27–30. url: http://www.ncbi.nlm.nih.
gov/pubmed/10592173.

[68] J. Kiefer. “K-Sample Analogues of the Kolmogorov-Smirnov and Cramer-V. Mises
Tests”. In: The Annals of Mathematical Statistics 30.2 (June 1959), pp. 420–447.
issn: 0003-4851. doi: 10.1214/aoms/1177706261. url: https://projecteuclid.
org/euclid.aoms/1177706261.

[69] Taiyun Kim et al. “Impact of similarity metrics on single-cell RNA-seq data cluster-
ing”. In: Briefings in Bioinformatics 20.6 (Nov. 2019), pp. 2316–2326. issn: 1467-5463.
doi: 10.1093/bib/bby076. url: https://academic.oup.com/bib/article/20/6/
2316/5077112.

https://doi.org/10.1214/11-AOAS528
https://doi.org/10.1214/11-AOAS528
https://doi.org/10.1214/11-AOAS528
https://doi.org/10.1371/journal.pgen.1007758
http://www.ncbi.nlm.nih.gov/pubmed/30419019
https://doi.org/10.1016/j.ijantimicag.2017.02.026
https://doi.org/10.1016/j.ijantimicag.2017.02.026
https://doi.org/10.1093/nar/gkw430
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw430
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw430
https://doi.org/10.1093/nar/gkw430
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw430
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw430
https://arxiv.org/abs/License: Creative Commons Attribution CC BY 3.0 IGO
https://arxiv.org/abs/License: Creative Commons Attribution CC BY 3.0 IGO
http://documents.worldbank.org/curated/en/323311493396993758/final-report
http://documents.worldbank.org/curated/en/323311493396993758/final-report
http://www.ncbi.nlm.nih.gov/pubmed/10592173
http://www.ncbi.nlm.nih.gov/pubmed/10592173
https://doi.org/10.1214/aoms/1177706261
https://projecteuclid.org/euclid.aoms/1177706261
https://projecteuclid.org/euclid.aoms/1177706261
https://doi.org/10.1093/bib/bby076
https://academic.oup.com/bib/article/20/6/2316/5077112
https://academic.oup.com/bib/article/20/6/2316/5077112


BIBLIOGRAPHY 133

[70] Vladimir Yu Kiselev, Tallulah S. Andrews, and Martin Hemberg. Challenges in un-
supervised clustering of single-cell RNA-seq data. May 2019. doi: 10.1038/s41576-
018-0088-9. url: http://www.nature.com/articles/s41576-018-0088-9.

[71] Vladimir Yu Kiselev et al. “SC3: consensus clustering of single-cell RNA-seq data”.
In: Nature Methods 14.5 (May 2017), pp. 483–486. issn: 1548-7091. doi: 10.1038/
nmeth.4236. url: http://www.nature.com/articles/nmeth.4236.

[72] Vladimir Yu. Kiselev et al. “Perturbations of PIP3 signalling trigger a global remod-
elling of mRNA landscape and reveal a transcriptional feedback loop”. In: Nucleic
Acids Research 43.20 (Oct. 2015), gkv1015. issn: 0305-1048. doi: 10.1093/nar/

gkv1015. url: https://academic.oup.com/nar/article-lookup/doi/10.1093/
nar/gkv1015.

[73] Aleksandra A. Kolodziejczyk et al. The Technology and Biology of Single-Cell RNA
Sequencing. May 2015. doi: 10.1016/j.molcel.2015.04.005.

[74] Gennady Korotkevich, Vladimir Sukhov, and Alexey Sergushichev. “Fast gene set
enrichment analysis”. In: bioRxiv (Feb. 2016), p. 060012. doi: 10.1101/060012. url:
https://doi.org/10.1101/060012.

[75] Jesse H. Krijthe. Rtsne: T-Distributed Stochastic Neighbor Embedding using Barnes-
Hut Implementation. R package version 0.15. 2015. url: https://github.com/

jkrijthe/Rtsne.

[76] Daisuke Kurotaki et al. “IRF8 inhibits C/EBPα activity to restrain mononuclear
phagocyte progenitors from differentiating into neutrophils”. In: Nature Communi-
cations 5.1 (Dec. 2014), p. 4978. issn: 2041-1723. doi: 10.1038/ncomms5978. url:
http://www.nature.com/articles/ncomms5978.

[77] Mark van der Laan and Katherine Pollard. “Hybrid Clustering of Gene Expression
Data with Visualization and the Bootstrap”. In: Mark J. van der Laan 117 (Jan.
2001).

[78] Neil D. Lawrence. “Gaussian process latent variable models for visualisation of high
dimensional data”. In: NIPS’03 Proceedings of the 16th International Conference on
Neural Information Processing Systems (2003).

[79] Miguel Lázaro-Gredilla, Steven Van Vaerenbergh, and Neil D. Lawrence. “Overlap-
ping Mixtures of Gaussian Processes for the data association problem”. In: Pattern
Recognition 45.4 (Apr. 2012), pp. 1386–1395. issn: 0031-3203. doi: 10.1016/J.

PATCOG.2011.10.004. url: https://www.sciencedirect.com/science/article/
pii/S0031320311004109.

[80] John A. Lees et al. “Sequence element enrichment analysis to determine the genetic
basis of bacterial phenotypes”. In: Nature Communications 7.1 (Sept. 2016), p. 12797.
issn: 2041-1723. doi: 10.1038/ncomms12797. url: https://doi.org/10.1038/
ncomms12797.

https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41576-018-0088-9
http://www.nature.com/articles/s41576-018-0088-9
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1038/nmeth.4236
http://www.nature.com/articles/nmeth.4236
https://doi.org/10.1093/nar/gkv1015
https://doi.org/10.1093/nar/gkv1015
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv1015
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv1015
https://doi.org/10.1016/j.molcel.2015.04.005
https://doi.org/10.1101/060012
https://doi.org/10.1101/060012
https://github.com/jkrijthe/Rtsne
https://github.com/jkrijthe/Rtsne
https://doi.org/10.1038/ncomms5978
http://www.nature.com/articles/ncomms5978
https://doi.org/10.1016/J.PATCOG.2011.10.004
https://doi.org/10.1016/J.PATCOG.2011.10.004
https://www.sciencedirect.com/science/article/pii/S0031320311004109
https://www.sciencedirect.com/science/article/pii/S0031320311004109
https://doi.org/10.1038/ncomms12797
https://doi.org/10.1038/ncomms12797
https://doi.org/10.1038/ncomms12797


BIBLIOGRAPHY 134

[81] Yingxin Lin et al. “scClassify: hierarchical classification of cells”. In: bioRxiv (2019),
p. 776948. doi: 10.1101/776948.
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Appendix A

Supplementary Figures for chapter 2

Seurat’s tuning parameters

Figure A.1: Impact of Seurat’s two main tuning parameters on the number of clusters. The
Seurat algorithm is run on the two AIBS snRNA-Smart datasets, for a grid of tuning pa-
rameter values. For increasing values of resolution and fixed values of k, the number of
clusters is always increasing. For increasing values of k and fixed values of resolution, the
number of clusters can either increase or decrease.
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Simulated datasets

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

(d) Dataset 4 (e) Dataset 5

Figure A.2: Simulated datasets. Two-dimensional representations of the simulated datasets
using UMAP; plotting symbols for the cells are colored by the ground-truth cluster labels.
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Resolution-replicability trade-off

Figure A.3: Resolution-replicability trade-off for the Pancreas datasets. Seurat, SC3, and
Monocle are run on the two Pancreas datasets, as described in “Methods”, for a wide range
of tuning parameter values. Then, the MetaNeighbor method is used to compute replicability
scores for the resulting clusters between these two datasets. A trade-off between replicability
and resolution is visible.
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Results for Dune with ARI merging

Figure A.4: Comparison of methods. SC3, Seurat, and Monocle were run on all datasets,
for a wide range of tuning parameter values. Then, merging by Dune with ARI, Dune with
NMI, and the two hierarchical procedures is evaluated using either replicability, measured
via the MetaNeighbor method, or ARI with gold-standard labels. This yields 18 comparisons
of AUC for replicabilty (a.) and 36 comparison of AUC for ARI with gold standard (b.).
AUC values are displayed in the pseudocolor image, after being scaled to have a column
mean of zero and column variance of 1. This was done to make AUC values comparable
across datasets, clustering methods, and parameter values, since the AUC can have different
scales across scenarios.
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Figure A.5: Simulation results including the ARI-based version of Dune. For each of the four
merging methods, as merging occurs on a simulated dataset, the ARI (a.) or NMI (b.) with
the ground truth is tracked as the number of clusters decreases. Dune with ARI performs
either on-par or sub-par with the NMI-based version.
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6 Runtimes

References
In this workflow, we will demonstrate a full full scRNA-Seq workflow using Dune on an
example dataset. We rely on the the data from (Baron et al. 2016), a human pancreas
dataset of 8569 samples. We will demonstrate how to generate various input clustering
results, how to merge clusters using Dune and how to select the best output for use in
downstream analysis. We will also monitor run times to show the impact of running Dune
versus a workflow without it.
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1 Load data

We rely on a pre-processed dataset where the count matrix has already been computed,
using the scRNAseq R package. The dataset also contains the id of the human donor
for each cell, which are used as batch labels. It also contains the cell labels assignements
from the original publication. Note that, in that publication, cells were clustered using
hierarchical clustering with a final manual merging step.

set.seed(19)
suppressPackageStartupMessages({

library(SingleCellExperiment)
library(stringr)
library(scRNAseq)

})
# Load pre-processed dataset
sce <- BaronPancreasData()
# Filter very lowly expressed genes for computational practices.
filt <- rowSums(counts(sce) >= 2) >= 10
sce <- sce[filt, ]
print(sce)

## class: SingleCellExperiment
## dim: 12336 8569
## metadata(0):
## assays(1): counts
## rownames(12336): A1CF A2M ... ZZZ3 pk
## rowData names(0):
## colnames(8569): human1_lib1.final_cell_0001 human1_lib1.final_cell_0002
## ... human4_lib3.final_cell_0700 human4_lib3.final_cell_0701
## colData names(2): donor label
## reducedDimNames(0):
## altExpNames(0):
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2 Pre-processing

Before running clustering algorithms, we will rely on two normalization pipelines.

• The default pipeline of Seurat (Stuart et al. 2019).

suppressPackageStartupMessages({
library(Seurat)

})
pre_process_time <- system.time({

se <- CreateSeuratObject(counts = counts(sce),
min.cells = 0,
min.features = 0,
project = "de")

se <- AddMetaData(se, as.data.frame(colData(sce)))
se <- NormalizeData(se, verbose = FALSE)
se <- FindVariableFeatures(se, selection.method = 'vst', nfeatures = 4000,

verbose = FALSE)
se <- se[VariableFeatures(se), ]
se <- ScaleData(object = se, vars.to.regress = c("nCount_RNA", "donor"))
sce <- as.SingleCellExperiment(se)

})

## Regressing out nCount_RNA, donor

## Centering and scaling data matrix

• The scvi method (Lopez et al. 2018).

suppressPackageStartupMessages(library(reticulate))
scvi <- import('scvi', convert = FALSE)
anndata <- import("anndata")
np <- import("numpy")
sc <- import("scanpy")
scvi_time <- system.time({

scvi$settings$seed = 0L
adata <- anndata$AnnData(X = as.sparse(t(counts(sce))),

obs = data.frame(cells = colnames(sce),
batch = sce$donor))

scvi$data$setup_anndata(adata, batch_key = "batch")
model <- scvi$model$SCVI(adata)
model$train(n_epochs = 100L, n_epochs_kl_warmup = 25L)

})

We can visualize the latent space produced by scvi using the labels from the original publi-
cation, and reducing the 10 dimensions of the latent space to 2 using t-SNE (van der Maaten
and Hinton 2008, @tsne2, @tsne3).
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suppressPackageStartupMessages(library(scater))

## Warning: package 'scater' was built under R version 4.0.4

reducedDim(sce, "scvi") <- py_to_r(model$get_latent_representation())
denoised <- t(model$get_normalized_expression(adata, library_size = 10e4) %>%

py_to_r())
dimnames(denoised) <- dimnames(counts(sce))
assay(sce, "denoised") <- log1p(denoised)
sce <- runTSNE(sce, dimred = "scvi")
plotTSNE(sce, colour_by = "label")
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As we can see, scvi mostly produces a latent space that is consistent with the original
labels. Note however that this is information that would not available while analyzing a
new dataset. One would instead need to rely on known-marker genes.
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3 Creating inputs to Dune

Dune takes as input a set of clustering results. We will generate a set of such results using
a combination of clustering methods and normalization techniques:

• SC3 (Kiselev et al. 2017) using as input the denoised count matrix from scvi.
• Seurat using as input the latent space from scvi.
• Seurat using as input the top pcs from the count matrix normalized using the Seurat

pre-processing pipeline.

3.1 SC3

SC3 is a consensus method that takes as input a normalized count matrix and outputs a
set of cluster labels. The SC3 package provides a function to estimate the value of K, the
exact number of clusters, which we will use.

Since the dataset has more than 5000 cells, SC3 is automatically run in hybrid mode to
lower runtime. However, the process can still be quite slow. The code below is run in the
default mode. If you want it to run, we recommand seting default=FALSE.

suppressPackageStartupMessages(library(SC3))
default <- FALSE
sc3_time <- system.time({

sce_sc3 <- sce
logcounts(sce_sc3) <- assay(sce, "denoised")
rowData(sce_sc3)$feature_symbol <- rownames(sce_sc3)
counts(sce_sc3) <- as.matrix(counts(sce_sc3))
logcounts(sce_sc3) <- as.matrix(logcounts(sce_sc3))
sce_sc3 <- sc3_estimate_k(sce_sc3)
K <- metadata(sce_sc3)$sc3$k_estimation
# Note: with R >= 4.0, RStudio and Mac OS, this can fails.
# A workaround is running
# parallel:::setDefaultClusterOptions(setup_strategy = "sequential")
if (default) {

sce_sc3 <- sc3(sce_sc3, ks = K, n_cores = NCORES, rand_seed = 786907)
} else {

sce_sc3 <- sc3(sce_sc3, ks = K, n_cores = NCORES, rand_seed = 786907,
svm_num_cells = round(.1 * ncol(sce)))

}
sce_sc3 <- sc3_run_svm(sce_sc3, ks = K)
sce$SC3 <- colData(sce_sc3)[, paste0("sc3_", K, "_clusters")] %>% as.factor()

})

APPENDIX B. DUNE WORKFLOW ON THE BARON DATASET 154



plotTSNE(sce, colour_by = "SC3")
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As we can see, SC3 seems to overcluster the data, when compared either to the labels from
the original publication, or to the reduced dimension representation. However, this is not a
problem since Dune will work better on overclustered results.
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3.2 Seurat

The second method we use is the clustering algorithm from the Seurat R package, which first
construct a Shared Nearest Neighbor (SNN) Graph and then runs the Louvain algorithm
on the graph to identify clusters. The SNN graph is build using a reduced dimension
representation of the dataset. We first use the default, which is to use the top pcs from the
normalized count matrix.

seurat_time <- system.time({
se <- RunPCA(se, verbose = FALSE)
se <- FindNeighbors(se, verbose = FALSE)
se <- FindClusters(object = se, verbose = FALSE)
sce$seurat <- Idents(se)

})

plotTSNE(sce, colour_by = "seurat")
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Seurat seems to perform better than SC3 here but still seems to overpartition the data
when run with the default parameters. Once again, it will not be a problem if used as input
to Dune.
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3.3 Seurat with scvi

Finally, we run the Seurat clustering workflow, but instead of building the SNN using the
top 10 pcs, we build it using the latent space from scvi.

seurat_scvi_time <- system.time({
seu <- as.Seurat(x = sce, counts = "counts", data = "counts")
seu <- FindNeighbors(seu, reduction = "scvi", verbose = FALSE)
seu <- FindClusters(object = seu, verbose = FALSE)
sce$seurat_scvi <- Idents(seu)

})

plotTSNE(sce, colour_by = "seurat_scvi")
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This seems to produce the best result, at least on the latent space of scvi, which is not
suprising. It also better matches the labels from the original publication but still results in
possible over-partition.
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4 Dune

4.1 Running Dune

We can now run Dune, using the three clustering results as input. Since all clusterings seem
to reflect over-partitioning of the data, Dune will identify the common underlying struc-
ture and polish all inputs, using the Normalized Mutual Information (NMI) as a merging
criterion.

library(Dune)

## Dune now uses the Normalized Mutual Informationinstead of the adjusted Rand Index. You can restore the old option bysetting metric'ARI' in the Dune function.

df <- colData(sce)[, c("SC3", "seurat", "seurat_scvi")] %>% as.matrix()
dune_time <- system.time(merger <- Dune(clusMat = df, metric = "NMI"))
colData(sce)[, c("SC3_final", "seurat_final", "seurat_scvi_final")] <-

lapply(merger$currentMat, as.factor) %>% as.data.frame()

4.2 Vizualing the merging

We can first see how the number of clusters in each clustering set decreased as merging
occurred, and how the mean NMI increased when merging.

NMItrend(merger) + theme(legend.position = "bottom")
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5 Picking the final clustering result to use

While Dune increases the concordance between the three sets of clusters, it does not pick
one at the end. That choice remains up to the user. Dune does not seek to replace biological
knowledge or other metrics used to rank clustering methods. Instead, it aims to improve all
its inputs, and to lessen the impact of the selection of one set of clusters.

5.1 Manual selection

One common way to pick clustering results is still manual, using visualization.

plotTSNE(sce, colour_by = "seurat_final")

−40

−20

0

20

40

−50 −25 0 25
TSNE 1

T
S

N
E

 2

seurat_final

1
2
3
4
5
6
7
8
11
15
17
19

APPENDIX B. DUNE WORKFLOW ON THE BARON DATASET 159



plotTSNE(sce, colour_by = "seurat_scvi_final")
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plotTSNE(sce, colour_by = "SC3_final")
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Here, we can see that all clustering results look more consistent with the low dimensionality
representation. Moreover, it clearly looks like Seurat using the latent space from scvi
produces better results.

5.2 Selection based on sihouette

To provide a more quantitative selection criterion, we can rely on the average silhouette
width. This is a number between −1 and 1 that quantify the quality of clustering using the
distance matrix between all cells. We compute the distance on the scvi latent space.

library(cluster)
dist_mat <- dist(as.matrix(reducedDim(sce, "scvi")))
sils_init <- lapply(merger$initialMat %>% as.data.frame, function(label){

silhouette(label, dist = dist_mat)[,3] %>% mean()
}) %>% unlist()
sils_init

## SC3 seurat seurat_scvi
## -0.02385097 0.05998455 0.21037407

This confirm the visual impression: the cluster labels from Seurat_scvi are clearly better
on this dataset than the others before merging with Dune.

sils_final <- lapply(merger$currentMat %>% as.data.frame, function(label){
silhouette(label, dist = dist_mat)[,3] %>% mean()

}) %>% unlist()
sils_final

## SC3 seurat seurat_scvi
## 0.09578247 0.15157494 0.25300568

For all methods, the average silhouette information increased after merging with Dune.
Even the best method, Seurat_scvi, is improved by the merging. However, the ranking of
methods is unchanged: consistent with the visual representation, Seurat using the latent
space from scvi clearly outperforms the other two. That is the one that should be used
for downstream analysis such as trajectory inference, differential expression or cell type
annotation.

5.3 Comparing with the original labels

This last step is not possible on a normal analysis of a new dataset. However, here, we can see
how, running all methods using default, we recover cluster labels that match closely clusters
from the original publication that had require manual merging using outside biological
knowledge.

APPENDIX B. DUNE WORKFLOW ON THE BARON DATASET 161



suppressPackageStartupMessages({
library(aricode)
library(mclust)

})
NMI(sce$label, sce$seurat_scvi_final) %>% round(2)

## [1] 0.91

adjustedRandIndex(sce$label, sce$seurat_scvi_final) %>% round(2)

## [1] 0.93

6 Runtimes

We can also compare the runtimes of all parts of the workflow. Running SC3 in default
mode is quite slow, followed by scvi. Running Dune itself is quite quick compared to other
steps. Using Dune in a workflow increased total runtime but not by orders of magnitudes.

times <- c(pre_process_time[1],
scvi_time[1],
sc3_time[1],
seurat_time[1],
seurat_scvi_time[1],
dune_time[1])

names(times) <- c("Seurat\npre-processing",
"SCVI",
"SC3",
"Seurat",
"Seurat\nafter SCVI",
"Dune")

df <- data.frame(times = times,
Name = factor(names(times), levels = names(times)))

ggplot(df, aes(x = Name, y = times, fill = Name)) +
geom_col() +
theme_classic() +
labs(x = "Step", y = "Time (second)", fill = "Step") +
scale_fill_brewer(palette = "Dark2") +
theme(axis.text.x = element_blank()) +
scale_y_log10() +
guides(col = FALSE)
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sessionInfo()

## R version 4.0.3 (2020-10-10)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] mclust_5.4.7 aricode_1.0.0
## [3] cluster_2.1.1 Dune_1.3.01
## [5] SC3_1.18.0 scater_1.18.6
## [7] ggplot2_3.3.3 reticulate_1.18
## [9] SeuratObject_4.0.0 Seurat_4.0.1
## [11] scRNAseq_2.4.0 stringr_1.4.0
## [13] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0
## [15] Biobase_2.50.0 GenomicRanges_1.42.0
## [17] GenomeInfoDb_1.26.5 IRanges_2.24.1
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## [19] S4Vectors_0.28.1 BiocGenerics_0.36.0
## [21] MatrixGenerics_1.2.1 matrixStats_0.58.0
## [23] knitr_1.31
##
## loaded via a namespace (and not attached):
## [1] utf8_1.2.1 tidyselect_1.1.0
## [3] RSQLite_2.2.5 AnnotationDbi_1.52.0
## [5] htmlwidgets_1.5.3 grid_4.0.3
## [7] BiocParallel_1.24.1 Rtsne_0.15
## [9] munsell_0.5.0 codetools_0.2-18
## [11] ica_1.0-2 future_1.21.0
## [13] miniUI_0.1.1.1 withr_2.4.1
## [15] colorspace_2.0-0 ROCR_1.0-11
## [17] robustbase_0.93-7 tensor_1.5
## [19] listenv_0.8.0 labeling_0.4.2
## [21] GenomeInfoDbData_1.2.4 polyclip_1.10-0
## [23] farver_2.1.0 pheatmap_1.0.12
## [25] bit64_4.0.5 parallelly_1.24.0
## [27] vctrs_0.3.7 generics_0.1.0
## [29] xfun_0.22 BiocFileCache_1.14.0
## [31] doParallel_1.0.16 R6_2.5.0
## [33] ggbeeswarm_0.6.0 rsvd_1.0.3
## [35] AnnotationFilter_1.14.0 bitops_1.0-6
## [37] spatstat.utils_2.1-0 cachem_1.0.4
## [39] DelayedArray_0.16.3 assertthat_0.2.1
## [41] promises_1.2.0.1 scales_1.1.1
## [43] beeswarm_0.3.1 gtable_0.3.0
## [45] beachmat_2.6.4 globals_0.14.0
## [47] goftest_1.2-2 ensembldb_2.14.0
## [49] rlang_0.4.10 splines_4.0.3
## [51] rtracklayer_1.50.0 lazyeval_0.2.2
## [53] spatstat.geom_2.0-1 BiocManager_1.30.12
## [55] yaml_2.2.1 reshape2_1.4.4
## [57] abind_1.4-5 GenomicFeatures_1.42.3
## [59] httpuv_1.5.5 tools_4.0.3
## [61] ellipsis_0.3.1 spatstat.core_2.0-0
## [63] RColorBrewer_1.1-2 proxy_0.4-25
## [65] ggridges_0.5.3 Rcpp_1.0.6
## [67] plyr_1.8.6 sparseMatrixStats_1.2.1
## [69] progress_1.2.2 zlibbioc_1.36.0
## [71] purrr_0.3.4 RCurl_1.98-1.3
## [73] prettyunits_1.1.1 rpart_4.1-15
## [75] openssl_1.4.3 deldir_0.2-10
## [77] viridis_0.5.1 pbapply_1.4-3
## [79] cowplot_1.1.1 zoo_1.8-9
## [81] ggrepel_0.9.1 magrittr_2.0.1
## [83] magick_2.7.1 data.table_1.14.0
## [85] scattermore_0.7 lmtest_0.9-38
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## [87] RANN_2.6.1 mvtnorm_1.1-1
## [89] ProtGenerics_1.22.0 fitdistrplus_1.1-3
## [91] hms_1.0.0 patchwork_1.1.1
## [93] mime_0.10 evaluate_0.14
## [95] xtable_1.8-4 XML_3.99-0.6
## [97] gridExtra_2.3 compiler_4.0.3
## [99] biomaRt_2.46.3 tibble_3.1.0
## [101] KernSmooth_2.23-18 crayon_1.4.1
## [103] htmltools_0.5.1.1 pcaPP_1.9-73
## [105] mgcv_1.8-34 later_1.1.0.1
## [107] rrcov_1.5-5 tidyr_1.1.3
## [109] DBI_1.1.1 tweenr_1.0.2
## [111] ExperimentHub_1.16.0 WriteXLS_6.3.0
## [113] dbplyr_2.1.1 MASS_7.3-53.1
## [115] rappdirs_0.3.3 Matrix_1.3-2
## [117] igraph_1.2.6 pkgconfig_2.0.3
## [119] GenomicAlignments_1.26.0 plotly_4.9.3
## [121] scuttle_1.0.4 spatstat.sparse_2.0-0
## [123] foreach_1.5.1 xml2_1.3.2
## [125] vipor_0.4.5 rngtools_1.5
## [127] XVector_0.30.0 doRNG_1.8.2
## [129] digest_0.6.27 sctransform_0.3.2
## [131] RcppAnnoy_0.0.18 spatstat.data_2.1-0
## [133] Biostrings_2.58.0 rmarkdown_2.7
## [135] leiden_0.3.7 uwot_0.1.10
## [137] DelayedMatrixStats_1.12.3 curl_4.3
## [139] shiny_1.6.0 Rsamtools_2.6.0
## [141] lifecycle_1.0.0 nlme_3.1-152
## [143] jsonlite_1.7.2 BiocNeighbors_1.8.2
## [145] viridisLite_0.3.0 askpass_1.1
## [147] fansi_0.4.2 pillar_1.5.1
## [149] lattice_0.20-41 DEoptimR_1.0-8
## [151] fastmap_1.1.0 httr_1.4.2
## [153] survival_3.2-10 gganimate_1.0.7
## [155] interactiveDisplayBase_1.28.0 glue_1.4.2
## [157] iterators_1.0.13 png_0.1-7
## [159] BiocVersion_3.12.0 bit_4.0.4
## [161] class_7.3-18 stringi_1.5.3
## [163] blob_1.2.1 BiocSingular_1.6.0
## [165] AnnotationHub_2.22.0 memoise_2.0.0
## [167] dplyr_1.0.5 e1071_1.7-6
## [169] irlba_2.3.3 future.apply_1.7.0
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Table C.1: Mouse olfactory epithelium dataset. The top 20 significant GO sets for the top 250
genes when assessing global differential expression between the progenitor and differentiated
cell populations using the tradeSeq startVsEndTest procedure. The “Overlap” column
records the number of genes, out of the 250 top genes, that are included in a particular
gene set. The significance of a gene set is measured by a q-value, obtained by assessing the
significance of the overlap of the DE genes with the gene set, as obtained from the Molecular
Signatures Database v6.2 (http://software.broadinstitute.org/gsea/msigdb).

Gene set Overlap Size q-value
1. neurogenesis 46 1402 1.31E-21
2. response to external stimulus 51 1821 1.41E-21
3. tissue development 47 1518 1.41E-21
4. cellular response to organic substance 49 1848 7.41E-20
5. regulation of multicellular organismal development 46 1672 3.5E-19
6. neuron differentiation 35 874 3.69E-19
7. response to endogenous stimulus 43 1450 4.07E-19
8. regulation of cell differentiation 43 1492 1.05E-18
9. regulation of cellular component movement 32 771 5.84E-18
10. cell development 41 1426 8.94E-18
11. cellular response to endogenous stimulus 35 1008 1.91E-17
12. regulation of intracellular signal transduction 43 1656 3.5E-17
13. organ morphogenesis 31 841 4.86E-16
14. negative regulation of response to stimulus 38 1360 4.86E-16
15. positive regulation of cell communication 40 1532 5.3E-16
16. regulation of phosphorus metabolic process 40 1618 3.24E-15
17. response to oxygen containing compound 37 1381 4.61E-15
18. circulatory system development 29 788 5.19E-15
19. epithelium development 31 945 8.78E-15
20. locomotion 33 1114 1.44E-14

http://software.broadinstitute.org/gsea/msigdb
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Table C.2: Mouse olfactory epithelium dataset. The top 20 significant GO sets for the
827 genes that were found to be significant in all pairwise comparisons between the three
trajectories using the tradeSeq patternTest procedure. The “Overlap” column records the
number of genes, out of the 827 top genes, that are included in a particular gene set. The
significance of a gene set is measured by a q-value, obtained by assessing the significance of
the overlap of the DE genes with the gene set, as obtained from the Molecular Signatures
Database v6.2 (http://software.broadinstitute.org/gsea/msigdb).

Gene set Overlap Size q-value
1. cell cycle 121 1316 3.97E-57
2. cell cycle process 108 1081 2.66E-54
3. mitotic cell cycle 86 766 1.16E-46
4. establishment of localization in cell 108 1676 2.37E-36
5. cell division 59 460 1.33E-34
6. chromosome organization 79 1009 1.3E-31
7. cellular response to stress 97 1565 3.59E-31
8. organonitrogen compound metabolic process 104 1796 3.59E-31
9. regulation of cell cycle 75 949 2.53E-30
10. organelle fission 54 496 3.91E-28
11. cytoskeleton organization 68 838 4.64E-28
12. microtubule based process 55 522 4.9E-28
13. cellular catabolic process 84 1322 1.31E-27
14. regulation of cell differentiation 89 1492 2.03E-27
15. neurogenesis 86 1402 2.68E-27
16. catabolic process 97 1773 3.09E-27
17. mitotic nuclear division 46 361 6.11E-27
18. positive regulation of molecular function 96 1791 2.65E-26
19. protein complex subunit organization 88 1527 3.81E-26
20. positive regulation of gene expression 94 1733 3.94E-26

http://software.broadinstitute.org/gsea/msigdb
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Table C.3: Mouse olfactory epithelium dataset. The top 20 significant GO sets based on
the unique 1, 994 genes that were only discovered with the ZINB-tradeSeq analysis, and not
the ZINB-edgeR analysis, when comparing mean expression between the endpoints of the
lineages using the tradeSeq diffEndTest procedure. The “Overlap” column records the
number of genes, out of the 1, 994 top genes, that are included in a particular gene set. The
significance of a gene set is measured by a q-value, obtained by assessing the significance of
the overlap of the DE genes with the gene set, as obtained from the Molecular Signatures
Database v6.2 (http://software.broadinstitute.org/gsea/msigdb).

Gene set Overlap Size q-value
1. phosphate containing compound metabolic process 225 1977 3.42E-53
2. protein localization 211 1805 8.95E-52
3. regulation of anatomical structure morphogenesis 154 1021 5.52E-51
4. positive regulation of molecular function 207 1791 3.41E-50
5. positive regulation of catalytic activity 186 1518 1.59E-48
6. regulation of multicellular organismal development 193 1672 1.34E-46
7. single organism biosynthetic process 169 1340 1.29E-45
8. lipid metabolic process 153 1158 1.35E-43
9. small molecule metabolic process 193 1767 3.5E-43
10. positive regulation of biosynthetic process 194 1805 1.95E-42
11. positive regulation of gene expression 189 1733 3.31E-42
12. regulation of protein modification process 187 1710 6.25E-42
13. positive regulation of response to stimulus 199 1929 4.54E-41
14. cellular macromolecule localization 154 1234 5.03E-41
15. regulation of phosphorus metabolic process 178 1618 3.29E-40
16. catabolic process 187 1773 7.94E-40
17. intracellular signal transduction 174 1572 1.2E-39
18. regulation of response to stress 167 1468 1.59E-39
19. regulation of transcription 187 1784 1.59E-39
from rna polymerase ii promoter
20. tissue development 170 1518 2.08E-39

http://software.broadinstitute.org/gsea/msigdb
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Table C.4: Mouse olfactory epithelium dataset. The top 20 significant GO sets based on
the 84 transcription factors that were discovered with earlyDETest around the branching
of the OE trajectory. The “Overlap” column records the number of genes, out of the 1, 994
top genes, that are included in a particular gene set. The significance of a gene set is
measured by a q-value, obtained by assessing the significance of the overlap of the DE
genes with the gene set, as obtained from the Molecular Signatures Database v6.2 (http:
//software.broadinstitute.org/gsea/msigdb).

Gene set Overlap Size q-value
1. regulation of transcription 68 1784 1.01E-77
from RNA Pol. II promoter
2 . positive regulation of gene expression 57 1733 6.09E-58
3. positive regulation of biosynthetic process 57 1805 4.12E-57
4. positive regulation of transcription 48 1004 1.06E-54
from RNA Pol. II promoter
5. transcription from RNA Pol. II promoter 40 724 1.01E-46
6. negative regulation of transcription 34 740 3.94E-36
from RNA Pol. II promoter
7. negative regulation of gene expression 40 1493 2.33E-34
8. negative regulation of 40 1517 3.8E-34
nitrogen compound metabolic process
9. tissue development 33 1518 1.42E-24
10. epithelium development 25 945 7.63E-20
11. muscle structure development 19 432 1.24E-18
12. epithelial cell differentiation 19 495 1.46E-17
13. regulation of cell differentiation 27 1492 1.55E-17
14. cell fate commitment 15 227 4.56E-17
15. embryo development 22 894 1.18E-16
16. cell development 25 1426 8.58E-16
17. neuron differentiation 20 874 2.14E-14
18. neurogenesis 23 1402 9.12E-14
19. positive regulation of cell differentiation 19 823 1.07E-13
20. positive regulation of developmental process 21 1142 2.11E-13

http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
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Figure C.1: Mouse bone marrow dataset: The NB-GAM is robust to the number of knots
k. Gaussian kernel density plot of the percentage of deviance explained by the NB-GAM
applied to each of the genes in the dataset from Paul et al. [108], with number of knots k
ranging from 3 to 14. The distributions are nearly identical for the different numbers of
knots, except for 3 knots, suggesting we might want to select more than 3 knots for this
dataset.
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Figure C.2: Mouse bone marrow dataset: Outlying dendritic cells and eosinophils in UMAP
space for TI with Monocle 3.
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Figure C.3: Bifurcating simulation scenario: GPfates only recovers meaningful trajectories
if the true pseudotime is provided as input. Example of a bifurcating dataset from the dyn-
verse framework. The dataset is represented in low-dimensional space using Gaussian latent
variable models as implemented in GPfates. Cells are colored according to their assign-
ment probability to the blue lineage. Trajectories inferred by GPfates are shown when (a)
pseudotime is estimated by GPfates and (b) true pseudotime is provided as input to GPfates.
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Figure C.4: Cyclic simulation scenario: Selecting the optimal number of knots k using the
AIC. Selecting the optimal number of knots, k ∈ {3, . . . , 10}, using the Akaike information
criterion (AIC) for a random subset of 250 genes, as implemented in the evaluateK function
in tradeSeq. The left panel shows boxplots (center line, median; box limits, upper and lower
quartiles; whiskers, 1.5× interquartile range) of the differences in AIC value with respect to
the gene-wise average AIC for the range of k. The middle panels show the evolution of the
average AIC (second panel) and relative AIC (third panel) across k. The relative AIC is
defined as the relative change with respect to the average AIC at k = 3. The barplot in the
right panel shows the number of genes which achieve their lowest AIC value for a given k.
Here, only genes for which the AIC value varied substantially enough across k (i.e., range in
AIC greater than 2) are considered.
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Figure C.5: Cyclic simulation scenario: Monocle 3 inferred trajectories for each of the 10
simulated datasets. The first two components from UMAP dimensionality reduction, as
implemented in Monocle 3, are plotted along with the Monocle 3 inferred trajectories. Cells
are colored according to a Louvain clustering implemented in Monocle 3. Monocle 3 often
fails to recover the cyclic pattern.
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Figure C.6: Cyclic simulation scenario: PCA plots with slingshot inferred trajectory and
FDP-TPR performance curves for trajectory-based differential expression analysis for each
of the 10 simulated datasets. Monocle 3 errored on three datasets. edgeR assoc is the edgeR-
based version of the associationTest.
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Figure C.7: Simulation study results, including edgeR-based associationTest for the cyclic
scenario. PCA plots for the (a) cyclic, (b) bifurcating, and (c) multifurcating simulated
trajectories. The plotting symbol for each cell is colored according to its true pseudotime;
trajectories (in black) were inferred by princurve in (a) and slingshot in (b) and (c). (d-f)
Scatterplot of the true positive rate (TPR) vs. the false discovery rate (FDR) or false dis-
covery proportion (FDP) for various DE methods applied to the simulated datasets. Panel
(d) displays the average performance curves of DE methods across seven out of 10 cyclic
datasets for which all DE methods worked (Monocle 3 errored on three datasets). The
associationTest from tradeSeq has superior performance for discovering genes whose ex-
pression is associated with pseudotime, as compared to Monocle 3. When investigating differ-
ential expression between lineages of a trajectory, the patternTest of tradeSeq consistently
outperforms the diffEndTest across all three TI methods, since it is capable of comparing
expression across entire lineages. Panel (e) displays the average performance curves across
the three bifurcating datasets where all TI methods recovered the correct topology. Here,
all tradeSeq patternTest workflows, tradeSeq slingshot end, and edgeR have similar perfor-
mance and all are superior to BEAM, ImpulseDE2, and GPfates. Note that the performance
of tradeSeq Monocle2 end deteriorates as compared to tradeSeq slingshot end; the curve for
tradeSeq GPfates end is not visible in this panel due to its low performance. For the multifur-
cating dataset of panel (f), tradeSeq slingshot has the highest performance, closely followed
by tradeSeq Monocle2 and edgeR. Source data are provided as a Source Data file.



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES FOR CHAPTER 3 179

Figure C.8: Bifurcating simulation scenario: Selecting the optimal number of knots k using
the AIC. Selecting the optimal number of knots, k ∈ {3, . . . , 10}, using the AIC for a random
subset of 250 genes, as implemented in the evaluateK function in tradeSeq. The left panel
shows boxplots (center line, median; box limits, upper and lower quartiles; whiskers, 1.5×
interquartile range) of the differences in AIC value with respect to the gene-wise average
AIC for the range of k. The middle panels show the evolution of the average AIC (second
panel) and relative AIC (third panel) across k. The relative AIC is defined as the relative
change with respect to the average AIC at k = 3. The barplot in the right panel shows the
number of genes which achieve their lowest AIC value for a given k. Here, only genes for
which the AIC value varied substantially enough across k (i.e., range in AIC greater than 2)
are considered.



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES FOR CHAPTER 3 180

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●1 2

−5

0

5

10

−10 −5 0 5 10

Component 1

C
om

po
ne

nt
 2

milestone ● ● ● ●M1 M2 M3 M4

Dataset 1

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●1

−5

0

−20 −10 0 10

Component 1

C
om

po
ne

nt
 2

milestone ● ● ● ●M1 M2 M3 M4

Dataset 2

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

−5

0

5

−10 0 10

Component 1

C
om

po
ne

nt
 2

milestone ● ● ● ●M1 M2 M3 M4

Dataset 3

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

1 2

3

−5

0

5

−15 −10 −5 0 5 10

Component 1

C
om

po
ne

nt
 2

milestone ● ● ● ●M1 M2 M3 M4

Dataset 4

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●1

−5

0

5

−10 0 10

Component 1

C
om

po
ne

nt
 2

milestone ● ● ● ●M1 M2 M3 M4

Dataset 5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−5.0

−2.5

0.0

2.5

5.0

−10 0 10

Component 1

C
om

po
ne

nt
 2

milestone ● ● ● ●M1 M2 M3 M4

Dataset 6

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●1

−4

0

4

−10 0 10

Component 1

C
om

po
ne

nt
 2

milestone ● ● ● ●M1 M2 M3 M4

Dataset 7

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●1

0

5

−10 0 10

Component 1

C
om

po
ne

nt
 2

milestone ● ● ● ●M1 M2 M3 M4

Dataset 8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5.0

−2.5

0.0

2.5

5.0

−10 0 10

Component 1

C
om

po
ne

nt
 2

milestone ● ● ● ●M1 M2 M3 M4

Dataset 9

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

1
2

0

5

10

−15 −10 −5 0 5 10

Component 1

C
om

po
ne

nt
 2

milestone ● ● ● ●M1 M2 M3 M4

Dataset 10

Figure C.9: Bifurcating simulation scenario: Monocle 2 inferred trajectories for each of the
10 the simulated datasets. Cells are plotted in two-dimensional space using DDRTree dimen-
sionality reduction [115]. The simulated trajectory starts at milestone 1 and then continues
into milestone 3, generating the two lineages that consist of milestone 2 and milestone 4.
The trajectory is correctly recovered in, for example, Dataset 1 (top left panel). Dataset 4,
on the other hand, wrongly assigns milestone 2 and milestone 4 to the same lineage, hence
failing to recover the true bifurcation point.
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Figure C.10: Bifurcating simulation scenario: GPfates inferred trajectories for each of the
10 simulated datasets. Two-dimensional representation of the datasets for the bifurcating
simulation scenario (dynverse toolbox) using Gaussian latent variable models, as implemented
in GPfates. Cells are colored according to their assignment probability to the blue lineage.



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES FOR CHAPTER 3 182

0.00

0.25

0.50

0.75

1.00

0.01 0.05 0.10 0.50 1.00

FDR

TP
R

All 10 datasets

tradeSeq_slingshot_end

tradeSeq_GPfates_end

tradeSeq_Monocle2_end

tradeSeq_slingshot_pattern

tradeSeq_GPfates_pattern

tradeSeq_Monocle2_pattern

BEAM

GPfates

edgeR

Figure C.11: Bifurcating simulation scenario: Mean FDR-TPR performance curves for
trajectory-based differential expression analysis across all 10 simulated datasets. ImpulseDE2
is not plotted since we were unable to run it on several datasets.
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Figure C.12: Bifurcating simulation scenario: FDP-TPR performance curves for trajectory-
based differential expression analysis for each of the 10 simulated datasets. Note that the
BEAM and tradeSeq Monocle2 methods are not plotted for Datasets 3, 6, and 9, since Mon-
ocle2 failed to discover a branching trajectory for those datasets. We were unable to run
ImpulseDE2 on datasets 4, 5, 6, 9, and 10 due to errors.
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Figure C.13: Bifurcating simulation scenario: FDP-TPR performance curves for trajectory-
based differential expression analysis based on the simulation ground truth. To allow a com-
parison with the BEAM approach, which fits smoothers using 3 knots, we fitted the tradeSeq
NB-GAM once with 3 knots and once with 4 knots. We found the latter to provide an
optimal fit in terms of AIC. The tradeSeq patternTest is unaffected by the number of
knots, hence the performance curves overlap. tradeSeq consistently outperforms both BEAM
and ImpulseDE2 in all datasets. Note that we did not include the GPfates method in this
evaluation, since we were unable to provide the simulation ground truth as input to the
method.
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Figure C.14: Multifurcating simulation scenario: GPfates inferred trajectory on one simulated
dataset. Two-dimensional representation of the dataset for the multifurcating simulation
scenario using Gaussian latent variable models, as implemented in GPfates. Cells are colored
according to their assignment probability to the blue lineage.

Figure C.15: Multifurcating simulation scenario: Selecting the optimal number of knots k
using the AIC. Selecting the optimal number of knots, k ∈ {3, . . . , 10}, using the AIC for a
random subset of 500 genes, as implemented in the evaluateK function in tradeSeq. The left
panel shows boxplots (center line, median; box limits, upper and lower quartiles; whiskers,
1.5× interquartile range) of the differences in AIC value with respect to the gene-wise average
AIC for the range of k. The middle panels show the evolution of the average AIC (second
panel) and relative AIC (third panel) across k. The relative AIC is defined as the relative
change with respect to the average AIC at k = 3. The barplot in the right panel shows the
number of genes which achieve their lowest AIC value for a given k. Here, only genes for
which the AIC value varied substantially enough across k (i.e., range in AIC greater than 2)
are considered.
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Figure C.16: Computational time benchmark for the various tests implemented in tradeSeq.
Datasets of increasing size (in terms of number of cells) were simulated, each consisting of
5, 000 genes. The fitGAM function of tradeSeq was ran with 4 knots. The computational time
required to run the tests for all genes is benchmarked using the microbenchmark package,
with 10 iterations each. patternTest and earlyDETest are slower than associationTest,
diffEndTest, and startVsEndTest, but all take under 30 seconds to run. The time require-
ment is constant with respect to the number of cells.
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Figure C.17: Mouse bone marrow dataset: Selecting the optimal number of knots k using the
AIC. Selecting the optimal number of knots, k ∈ {3, . . . , 20}, using the AIC for two random
subsets (top and bottom rows represent one subset each) of 250 genes, as implemented in
the evaluateK function in tradeSeq. The left panel shows boxplots (center line, median;
box limits, upper and lower quartiles; whiskers, 1.5× interquartile range) of the differences
in AIC value with respect to the gene-wise average AIC for the range of k. The middle
panels show the evolution of the average AIC (second panel) and relative AIC (third panel)
across k. The relative AIC is defined as the relative change with respect to the average AIC
at k = 3. The barplot in the right panel shows the number of genes which achieve their
lowest AIC value for a given k. Here, only genes for which the AIC value varied substantially
enough across k (i.e., range in AIC greater than 2) are considered.
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Figure C.18: Mouse bone marrow dataset: tradeSeq recovers markers for the progenitor cell
population. This figure shows the six most significant genes when testing for differential
expression between the progenitor cell type (i.e., starting point of the smoother) and differ-
entiated cell types (i.e., endpoint of the smoother) for the data from Paul et al. [108] using
tradeSeq. Yellow denotes low expression, while red denotes high expression.
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Figure C.19: Mouse bone marrow dataset: Gene set enrichment plots for the erythrocyte
gene set from Graaf et al. [47], for three differential expression methods: tradeSeq, BEAM,
and edgeR. Enrichment is determined for each method based on its respective ranking of
the genes according to evidence for differential expression. Genes that are contained in the
erythrocyte gene set are denoted with vertical lines at the bottom of each figure, and the
green curve represents the gene enrichment score along the gene rankings. tradeSeq has
the highest enrichment score, as determined by the dashed red line, since genes that are
related to erythrocytes predominantly have high rankings for differential expression, while
the distribution of erythrocyte genes seems more uniform with, for example, the BEAM
approach.
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Figure C.20: Mouse bone marrow dataset: Stability of gene clustering methods across boot-
strap samples. Boxplots (center line, median; box limits, upper and lower quartiles; whiskers,
1.5× interquartile range) of the clustering stability are shown. The stability of gene cluster-
ing methods is evaluated using non-parametric bootstrapping of the cells (for computational
reasons, we restricted this evaluation to six bootstrap samples). We consider all genes found
to be significant at a 5% FDR level by patternTest for the dataset of Paul et al. [108].
For each bootstrap sample, cells are sampled at random with replacement, the NB-GAM is
refit using tradeSeq, and genes are clustered based on the tradeSeq fitted values, using both
partitioning around medoids (PAM) and RSEC. We compare RSEC against PAM since the
latter is also used in Monocle for gene clustering. For RSEC, we evaluate both clustering
on the fitted values directly (method ‘RSEC noDR’ in the figure) as well as clustering af-
ter dimensionality reduction with principal component analysis (the default for RSEC, as
implemented in clusterExperiment, with automatic determination of the number of principal
components; method ‘RSEC’ in the figure;). The stability of the clustering is evaluated by
comparing the bootstrapped clusterings with the original clustering based on the full dataset
using the adjusted Rand index (ARI) [58].
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Figure C.21: Olfactory epithelium dataset: Selecting the optimal number of knots k using the
AIC. Selecting the optimal number of knots, k ∈ {3, . . . , 30}, using the AIC for two random
subsets (top and bottom rows represent one subset each) of 1000 genes, as implemented in
the evaluateK function in tradeSeq. The left panel shows boxplots (center line, median;
box limits, upper and lower quartiles; whiskers, 1.5× interquartile range) of the differences
in AIC value with respect to the gene-wise average AIC for the range of k. The middle
panels show the evolution of the average AIC (second panel) and relative AIC (third panel)
across k. The relative AIC is defined as the relative change with respect to the average AIC
at k = 3. The barplot in the right panel shows the number of genes which achieve their
lowest AIC value for a given k. Here, only genes for which the AIC value varied substantially
enough across k (i.e., range in AIC greater than 2) are considered.
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Figure C.22: Mouse olfactory epithelium dataset: Cell cycle genes in the neuronal lineage.
The figure illustrates the enrichment of cell cyle genes in lists of genes whose expression
was found to be most significantly associated with the neuronal lineage according to the
associationTest procedure in tradeSeq. The list of cell cycle related genes was obtained
from the Mouse Genome Informatics (MGI) website at http://www.informatics.jax.org/
go/term/GO:0007049. On the x-axis, genes are ordered according to their significance based
on associationTest. The y-axis shows the ratio of the number of cell cycle genes among
a set of top significant genes relative to the number of cell cycle genes one would expect by
chance (i.e., if cell cycle genes were randomly found DE/sampled). If we let C denote the
proportion of genes associated with the cell cycle according to the MGI database, then, under
the hypothesis that cell cycle genes are randomly discovered as DE, the expected number of
cell cycle genes in the list of top N genes is NC. The relative number that is plotted on the
y-axis is then the ratio between the number of cell cycle genes discovered by tradeSeq for a
given top list of size N and NC.

http://www.informatics.jax.org/go/term/GO:0007049
http://www.informatics.jax.org/go/term/GO:0007049
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Figure C.23: Mouse olfactory epithelium dataset: Top six differentially expressed genes as
identified by a ZINB analysis with tradeSeq patternTest. Every lineage is represented by
a smooth function of gene expression along pseudotime. The cells assigned to a particular
lineage based on the slingshot weights are represented with the same color as the lineage.
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Figure C.24: Mouse olfactory epithelium dataset: Trajectory with knots. Three-dimensional
PCA plot of the scRNA-seq data from Fletcher et al. [44], where cells are colored according
to their cluster membership as defined in the original paper (see Methods). The simultaneous
principal curves for the lineages inferred by slingshot are displayed. The numbers on each
lineage specify the knot points used to fit the ZINB-GAM in tradeSeq. The first branching
event occurs between knots 1 and 3.
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Figure C.25: Mouse olfactory epithelium dataset: UpSet plot for earlyDETest applied
around the first branching point to each pair among the three lineages. Left panel: Barplot of
the number of DE genes for each contrast/pair (5% nominal FDR level). Top panel: Barplot
of the number of DE genes for one, two of the three, or all three contrasts. Center panel:
Contrasts being considered for the top panel. For example, the first column shows that 526
genes are DE for both the Microv vs. Sust contrast and the Neur. vs. Sust contrast.



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES FOR CHAPTER 3 196

Figure C.26: Adipocyte differentiation dataset: Selecting the optimal number of knots k using
the AIC. Selecting the optimal number of knots, k ∈ {3, . . . , 10}, using the AIC for a random
subset of 200 genes, as implemented in the evaluateK function in tradeSeq. The left panel
shows boxplots (center line, median; box limits, upper and lower quartiles; whiskers, 1.5×
interquartile range) of the differences in AIC value with respect to the gene-wise average
AIC for the range of k. The middle panels show the evolution of the average AIC (second
panel) and relative AIC (third panel) across k. The relative AIC is defined as the relative
change with respect to the average AIC at k = 3. The barplot in the right panel shows the
number of genes which achieve their lowest AIC value for a given k. Here, only genes for
which the AIC value varied substantially enough across k (i.e., range in AIC greater than 2)
are considered.
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Figure C.27: Adipoyte differentiation dataset: Inferred trajectory. The scRNA-seq data are
plotted in 2D UMAP space, and each cell is colored according to its cluster membership
as derived by k-means clustering with k = 6 clusters. The black solid line represents the
trajectory as estimated by slingshot.
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Figure C.28: Adipocyte differentiation dataset: Top markers for progenitor cell population.
The scRNA-seq data are plotted in 2D UMAP space, and each cell is colored according
to the expression of one of six genes (the expression range is divided into 4 bins, where
blue corresponds to low expression and red corresponds to high expression). The top row
corresponds to two marker genes, Dpp4+ and Wnt2, from the original manuscript [95]. Other
plots are top genes identified with the startVsEndTest procedure from tradeSeq.
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Figure C.29: Adipocyte differentiation dataset: Genes upregulated in the adipocyte precursor
stage and a single differentiated cell type. The scRNA-seq data are plotted in 2D UMAP
space, and each cell is colored according to the expression of one of two genes (the expression
range is divided into 4 bins, where blue corresponds to low expression and red corresponds
to high expression).



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES FOR CHAPTER 3 200

Figure C.30: Adipocyte differentiation dataset: Genes sporadically upregulated across the
entire lineage for a single differentiated cell type. The scRNA-seq data are plotted in 2D
UMAP space, and each cell is colored according to the expression of one of two genes (the
expression range is divided into 4 bins, where blue corresponds to low expression and red
corresponds to high expression).
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Figure C.31: Mouse bone marrow dataset: UpSet plot for startVsEndTest, for multiple
assignments of cells to lineages. Ten random multinomial assignments of cells to lineages are
performed and denoted with ‘iter.1’ to ‘iter.10’. Left panel: Barplot of the number of DE
genes for each assignment (5% nominal FDR level). Top panel: Barplot of the number of DE
genes in common for various combinations of the 10 assignments. Center panel: Assignments
being considered for the top panel. Only the 20 combinations with the largest number of
common genes are shown in the figure.
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Appendix D

Supplementary Figures for chapter 4

Simulations

Figure D.1: Simulation example. Regulator networks for the (a.) two-lineage and (b.)
three-lineage trajectories.
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Figure D.2: Results on the third type of dataset. For all values of m ∈ {.5, .8, .9, .95, 1}, we
generate null datasets with two lineages and three conditions and we compute the adjusted
p-values of all tests that can handle 3 conditions. The distributions of p-values are then
displayed. m = 1 is negative (no effect), while m < 1 is positive (some effect) with smaller
values (toward the left) representing stronger effect.

TCDD
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Figure D.3: TCDD dataset [100]: Differential topology and differential progression. After
normalization and projection on a reduced-dimensional space, the cells can be represented,
colored either by treatment label (a.), cell type (b.), or batch (c.). Using the treatment
label and the reduced-dimensional coordinates, an imbalance score is computed and dis-
played (d.). The diffTopoTest rejects the null and separate trajectories are fitted for each
condition (e.). After mapping the lineages, there is also differential progression: the pseu-
dotime distribution along the trajectory are not identical (f.) and we indeed reject the null
using the diffProgressionTest.
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Figure D.4: TCDD dataset [100]: Differential expression. The tradeSeq gene expression
model is fitted using the trajectory computed with slingshot. Differential expression between
conditions is assessed using the conditionTest and genes are ranked according to the test
statistics. The genes with the highest (a.), second highest (b.), and smallest (c.) test
statistics are displayed. After adjusting the p-values to control the FDR at a nominal level
of 5%, we display genes in both conditions using a pseudocolor image (d.).
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KRAS

Figure D.5: KRAS dataset [175]: Differential differentiation.
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Figure D.6: KRAS dataset [175]: Differential expression. The tradeSeq gene expression
model is fitted using the trajectory computed with slingshot. Differential expression between
conditions is assessed using the conditionTest and genes are ranked according to the test
statistics. The genes with the highest (a.), second highest (b.), and smallest (c.) test
statistics are displayed. Focusing on the first lineage, we select all differentially expressed
genes in that lineage after adjusting the p-values to control the FDR at a nominal level of
5%. We display the genes for all three conditions using a pseudocolor image (d.) along this
first lineage.
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Supplementary Figures for chapter 5
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Figure E.1: Finite numbers of possible p-values (log scale) for a fixed value of n1 = 50 and
xS = 64. Using the notation from table 5.1, with J = 1, n1 = 50, n = 100 and xS = 64, the
p-value of the χ2 test is computed for all possible values of aS . Since there are only a finite
number of possible aS values, there are a finite number of possible p-values, and therefore a
smallest one. This minimal p-value can be computed from xS , n1 and n alone and is ∼ 10−15
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Figure E.2: Minimum p-value as a function of xS for fixed values of n1 = 25 and n = 100.
Using the notation from table 5.1, with J = 1, n1 = 25, n = 100, the minimal p-value p∗(S)
of the χ2 test is computed for all possible values of xS . For xS ≥ max(n1, n2), the minimal
p-value is strictly increasing. If we reach that stage, we can prune the graph and stop the
exploration in that direction. Indeed, if S ′ ⊇ S then xS′ ≥ xS . So if p∗(S) > α

k
, we know

that p∗(S ′) > α
k

without computing it.
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