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Abstract 

Urbanization, its Exposure to Environmental Hazards, and Equity in Adaptation Programs  

by 

Yang Ju 

Doctor of Philosophy in Landscape Architecture and Environmental Planning 

University of California, Berkeley 

Professor John D. Radke, Chair 

 

Urban areas are increasingly exposed to weather-related environmental hazards under climate 

change, and equity concerns exist in adaptation and mitigation programs for these exposures and 

their consequences. To address these issues above, we used data-driven approaches to investigate 

three unique cases. We first developed a novel, cost-effective, and spatially-explicit classification 

of urbanization trends over time, using time-series nighttime light remote sensing images and 

unsupervised classification, in mainland China between 1992 and 2013. We identified five 

temporal typologies of urbanization, namely stable urban activity, high-level steady growth, 

acceleration, low-level steady growth, and fluctuation. Our classification characterizes distinct 

urbanization patterns over time and can be applied to environmentally sensitive and hazard-prone 

areas where monitoring of urbanization is critical. Next, we perform a multitemporal and multi-

scenario projection of exposure to flooding, caused by sea level rise and storm surge, in the 

highly urbanized San Francisco Bay Area. We found increased uncertainty in exposure over time 

and in scenarios with higher greenhouse gas concentrations. Such elevated uncertainty suggests 

that stakeholders should employ adaptation strategies that are no-regret, reversible, and flexible, 

and that regulators may explicitly require a long-term planning horizon for adaptation programs 

and new developments. Finally, we investigated the allocation of a widely-adopted adaptation 

and mitigation program, clean vehicle rebates, from two major policy programs in California. 

We evaluated rebate allocation rates with respect to community characteristics including 

socioeconomic and environmental disadvantages, household income, racial and ethnical 

composition, and ambient air pollution. We found that when rebate assignment and amount were 

only based on vehicle technology and did not consider the varied socioeconomic backgrounds of 

potential applicants, rebate allocation rates were higher in advantaged, wealthier communities, 

and communities with intermediate levels of nitrogen dioxide concentration, but the rates were 

lower in communities with higher percentages of Hispanics and Non-Hispanic Blacks. After 

introducing an income cap, expanded vehicle eligibility, and income- and geography-tiered 

rebate amounts, rebate allocation rates increased in communities with lower-household income, 

higher percentages of Hispanics, and slightly higher nitrogen dioxide concentration. The findings 

of this study implied the need for and effectiveness of equity-related policy designs to spread the 

benefits of adaptation and mitigation programs to more diverse populations. In all, these studies 

seek to engage a broader conversation about environmental and societal challenges in urban 
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areas under climate change, as well as how data-driven approaches can reveal the underlying 

processes of these challenges and inform better policy and decision-making. 
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Chapter 1. Introduction 

Urban areas are the home to most of the world’s population, development, and economic 

activities, which are exposed to weather-related environmental hazards including flooding, heat 

waves, and drought. Such exposure is likely to increase due to climate change that elevates the 

extent, frequency, and severity of those hazards. At the same time, socioeconomically 

disadvantaged populations likely undergo more exposure to these hazards and have limited 

capacity to cope with and recover from them. Adaptation and mitigation programs have been 

established to cope with anticipated impacts of environmental hazards. However, if a program is 

‘one size fits all’ or does not consider the varied socioeconomic status of its potential 

participants, the program may disproportionally favor advantaged participants. Equity-related 

policy designs should and often can allocate the program’s benefits to more diverse populations. 

Research challenges remain in: (1) cost-effective monitoring of urbanization over time 

with fine resolution data, so that planners and decision-makers can assess the growing 

environmental footprint of urban areas and measure its potential exposure to environmental 

hazards; (2) projecting urban exposure to weather-related environmental hazards under distinct 

climate scenarios over the long term to facilitate long-term planning, and understanding the 

implications for public and private-sector stakeholders with respect to uncertainty and long-term 

projection; and (3) evaluating how specific policy design elements can improve equity of policy 

programs, which may often be ‘one size fits all’ and likely favor socioeconomically advantaged 

population groups. This dissertation seeks to address these challenges. The dissertation also 

discuss how data-driven approach improve our understandings about the underlying processes of 

these challenges and these understandings can inform decision-making.  

1.1 Urbanization and weather-related environmental hazards 
Urbanization, a process where population, economic activities, and land use shift from 

rural to urban areas, is an essential component of global environmental change (Buhaug and 

Urdal 2013; Qian Zhang and Seto 2013).The proportion of the global population living in urban 

areas has increased from 30% (~0.7 billon) in 1950 to 54% (~3.9 billon) in 2014, and is 

estimated to reach 66% (~6.3 billon) in 2050 (United Nations, 2014). To some extent, while 

urbanization facilitates economic growth and can improve quality of life (Turok & McGranahan, 

2013), yet this process is also associated with undesired environmental consequences including 

pollution, degraded ecosystem functions, increased exposure to environmental hazards (e.g. 

flooding, wildfire, and heatwaves), and climate change (Doygun & Alphan, 2006; Hollis, 1975; 

Kalnay & Cai, 2003; Wu, 2008).   

Weather-related environmental hazards including flooding, heat waves, and drought 

affect urban areas (Guerreiro, Dawson, Kilsby, Lewis, & Ford, 2018; Hunt & Watkiss, 2010). 

Exposure to these hazards is because of: (1) urbanization often originates and re-iterates in 

hazard-prone regions (e.g. coastal areas and flood plains); (2) the concentration of people, 

economic activities, and physical infrastructures; (3) environmental degradation often 

accompanies urbanization; and (4) urban systems being less self-sufficient than rural areas, as 

urban areas are reliant on rural areas for input of resources (Pelling, 2003). Many cities originate 

in flood plains and rebuild themselves in the same areas after major floods, to take advantage of 

water-related benefits including low-cost transportation, provision of natural resources, and 

amenities (De Sherbinin, Schiller, & Pulsipher, 2007; McDermott, Michaels, & Rauch, 2015; 

UNU-IHDP, 2015). Heat waves in urban areas are exacerbated by urban heat islands, a 
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phenomenon where urban areas have higher temperatures than adjacent rural areas (Ziter, 

Pedersen, Kucharik, & Turner, 2019). Urban heat islands result from: (1) the prevalence of 

building materials that absorb solar radiation during the day and re-radiation at night (Rizwan, 

Dennis, & Liu, 2008; Yamaguchi & Ihara, 2020); (2) lack of greenspaces providing 

evapotranspiration and shading, which lead to cooler temperature than the surrounding built 

areas (Li & Zhou, 2019; Ziter et al., 2019); and (3) presence of anthropogenic heat sources 

including industrial land use, air conditioning, and vehicle exhaust (Yue, Qiu, Xu, Xu, & Zhang, 

2019). Drought affects urban areas by disrupting transportation routes, reducing water and power 

supplies, which can adversely affect local economies and increase poverty (Güneralp, Güneralp, 

& Liu, 2015; Rodriguez-Oreggia, Fuente, Torre, & Moreno, 2013).  

1.2 Increased urban exposure to environmental hazards under climate 

change 
Urban areas are more likely be exposed to weather-related environmental hazards in the 

future, due to both anthropogenic climate change and urban expansion. Climate change increases 

the spatial extent, temporal frequency, and intensity of present-day weather-related 

environmental hazards. A European-wide study of 571 cities found that the likelihood of 

increased exposure to heat waves, flooding and drought would be elevated for nearly all cities, 

under climate scenarios characterized by high greenhouse gas (GHG) emissions (Representative 

Concentration Pathway (RCP) 8.5) (Guerreiro et al., 2018). At the same time, urban areas are 

projected to increase in currently hazard-prone areas: from 2000 to 2030, global urban land in 

current high-frequency flood zones has been projected to increase from 195,493 km2 (30% of 

global urban land) to 723,167 km2 (39%), and in current drylands will increase from 173,200 

km2 (27%) to 497,825 km2 (27%) (Güneralp et al., 2015).  

Researchers and governments have been working to characterize and project urban areas’ 

increased exposure to weather-related environmental hazards under different climate change 

scenarios. Studies have evaluated climate change’s impact on urban areas with respect to 

different populations (Kaźmierczak & Cavan, 2011; Nutters, 2012; Martinich, Neumann, 

Ludwig, & Jantarasami, 2013; KC, Shepherd, & Gaither, 2015; Bickers, 2014), physical 

infrastructure (Biging, Radke, & Lee, 2012; Demirel, Kompil, & Nemry, 2015; Radke et al., 

2018, 2017), emergency service (Lang, Radke, Chen, & Chan, 2016), and the natural 

environment (Schile et al., 2014; Zhu, Xi, Hoctor, & Volk, 2015). Cities have been updating 

their master, strategic, and action plans to adapt to climate change and mitigate the impact of 

weather-related environmental hazards (Jabareen, 2015). Governments have also established 

various policy programs to reduce greenhouse gas (GHG) and air pollutants emissions, by 

promoting transit-oriented and mixed land use, and to aid socioeconomically and 

environmentally disadvantaged populations. For example, through the auspices of the Global 

Warming Solutions Act (AB 32), the California’s Air Resource Board implements programs to 

reduce GHG emission, improve fuel quality, and promote clean vehicle adoption (California Air 

Resource Board, 2019). 

1.3 Equity in climate change mitigation and adaptation programs 
Equity concerns exist in exposure to environmental hazards, and these concerns are likely 

amplified and reinforced under climate change and in adaptation and mitigation programs 

(Department of Economic and Social Affairs, 2016; Reckien et al., 2017; Winsemius et al., 
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2018). Studies show that socioeconomically disadvantaged populations are generally more 

exposed to weather-related environmental hazards including heat waves (Klinenberg, 2015), 

drought (Winsemius et al., 2018), and flooding (Kaźmierczak & Cavan, 2011; Martinich et al., 

2013). Such disproportional exposure pattern is due to that disadvantaged populations are more 

likely to reside in high risk or marginalized areas with lower-quality infrastructure, and limited 

access to social capital and mobilities in anticipation of environmental hazardous events (Pelling, 

2003). 

In addition, marginalized populations may be less likely to benefit from mitigation and 

adaptation programs, particularly when program designs are "one size fits all". The ‘one size fits 

all’ design of many such programs does not consider the varied socioeconomic status of their 

potential participants, therefore the programs may not adequately serve vulnerable groups, or can 

disproportionally favor advantaged participants. Equity-related policy designs can ensure that 

sustainability, resilience and equity goals are met by ensuring a program’s benefits are allocated 

to more diverse populations. For example, the first iteration of a California-wide Clean Vehicle 

Rebate Project assigns a rebate amount based only on vehicle technology, without additionally 

considering potential applicants’ socioeconomic characteristics such as income. One study found 

that higher income communities and communities with fewer Hispanic and non-Hispanic 

African-American populations had higher rebate allocation rates from this Project (Rubin & St-

Louis, 2016). It is both regional and global consensus that equity should be an inherent concern 

in climate change adaptation (California Environmental Protection Agency, 2017; Thomas & 

Twyman, 2005). Specific policy design elements can and should be applied to integrate 

sustainability and equity goals of these programs and promote program benefits to more diverse 

populations. 

1.4 Objectives of this dissertation 
This dissertation engages increased urban exposure to weather-related environmental 

hazards under climate change, and equity challenges in adaptation and mitigation programs. 

Accordingly, we conduct the following three studies using a data-driven and model-based 

empirical approach. 

In study 1 we undertake a novel, cost-effect, and reproducible classification of temporal 

typologies of urbanization in recent history and interpret these typologies with respect to 

economic changes and other relevant transitions. Understanding these temporal typologies is 

critical for informing land use planning in the face of growing urban population and increasing 

environmental footprint of expanding urban regions. Focusing on the rapidly urbanizing 

mainland China, where urban expansion and shrinkage coexist, we classify its large number of 

nighttime light time-series (n=384,849) between 1992-2013 as an example into a small set of 

typologies (n=5), each representing a distinct urbanization trend over time. Nighttime light data 

is retrieved from the DMSP-OLS nighttime light dataset (National Geophysical Data Center, 

2015). We employ K-Means, a widely-adopted unsupervised classification algorithm, to group 

the time-series based on similarity in their main descriptive statistical parameters. The resulting 

groups represent stable urban activity, high-level steady growth, acceleration, low-level steady 

growth, and fluctuation. We specially analyse cities dominated by acceleration and find several 

spatial clusters of this typology at prefecture city and county levels. The formation of these 

clusters is linked to their underlying socioeconomic characteristics and developmental history. 

Using China as an example, this research provides an innovative approach for characterizing 

distinct patterns of urbanization over time in our recent history, particularly in environmentally 



 

4 

 

sensitive and hazard-prone areas where monitoring of urban expansion is critical to avoid 

adverse environmental consequences and potential losses to environmental hazards (Du, He, 

Huang, & Shi, 2018). 

In study 2 we project urban exposure to coastal flooding under various climate change 

scenarios and discuss the implications for stakeholders. In the San Francisco Bay Area, USA, we 

model this region’s exposure of population, land uses, infrastructure (e.g. roads and utilities), and 

emergency responders (e.g. fire stations and hospitals) to worst-case-scenario flooding (as a 

combined effect of storm surge, sea level rise, and tides) projected under 24 distinct climate 

scenarios over five 20-year periods between 2000 and 2100. Uncertainty in the projected 

exposures are analysed and communicated with some infrastructure stakeholders. Our analysis 

shows substantial uncertainty in scenarios with higher greenhouse gas atmospheric 

concentrations and/or over a longer time horizon. We observe an uncertainty-avoidance 

behaviour where stakeholders prefer short-term and more probable results, that are suboptimal 

for long-term land use and infrastructure planning. This implies the need for coastal urban areas 

to cope with climate-related uncertainties and to focus on the long term when developing 

planning strategies and policies for climate change mitigation and adaptation. 

In study 3 we undertake an equity analysis of clean vehicle rebate programs in California. 

To improve air quality and mitigate climate change by reducing greenhouse gas emission, these 

programs are typically funded by governments to incentivize purchase of lower-emission 

vehicles. However, these programs may disproportionally allocate rebates to wealthier 

households, since upfront capital is often required to acquire a vehicle. If these programs are 

“one size fits all” and do not consider the potential socioeconomic barriers to low emission 

vehicle purchases, the programs will likely further exclude lower income households. Using two 

clean vehicle rebate programs in California with varied emphasis on equity, we examine their 

rebate allocation rates with respect to community characteristics, including disadvantage, 

household income, racial and ethnic composition, and concentrations of air pollution. Our 

findings indicate that when rebate assignment and amount is only based on vehicle technology, 

rebates are more allocated to those that are advantaged, the wealthier communities with 

intermediate levels of nitrogen dioxide (NO2) concentration.  We find rebates are less allocated 

to those with higher percentages of Hispanics and Non-Hispanic Blacks. Introducing an income 

cap, expands vehicle eligibility, and income- and geography- tiered rebate amounts, direct 

rebates to communities with lower-household income, higher percentages of Hispanics, and 

slightly higher NO2 pollution. Our findings imply the need and effectiveness of equity-related 

designs to spread benefits of policy programs to more diverse populations.  

Taken together, these studies demonstrate how we can use data-driven approaches to: (1) 

measure urbanization, a process with significant environmental consequences and therefore 

requires close monitoring; (2) project long-term impact of coastal flooding under different 

climate scenarios with substantial uncertainty, which in term posts challenges for urban 

development, mitigation, and adaptation; and (3) demonstrate how we can assess and fine tune 

climate change adaptation and mitigation programs as they unfold, so that the program benefits 

are accessible by diverse groups of population, particularly those are marginalized and 

disadvantaged. 

In conclusion, given rapid global trends in urbanization, as well as future environmental 

and societal challenges under climate change, solutions to a sustainable and socially-just society 

lie in our cities. The studies in this dissertation seek to inform the broader conversation about 

these challenges and solutions. This dissertation also propose that the use of scientific data and 
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models can help us better understand the underlying process of the challenges and solutions 

above, and form the basis for more informed decision-making. 
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Chapter 2. Analysis of urbanization dynamics in mainland China using 

pixel-based nighttime light trajectories from 1992 to 20131 
 

Abstract: Understanding urbanization dynamics, or how intensity of urbanization 

changes over time, is an important basis for urban planning and management, which has 

been investigated using various data-driven approaches. Considering the advantages and 

constraints of different data sources, we use pixel-based, time-series nighttime light 

(NTL) trajectories to characterize urbanization dynamics in mainland China where 

massive urban development has been occurring in recent decades. After pre-processing 

the data, we extracted time-series NTL trajectories for each 1 km by 1 km pixel between 

1992 and 2013 and used the unsupervised k-means classification to identify the major 

typologies of these trajectories as urbanization dynamics based on their main statistical 

parameters. The classification identified five urbanization dynamics, namely, stable urban 

activity, high-level steady growth, acceleration, low-level steady growth, and fluctuation. 

Their distributions and spatial patterns were further summarized and compared among 

different Chinese administrative divisions. We specifically analysed the acceleration 

trajectories that showed rapid transitions from rural to urban, as we considered these 

trajectories as potential indicators for aggressive urbanization. We found several clusters 

at prefecture city and county levels with high proportion of the acceleration and referred 

to the underlying socioeconomic characteristics and developmental history to understand 

how these clusters could had been formed. Through this study, we revealed the dominant 

tendencies of urbanization in China over space and time and developed an analysis 

framework that could be extended to other regions.  

Keywords: urbanization dynamics, nighttime light, time-series trajectory, unsupervised 

classification, spatial pattern 

2.1 Introduction 
Urbanization, a process where population and economy transform from rural to 

urban and land cover changes from natural to predominantly built-up (Buhaug & Urdal, 

2013; Qian Zhang & Seto, 2013), continues to be an important component of global 

environmental change. The United Nations’ 2014 projection showed that 30% of the 

world’s population was urban in 1950, and this number would increase to 66% by 2050 

(United Nations, 2014). Over the next several decades, developing countries and 

countries in Asian and Africa are expected to be the hotspots for population growth and 

urbanization (United Nations, 2014; L. Jiang & O’Neill, 2015). With its significant land 

cover change and high concentration of population and development, urbanization could 

cause unfavourable impacts, including pollution (Doygun & Alphan, 2006; Schetke & 

Haase, 2008), increased flooding (Hollis, 1975; Kalnay & Cai, 2003), changes in climate 

(Kalnay & Cai, 2003), and degraded ecosystem function (Jianguo Wu, 2008; Y. Li, Zhu, 

Sun, & Wang, 2010). Well-informed planning and management should be applied to 

                                                 
1 This chapter is from the journal paper: Ju, Y., Dronova, I., Ma, Q., & Zhang, X. (2017). Analysis 

of urbanization dynamics in mainland China using pixel-based night-time light trajectories from 1992 to 

2013. International Journal of Remote Sensing, 38(21), 6047–6072. 

https://doi.org/10.1080/01431161.2017.1302114 
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urban areas to mitigate these consequences. We argue that to inform the decisions for the 

future, an important step is to understand different forms of urbanization dynamics, or 

how intensity of urbanization changes over time (Qingling Zhang & Seto, 2011), in the 

recent history. Planners and decision-makers can correlate the dynamics with 

socioeconomic factors to find urbanization drivers and areas undergoing non-typical 

transitions and make subsequent planning and management interventions.  

China is playing an important role in global urbanization due to its rapid urban 

development and large urban population. The country has seen a massive transition from 

rural to urban since its economic reform in 1978. At the national level, China’s fraction 

of urban population increased from 17.9% to 52.6% between 1978 and 2012 (Bai, Shi, & 

Liu, 2014), and its urban built-up area expanded from 7438 km2 to 45566 km2 between 

1981 and 2012 (M. Chen, Liu, & Lu, 2015). Even in its present, advanced urbanization 

stage, China was still expected to add 292 million in urban population between 2014 and 

2050, making the country one of the three major sources for the world’s urban population 

growth (United Nations, 2014). At the local level, urbanization rate varies spatially and 

shows a gradient from the east to the west, where the east, particularly the coastal 

regions, are more urbanized (Bai et al., 2014). Because of such variation and different 

underlying socioeconomic drivers, China is expected to manifest different types of 

urbanization dynamics across the country.  

A particular phenomenon, ghost city, has attracted the attention from researchers, 

decision makers, and the public (M. Chen et al., 2015; Woodworth, 2015). Characterized 

by fast development beyond the actual population needs and business speculation, ghost 

city potentially leads to several issues including financial risk and social injustice (M. 

Chen et al., 2015; X.-R. Wang, Hui, Choguill, & Jia, 2015). To our knowledge, there is 

no study to date focusing on measuring the urbanization dynamics during the formation 

of a ghost city. However, since such a city tends to be under fast development within a 

limited period, we assume it is likely to be dominated by urbanization dynamics showing 

rural to urban transformations with a rapid and accelerating speed. Ghost city, along with 

many other urbanization phenomena, need to be better understood by researchers and 

decision makers to make any necessary interventions to the current urbanization process. 

Studying urbanization dynamics provides a basis to understand those phenomena and to 

inform decision making. 

To study urbanization dynamics and urban systems, researchers have relied on 

different types of information, particularly (1) socioeconomic data on population and 

economy, (2) remote sensing-derived data such as land cover and nighttime lights, and 

(3) user generated, location-based social network data such as Twitter and Flickr Photos. 

Socioeconomic data directly reflect urbanization as population and economic change and 

are often available in time-series forms. However, the main limitation is that such data 

are aggregated into coarse administrative divisions, such as city, county, and province, 

which eliminates the finer-scale heterogeneity within the divisions. Urban land cover data 

interpreted from remote sensing images preserve spatial heterogeneity in the form of 

urbanized pixels at finer spatial resolutions, such as 30 meter for a global coverage (Gong 

et al., 2013). With such data from multiple years, it is possible to analyze how individual 

cities expand spatially (Weng, 2002; Xiao et al., 2006; Jat, Garg, & Khare, 2008; Z. Liu, 

He, Zhang, Huang, & Yang, 2012) and how urbanization unfolds at the national level (L. 

Wang et al., 2012; Sleeter et al., 2013). However, as binary categories of “urban” and 
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“non-urban”, land cover does not reflect how population and economy change within 

urbanized areas. Finally, location-based social network data are generated by human 

activities and thus are often used to locate people’s position (Chi, Liu, Wu, & Wu, 2015) 

and activity centres (Hu et al., 2015), and to delineate urban boundaries (B. Jiang & 

Miao, 2015). However, such data can be biased as they only represent certain population 

groups using the social media (Chi et al., 2015; Hu et al., 2015). Furthermore, social 

network data have a fine temporal resolution due to their near real-time collection, but 

only cover a limited time span due to their short history, reducing the possibility to 

establish a long-term history (e.g. decadal) of urbanization dynamics. 

DMSP-OLS nighttime light (NTL) (National Geophysical Data Center, 2015), 

collected by the U.S. Air Force Defence Meteorological Satellite Programs (DMSP) 

Operational Linescan System (OLS), offer the research community a new perspective to 

understand long-term urbanization dynamics. These data have a relatively long time span, 

an annual temporal resolution, a nearly global coverage, a moderate spatial resolution, 

and a capability to reflect the intensity of human activities, as demonstrated by various 

studies (Z. Chen et al., 2015; Elvidge et al., 2001; Ghosh et al., 2010; T. Ma, Zhou, Pei, 

Haynie, & Fan, 2012; Shi, Yu, et al., 2014). In mapping urbanization, researchers have 

mainly applied thresholds on NTL intensity to identify urban extent (Z. Liu et al., 2012; 

Q. Ma et al., 2014; Shi, Huang, et al., 2014; Tan, 2016; Yu et al., 2014; Zhou et al., 2014, 

2015). In addition, researchers have recently started to extract time-series NTL 

trajectories to characterize urbanization dynamics at administrative division level and 

pixel level. At administrative division level, Stathakis, Tselios, & Faraslis (2015) 

calculated the Sum of Lights (SoL) index for European regions, and used linear 

regression to calculate overall and decadal slope of the SoL trend to represent 

urbanization process in each region. At pixel level, Qingling Zhang & Seto (2011) 

proposed five archetypes of urbanization dynamics, extracted pixel-based, time-series 

NTL trajectories, and classified those trajectories based on the archetypes. Jiansheng Wu, 

Ma, Li, Peng, & Liu (2014) classified the time-series NTL trajectories in China to 

calculate the composition of the classes for each administrative division, grouped the 

divisions based the compositions, and finally compared the average composition of each 

group with a baseline composition to evaluate China’s urbanization.  

Although these studies (Jiansheng Wu et al., 2014; Qingling Zhang & Seto, 2011) 

established an important foundation for NTL-based urbanization analysis, they have not 

yet extensively discussed the detected trajectories nor explicitly related them to 

socioeconomic data and underlying urbanization context. Furthermore, the number of 

classes in the unsupervised classifications was determined mainly through a subjective 

process, which might not produce an optimal setting to maximize inter-class differences 

and improve intra-class similarities. Therefore, our study had two primary objectives. 

First, we aimed to use the dynamics to investigate urbanization in mainland China. We 

mapped the areas under different urbanization dynamics, calculated the proportion of 

each type of dynamics in different administrative divisions, and quantified spatial 

patterns of these proportions to reveal the underlying drivers. In particular, we focused on 

the dynamics showing accelerated growth in NTL between 1992 and 2013, as it might be 

an indicator for rapid and even aggressive urbanization, which could lead to ghost cities 

in some cases. Second, we aimed to develop a framework to classify urbanization 

dynamics at pixel level using the time-series NTL trajectories. Based on previous 
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methods by Qingling Zhang & Seto (2011) and Jiansheng Wu et al. (2014), our 

classification extracted a set of eight trajectory parameters to conduct a k-means 

unsupervised classification, and used a silhouette analysis (Rousseeuw, 1987) as the basis 

to determine the number of classes. In all, we hypothesized that administrative divisions 

with high proportion of accelerated growth tended to be clustered, and the formation of 

the clusters could be explained by their unique socioeconomic characteristics and 

developmental history.  

2.2 Materials and methods 

2.2.1 Nighttime light data and data pre-processing 

We used the stable light composite from the version 4 DMSP-OLS NTL time-

series in this study. Version 4 DMSP-OLS NTL time-series provides three annual 

products: cloud-free composite, average visible light composite, and stable light 

composite, from 1992 to 2013 (National Geophysical Data Center, 2015). DMSP-OLS 

sensors collect a set of NTL images of the Earth with 30 arc second (approximately 1 km) 

spatial resolution twice a day (Elvidge et al., 2009), and the images together cover -180° 

to 180° longitude and -65° to 75° latitude (National Geophysical Data Center, 2015). 

Each pixel has a digital number (DN) for NTL intensity. An annual composite is made 

from the selected, highest quality images that exclude sunlit data, glare, moonlit data, 

observations with clouds, and lighting features from the aurora (National Geophysical 

Data Center, 2015). We used the stable light composite, as it provided persistent lights 

from cities and towns, and excluded ephemeral events, such as fire and explosion. In this 

composite, the background noise is replaced with 0, and the DNs range from 1 to 63 

(National Geophysical Data Center, 2015). This composite provides 34 annual images 

from six satellite missions (i.e. F10, F12, F14, F15, F16, and F18). Some years may have 

two images as two satellite missions were operating at the same times. For such years, we 

used the average of the two images to represent the NTL. 

There are three major issues with NTL data, namely, the “overglow” effect, the 

saturation in urban centres, and the inconsistency between satellite missions (X. Li & 

Zhou, 2017). The “overglow” effect results from the radiation of non-coherent light in all 

directions from its source (Townsend & Bruce, 2010), and causes an overestimation of 

urban extent (T. Ma et al., 2012). Both the “overglow” removal model (ORM) by 

Townsend & Bruce (2010) and the thresholding method (Amaral, Monteiro, Camara, & 

Quintanilha, 2006; Imhoff, Lawrence, Stutzer, & Elvidge, 1997; Jiansheng Wu et al., 

2014) can reduce this effect. We applied the thresholding method mainly for its 

simplicity, and set the threshold as DN value of 12, following Jiansheng Wu et al. (2014). 

Pixels with an average DN less than 12 during the study period were considered as non-

urban and were excluded from the analysis.  

The saturation occurs due to NTL sensor’s limited detection range between 0 and 

63, which is insufficient to measure urban centers where the actual NTL intensity might 

exceed the upper limitation. However, the proportion of saturated pixels in China is less 

than 1.2% for each NTL image in the study time period (J. Liu & Li, 2014), making 

saturation a minor and acceptable issue. In those saturated areas, we acknowledge that the 

dataset is not able to show further variations in NTL intensity. 
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The third and particularly important issue is the inconsistency between NTL 

satellite missions. Due to the differences between the sensors and a lack of on-board 

calibration, NTL annual composites of the same years from different satellite missions 

may have different DNs for the same locations (Jiansheng Wu, He, Peng, Li, & Zhong, 

2013). As Figure 2-1(a) shows, before the calibration, China’s sum of DNs in the 

overlapping years were different between the missions. Such inconsistency is an obstacle 

for a time-series analysis; therefore, we calibrated the annual images to restore the 

consistency before further analysis using a quadratic regression model (equation (1)) by 

Elvidge et al. (2009). We obtained the model parameters 𝑎𝑡, 𝑏𝑡, and 𝑐𝑡 for each year 𝑡 

from a study by Liu & Li (2014), which used 2007’s NTL image from mission F16 as the 

baseline and conducted the quadratic regressions over the invariant areas that should have 

little change of actual DNs over time. In addition, we excluded the pixels with 0 pre-

calibration value from the calibration, as 0 indicated no light in the original data. Figure 

2-1(b) shows the sum of DNs in our study area from different missions after the 

calibration, where the inconsistency at certain years, such as 2000 and 2010, were 

bridged, providing a continuous change of DNs over time and indicating the calibrated 

data can be used for the subsequent analysis. 

 𝐿𝑡
′ = 𝑎𝑡 × 𝐿𝑡

2 + 𝑏𝑡 × 𝐿𝑡 + 𝑐𝑡 (1) 

where 𝐿𝑡
′  is a pixel’s DN after calibration in year 𝑡, 𝐿𝑡 is the pixel’s original DN in that 

year, and 𝑎𝑡, 𝑏𝑡, and 𝑐𝑡 are the corresponding model parameters. 

  

Figure 2-1 Sum of DNs in the study area from 1993 to 2013 across all NTL satellite 

missions, (a): before calibration; (b): after calibration. F10, F12, F14, F15, F16, and F18 

are the six NTL satellite missions included in the dataset. 

2.2.2 Trajectory extraction, noise removal, and Principal Component Analysis on 

the parameters 

We extracted and smoothed pixel-based, time-series NTL trajectories from the 

calibrated NTL images. First, for any year with two NTL images, we used the average of 

the two for that year. Second, we extracted time-series NTL trajectories for each 1 km by 

1 km pixel. Finally, we applied the Savitzky-Golay filter (Savitzky & Golay, 1964) to 
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remove the noise and to smooth each trajectory, as we assumed the change of DNs in 

each pixel should be a continuous process.  

We then extracted two sets of four parameters to represent each trajectory. The 

first set utilized the DNs of each trajectory, which included the maximum, minimum, 

mean, and standard deviation. The second set used the slope of each trajectory indicating 

how much the DNs changed between two adjacent years (i.e. yeart𝑡 to 𝑡 + 1) 

(equation (2)). We included the maximum, minimum, and standard deviation of the 

slopes, with an additional mean slope calculated from a linear regression (equation (3)) of 

each trajectory’s DNs. Figure 2-2 shows a conceptual diagram of the main parameters. 

 𝑆𝑡+1 = 𝐿′𝑡+1 −  𝐿′𝑡 (2) 

 𝑳′ =  𝛽0 + 𝛽1𝑻 + 𝜺 (3) 

where 𝑆𝑡+1 is the slope at year 𝑡 + 1 in a pixel, 𝐿′𝑡+1 and 𝐿′𝑡 are the calibrated DNs. 𝑳′  is 

a vector of the calibrated DNs for the years studied in a pixel, 𝛽0 is the intercept, 𝛽1 is the 

slope of a linear regression, or the mean slope in our study, 𝑻 is a vector of the years, 𝜺 is 

the random error. 

 

Figure 2-2 Conceptual diagram of main trajectory parameters, (a): parameters based on 

DN, including maximum and minimum DN, and a mean slope (β1) from a linear fit 

defined by equation (3); (b): parameters based on slope, including maximum and 

minimum slope. Slope is defined by equation (2). 

Finally, we conducted the Principal Component Analysis (PCA) (Pohl & 

Genderen, 1998) over the eight parameters to reduce dimensionality of the data and 

computational intensity of the subsequent analysis. PCA is a widely-adopted dimension 

reduction technique that linearly combines the input data to get a set of Principal 

Components (PCs) that are more independent of each other. Each PC explains certain 

percentage of variation, or certain amount of information, in the original data. We used 

the first three PCs that together explained 97.97% of the variation, in the following 

classification. 
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2.2.3 K-means unsupervised classification and determining the optimal number of 

classes 

We applied the k-means unsupervised classification (Lloyd, 1982) to classify the 

NTL trajectories into a limited number of classes, with the first three PCs as the inputs. 

Each class was expected to represent a type of urbanization dynamics. K-means 

iteratively partitions n samples in to k classes, and minimizes the within-class sum of 

square distance from each member to the mean center (Lloyd, 1982). The algorithm starts 

with allocating a set of random initial mean centers, and the result is dependent on the 

centers’ locations. Therefore, it’s possible to have locally optimal results, rather than 

globally optimal ones (Steinley, 2003). To reduce the dependence of results on the initial 

mean center allocation, we iterated the classification 10 times to generate initial mean 

centers and used the iteration with the optimal results in our analysis.  

Another important consideration in this classification was the number of classes. 

We used the silhouette analysis (Rousseeuw, 1987) as a basis to determine this number, 

which was different from previous studies that were more relied on subjective decisions 

(Qingling Zhang & Seto, 2011; Jiansheng Wu et al., 2014). Given a classification with a 

certain number of classes, the silhouette analysis measures the closeness of each member 

in one class to members in the neighboring classes (Scikit-learn, 2015), and provides an 

average silhouette coefficient that ranges from -1 to 1 for all classes. 1 indicates a good 

classification where one class is far away from the neighboring classes, and -1 indicates a 

poor classification where one class is very close to the neighboring classes. After testing 

with a series numbers of classes, we chose the classifications with higher silhouette 

coefficients as the candidates. In addition, we also examined whether a candidate can 

properly represent urbanization dynamics in the study area, to find the optimal 

classification.  

We chose five classes in the k-means unsupervised classification. The silhouette 

analysis showed that a 2-class classification had the highest coefficient (Figure 2-3). 

However, we considered that having only two classes would be insufficient to 

differentiate urbanization dynamics. Thus we instead used a 5-class classification with 

the second highest coefficient where the number of classes could sufficiently represent 

various urbanization dynamics. 

 

Figure 2-3 Change of silhouette coefficient value with different numbers of classes. 
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Finally, we labelled each class with a unique type of urbanization dynamics by 

examining the shape of each class’s average trajectory, the range of the members, and the 

shapes of 1% randomly sampled members in this class. We also used the average value of 

the eight trajectory parameters in each class to help the labelling. 

2.2.4 Validation 

Validating the assignment of the unsupervised classes to specific urbanization 

dynamics was challenging, as the classification results were at a finer spatial resolution 

compared with candidate validation datasets, such as socioeconomic data typically 

reported at coarse administrative divisions. Several studies verified NTL-derived 

urbanization dynamics at pixel scale with fine resolution Google Earth images from 

different years (Q. Ma et al., 2014; Qian Zhang & Seto, 2013). In particular, using 

Google Earth images, Qian Zhang and Seto (2013) validated their urbanization dynamics 

assignment, such as rapid urbanization and slow urbanization, for their unsupervised 

classes of NTL trajectories. 

To validate the urbanization dynamics assignment, we examined whether changes 

in NTL and impervious-surface-derived urbanization ratio within each class had similar 

patterns in a set of selected cities. We used 30 m resolution Landsat remote sensing 

images for every two years between 1992 and 2013 (i.e. 1992, 1994, …, 2010, 2011, 

2013) to estimate the extent of impervious surface as described below, and calculated 

urbanization ratio for each unsupervised class 𝑖, or the fraction of impervious surface 

within the spatial extent of  𝑖, in a city 𝑗 in year 𝑡 (equation (4)). Impervious surface was 

used as an indicator for urbanization in many studies (Jat et al., 2008; Schneider & 

Woodcock, 2008; Bhatta, 2009; Bhatta, Saraswati, & Bandyopadhyay, 2010). If changes 

in the urbanization ratio and NTL were similar, we assumed that we had a reasonable 

assignment of the unsupervised classes to urbanization dynamics. We further measured 

the similarity as the correlation between a class’s average NTL trajectory and the class’s 

average urbanization ratio in the set of cities (equation (5)). 

 𝑈𝑖,𝑗,𝑡 =  
𝐷𝑖,𝑗,𝑡

𝐶𝑖,𝑗
 (4) 

 
𝑟𝑖 =

∑ (𝑳′̅𝑖,𝑡 − 𝑳′̅𝑖
̅̅ ̅

) (�̅�𝑖,𝑡 − �̅�𝑖
̅̅ ̅)

√∑ (𝑳′̅𝑖,𝑡 − 𝑳′̅𝑖
̅̅ ̅

)
2

√∑(�̅�𝑖,𝑡 − �̅�𝑖
̅̅ ̅)

2

 
(5) 

where 𝑈𝑖,𝑗,𝑡 is the urbanization ratio for class 𝑖 in a city 𝑗 and year 𝑡 (i.e. 1992, 1994, …, 

2010, 2011, 2013), 𝐷𝑖,𝑗,𝑡 is the impervious surface area within class 𝑖’s spatial extent in city 

𝑗 and year 𝑡, 𝐶𝑖,𝑗 is the area of class 𝑖’s spatial extent in city 𝑗. 𝑟𝑖 is the correlation between 

class 𝑖’s average NTL trajectory (𝑳′̅
𝑖,𝑡) over the class members, and average urbanization 

ratio trajectory (�̅�𝑖,𝑡) over the selected cities, 𝑳′̅
𝑖

̅̅̅̅  and �̅�𝑖
̅̅ ̅ are average value for 𝑳′̅

𝑖,𝑡 and �̅�𝑖,𝑡 

over the years (𝒕). 
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We obtained the impervious surface by a Normalized Difference Spectral Vector 

(NDSV) method (Patel et al., 2015) on Landsat remote sensing images for the selected 

years in five cities including Harbin in the north, Nanning in the south, Hangzhou and 

Nanchang in the east, and Hanzhong in the west. The cities were selected mainly based 

on representativeness for geographic region and urbanization dynamics, and availability 

of high-quality Landsat images with limited cloud cover. Two cities in the east were 

included as most Chinese cities were in this region. NDSV contains all the possible two-

band normalized spectral indices from an image, such as the Normalized Difference 

Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), and the 

Normalized Built-up Index (NDBI), which can be used to differentiate various land cover 

types (Patel et al., 2015). We constructed a NDSV containing 15 indices from Landsat 

images, and conducted supervised classification with Support Vector Machine (Huang, 

Davis, & Townshend, 2002) to identify vegetation, water, and impervious surface in the 

five cities. We queried orthorectified Landsat Top of Atmosphere (TOA) images with 

cloud cover less than 10% in each year as the input. Depending on cloud cover, we 

typically found a collection of several images from different times in a year, and we 

reduced such a collection to one cloud-free image using the median of DNs from the 

different times at each pixel. Median helped to remove clouds that had a high DN, and 

shadows that had a low DN (Bian, Li, Liu, & Huang, 2016). Since a pixel was not always 

under cloud or shadow, this process would yield a cloud-free image. Training samples 

were collected where land cover was consistent across all the selected years. We then 

classified the images using the Support Vector Machine algorithm (Huang et al., 2002). 

Finally, we visually inspected the classification results and found them satisfactory. We 

accessed the images, collected the samples, and conducted the classification using the 

Google Earth Engine, an online environmental data monitoring platform that analyzed 

publicly available remote sensing images such as Landsat (Gorelick, 2013; Patel et al., 

2015), to reduce processing time and enhance feasibility.  

In this study, the impervious surface-derived urbanization ratio had to be used 

with caution, for two reasons. First, the impervious surface used in the calculation may 

contain some non-urban areas that were excluded in the analysis due to low NTL 

intensity. Second, changes in the impervious surface cover do not necessarily capture 

every dimension of urbanization. Urbanization is a combination of land cover change, 

population migration, and economic development. Only looking at the change of 

impervious surface or the derived urbanization ratio may neglect the other two 

dimensions of urbanization. However, NTL may capture all the three dimensions, as NTL 

is essentially an indicator for human activity. Given these two reasons, the change of 

impervious surface does not fully equal to the change of NTL. However, we still used 

impervious surface from Landsat images for validation as the surface was available in a 

finer resolution compared with the NTL-derived unsupervised classes. Other advantages 

of Landsat images included a broad temporal and spatial coverage, and being publicly 

accessible, making it possible to apply this validation method in other areas of interest. 

2.2.5 Urbanization pattern recognition 

Following the classification and validation, we calculated the proportion of each 

type of urbanization dynamics in different Chinese administrative divisions including 

province (primary administrative division), prefecture city (secondary administrative 
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division), and county (tertiary administrative division). Such proportions showed how 

different urbanization dynamics contributed to the overall urbanization between 1992 and 

2013 in the administrative divisions.  

To measure the spatial pattern, we conducted both global and local Moran’s I 

analysis to quantify the spatial autocorrelations in those proportions. Moran’s I is a 

commonly used measure for spatial autocorrelation (Su, Jiang, Zhang, & Zhang, 2011), 

which indicates how a variable correlates with itself over space. Calculated by equation 

(6) (ESRI, 2016), global Moran’s I measures the overall spatial autocorrelation across all 

the administrative divisions in the study area. Its value ranges from -1 to 1, where 1 

means positive autocorrelation or similar values neighboring with each other, 0 means 

spatial randomness, and -1 means negative autocorrelation or dissimilar values 

neighboring with each other (Su et al., 2011). Local Moran’s I (Anselin, 1995), calculated 

by equations (7)-(8) (ESRI, 2016), measures spatial autocorrelation for each 

administrative division 𝑖, and further finds clusters and outliers in the divisions. Clusters 

are administrative divisions with similar values, which include high-high clusters where a 

high value is surrounded by high values, and low-low clusters where a low value is 

surrounded by low values. Outliers are administrative divisions with contrasting values, 

which further include high-low outliers where a high value is surrounded by low values, 

and low-high outliers where a low value is surrounded by high values.  

Given the same set of data, different spatial weight (𝑤𝑖𝑗) may lead to different 

results in both global and local Moran’s I. In this study, we performed both global and 

local Moran’s I using ArcMap 10.4 (ESRI, 2016), and chose ‘contiguity edges corners’ to 

generate the spatial weight. In ‘contiguity edges corners’, administrative divisions that 

share an edge and/or a corner with the target administrative division have weights of 1 to 

be included in the Moran’s I computation, and the rest have weights of 0 to be excluded 

from the computation. 

 
𝐼 =

𝑛 ∑ ∑ 𝑤𝑗,𝑘(𝑥𝑗 −  �̅�)(𝑥𝑘 − �̅�)𝑘𝑗

(∑ ∑ 𝑤𝑗,𝑘𝑘𝑗 )(∑ (𝑥𝑗 −  �̅�)
2

𝑗 )
 

(6) 

 
𝐼𝑗 =

(𝑥𝑗 − �̅�)

𝑆𝑗
2 ∑ 𝑤𝑗,𝑘(𝑥𝑘 − �̅�)

𝑘

 
(7) 

 
𝑆𝑗

2 =
∑ (𝑥𝑘 − �̅�)2

𝑘

𝑛 − 1
 

(8) 

where 𝐼 is the global Moran’s I, 𝐼𝑗 is the local Moran’s I for administrative division 𝑗, 𝑥𝑗 is 

the value of administrative division 𝑗, 𝑥𝑘 is the value of 𝑗’s neighbour 𝑘 (𝑘 ≠ 𝑗), �̅� is the 

mean value of all administrative divisions, 𝑤𝑗,𝑘 is a spatial weight between 𝑗 and 𝑘, 𝑛 is 

the number of administrative divisions.   

We computed global Moran’s I for the proportion of each type of urbanization 

dynamics at provincial, prefecture city, and county levels. For dynamics showing 

accelerated urbanization, we further employed local Moran’s I to identify local clusters 

and outliers at prefecture city and county levels. The spatial patterns of the proportions, 

particularly the clusters, help to inform the underlying urbanization process. For example, 
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positive global spatial autocorrelation of a certain type of urbanization dynamics 

indicates the clustering of administrative divisions with similar proportions of the 

dynamics, which may further suggest similarity in other characteristics, such as policy, 

development history, and natural resources that form those clusters. Local clusters 

identify which administrative divisions belong to the same cluster, which allow 

synthesizing the commonalities within a cluster and differences between clusters. Those 

commonalities and differences may explain the observed pattern of the proportions. 

2.3 Results 

2.3.1 Five Types of Urbanization dynamics in China 

We labelled the five classes as stable urban activity, high-level steady growth, 

acceleration, low-level steady growth, and fluctuation. Figure 2-4 shows each class’s 

average trajectory, the 90% range (i.e. 5th percentile to 95th percentile), and 1% 

randomly sampled trajectories in the class. Table 2-1 shows average value of the eight 

trajectory parameters for each class. Class 1 represented stable urban activity, as its 

trajectories had relatively constant DNs that were close to the maximum value (Figure 

2-4(a)) and the smallest mean slope indicating the least changes between 1992 and 2013 

(Table 2-1). Both class 2 and class 4 represented steady growth as their average 

trajectories were close to straight lines (Figure 2-4(b, d)), and trajectories in both classes 

had smaller mean slopes with less variation (Table 2-1). However, class 2 on average had 

higher mean DN compared with class 4, therefore we considered class 2 as high-level 

steady growth and class 4 as low-level steady growth. Class 3 represented acceleration as 

its average trajectory showed a concave shape where the increase of DN started to 

accelerate between 2000 and 2005 (Figure 2-4(c)). Trajectories in this class also had the 

highest mean slopes, indicating the most rapid growth (Table 2-1). Finally, class 5 

represented fluctuation as its sampled trajectories had a wide range, and were not stable 

compared with other classes (Figure 2-4(e)). Trajectories in this class on average also had 

the largest average standard deviations for slope (Table 2-1), indicating high variation in 

annual changes of NTL intensity.  



 

19 

 

 

Figure 2-4 Average trajectories for each class from the k-means unsupervised 

classification with k=5. Trajectories from 1% randomly selected samples from each class 

and 90% range of all members are also plotted.   

Table 2-1 Average value of the eight trajectory parameters in each class. Class 1: stable 

urban activity; class 2: high-level steady growth; class 3: acceleration; class 4: low-level 

steady growth; class 5: fluctuation. 

 Class 1 Class 2 Class 3 Class 4 Class 5 

Number of 

trajectories 
23503 54542 127887 150504 28413 

Average 

Maximum DN 
61.69 56.51 52.52 31.44 40.80 

Average 

Minimum DN 
47.76 22.03 7.16 6.53 7.46 

Average Mean 

DN 
56.88 41.71 26.23 16.16 20.87 

Average Std 

Dev DN 
3.86 10.49 15.27 7.44 10.00 

Average 

Maximum 

Slope 

4.69 7.97 9.16 5.96 10.89 

Average 

Minimum Slope 
-2.48 -3.64 -2.47 -2.64 -8.05 
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Average Mean 

Slope 
0.47 1.44 2.19 1.00 0.81 

Average Std 

Dev Slope 
1.72 2.95 3.00 2.13 4.42 

 

2.3.2 Validation 

Validation results were consistent with our interpretation of the unsupervised 

classes as the types of urbanization dynamics. The comparison between the NTL 

trajectories and the urbanization ratio trajectories showed certain level of agreement 

between the two: for each mean NTL trajectory, the corresponding mean urbanization 

ratio trajectory had a similar change pattern with correlation coefficient between 0.80 and 

0.99 (Figure 2-5). We also noticed that from class 2 to class 5, the NTL trajectories 

tended to achieve relatively higher levels than the urbanization ratio trajectories did in 

years. Such differences were partially due to urbanization ratio only capturing changes in 

impervious surface while NTL capturing other dimensions of urbanization such as 

increased human and economic activities. Human and economic activities could continue 

to intensify while land transformation to impervious surface stopped. In addition, the 

‘overglow’ effect could cause overestimation of NTL-derived urbanized areas 

(i.e. 𝐶𝑙𝑎𝑠𝑠𝑖,𝑗 in equation (4)), which in turn underestimated the urbanization ratio. In 

general, the high correlation between the two types of trajectories and their relatively 

similar growth pattern suggested that the interpreted NTL dynamics might be consistent 

with the temporal change of urbanization ratio.  

In addition, spatial distribution of the classes in individual cities was consistent 

with our understanding about Chinese cities. For most cities, we found a concentric 

gradient of urbanization dynamics (Figure 2-6). From the urban core to the periphery, 

there was a transition from stable urban behavior (class 1) to high-level steady growth 

(class 2) to acceleration (class 3) to low-level stead growth (class 4) to fluctuation (class 

5). This transition could be explained by the following: (1) Chinese urban cores (class 1 

and class 2) were more stable and developed due to longer development and higher 

concentrations of population, jobs, amenities, and other resources, (2) the middle zone 

(class 3) tended to be the most active area for its abundant land resource, low land price, 

and close distance to urban cores and existing resources, and (3) the periphery areas were 

too far away from the cores and resources to have enough incentives for urbanization 

(class 4), and might become unstable (class 5). Both validation using the urbanization 

ratio and spatial distribution of classes indicated that our labels we were likely to match 

the dominant urbanization dynamics reasonably well.  
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Figure 2-5 Comparison between the trajectories from NTL and urbanization ratio, (a): 

mean NTL trajectories, (b): mean urbanization ratio trajectories. 

 

Figure 2-6 Map of different urbanization types from the unsupervised classification with 

five classes in four major urban agglomerations in China, (a): Beijing – Tianjin, (b): the 

Yangtze River Delta, (c): the Pearl River Delta, (d): Chendu - Chongqing. 
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2.3.3 Composition of the urbanization dynamics in Chinese administrative divisions 

We summarized the proportion and the global Moran’s I value for each type of 

urbanization dynamics at provincial level in Table 2-2, and plotted the composition of the 

urbanization dynamics in each province in Figure 2-7. The stable urban activity 

contributed to an average of 5.63% of urban area in a province. There was a positive but 

not significant spatial autocorrelation of stable urban activity’s proportion at provincial 

level. Several provinces in the north, and Guangdong and Guangxi Province in the south 

tended to more stable urban activity (Figure 2-8 (a)). Shanghai, Beijing, Guangdong, 

Tianjing, and Liaoning were the five administrative divisions with the highest proportion. 

An average of 13.35% of a province’s urban area was under the high-level steady growth. 

Guangdong, Shanghai, Beijing, Tianjing, and Heilongjiang had the highest proportion of 

this type of dynamics. The proportion of high-level steady growth also showed a positive 

but not significant spatial autocorrelation between the provinces. The acceleration 

urbanization dynamics on average occupied 33.90% of a province’s urban area. Jiangsu, 

Xizang, Zhejiang, Ningxia, and Chongqing had the highest proportions of such dynamics. 

The proportion of acceleration had a significant (p = 0.030), positive spatial 

autocorrelation. The low-level steady growth urbanization dynamics on average 

accounted for 39.27% of a province’s urban area, and its proportion had a significant (p = 

0.010), positive spatial autocorrelation. Provinces with the highest proportion of low-

level steady growth included Guizhou, Hebei, Guangxi, Hunan and Henan. Compare with 

the spatial patterns for stable urban activity and fluctuation (Figure 2-8 (a), (e)), those of 

the two steady growth and the acceleration (Figure 2-8 (b), (c), (d)) were more 

ambiguous: we found less obvious local clusters or geographic boundaries between high 

and low proportions for the latter three (i.e. high-level steady growth, low-level steady 

growth, and acceleration). An average of 7.84% of a province’s urban area was under the 

fluctuation. The proportion of this type of dynamics also had a significant (p = 0.010), 

positive spatial autocorrelation. Provinces with lower proportion of fluctuation were 

concentrated along the eastern coast of China, and the ones with higher proportion were 

mainly clustered in the northwest (Figure 2-8 (e)). The provinces with the highest 

proportion of fluctuation were Xinjiang, Shanxi, Heilongjiang, Qinghai, and Shanxi.  

Table 2-2 Summary statistics and global Moran’s I of the composition of the five type of 

urbanization dynamics in provinces, prefecture cities and counties 

Administra

tive 

division 

Urbanization 

dynamics pattern 

Proportion in each administrative division Global 

Moran’s 

I Mean (%) 
Minimum 

(%) 

Maximum 

(%) 
Std Dev 

Province 
Stable urban 

activity 
5.63 1.82 17.82 4.18 0.1 

(n = 31) 
High-level steady 

growth 
13.35 7.62 22.86 4.36 0.15 

 Acceleration 33.90 13.49 56.17 10.60 0.21** 

 Low-level steady 

growth 
39.27 19.31 55.90 8.06 0.25** 

  Fluctuation 7.84 0.24 27.70 6.35 0.23*** 

Prefecture 

city 

Stable urban 

activity 
3.55 0.00 49.93 5.17 0.21*** 
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(n=361) 
High-level steady 

growth 
12.13 0.00 43.15 7.15 0.35*** 

 Acceleration 30.87 0.00 85.71 16.72 0.33*** 

 Low-level steady 

growth 
45.23 5.37 100.00 16.47 0.28*** 

 Fluctuation 8.22 0.00 68.28 9.03 0.34*** 

County Stable 1.45 0.00 50.94 4.51 0.06*** 

(n=2081) 
High-level steady 

growth 
8.17 0.00 46.51 9.69 0.28*** 

 Acceleration 27.21 0.00 100.00 22.20 0.34*** 

 Low-level steady 

growth 
54.04 0.00 100.00 24.75 0.31*** 

  Fluctuation 9.13 0.00 100.00 13.94 0.27*** 

**: significant at 95% confidence interval (𝑝 ≤ 0.05); ***: significant at 99% confidence 

interval (𝑝 ≤ 0.01). 

 

Figure 2-7 Composition of the five types of urbanization dynamics in Chinese provinces. 
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Figure 2-8 Proportion of the five types of urbanization dynamics at provincial level. (a): 

stable urban activity, (b): high-level steady growth, (c): acceleration, (d): low-level steady 

growth, (e): fluctuation.   

We further summarized composition of the five urbanization dynamics for 

prefecture cities and counties in China (Table 2-2). On average, 3.55% of the urbanized 

area in a prefecture city was stable, 12.13% was under the high-level steady growth, 

30.87% was under the acceleration, 45.23% was under the low-level steady growth, and 

8.22% was under the fluctuation. In an average county, 1.45% of the urbanized area was 

stable, 8.17% was under the high-level steady growth, 27.21% was under the 

acceleration, 54.04% was under the low-level steady growth, and 9.13% was under the 

fluctuation. Global Moran’s I showed that those proportions were all significantly and 

spatially auto-correlated. 

The acceleration was used as the dynamics of interest to investigate its proportion 

in prefecture cities and counties, and the corresponding local clusters and outliers (Figure 

2-9 and Figure 2-10). We chose this type of dynamics as it highlighted areas transforming 

from rural with low NTL intensity to urban with high NTL intensity at an accelerating 

speed (Figure 2-4 (c)), which might indicate an aggressive urbanization process and 

potentially lead to ghost cities. Acceleration also appeared to be a ubiquitous 

phenomenon in China, as on average 33.90% of a province’s urban area, 30.87% of a 

prefecture city’s urban area, 27.21% of a county’s urban area were composed of such 

dynamics. In addition, the ambiguous spatial pattern of this dynamics at provincial level 

required further examination at the other two levels. Local Moran’s I analysis showed 

that at both county and prefecture city levels, the clusters with high proportion of the 

accelerated growth were mainly located in the northern, northwestern, southwestern, and 

eastern part of the country, while those with the low proportion tended to be in the central 

and southern part of the country. There were also several outliers that had dissimilar 

values with their neighbors in the country (Figure 2-10). 
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Figure 2-9 Proportion of class 3 (acceleration) for China’s administrative divisions, (a): 

the proportion for prefecture cities, (b): the proportion for counties. 

 

Figure 2-10 Clusters and outliers for proportion of class 3 (acceleration) for China’s 

administrative divisions, (a): prefecture cities, (b): counties.   

2.4 Discussion 

2.4.1 Understanding urbanization through the new lens 

Understanding different urbanization dynamics and their spatial patterns is an 

important prerequisite to inform planning in the face of growing urban population and 

increasing environmental footprint of expanding urban regions (Deng, Wang, Hong, & 

Qi, 2009; L. Jiang & O’Neill, 2015; Stathakis et al., 2015; Jiansheng Wu et al., 2014; 

Qingling Zhang & Seto, 2011). With our innovative approach, we identified several 

important trajectories describing urbanization dynamics in mainland China. The five 

types of urbanization dynamics provided a spatially explicit reconstruction of urban 

development as manifested in the intensity of version 4 DMSP-OLS NTL signal. When 

combined with other socioeconomic datasets and knowledge about local and national 

developmental history and policy, the urbanization dynamics may help to reveal the 

large-scale urbanization processes and confirm the underlying mechanisms, which 

provide more insights into the ongoing urbanization in China. 

We found the acceleration urbanization dynamics to be an especially useful 

indicator of fast and even aggressive urbanization, as it showed an accelerating 
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transformation from rural to urban between 1992 and 2013. Spatial pattern of these 

dynamics revealed urbanization characteristics at different spatial scales. At the finer 

scale (i.e. 1 km by 1 km pixel), the acceleration outlined areas under rapid urbanization, 

which provided a base map for more formal and labor-intensive verification methods 

such as in situ land use survey. At the aggregated scales, administrative divisions with 

high proportion of such dynamics formed several clusters in different parts of China 

(Figure 10).  

The underlying processes that formed these clusters varied among different 

geographic regions. The clusters in the eastern part of China largely overlapped with the 

Yangtze River Delta (YRD), where urbanization was partially caused by development of 

non-agricultural industries through rural collective accumulation (Gu, Hu, Zhang, Wang, 

& Guo, 2011). Since 1991, particularly in the northern YRD, such industries have started 

to concentrate, and stimulated urbanization and construction of small towns (Gu et al., 

2011). These industries also attracted significant amount of labor and caused population 

growth. Other clusters likely resulted from different processes, such as aggressive 

urbanization due to financial speculation (Sorace & Hurst, 2016) and land-centered 

urbanization policy (M. Chen et al., 2015; Sorace & Hurst, 2016) that encouraged 

construction of urban areas beyond population needs. A typical example of this 

aggressive process is Ordos in the Inner Mongolia Autonomous Region. The city was the 

poorest one in its province before 2004 and then rapidly became one of China’s 

wealthiest cities due to the discovery and production of significant amount of natural 

resources such as rare earth minerals and natural gas (Woodworth, 2015; Sorace & Hurst, 

2016). Such a great shift in economy stimulated an unsustainable urbanization, which 

was characterized by massive land development and an inflated real estate market, while 

lacked a broader industrial base other than the extraction of natural resources 

(Woodworth, 2015). When the real estate market collapsed in 2011 and China’s economy 

slowed down, the resulting vacant residential and commercial projects made the city 

known as a ‘ghost town’ in many major media outlets (Woodworth, 2015). Data from 

China city statistical survey (National Bureau of Statistics of the People’s Republic of 

China, 2016) showed that urbanization in Ordos was more likely driven by its economy 

rather than population when compared with YRD’s typical city, Suzhou. With 1% 

increase in urban area between 2001 and 2013, Suzhou had 0.2% increase in population 

while Ordos only had 0.06% increase, suggesting that Ordos’ urbanization was beyond 

the actual population growth needs (Table 2-3). Qianwen Zhang & Su (2016) also found 

that population were the main urban expansion driver for Nanjing and Hangzhou in the 

YRD, while economy became important for Hohhot in Inner Mongolia, suggesting 

different urbanization forces between the two regions. In both Suzhou and Ordos, our 

analysis was able to detect the areas under rapid urbanization (Figure 11). 

For cases like Ordos, policy interventions are required to control rapid 

urbanization and to ensure that urban development is compatible with population and 

economic growth. As a result, China’s central government announced the “National 

New-type Urbanization Plan (2014-2020)” in 2014, which regulated aggressive urban 

development as the plan required urban construction land to be less than 100 m2 per 

capita in 2020 (X.-R. Wang et al., 2015). However, local governments may still find 

other ways to get around this regulation (X.-R. Wang et al., 2015). A potential solution to 

enforce the plan is to develop a monitoring framework that includes large scale mapping 
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tools, such as the approach of our study, to feasibly achieve a global understanding about 

urbanization and to find hidden issues under the overall pattern. The framework should 

also incorporate fine scale methods, such as in situ land use survey, to accurately identify 

places under aggressive urbanization.  

Table 2-3 Percentage increase in built-up area, population, and GDP between 2001 and 

2013 in Suzhou and Ordos. Original percentages are listed, and normalized percentages 

by built-up area are listed in the brackets.  

Parameter Percentage increase (%) between 2001 and 2013 – original value 

(normalized value by increase in built-up area) 

Suzhou Ordos 

Built-up area 3.02 (1.00) 6.38 (1.00) 

Population  0.59 (0.20) 0.36 (0.06) 

GDP 9.70 (3.21) 21.19 (3.32) 

 

Urbanization dynamics found in this study indicated growth in general, and we 

were not able to identify shrinking areas. Urban shrinkage is a world-wide phenomenon 

that cities experience population loss in large areas and economic transformations 

indicating a structural crisis (Wiechmann & Pallagst, 2012). In the Chinese context, Long 

and Wu (2016) argued that urban shrinkage was due to migrant flow from rural areas and 

small cities to large and developed cities, and discovered 180 shrinking cities in China 

using Chinese population census in 2000 and 2010. Due to the reduction in active urban 

land use, population, and economic activities, we assumed that shrinking cities would 

tend to show declining NTL trajectories. 

Contrary to the expectations, we were not able to detect declining NTL 

trajectories, or urban shrinkage, in this study. Such inability was likely due to the 

following reasons. First, most Chinese urban areas were still developing between 1992 

and 2013, which led to generally increasing trends in NTL. We observed decreases in 

NTL in several time periods, such as years around the 2008 world financial crisis. 

However, since our method did not segment the trajectories between 1992 and 2013, we 

were not able to isolate the segments with decreased NTL and thus failed to find areas 

that were declining in specific time periods. Second, there could be time lags between 

urban shrinkage and NTL change: urban areas might be abandoned, but electricity was 

still used and delayed the pronounced decline in NTL. Since urban shrinkage is an 

emerging phenomenon in China, our study period (i.e. 1992 – 2013) might be too short to 

incorporate such time lags. Finally, as the country is still urbanizing, the shrinkage can be 

limited and occurred at spatial scales finer than the 1 km by 1 km NTL pixel. The 

scattered spatial distribution and fine scale may also prevent the shrinking areas from 

being detected by NTL trajectories. 

2.4.2 An innovative approach to monitor urbanization dynamics and its challenges 

Urbanization is an important global phenomenon that has both environmental and 

social implications. With the increased availability of data and analysis methods, there 

has been a tendency to study urban and regional issues through the data-driven, 

geospatial approach. Some examples include characterizing post-disaster population 

displacement pattern through 1.9 million mobile phone users in Haiti (Lu, Bengtsson, & 

Holme, 2012), and identifying “Ghost Cities” using larger volume positioning data and 
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points of interests (Chi et al., 2015). In general, those studies tried to use the pattern 

within the datasets to inform the underlying process. We consider our study as another 

example of such type of methods. 

 
Figure 2-11 Urbanization outlined by class 3 (acceleration) in suburbs of Suzhou 

City, the Yangtze River Delta, and in Dongsheng District, Ordos City 
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Remote sensing allows monitoring large scale urbanization over relatively long 

time periods. However, previous remote sensing studies focused more on mapping the 

changing urban extent (Gao, Huang, He, Sun, & Zhang, 2016; Jat et al., 2008; L. Wang et 

al., 2012), which were insufficient to capture other dimensions of urbanization including 

changes in population and economic activities (Qingling Zhang & Seto, 2011). We 

provided an innovative and low-cost approach that used pixel-based, time-series NTL 

trajectories to monitor urbanization dynamics. Compare to other data, NTL provides a 

moderate spatial resolution, a long temporal coverage, and a low cost in computation. 

NTL’s ability to characterize intensity of human activities also captures multiple 

dimensions in urbanization including urban extent, population and economic activities.  

Compare with previous studies that also employed time-series NTL trajectories (Qingling 

Zhang & Seto, 2011; Jiansheng Wu et al., 2014), we provided an alternative approach 

that addressed potential challenges in earlier studies. First, we applied the silhouette 

analysis to more objectively inform the number of classes based on the pattern of the 

data. Second, we validated our labelling of the unsupervised classes with time-series 

urbanization ratio estimated from impervious surface. With this approach, we could yield 

a reasonable set of urbanization dynamics for mainland China between 1992 and 2013. In 

addition, through visual inspection we found that the spatial distribution of our results 

was consistent with the one from (Qingling Zhang & Seto, 2011) for the Pearl River 

Delta (Figure 2-6(c)) and the Yangtze River Delta (Figure 6(b)), and with the one from 

Wu et al. (2014) for Beijing and Tianjin Area (Figure 2-6 (a)). Finally, we reduced the 

amount of input data for the classifier. To our knowledge, we were the first to use 

secondary descriptors for the trajectories, the eight trajectory parameters, in the 

classification. Furthermore, we could accelerate the classification by reducing the eight 

parameters to three input variables using the dimension reduction approach. 

2.4.3 Limitations and future research directions 

Data-driven methods to understand urbanization generally provide a broad picture 

about this phenomenon and may reveal some unexpected findings that cannot be 

uncovered with traditional methods such as survey, interview, and observation. However, 

data-driven methods have their own uncertainties, which mainly result from the 

properties of the data itself and the analysis method. For example, our study’s outcome 

was affected by the NTL data quality and the k-means clustering method, even though we 

performed our analysis with the best of our knowledge. With an improved NTL dataset, 

such as the multi-month VIIRS (http://ngdc.noaa.gov/eog/viirs/download_monthly.html), 

and different sets of parameters for the k-means clustering, we might expect some 

potential differences in the analysis outcomes. Therefore, such data-driven studies should 

not only rely on a single dataset and a single method. Instead, multiple datasets (J. Liu, 

Li, Li, & Wu, 2016) and methods should be implemented in the future work to cross 

validate their results. When results from such data-driven studies are applied, they should 

be used as complimentary to those from the traditional methods (J. Liu et al., 2016).  

Several specific challenges should be considered in interpreting our study results. 

First, identifying the number of classes for the unsupervised classification may have 

important effects on the derived urbanization dynamics, because too few classes may 

oversimplify the urbanization dynamics, while too many classes may be too difficult for 

interpretation. In addition, different number of classes may lead to different conclusions. 
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The underlying problem is the difficulty to draw distinct decision boundaries for the NTL 

trajectories, as they showed a broad and continuous variation of shapes and levels where 

the differences could be subtle (shown by the 1% randomly sampled trajectories in Figure 

2-4). To overcome the problem, future studies should invite local planners to verify if the 

number of classes can properly identify different typologies of urbanization in the 

planners’ communities and cities. Researchers could also select a few representative 

cities, and verify the urbanization dynamics from NTL with land cover change from high 

resolution remote sensing images (Qian Zhang & Seto, 2013). Furthermore, a sensitivity 

analysis should be carried out to understand how different numbers of classes may affect 

the analysis.  

Second, the differences in timing of the NTL changes during the study period 

should be incorporated to characterize more specific urbanization dynamics and to reduce 

variation in each type of dynamics. The eight trajectory parameters we used did not show 

the timing of the changes, therefore our urbanization dynamics were relatively general 

with broad range in certain classes (for example, class 2, 3, and 5 in Figure 2-4), and 

required us to interpret the classes with caution when referring the temporal aspect of 

them. Such general urbanization dynamics were particularly insufficient to identify urban 

shrinkage as it might occur during specific time periods in mainland China. We suggest 

future researchers apply temporal segmentation methods that identify the timing of major 

changes to in this type of analysis, which would help to understand different phases in 

urbanization. 

Finally, a more systematic validation of the NTL-derived urbanization dynamics 

in more cities and with multiple data sources is necessary. While our study only used five 

cities as validation sites, future researchers should include more representative cities in 

terms of urbanization type and level, spatial pattern of land use, economy, and 

geography. After stratifying the five validation cities into eastern cities including 

Hangzhou and Nanchang, and non-eastern cities including Harbin, Nanning, and 

Hanzhong, we found that non-eastern cities on average reached lower urbanization ratio 

in each NTL urbanization dynamics outlined zones (i.e. 𝐶𝑙𝑎𝑠𝑠𝑖𝑗 in equation (4)). We 

hypothesize that the lower urbanization ratios of the non-eastern cities were due to their 

stronger ‘overglow’ effect. The non-eastern cities are characterized by lower density 

development (F. Zhang et al., 2005), which could produce more scattered urban areas and 

light sources, and therefore stronger ‘overglow’ effect and overestimation of possible 

urbanizing areas from NTL-derived urbanization dynamics. Qian Zhang & Seto (2013) 

also found that NTL had high accuracy of characterizing urbanization dynamics in places 

where urbanization actually occurred, and lower accuracy in places that were not 

urbanized but influenced by ‘overglow’. If possible, we recommend that future 

researchers identify NTL-derived urbanization dynamics within urbanized areas 

determined by land cover to improve accuracy. In addition, finer resolution 

socioeconomic data such as population and economy should be used together with land 

cover to verify if they show similar changes with NTL. With such more systematic 

validation and reduction in ‘overglow’ effect, NTL-derived dynamics can more 

accurately reflect the actual urbanization process. 
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2.5 Conclusions 
Urbanization becomes one of the central drivers of global environmental change. 

Monitoring and understanding urbanization process becomes increasingly critical for 

planning and designing towards sustainable cities. With the increased availability of data 

and analytical power, we can utilize data-driven approaches along with traditional 

approaches to study urbanization, identify the patterns, and reveal the underlying process. 

By understanding the pattern and the process, planners, designers, and decision makers 

can apply proper strategies to enhance or intervene the ongoing urbanization. Our study, 

which used pixel-based, time-series NTL trajectories to identify different urbanization 

dynamics, demonstrates the power of such data-driven approach. 

Building on existing knowledge and research approaches, we proposed an 

alternative method that better determined the types of urbanization dynamics and reduced 

the input information. Taking mainland China as a case study example, we could identify 

five major types of urbanization dynamics between 1992 and 2013. With a focus on 

accelerated growth, we found clusters with high proportion of this urbanization dynamics 

and interpreted the formation of the clusters by relating them to existing knowledge on 

policy and developmental history. This approach provides a low-cost, timely, and large-

scale understanding about how urbanization happens over space and time, and should be 

used in combination with socioeconomic data, land cover mapping, and in situ land use 

survey to provide a solid basis for better urban planning, design, monitoring, and 

management.  
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Chapter 3. Climate-related uncertainties in urban exposure to sea level rise 

and storm surge flooding: a multi-temporal and multi-scenario analysis2 
 

Abstract: Climate change-induced sea level rise and intensified storms pose emerging flood 

threats to global coastal urban areas. While such threats have been mapped, their uncertainties 

from different climate scenarios and longer planning horizons have yet to be addressed from both 

an exposure assessment and a stakeholder outreach perspective. Therefore, we chose the highly 

urbanized San Francisco Bay Area as an example to project its flood areas every 20 years 

between 2000 and 2100, under 24 varied climate scenarios with two greenhouse gas (GHG) 

concentration levels. We then assessed flood exposure by intersecting the flood areas with 

demographic and socioeconomic distributions, developed areas, lifeline infrastructures, and 

emergency responders in low elevation (<10 m) coastal zones. Our median estimates under the 

low GHG scenarios indicated that 10-38% of the items assessed above are flood-exposed in 

2000-2020, with this exposure increasing to 20-54% during 2080-2100. The median estimates 

under the high GHG scenarios for the same periods are 0-35% and 40-67%, respectively. The 

expected uncertainties, or standard deviations, of the exposures for a given item assessed above 

under the low and high GHG scenarios are 1-2% in 2000-2020 and 7-10% in 2080-2100. Despite 

our modelling capability for a range of climate scenarios over the long term, some stakeholders, 

particularly those in the private sector, prefer near-term results with lower uncertainties. This 

implies the need for coastal urban areas to cope with climate-related uncertainties and to focus 

on the long term when developing strategies and policies for climate change adaptation. 

Keywords: Sea level rise, flood exposure, uncertainty, stakeholders, climate change 

3.1 Introduction 
The interaction between environmental hazards, urbanization, and climate change is 

likely to put more people and assets at risk. Environmental hazards affect urban areas and the 

well-being of their residents through storms, floods, heat waves, and drought (Hunt & Watkiss, 

2010). At the same time, urbanization, particularly disorderly urbanization, is increasingly 

exposing urban areas to these hazards (Dawson et al., 2011; Pelling, 2003; Storch & Downes, 

2011). This urban-hazard interaction alters under climate change which increases the extent, 

frequency, and severity of current-day environmental hazards, eventually affecting urban areas 

that were not previously exposed. To mitigate these undesirable consequences, cities have 

addressed environmental hazards and climate change issues in their master, strategic, and action 

plans (Jabareen, 2015). Researchers have also modeled the impact of climate change and 

environmental hazards on different population groups (Kaźmierczak & Cavan, 2011; Nutters, 

2012; Martinich, Neumann, Ludwig, & Jantarasami, 2013; KC, Shepherd, & Gaither, 2015; 

Bickers, 2014), infrastructures (Biging, Radke, & Lee, 2012; Demirel, Kompil, & Nemry, 2015; 

Radke et al., 2018, 2017), and natural environments (Schile et al., 2014; Zhu, Xi, Hoctor, & 

Volk, 2015). The modeled impacts can also be used to facilitate public participation in adaptation 

planning (Wadey et al., 2015). 

Coastal urban areas are likely to have intensified flood threats from storm surge and sea 

level rise (SLR) while simultaneously experiencing increasing development pressure, and thus 

                                                 
2 This chapter is from the journal paper: Ju, Y., Lindbergh, S., He, Y., & Radke, J. D. (2019). Climate-related 

uncertainties in urban exposure to sea level rise and storm surge flooding: a multi-temporal and multi-scenario analysis. 

Cities, 92, 230–246. https://doi.org/10.1016/j.cities.2019.04.002 
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should be prioritized for climate change adaptation (Carter et al., 2015; Rosenzweig, Solecki, 

Hammer, & Mehrotra, 2010). Due to their access to water, maritime transportation, fertile soil, 

raw materials - including salt and sand, and tourist attractions, coastal zones have been hotspots 

for development and population growth (Creel, 2003; De Sherbinin, Schiller, & Pulsipher, 2007; 

UNU-IHDP, 2015). A 2007 assessment indicated that while low elevation (i.e. less than 10 m 

above sea level) coastal zones only covered 2% of the world’s land area, they contained 10% of 

the world’s population and 13% of the world’s urban population (McGranahan, Balk, & 

Anderson, 2007). A global meta-analysis of 292 locations found that the average urban 

expansion rate in low elevation coastal zones between 1970 and 2000 was greater than 5.7%, 

higher than the rate of all other areas combined (Seto, Fragkias, Güneralp, & Reilly, 2011). 

Coastal zones are growth hotspots for the future: a conservative projection estimates that the 

global population in low elevation coastal zones will increase by 50% between 2000 and 2030, 

and by more than 160% between 2000 and 2060 (Neumann, Vafeidis, Zimmermann, & Nicholls, 

2015). Such high concentration of population and assets explain why coastal urban areas are 

more vulnerable to flood hazards from SLR and storm surge than other areas (Hunt & Watkiss, 

2010). 

Studies have modeled flooding from SLR and storm surge and analyzed the exposure of 

coastal areas (Barnard et al., 2009, 2014; Biging et al., 2012; Dasgupta, Laplante, Meisner, 

Wheeler, & Yan, 2008; Knowles, 2009, 2010; Lang, Radke, Chen, & Chan, 2016; Marcy et al., 

2011; Radke et al., 2017; Schile et al., 2014; Strauss, Ziemlinski, Weiss, & Overpeck, 2012). A 

typical approach in these studies is to produce and utilize flood maps under different storm 

recurrence intervals (e.g. 10-year and 100-year) combined with generic, incremental SLR values 

that are not closely associated with specific climate scenarios and planning horizons. While this 

generic approach provides the flexibility to adapt itself to various and continuously updating 

climate projections, it may lack the specificity to show what the flooding is like under specific 

climate scenarios and planning horizons that stakeholders are interested in, as well as the 

uncertainty introduced by different climate scenarios and how the uncertainty propagates over 

time.  

To show the uncertainty in long-term flood projections under climate change, and to 

discuss the implications of such uncertainty in planning and management for climate change 

adaptation, we conducted flood simulations that incorporated SLR and storm surge to identify a 

coastal urban area’s flood exposures under a range of 24 different climate scenarios at two 

greenhouse gas (GHG) concentration levels, every 20 years between 2000 and 2100. We 

measured flood exposures by intersecting the simulated flood with demographic and 

socioeconomic distributions, developed areas, lifeline infrastructures, and emergency responders. 

Uncertainties were further calculated as standard deviations of those flood exposures. 

We focus on the San Francisco Bay Area (Bay Area), a major U.S. urban area in the State 

of California, in this study. The Bay Area is a prime candidate for this research as it is prone to 

flooding from SLR and intensified storms induced by climate change, and it has a large 

concentration of development in threatened low-lying coastal areas (Figure 3-1). The Bay Area 

contains major U.S. urban agglomerations including San Francisco, Oakland, and the Silicon 

Valley complex centered in San Jose. This area continues to rapidly expand due to a growing 

economy and employment opportunities. Population, jobs, households and housing units in the 

Bay Area are projected to increase by 24-30% between 2010 and 2040, introducing new 

demands for land development (The Association of Bay Area Governments (ABAG), 

Metropolitan Transportation Commission (MTC), 2013). Due to the demand for land 
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development and insufficient regulations, the Bay Area’s coastal zones have been transforming 

rapidly from their natural state into industrial and residential use located at or below sea level 

(Pinto & Kondolf, 2016). As a result, the Bay Area’s exposures to potential flooding from storm 

surge and SLR have increased. A 2012 study shows that a 1 m SLR combined with a 100-year 

storm will put 220,000 people at risk and cost 49 billion US dollars to replace the impacted 

property, and that a 1.4 m SLR would increase the numbers to 270,000 and 62 billion US dollars 

(Heberger, Cooley, Moore, & Herrera, 2012).  

 

Figure 3-1. The San Francisco Bay Area. (a) shows the Bay Area’s landcover types in 2011, and 

(b) shows its elevation with areas below 10 m highlighted in darker tones, the gauge with the 

hourly sea level projections, and the validation gauges used for flood model calibration. 

Taken together, our primary goal is to illustrate the uncertainty in long-term projection of 

urban exposure to climate change-induced flooding. To achieve this goal, we first provide 

comprehensive mapping of flood hazard and exposures of urban areas under different climate 

scenarios and time horizons. Second, we highlight how the exposure’s uncertainties change with 

time and vary by groups of the climate scenarios defined by their GHG levels. In addition, we 

discuss the uncertainties’ implications in planning and management based on our outreach 

process with stakeholders. Through these efforts, we highlight the necessity of understanding 

climate-related uncertainties in coastal flood projections and exposure analysis. We also reveal 

some challenges for stakeholders in utilizing multi-scenario and long-term climate and 

environmental hazard projections in planning, management, and decision-making. While we 

focus on the Bay Area and coastal flooding, our findings are informative for other coastal urban 

areas faced with similar flood threats, and for adaptation to other climate change-induced 

environmental hazards (e.g. drought and heatwave) whose uncertainties are intrinsic and 

substantially larger in the longer term. 
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3.2 Data and Methods 

3.2.1 Flooding model 

Various models, both static and dynamic, have been used to simulate coastal flood. 

Earlier models tend to be static, identifying flood areas below a time-invariant water surface such 

as the projected mean sea level. These static models are computationally feasible, therefore can 

be applied to large areas with fine spatial resolutions (Biging et al., 2012; Dasgupta et al., 2008; 

Marcy et al., 2011; Strauss et al., 2012). However, these models do not incorporate the temporal 

and flow dynamics of water movement. More recent research has employed process-based, 

hydrodynamic, two-dimensional (2D) models to account for these dynamics. These 2D models 

are computationally intensive, and thus difficult to implement at regional scales and/or with fine 

spatial resolutions. Few studies, including the model by Knowles (2009, 2010), the Coastal 

Storm Modeling System (CoSMoS) (Barnard et al., 2009, 2014), and the CalFloD-3D model 

(Radke et al., 2017), adopted 2D hydrodynamic models for the Bay Area.  

We employed a 3Di hydrodynamic model (Stelling, 2012) to simulate flood areas and 

depth at 50 m spatial resolution during extreme sea level events projected under a range of 24 

climate scenarios defined by two greenhouse gas (GHG) concentration levels, every 20 years 

between 2000 and 2100. The 3Di model dynamically simulates the movement of water, by user-

defined time steps, over a digital surface of topography and bathymetry. This model has been 

successfully implemented in urban and rural watersheds to simulate flood by inland rainfall-

runoff (Dahm, Hsu, Lien, Chang, & Prinsen, 2014; Hsu, Prinsen, Bouaziz, Lin, & Dahm, 2016; 

Leicher, 2016), SLR, and storm surge (Ju et al., 2017; Radke et al., 2017). The 3Di model’s 

primary inputs are time-series water levels as boundary forcing to generate waterflows, and 

digital surface data containing topography, bathymetry, and/or aboveground objects such as 

levees to direct the waterflows. For every extreme sea level event, the 3Di model produces a 

time-series of flood areas with water depths. A unique advantage of the 3Di model for this study 

is its ability to feasibly compute over large regions at fine spatial resolutions, which is enabled 

by the model’s compression algorithm that simplifies the input digital surface while preserving 

significant topographic variations such as those from levees and buildings (Stelling, 2012). In 

this study, we modeled at 50 m spatial resolution to feasibly iterate through the various extreme 

sea level events.  

3.2.2 Extreme sea level events 

We used extreme sea level events to simulate the worst-case flood hazards with the 3Di 

model. These extreme sea level events were extracted from an hourly sea level projection 

(Cayan, Kalansky, Iacobellis, & Pierce, 2016) at a San Francisco gauge (Figure 3-1) and 

incorporated long-term SLR and short-term fluctuations from tide and storm surge. Each event is 

a 72-hour window starting with the highest sea level under a given climate scenario during a 20-

year period between 2000 and 2100 (Figure 3-2 (a)). The events together represent a spectrum of 

24 climate scenarios generated from a hierarchy of two Representative Concentration Pathways 

(RCPs) defining low and high atmospheric concentrations of GHG (i.e. RCP 4.5 versus 8.5), 

three probabilistic SLR values, and four Global Climate Models (GCMs) emphasizing different 

historical and future climate patterns in California (Pierce, Cayan, & Dehann, 2016) (Figure 3-2 

(b)). For each RCP and a 20-year period, we ranked the corresponding twelve extreme sea level 

events by their peak sea levels to derive high, medium, and low estimates of flood hazard. We 

used the 20-year intervals to match the simulated flood and exposure analysis with typical 
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planning horizons and investment cycles that were often multidecadal. It is worth noting that the 

climate scenarios, our flood projections, and exposure analysis are intended to show a wide range 

of plausible futures and not to predict an exact one (Moss et al., 2010).  

 

Figure 3-2. The climate scenarios and their extreme sea level events. (a) shows an example of 

extracting an extreme sea level event for a 20-year period and a given climate scenario from the 

hourly sea level projections. This extreme sea level event is a 72-hour period started with the 

highest sea level projected under this climate scenario and during this 20-year period. (b) shows 

the hierarchy to generate the climate scenarios and ranking of the extreme sea level events by 

their peak sea levels.  

The extreme sea level events show higher and increasingly varied peak sea levels as the 

events move into the future (Figure 3-3). Under RCP 4.5 scenarios, the peak sea level reaches 

2.61-2.94 m during the 2000-2020 period, and 3.08-4.40 m during the 2080-2100 period. Under 

RCP 8.5 scenarios, the numbers shift to 2.49-2.63 m during the 2000-2020 period, and 3.78-5.50 

m during the 2080-2100 period. The peak sea levels under RCP 8.5 tend to be higher than those 

under RCP 4.5, which is likely due to RCP 8.5’s higher GHG concentrations, stronger climate 

change, greater SLR, and more intensified storms (see Appendix A for a visualization of the 

hourly sea level projections, SLR, and storm surge). However, during the 2000-2020 period, 

RCP 4.5 scenarios project higher peak sea levels than RCP 8.5 scenarios, which is due to 

stronger storm surge projections by one GCM under RCP 4.5 scenarios (Appendix A). The 

variability of the peak sea levels exacerbates over time, for example, increasing from 0.14 m (i.e. 
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2.63 m versus 2.49 m) in the 2000-2020 period to 1.72 m (5.50 m versus 3.78 m) in the 2080-

2100 period under RCP 8.5.  

 

Figure 3-3. Projected peak sea levels during the extreme sea level events at the San Francisco 

gauge. Each dot represents the peak sea level under a climate scenario generated from 

permutations of two RCPs, three probablistic SLRs, and four GCMs during a 20-year period. 

The maximum, median, and minimum estimates of peak sea levels for an RCP and a 20-year 

period are labeled. The colors differentiate the three probabilistic SLRs generating the peak sea 

levels. (a) shows the peak sea levels under RCP 4.5 scenarios, and (b) shows the peak sea levels 

under RCP 8.5 scenarios.  

 

3.2.3 Topography and bathymetry data 

We generated a continuous, 50 m resolution surface from the best-available topography 

and bathymetry datasets (Table 3-1) of the Bay Area as the second input for the 3Di model. Our 

surface contains bare ground elevation, bathymetry, and levees. We excluded buildings as they 

were too granular for the 50 m resolution surface. Since the datasets are originally all finer than 

the targeted 50 m spatial resolution, we first conducted an average aggregation and then 

mosaicked the aggregated datasets to generate the 50 m resolution surface. Flood control 

structures, such as levees, have their elevation information preserved to some extent in the 50 m 

resolution surface. However, underestimated elevations are introduced when averaging levee 

segments with their lower elevation surroundings. Similarly, small channels protected by 

extensive levees can have overestimated elevations after the aggregation. Such underestimation 

for the levees and overestimation for the small channels can either generate non-existent water 

flow pathways or eliminate existing ones. Therefore, the 50 m resolution surface can over/or 

underestimate flooding. However, we used the average aggregation (versus maximum or 

minimum aggregation) as it showed an average condition of the topography. Interested 

researchers may further test the effects of other aggregation methods on the simulated floods. 

Table 3-1. Topography and bathymetry datasets used to construct the 50 m surface 

Data 
Spatial 

resolution 

Spatial 

coverage 

Use in the 50 m 

surface 
Source 
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USGS South 

Bay Lidar 

1 m 

Low 

elevation 

coastal zones 

 

Fine resolution 

topography 

USGS California Coastal LiDAR 

Project 

(https://coast.noaa.gov/htdata/lidar

1_z/geoid12a/data/1406/) 

NOAA North 

Bay Lidar 

NOAA California Coastal LiDAR 

Project  

(https://coast.noaa.gov/htdata/lidar

1_z/geoid12a/data/584/) 

National 

Elevation 

Dataset (NED) 

10 m 
The entire 

Bay Area 

Supplementary 

topography to 

finer resolution 

datasets 

USGS National Elevation Dataset 

(https://lta.cr.usgs.gov/NED) 

DWR Bay-Delta 

bathymetry 
2-10 m 

The entire 

Bay Area 

Fine resolution 

bathymetry  

California Department of Water 

Resources 

(https://www.sciencebase.gov/catal

og/item/58599681e4b01224f329b4

84) 

 

3.2.4 Model validation and representation of flood hazard 

We modeled a historical high sea level event on Jan 11th, 2017 in the Bay Area (NOAA, 

2019) to validate the model’s settings before iteratively simulating through the extreme sea level 

events identified in section 3.2.2. We compared the simulated water levels against observations 

at five validation gauges in Figure 3-1. The results (Figure 3-4) show that the model simulates 

similar water levels to the historical event, with Person’s correlation (equation (1)) between the 

simulations and the observations no less than 0.81 and root mean square error (RMSE, calculated 

with equation (2)) no greater than 0.69 m, when no time lag between the simulations and 

observations is applied to calculating correlation and RMSE. The difference between the 

observations and the simulations increases when moving inland, with it being smaller for the 

near coast Alameda gauge (r = 0.92, RMSE = 0.31 m) and greater for inland gauges such as Port 

Chicago (r = 0.81, RMSE=0.57 m) and Coyote Creek (r = 0.82, RMSE = 0.69 m). Overall, the 

simulations tend to underestimate the observations, which can be explained by the absence of 

river discharges that affect water levels in the simulations. We also notice time lags between the 

simulations and the observations, as a certain amount of time is required for the simulated 

waterflows to pass through the gauges and to alter the initial water surface of 0 m in elevation. 

When an arbitrary 30-min lag was added to comparing the observations and the simulations, the 

differences reduced for all gauges, and the lowest correlation increased from 0.81 (without lag) 

to 0.90 (with lag) and the highest RMSE reduced from 0.69 m (without lag) to 0.54 m (with lag). 

The existence of such time lags justifies the need for simulating the extreme sea level events over 

longer time windows (e.g. 72 hours), so that the simulated water peaks can pass through the 

study area. 
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r =  
∑ (𝑥𝑡 − �̅�)(𝑥�̂� − �̅̂�)𝑛

𝑡=1

√∑ (𝑥𝑡 − �̅�)2𝑛
𝑡=1

√∑ (𝑥�̂� − �̅̂�)2𝑛
𝑡=1

 
(1) 

RMSE =  √
∑ (𝑥�̂� − 𝑥𝑡)2𝑛

𝑡=1

𝑛
 (2) 

where 𝑥𝑡 is the observed value at time step t, and 𝑥�̂� is the simulated value, �̅� is the 

average value of the observations, �̅̂� is the average value of the simulations, n is the total number 

of time steps. 

 

Figure 3-4. Observed and simulated water levels during a historical extreme sea level event in 

the Bay Area starting in Jan 11th, 2017. Observations and simulations were compared using 

correlation and root mean square error (RMSE), with and without an arbitrary 30-min time lag. 

During each extreme sea level event our simulation produced hourly flood area and 

depths, which were compressed into a single map of the maximum flood extent and depth during 

the event. We also grouped the maps from different events by their respective RCPs and 20-year 

periods to show coastal flood hazard under different GHG concentration levels and over time.  

 

3.2.5 Exposure analysis 

We collected fourteen datasets representing demographic and socioeconomic 

distributions, developed areas, locations of lifeline infrastructures, and emergency responders 

(Table 3-2) to comprehensively assess the Bay Area’s exposure to the projected flood. 

Demographic and socioeconomic data including population, number of households and housing 
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units were used to estimate the total amount of people, families, and housing structures exposed 

to flooding. Similarly, developed areas of different development intensities were used to 

approximate the exposure of the built-environment (i.e. man-made environment ranging from 

dense urban centers and parks) in general (Wood, 2009). We included lifeline infrastructures 

containing roads and co-located utilities (e.g. electric power and natural gas) as they support the 

recovery of places directly hit by environmental hazards, and the failure of these infrastructures 

can spread the hazards’ impacts to a broader region (EERI, 2016; Oh Eun Ho, Deshmukh 

Abhijeet, & Hastak Makarand, 2013). Emergency responders, such as fire stations and hospitals, 

were also included in the exposure analysis due to their importance in disaster response and their 

abilities to assist needed citizens affected by environmental hazards (Biging et al., 2012; Coles, 

Yu, Wilby, Green, & Herring, 2017).  

We used relative exposure, which was calculated as the percentage of a dataset’s low-

lying portion (i.e. less than 10 m in elevation) that was flooded, in the following analysis. 

Calculating exposure is a preliminary step towards understanding flooding’s impact, as this 

measurement does not show outcomes such as monetary loss from flooded homes and 

infrastructures, reduced service area and capacity of emergency responders, or any cascading 

effects due to disruptions in lifeline infrastructures. However, this exposure metric can be easily 

iterated through the multiple extreme sea level events to provide an overview of the uncertainties 

driven by the climate scenarios and time. In addition, we focused on relative exposure to 

facilitate comparison across different datasets. We also limited the analysis to the low-lying 

portion of these datasets as coastal flooding from SLR and storm surge is a localized 

phenomenon that rarely expands to higher elevations. A detailed description of what relative 

exposure means to each dataset is contained in Table 3-2. In addition, we report absolute 

exposures of the datasets in Appendix B. 

Table 3-2. Datasets used in the exposure analysis 

Datasets Source 

Relative 

exposure 

metric 

Demography 

and 

socioeconomics 

Population 
The U.S. Census Grids 

(http://sedac.ciesin.columbia.edu/da

ta/collection/usgrid) 

% people 

Number of households % households 

Number of housing units 
% housing 

units 

Developed areas 

Open space 

National Land Cover Database 

(https://www.mrlc.gov/nlcd11_data.

php) 

% area 

Low intensity 

development 

Medium intensity 

development 

High intensity 

development 

Lifeline 

infrastructures 

Roads 
ArcGIS Business Analyst 2016 

(ESRI, 2016) 
% length 

Electric transmission line 
GIS Open Data, California Energy 

Commission (https://cecgis-

caenergy.opendata.arcgis.com) 

% length 

Electric substations % substations 

Natural gas pipelines % length 

Natural gas stations % stations 

Fire stations (Biging et al., 2012) % stations 
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Emergency 

responders 
Hospitals 

Licensed Healthcare Facility 

Listing, California Health and 

Human Services Open Data Portal 

(https://data.chhs.ca.gov/dataset/lice

nsed-healthcare-facility-listing) 

% hospitals 

%:  percentage of a dataset’s low-lying portion (i.e. less than 10 m in elevation) that is flooded 

3.2.6 Analyzing uncertainties in the exposures 

We calculated uncertainties in the exposures as standard deviation (𝑆𝑡𝑑𝑗,𝑡,𝑘)  of a 

dataset’s (𝑘) relative exposures during all extreme sea level events for a given 20-year period (𝑡) 

and an RCP (𝑗) (equation (3)). We performed a simple linear regression to understand how these 

uncertainties changed with the RCPs and time (equation (4)). The fitted value from this 

regression represents expected uncertainty in relative exposures of a dataset for a RCP and a 20-

year period. We calculated the uncertainties and performed the regression above for the overall 

exposure with the maximum flood depth greater than 0 m, as well as for five different levels of 

exposure stratified by the maximum flood depth: low (0-0.5 m), medium (0.5-1.0 m), high (1.0-

1.5 m), very high (1.5-2.0 m), and extreme (>2.0 m).  

𝑆𝑡𝑑𝑗,𝑡,𝑘 =  √
∑ (𝐸𝑖,𝑗,𝑡,𝑘 − 𝑬𝒋,𝒕,𝒌

̅̅ ̅̅ ̅̅ )2𝑁
𝑖=1

𝑁
 (3) 

𝑆𝑡𝑑𝑗,𝑡,𝑘 =  𝛽0 + 𝛽1𝑅𝐶𝑃𝑗 ∗ 𝑇𝑖𝑚𝑒𝑡 + 𝜀𝑗,𝑡,𝑘 (4) 

where 𝐸𝑖,𝑗,𝑡,𝑘 is a dataset 𝑘’s relative exposure during an extreme sea level event 𝑖 of RCP 

𝑗 and a 20-year period 𝑡. 𝑬𝒋,𝒕,𝒌
̅̅ ̅̅ ̅̅  is the average relative exposure across the extreme sea level 

events. 𝑁 is the total number of extreme sea level events of RCP 𝑗 and 20-year period 𝑡, which 

equals to 12 based on permutations of the four GCMs and three probabilistic SLR values. 𝑆𝑡𝑑𝑗,𝑡,𝑘 

is standard deviation of the dataset’s relative exposures under RCP 𝑗 and during 20-year period 𝑡. 

𝑅𝐶𝑃𝑗 is a dummy variable for either RCP 4.5 or RCP 8.5, and 𝑇𝑖𝑚𝑒𝑡 is a dummy variable for 

one of the five 20-year periods. 

3.3 Results 

3.3.1 Flood hazard 

Our simulations of the extreme sea level events indicate that flood area and depth 

increase with the projected SLR and intensified storms. The median estimates of RCP 8.5 

scenarios and their respective extreme sea level events show that flood area increases from 733 

km2 during the 2000-2020 period, to 784 km2 during the 2020-2040 period, and to 1,066 km2 

during the 2080-2100 period (Figure 3-5(a), solid red line). Compared with the median estimates 

of RCP 8.5, the ones of RCP 4.5 scenarios results in larger flood areas during the 2000-2020 

period, and smaller flood areas during the remaining periods (Figure 3-5(a), solid green line). 

Such patterns are expected as RCP 4.5 scenarios have higher peak sea levels for the events 

during the 2000-2020 period but lower peak sea levels for the events during the other periods, as 

shown in section 3.2.2. Our results also indicate that the increased portions of the flood areas 

have greater depth (Figure 3-5(b-c)). For example, the median estimates of RCP 8.5 scenarios 
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showed 13% (97 km2) of the total flood area with extreme depth (i.e. > 2.0 m) during the 2000-

2020 period, 21% (165 km2) during the 2020-2040 period, and 77% (822 km2) during the 2080-

2100 period (Figure 3-5(c)).  

 

Figure 3-5.  Flood area during the extreme sea level events identified every 20 years between 

2000 and 2100 under the 24 climate scenarios. (a) Flood area of each event, shown as dashed 

lines colored by their RCPs and probabilistic SLR values. The median estimate of each RCP is 

shown as a solid line. (b) and (c) show area with different maximum flood depths (i.e. low: 0 - 

0.5 m, moderate: 0.5 – 1.0 m, high: 1.0 – 1.5 m, very high: 1.5 – 2.0 m, extreme: > 2.0 m) based 

on the median estimates of each RCP. 

The flood areas mainly include wetlands in the north and south, and developed areas in 

the central section of the Bay Area. While flooding over the wetlands moves further inland, in 

the developed areas it is constrained by steep slopes and hills (Figure 3-6 (a)). Due to these 

topographic constraints, the developed areas are likely to have limited expansions in flood area 

but greater increases in flood depth, which partially explains why areas with greater flood depth 

grew disproportionally in Figure 3-5 (b-c). We also visually identify several locations that will 

likely have disproportional increases in areas with deeper flooding in Figure 3-6 (b).  
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Figure 3-6  Flood in developed areas based on the median estimates of RCP 4.5 and 8.5 

scenarios.  (a) shows overall flood area during the 2080–2100 period. (b) compares flood depths 

from the median estimates of the two RCPs and two 20-year periods. (b) also outlines areas with 

limited expansion in flood area but disproportional increases in flood depth.  

3.3.2 Urban exposure to flooding 

Our results indicate that the fourteen datasets assessed are increasingly exposed to the 

simulated flooding and that RCP 8.5 scenarios generally cause greater exposures than do the 

RCP 4.5 scenarios (Figure 3-7). While we report relative exposures (i.e.  percentage of a 

dataset’s low-lying portion that is flooded, see Table 3-2 for a detailed description for each 

dataset) in this study, we include absolute exposures in Appendix B. 

Under the median estimates of RCP 8.5 scenarios, the fourteen datasets’ relative 

exposures increase from 0-35% (i.e. dataset dependent, similar below) during the 2000-2020 

period to 40-67% during the 2080-2100 period. Under the median estimates of RCP 4.5 

scenarios, the exposures are 10-38% during of the 2000-2020 period, and 20-54% during the 

2080-2100 period. Compared with RCP 4.5, RCP 8.5 does not consistently lead to more 

exposures of the datasets. Over the five 20-year periods combined, the median estimates of RCP 

8.5 scenarios result in significantly higher (p-value = 0.038) exposures of the fourteen datasets. 
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However, before 2040, RCP 4.5’s median estimates lead to insignificantly higher exposures (p-

value2000-2020 = 0.394, p-value2020-2040= 0.916). After 2040, RCP 8.5 scenarios’ median estimates 

start to cause more exposures, and such pattern becomes increasingly significant (p-value2040-2060 

= 0.368, p-value2060-2080= 0.036, p-value2080-2100 = 0.000). This pattern is due to the differences in 

projected peak sea levels between the two RCPs, as illustrated earlier in section 3.2.2. 

Developed open space and low intensity development are the most exposed categories on 

average over the 20-year periods, whereas hospitals, demographic and socioeconomic 

distributions are less exposed. Averaged over the median estimates during the five 20-year 

periods, 43% (RCP 4.5) to 47% (RCP 8.5) of developed open space and 41% (RCP 4.5) to 44% 

(RCP 8.5) of low intensity development within the low-lying coastal zones are exposed to 

flooding. The less exposed categories, such as hospitals and housing units, have exposures of 

12% (RCP 4.5) to 18% (RCP 8.5) and 19% (RCP 4.5) to 22% (RCP 8.5), respectively. 

Development is the most exposed category we assess, followed by lifeline infrastructures, 

demographic and socioeconomic distributions, and emergency responders.  
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Figure 3-7.  Relative flood exposure of demographic and socioeconomic distributions, developed 

areas, lifeline infrastructures, and first responders during the extreme sea level events under RCP 

4.5 and 8.5 scenarios, every 20 years between 2000 and 2010. Relative exposure is calculated as 

percentage of a dataset’s low-lying portion (i.e. less than 10 m in elevation) that is flooded. The 

solid color bars show the relative exposures during median estimates of the extreme sea level 

events. The black lines show standard deviations of the relative exposures during all extreme sea 

level events for a given RCP and a 20-year period. 

3.3.3 Uncertainties driven by the climate scenarios and time 

The uncertainties (i.e. standard deviations) of the datasets’ relative exposures increase 

over time, and RCP 8.5 generally leads to more uncertainties compared with RCP 4.5 (Figure 

3-8). Under RCP 4.5 scenarios, the 2000-2020 period has an expected uncertainty (i.e. based on 

the regression of equation 4) of 2% in relative exposure of a given dataset, and the uncertainty is 
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relatively unchanged until the 2060-2080 period when the value doubles to 4%. The final 2080-

2100 period has the highest expected uncertainty of 7% (Figure 3-8 (a)). A similar trend is found 

for RCP 8.5’s average uncertainties, despite an earlier rise in the 2020-2040 period (Figure 3-8 

(b)).  During the 2000-2020 and 2020-2040 periods, RCP 8.5 has smaller expected uncertainties 

than those of RCP 4.5, but this relationship inverts during the remaining periods. 

 

Figure 3-8.  Temporal trends of the uncertainties in the relative flood exposures of the fourteen 

datasets. (a) shows the uncertainties under RCP 4.5 scenarios. (b) shows the uncertainties under 

RCP 8.5 scenarios. The color dashed line shows the uncertainties in relative exposures of a 

dataset under a given RCP over time, whereas the solid black line shows the expected 

uncertainties. For a dataset, uncertainty is the standard deviation (Std.) of its relative exposures 

under a RCP and during a 20-year period. Expected uncertainty is predicted with the regression 

of equation 4. 

The expected uncertainties in the dataset’s relative exposures to different flood depths 

show varied temporal trends (i.e. based on the regression of equation 4) (Figure 3-9). Low to 

very high exposures (i.e. the max. flood depth less than 2 m) show similar temporal trends with 

moderate increases in their uncertainties over time. However, extreme exposure (i.e. the max. 

flood depth greater than 2 m) has more distinct temporal trends with much larger uncertainties, 

particularly during the later periods such as those after 2080 for RCP 4.5 scenarios (Figure 3-9 

(a)) and after 2060 for RCP 8.5 scenarios (Figure 3-9 (b)).  
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Figure 3-9.  Temporal trends of the expected uncertainties in the fourteen datasets’ relative 

exposures to different flood depths. (a) the temporal trends under RCP 4.5, (b) the temporal 

trends under RCP 8.5. 

3.4 Discussion 

3.4.1 Flood exposure under an uncertain future 

Understanding flood exposure caused by SLR and storm surge is a prerequisite to obtain 

further information regarding risk, vulnerability, impact, resilience, and adaptation options in 

coastal urban areas under climate change. Projecting flood exposure involves a substantial 

amount of uncertainties that are propagated through a chain of different political, socioeconomic 

and technological assumptions, GHG emissions and concentrations (i.e. the RCPs in this study), 

and climate models (i.e. the GCMs and probabilistic SLR values in this study) (Wilby Robert L. 

& Dessai Suraje, 2010). Our results empirically show what the climate-related uncertainties 

would be like in a highly urbanized area, regarding the exposures of socioeconomic and 

demographic distributions, developed areas, lifeline infrastructures, and emergency responders to 

modeled flooding during extreme sea level events projected under two groups of climate 

scenarios (i.e. RCP 4.5 and 8.5), every 20 years between 2000 and 2100. We postulate that 

uncertainties should not be neglected, particularly for planning horizons beyond 2040 where our 

results indicate more salient uncertainties in relative exposures (Figure 3-8 and Figure 3-9). 

Since flooding is sensitive to its underlying terrain conditions, coastal areas with flat 

terrain are more likely to experience uncertainties in projected flood exposures when compared 

with areas on steeper slopes. In flat areas, slight variations in projected sea levels can make the 

resulting flood areas advance or retreat over longer distances. For example, cities in the 

northeastern valleys of the Bay Area have more agreements in their flood areas between the low, 

median, and high estimates of the extreme sea level events (Figure 3-10 (a)). Alameda, a city 

built on flat landfill, is not only projected to have larger flood areas but also greater differences 

between the low, median and high estimates (Figure 3-10 (b)). Additional coastal developments 

are expected to emerge throughout the Bay Area due to the region’s growing economy, projected 

increases in population and jobs, and amenities near the waterfront. A 2015 map found that 27 

major proposed and ongoing real estate projects were located in flood-prone coastal zones 

(Wachtel, Ennamorato, & Burson, 2015) where the projected flood exposures were not only 

salient but also more uncertain, adding challenges to planning, management, and decision-

making. 
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Figure 3-10. Comparing high, median, and low estimates of flood areas in places with steep (a) 

and flat (b) terrain. This example is illustrated using extreme sea level events under the RCP 8.5 

scenarios during the 2040-2060 period.  

While we only highlight climate-related uncertainties in this study, non-climatic factors 

can also affect the uncertainties in projected flood hazards and exposures. These factors include 

land subsidence and uplift, different population distribution projections, land cover and land use 

changes, and improvements or failures of flood control structures. A recent model at 2 m spatial 

resolution (Shirzaei & Bürgmann, 2018) indicates that land subsidence and uplift will make 

flood areas increase from 51-168 km2 to 98-218 km2 by 2100 in the southern Bay Area under a 

likely range (i.e. 67% probability) of SLR scenarios. These land subsidence and uplift 

projections slightly (i.e. statistically insignificant) alter our results at 50 m resolution, causing 

flood areas within the southern Bay Area (the extent of this area is in Appendix C) to increase by 

0.23 km2 and the datasets’ relative exposures to increase by 0.62% on average during the extreme 

sea level events. In addition, the uncertainties in flood areas decrease by 0.07 km2, and the 

uncertainties in a dataset’s exposures decrease by 0.31% on average under the two RCPs and 

during the five 20-year periods. However, all these changes are small and statistically 

insignificant, for two reasons. First, Shirzaei et al. only consider SLR and exclude extreme storm 

surge, whereas we include both phenomena. Therefore, compared with Shirzaei et al., our 

projected flood areas are more extensive and likely cover coastal regions with salient land 

subsidence, even without including this effect. Adding land subsidence to our models should not 

change projected flood area in these regions or the broader study area. Second, our 50 m spatial 

resolution and average aggregation may attenuate the effects of land subsidence and uplift. Given 

the sensitivity of flood models to spatial resolution (Haile & Rientjes, 2005; Jakovljević & 

Govedarica, 2019; Ju et al., 2017), we assume that models at a finer spatial resolution such as 2 

m may lead to significant changes in flood exposures and their uncertainties such as the ones 

observed by Shirzaei & Bürgmann (2018). These uncertainties may further increase when 

considering different land use and population projections, such as a recent Californian land use 

projection that contains four land use scenarios based on different population growth trajectories 

(Sleeter, Wilson, Sharygin, & Sherba, 2017). Levees are more relevant in low-lying and flat 

terrains, such as the adjacent Sacramento-San Joaquin River Delta whose islands are mostly 3-8 

m below the current-day sea level (Ingebritsen, Ikehara, Galloway, & Jones, 2000) and protected 

by an extensive levee system (Mount & Twiss, 2005). These islands will likely be entirely 

flooded if the levees are overtopped or breached, and thus levee condition is a critical and 

uncertain factor for adaptation planning in this region. These non-climatic factors above, in 

addition to the climate drivers, serve to broaden the uncertainties in projected flood exposures.  

3.4.2 Implications of the uncertainties for planning and management 

To understand the implications of our results for planning and management in the Bay 

Area, we engaged with private and public stakeholders in the transportation and energy sectors. 

This outreach process is part of a broader project (Radke et al., 2018) that studies flood-related 

vulnerabilities of some lifeline infrastructures in our analysis. Two implications for planning and 

management are worth highlighting from this outreach process. First, the increased uncertainties 

over time pose obstacles for stakeholders to appreciate our long-term, multi-scenario flood 

projections and exposure analysis. Second, the obstacles above require adaptation strategies to 

cope with uncertainties and to promote long-term planning. 
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Concerns about uncertainties in long-term climate change projections and adaptations are 

not unique to the stakeholders we engaged with, they are also relevant for stakeholders in other 

sectors. Many of the stakeholders we interviewed are more interested in our near-term 

projections such as for 2000-2020 and 2020-2040, with insights from a few private-sector 

stakeholders suggesting that projections exceeding 10 years would be irrelevant in near-term 

decision making. This short-term focus is likely an uncertainty-avoidance organizational 

behavior (Slawinski, Pinkse, Busch, & Banerjee, 2017), that can be suboptimal in the long-term 

for infrastructures with longer investment, life, and planning cycles (Hallegatte, 2009). Concerns 

about uncertainty have also been reported in other sectors such as public land management 

(Peters, Schwartz, & Lubell, 2018), urban planning (Carter et al., 2015), business firms 

(Slawinski et al., 2017), and public outreach (Morton, Rabinovich, Marshall, & Bretschneider, 

2011). Since the negative consequences of future climate are not certain, stakeholders worry 

about losing predictability and control, and are inclined to keep self-interested behaviors, which 

may reduce the likelihood of taking actions for adaptation (Morton et al., 2011; Slawinski et al., 

2017). This could explain the preference of stakeholders for short-term projections and exposure 

analysis that have smaller uncertainties as discovered in our results.  

Based on our findings and from the existing literature, planning and management 

strategies should incorporate the uncertain nature of future climate and promote long-term 

thinking (Oddo et al., 2017; Walker, Haasnoot, & Kwakkel, 2013; Woodward, Kapelan, & 

Gouldby, 2014). Hallegatte (2009) recommends no-regret (i.e. beneficial even without climate 

change) and reversible (i.e. low cost for being wrong about future climate) adaptation strategies 

to cope with uncertainties. Additionally, uncertainty-coping strategies are not only technical but 

also “soft” by incorporating financial, organizational and institutional measures. Such strategies 

should enhance redundancy of a given system and enable decision-making in a timely manner to 

keep pace with new situations. Our outreach process with the stakeholders reveals preferences 

for technical and irreversible adaptation strategies such as armoring infrastructures and building 

levees. We also find some interest in no-regret and “soft” strategies including building mutual 

aid and self-sufficient logistic groups for emergency preparedness, which can be promoted as 

these strategies are assumed to be lower-cost and more flexible than the technical and 

irreversible ones when adjusting to new climate projections. Another salient example of ‘soft’ 

strategy that has yet to be considered is the Sand Engine, a mega scale sand replenishment driven 

by waves and currents, implemented in the Netherlands to control for SLR-driven coastal 

recession while reducing project cost and disruptions to nature (Stive et al., 2013).  

The long-term thinking is enhanced with the inclusion of certainties in climate change 

adaptation, such as adopting stable regulations over time that provide more predictability about 

future policy environment and reduce the risk of implementing certain adaptation actions 

(Slawinski et al., 2017). Furthermore, policies may explicitly require development projects to 

consider the long term. For example, a Bay Area’s regulation has asked coastal projects to cope 

with flood projections for 2050 or 2100 depending on project life and existence of public safety 

risks (The San Francisco Bay Conservation and Development Commission, 2011). In realizing 

such long-term consideration, researchers, planners, and decision-makers may utilize the concept 

of ‘adaption tipping point’ (Kwadijk et al., 2010), which is carried out in the Netherlands to 

identify the time points when current strategies are no longer valid due to climate change and 

when new strategies are need. 
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3.4.3 Limitations and future research directions 

While we focus on exposure in this study, it does not equal to flood impacts on urban 

areas. Future researchers may acquire additional information to transform exposure into impact 

related metrics such as disruptions in traffic flows, damages to homes, and loss of life through 

damage-depth curves (Huizinga, Moel, Szewczyk, European Commission, & Joint Research 

Centre, 2016; Pistrika, Tsakiris, & Nalbantis, 2014). In addition to studying direct impacts in 

exposed areas, researchers may further consider a network framework where flood impacts can 

propagate through intra- or inter-connected infrastructures, spreading impacts over a much 

broader region (Biging et al., 2012; Ge, Dou, & Zhang, 2017). Researchers suggest that this 

network perspective provides a more holistic picture on flood impacts and their related 

uncertainties (Balijepalli & Oppong, 2014; Eleutério, Hattemer, & Rozan, 2013; Haimes, 2009; 

Herrera, Flannery, & Krimmer, 2017; International Transport Forum (ITF), 2017; Lleras-

Echeverri & Sanchez-Silva, 2001; Martinson, 2017; O’Rourke, 2007; Rodríguez-Núñez & 

García-Palomares, 2014).  

Researchers can also benefit from collaborating with stakeholders during the flood 

modeling process. While we mainly presented our results to the stakeholders responsible for 

some lifeline infrastructures, future studies may expand to other relevant industries and sectors, 

collecting their opinions on flood modeling. The differences in the stakeholder’s reactions (e.g. 

the preferences for short versus long term projections) may indicate their varied priorities and 

concerns about flooding and climate change adaptation. Such knowledge can inform more 

relevant and applicable regulations and policies. Furthermore, stakeholder engagement can help 

to identify appropriate modeling strategies in terms of spatial resolution, time horizons, areas of 

interest, and metrics for projecting flood hazard, which will hopefully lead to more stakeholder-

specific results (Wadey et al., 2015). 

Finally, a long-term, fine resolution, and consistent flood mapping inventory will benefit 

flood modeling, exposure and impact assessments, and consequently stakeholders. Such an 

inventory is becoming increasingly possible with the advances in remote sensing (Pekel, Cottam, 

Gorelick, & Belward, 2016), sensor networks (Chang & Guo, 2006), and volunteered geographic 

information (Poser & Dransch, 2010). As more floods are monitored and mapped, flood models 

can be calibrated with this growing historical inventory, instead of water level recordings from 

sparse gauges used by this study. With such an inventory in place, researchers can use flood 

maps to develop statistical models, which can be better applied to large regions and used to 

compare with process-based models; like the 3Di used in this study (Siahkamari, Haghizadeh, 

Zeinivand, Tahmasebipour, & Rahmati, 2017; Tien Bui et al., 2016; Wang et al., 2015). 

Additionally, historical maps are intuitive tools that increase public awareness about flood 

hazards and are baselines to better understand variabilities in flood exposure and impact under 

future climates. 

3.5 Conclusions 
SLR and storm surge under climate change pose additional flood threats to coastal urban 

areas. Successful adaptation requires pro-active planning that incorporates long-term flood 

projections and their intrinsic uncertainties. While these intrinsic uncertainties are previously 

understudied, in this study we utilize a scalable hydrodynamic model to simulate coastal flooding 

under multiple time horizons and climate scenarios to show the range of flood exposures in a 

highly urbanized coastal area. We assess flood exposure by intersecting simulated flood areas 

with fourteen datasets describing demographic and socioeconomic distributions, developed 
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areas, lifeline infrastructures, and emergency responders. Our results are useful as a 

comprehensive base map for adaptation planning and to facilitate discussions with different 

stakeholders on adaptation options for future flood hazards while promoting transparency in the 

climate-related uncertainties associated. The approach we develop here can be used in coastal 

urban areas throughout the world. 

Our results show increased flood exposures and broader uncertainties over time in the 

San Francisco Bay Area. The median estimates of lower GHG concentration scenarios (i.e. RCP 

4.5) indicate 10-38% of the datasets’ low-lying portions (i.e. <10 m in elevation) are exposed to 

flood in 2000-2020 and 20-54% exposed in 2080-2100. These numbers change to 0-35% and 40-

67% respectively under the median estimates of higher GHG concentration scenarios (i.e. RCP 

8.5). The expected uncertainties (i.e. standard deviations) in a given dataset’s exposures is 1-2% 

(RCP 8.5 and 4.5) in the 2000-2020 period and 7-10% (RCP 4.5 and 8.5) in the 2080-2100 

period. We find that these increased uncertainties are challenging for stakeholders when using 

long-term projections, particularly for private-sector stakeholders who tend to focus on short-

term investment and planning cycles. Therefore, adaptation options should favor no-regret, 

reversible, and redundant strategies, and policies should be stable over time. With such efforts, 

stakeholders are more likely to engage with flood and climate change adaptation.  
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Appendix A. Visualization of annual maximum value of the hourly sea level projections, SLR, 

and storm surge from Cayan et al. (2016) . 

 

Appendix B-1. Absolute exposures under RCP 4.5 and 8.5 scenarios, every 20 years between 

2000 and 2100 
 

RCP 4.5 RCP 8.5 

Estimates Min. Median Max. Min. Median Max. 

Period 2000 - 2020 

Population (1000 people) 163 195 233 156 162 164 

Number of households (1000 households) 60 73 85 58 60 60 

Number of housing units (1000 housing units) 63 77 90 62 63 64 

High intensity development (km2) 17 21 24 15 17 18 

Medium intensity development (km2) 50 56 61 45 49 50 

Low intensity development (km2) 41 45 48 38 41 41 

Open space (km2) 24 26 28 23 24 24 

Roads (km) 1215 1393 1540 1095 1197 1225 

Natural gas pipeline (km) 66 75 85 59 65 66 

Natural gas stations (station) 6 6 8 5 6 6 

Electric transmission line (km) 312 332 355 294 308 311 

Electric substations (substation) 17 18 22 14 16 17 
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Fire stations (station) 13 17 17 10 13 13 

Hospitals (hospital) 0 1 1 0 0 0 

Period 2020 - 2040 

Population (1000 people) 143 195 200 163 189 208 

Number of households (1000 households) 52 73 75 59 70 77 

Number of housing units (1000 housing units) 55 77 80 63 74 82 

High intensity development (km2) 15 21 24 18 21 22 

Medium intensity development (km2) 46 56 61 51 56 57 

Low intensity development (km2) 39 45 47 42 45 45 

Open space (km2) 23 26 27 25 26 26 

Roads (km) 1121 1404 1530 1245 1381 1426 

Natural gas pipeline (km) 60 76 82 68 75 76 

Natural gas stations (station) 6 6 8 6 6 6 

Electric transmission line (km) 296 333 350 315 332 335 

Electric substations (substation) 14 18 22 17 17 18 

Fire stations (station) 11 17 17 13 17 17 

Hospitals (hospital) 0 1 1 0 1 1 

Period 2040 - 2060 

Population (1000 people) 178 193 229 173 214 256 

Number of households (1000 households) 66 73 83 63 75 90 

Number of housing units (1000 housing units) 70 77 88 67 80 95 

High intensity development (km2) 20 23 28 18 29 41 

Medium intensity development (km2) 53 59 67 52 69 86 

Low intensity development (km2) 44 46 50 43 52 57 

Open space (km2) 25 27 29 25 30 33 

Roads (km) 1314 1475 1703 1268 1762 2267 

Natural gas pipeline (km) 71 79 94 68 101 136 

Natural gas stations (station) 6 6 10 6 10 13 

Electric transmission line (km) 323 343 372 317 383 429 

Electric substations (substation) 17 21 23 17 26 38 

Fire stations (station) 15 17 19 14 20 23 

Hospitals (hospital) 0 1 1 0 1 2 

Period 2060 - 2080 

Population (1000 people) 219 262 244 236 288 381 

Number of households (1000 households) 79 92 89 83 107 138 

Number of housing units (1000 housing units) 84 98 95 87 113 147 

High intensity development (km2) 24 34 45 28 56 70 

Medium intensity development (km2) 60 76 90 68 104 124 

Low intensity development (km2) 48 54 59 51 63 69 

Open space (km2) 28 32 34 30 37 40 

Roads (km) 1509 1970 2393 1730 2793 3338 

Natural gas pipeline (km) 83 115 144 97 168 199 
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Natural gas stations (station) 8 12 12 10 15 23 

Electric transmission line (km) 353 402 441 376 475 519 

Electric substations (substation) 22 32 41 24 49 58 

Fire stations (station) 17 21 24 19 28 36 

Hospitals (hospital) 1 1 2 1 2 3 

Period 2080 - 2100 

Population (1000 people) 203 279 414 277 483 546 

Number of households (1000 households) 72 101 151 103 172 199 

Number of housing units (1000 housing units) 76 108 163 109 183 214 

High intensity development (km2) 28 59 77 54 87 100 

Medium intensity development (km2) 68 108 134 102 151 175 

Low intensity development (km2) 51 64 72 62 77 84 

Open space (km2) 30 37 42 36 44 48 

Roads (km) 1736 2906 3634 2747 4129 4784 

Natural gas pipeline (km) 98 174 218 165 243 286 

Natural gas stations (station) 10 17 26 15 27 32 

Electric transmission line (km) 380 485 544 470 584 624 

Electric substations (substation) 25 51 63 49 70 77 

Fire stations (station) 19 30 38 28 45 51 

Hospitals (hospital) 1 2 3 2 5 5 

 

Appendix B-2. Total amount of each dataset used in the exposure analysis 

Dataset 
Total 

amount 
Dataset 

Total 

amount 

Population (1000 people) 1153 Roads (km) 8160 

Number of households (1000 households) 430 Natural gas pipeline (km) 531 

Number of housing units (1000 housing 

units) 
464 Natural gas stations (station) 55 

High intensity development (km2) 155 
Electric transmission line 

(km) 
967 

Medium intensity development (km2) 296 
Electric substations 

(substation) 
105 

Low intensity development (km2) 125 Fire stations (station) 95 

Open space (km2) 69 Hospitals (hospital) 10 

 

Appendix C. Area of the analysis with land subsidence and uplift data 
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Chapter 4. An Equity Analysis of Clean Vehicle Rebate Programs in 

California3  

Abstract: Rebates incentivize clean vehicle adoption to reduce mobile-source emissions of 

greenhouse gases and other air pollutants. However, rebates raise equity concerns because they 

require upfront capital to acquire a vehicle. Since wealthier communities also typically 

experience better air quality, rebates may also not incentivize clean vehicle acquisitions in more 

polluted regions where the air quality benefits would be greatest. We compare rebate allocation 

across California (CA) with respect to community socioeconomic and environmental 

disadvantage, household income, race and ethnicity, and ambient nitrogen dioxide and 

particulate matter concentrations using data from two rebate programs. We find that CA’s Clean 

Vehicle Rebate Project issued more rebates per thousand households to advantaged, higher-

income communities and less to those with higher percentages of Hispanics and Blacks. 

Implementing an income cap and additional rebate amount for lower-income consumers 

attenuated income’s effect on rebate allocation. CA’s Enhanced Fleet Modernization Program, 

which includes specific designs to address equity, allocated rebates to communities that were 

more disadvantaged, lower-income, and with higher percentages of Hispanics. These findings 

indicate that specific policy designs, including an income cap, expanded vehicle eligibility, and 

income- and geography- tiered rebate amounts, can help to ensure that rebates are accessible to 

diverse populations.  

4.1 Introduction 
Clean vehicles including plug-in hybrid electric vehicles (PHEVs), battery electric 

vehicles (BEVs), and fuel cell electric vehicles (FCEVs) reduce roadway emissions of 

greenhouse gases (GHGs) and other hazardous co-pollutants emitted from gasoline and diesel- 

powered internal combustion engines (ICEs) (Hardman, Chandan, Tal, & Turrentine, 2017). 

Government rebates, or monetary refunds after purchase or lease (defined as acquisition 

hereafter), are used to promote the adoption of clean vehicles in several U.S. states, including 

California (DeShazo, 2016), in order to meet clean air and climate change mitigation goals. 

However, rebates require consumers to acquire the vehicle upfront, presenting a barrier for 

lower-income consumers with limited financial assets or access to credit when compared with 

point-of-sale incentives such as sales tax exemption and government purchase discount 

(Hardman et al., 2017; Snelling, 2018). Rebate programs can be even less accessible to lower-

income consumers if the rebate amount does not increase according to their income. Wealthier 

consumers are also more likely to take advantage of and benefit from rebate programs that lack 

income or vehicle price caps (DeShazo, 2016; Snelling, 2018). Together, these features raise 

equity concerns regarding the design and implementation of clean vehicle rebate programs, 

particularly if disadvantaged consumers are not as able to benefit.  

Transportation is the largest source of GHG emissions and responsible for substantial 

portions of co-pollutants including NOx, SOx, CO, Ozone and PM in California (Anderson, 

Kissel, Field, & Mach, 2018; California Air Resource Board, 2018a). Clean vehicle rebate 

programs are established to help reduce emissions from the transportation sector and to support 

California’s emission reduction goals required by the state’s Global Warming Solutions Act (AB 

                                                 
3 Reproduced in part with permission from Environmental Science & Technology, submitted for publication. 

Unpublished work copyright 2019 American Chemical Society. 
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32) passed in 2006 (California Air Resource Board, 2018b; Rubin & St-Louis, 2016). Cap-and-

Trade auction proceeds partially fund these rebate programs, and state legislation SB 535 

requires 25% of the proceeds to be used in projects that benefit socioeconomically and 

environmentally disadvantaged communities (California Environmental Protection Agency, 

2017). Therefore, in addition to emission reduction, equity is an inherent goal of the rebate 

programs. 

In this study, we analyze the equity implications of two major clean vehicle rebate 

programs in California with different policy design elements. The first is the statewide Clean 

Vehicle Rebate Project (CVRP), which issues rebates for new clean vehicles (PHEVs, BEVs, 

and FCEVs) and has limited considerations of equity. Implemented in 2010, the CVRP provides 

consumers with rebates after the acquisition of a qualified vehicle. During the first iteration (i.e. 

March 2010 to March 2016) of this program, the rebate amount ranged between $1500 and 

$5000, depending only on vehicle technology rather than other factors such as consumer’s 

income. Since these additional factors were not considered, it is likely that wealthier consumers 

received more rebates during this first iteration.  

Some researchers suggest that combining rebates with vehicle retirement incentives, 

implementing caps for income and vehicle prices, and adopting income-tiered rebate amounts 

can improve the equity and effectiveness of clean vehicle rebate programs in terms of covering 

more lower-income consumers, distributing more rebates and encouraging clean vehicle 

adoption, and reducing emission and air pollution from the retired vehicles (DeShazo, 2016; 

DeShazo, Sheldon, & Carson, 2017; Snelling, 2018). Beginning in April 2016, the CVRP 

implemented an income cap to exclude PHEV and BEV consumers with gross annual individual 

income greater than $150,000 and offered an additional $2000 to lower-income consumers with 

annual household income below 300% of the Federal Poverty Level (Center for Sustainable 

Energy, 2016). 

The second clean vehicle rebate program in California, the Enhanced Fleet 

Modernization Program (EFMP), sought to further addresses the equity concerns presented in the 

CVRP by expanding eligible vehicles, targeting lower-income consumers, and focusing on 

socioeconomically and environmentally disadvantaged communities (California Air Resource 

Board, 2018b; Pierce & DeShazo, 2017). EFMP includes a retire and replacement program, 

launched in 2015, to subsidize the purchase of more efficient, used (less than eight years old) and 

new vehicles after the retirement of older, higher-emitting vehicles. A complementary Plus-up 

program provides an additional rebate amount for consumers living in socioeconomically and 

environmentally disadvantaged communities as identified using California Environmental 

Protection Agency (Cal-EPA) mapping tool, CalEnviroScreen (August, 2016; Faust et al., 2017). 

EFMP also includes a vehicle retirement only program, but we focus on the retire and replace 

and the Plus-up programs that are the subject of our analysis. Compared with CVRP, EFMP 

expands eligible vehicles to include efficient ICE vehicles and non-plug-in hybrid vehicles, 

which are presumably more affordable than PHEVs, BEVs, and FCEVs with similar 

characteristics. EFMP also limits eligible participants to those with annual household income 

below 400% of the Federal Poverty Level and provides a higher rebate amount for those with 

lower incomes and, through the Plus-up program, those living in disadvantaged communities. 

Furthermore, EFMP can be combined with CVRP when buying a new PHEV or BEV, further 

increasing the rebate amount (California Air Resource Board, 2018b). Thus, while total EFMP 

rebate ranges from $2,500 to $9,500 depending on vehicle type, household income, and 

neighborhood disadvantage, when combined with CVRP in acquiring a new PHEV or BEV, a 
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consumer can receive a combined rebate from $4,000 to $14,000 (see Table S1 for the amount of 

rebates than can be received by lower-income consumers from the two programs). EFMP is 

currently operating as a pilot program only in the South Coast and San Joaquin Valley air 

districts, two regions with the worst air quality concerns in the state (American Lung 

Association, 2018). The geography, timeline, and rebate allocation pattern of the two programs 

are in Figure 4-1.  

 

Figure 4-1. Geography, timeline, and spatial pattern of rebate allocation rates. (a) monthly Clean 

Vehicle Rebate Project (CVRP) rebates received per thousand households in California census 

tracts, averaged between March 2010 and December 2017. Average quarterly rebates received 

per thousand households between July 2015 and December 2017 in South Coast and San Joaquin 

Valley air districts census tracts, when and where Enhanced Fleet Modernization Program 

(EFMP) is currently implemented, are mapped for CVRP (b) and EFMP (c). (d) summarizes the 

timelines of the two programs, including an income cap and additional rebate amount for lower-

income consumers introduced to CVRP in April 2016. Rebate allocation in (a) and (b) is 

classified by quintiles of all census tracts. Rebate allocation in (c) is classified by quintiles of the 
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census tracts receiving non-zero rebates, due to the existence of substantial amount (62%) of 

zero values.  

A few studies have assessed California’s clean vehicle rebate programs with respect to 

equity and find that while lower-income consumers and/or certain race and ethnicity groups tend 

to receive fewer rebates, such disparities can be reduced by specific policy design elements 

(DeShazo et al., 2017; Pierce & DeShazo, 2017; Rubin & St-Louis, 2016; Williams, 2018). A 

simulation-based study on CVRP shows that introducing increased rebate amount for lower-

income consumers and/or caps for income and vehicle prices can increase the percentage of 

rebate allocated to households with incomes under $75,000 when compared with assigning 

rebate amount only based on vehicle technology (DeShazo et al., 2017). The remaining studies 

adopt an empirical approach using actual rebate allocation data. Rubin et al. comprehensively 

assess the relationship between CVRP rebate allocation and several community characteristics 

including income and race and ethnicity composition. The researchers find that rebates are 

disproportionately allocated to wealthier neighborhoods and that the number of rebates received 

per thousand households is inversely related to the proportion of Hispanic and African-American 

residents (Rubin & St-Louis, 2016). However, Rubin et al. focuses on the first iteration of 

CVRP, and therefore is not able to investigate how the income cap and additional rebate amount 

for lower-income consumers introduced later to the program would affect rebate allocation. 

Other more recent but less comprehensive studies reveal how certain program design elements 

improve equity in rebate allocation. Williams finds that the percentage of lower-income CVRP 

participants has increased since the introduction of an income cap and an additional rebate 

amount for lower-income consumers (Williams, 2018). The first-year operation of EFMP shows 

that rebates are largely distributed to consumers in the lowest income bracket of program 

eligibility and in areas containing disadvantaged communities (Pierce & DeShazo, 2017). 

Despite those efforts above, a more comprehensive empirical study is still needed to 

understand how specific program design elements can improve equity in rebate allocation. 

Therefore, using publicly available data, we evaluate whether program design elements, 

including an income cap, additional rebate amounts for lower-income consumers and residents of 

disadvantaged communities, and expanded vehicle eligibility, can change the outcomes of CVRP 

and EFMP in terms of: (1) rebate allocation rates between disadvantaged and non-disadvantaged 

communities; (2) the association between rebate allocation rates and related community-level 

socioeconomic, demographic, and environmental factors. The results can inform future iterations 

of vehicle rebate programs to broaden participation by more diverse communities.   

 

4.2 Materials and methods 
We conducted two sets of analyses:  

(1) a CVRP-only analysis, which investigated rebate allocation statewide between March 

2010 and December 2017 and assessed whether distributional patterns of rebates changed after 

the introduction of an income cap and additional rebate amount for lower-income consumers in 

April 2016;  

(2) a comparison between CVRP and EFMP, which was restricted to the South Coast and 

San Joaquin Valley air districts between July 2015 and December 2017, where and when the two 

programs overlapped. 
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4.2.1 Rebate allocation rate 

We used the number of rebates issued to individual applicants per thousand households in 

a census tract monthly (CVRP-only analysis) or quarterly (CVRP-EFMP comparison) to 

measure rebate allocation rate. We downloaded publicly available participant level data between 

March 2010 and December 2017 for CVRP (Center for Sustainable Energy, 2019), and between 

July 2015 and December 2017 for EFMP (California Air Resource Board, 2019). While the 

CVRP and EFMP datasets have data reported till the more present time, we chose the time 

periods above as during these periods the other datasets used in the analysis were also available. 

The CVRP dataset includes information on applicant type, which we used to exclude those 

rebates issued to businesses, government entities, and non-profit organizations since these were 

not the focus of our analysis. We assumed that all EFMP rebates were assigned to individuals 

based on this program’s design (San Joaquin Valley Air Pollution Control District, 2019; South 

Coast AQMD, 2019). Both CVRP and EFMP datasets provide rebate information at the census 

tract level. Therefore, we aggregated participant-level data and calculated the number of rebates 

issued to individuals per thousand households for each census tract. We retrieved household 

counts from a time-series of American Community Survey 5-year estimates ending at each year 

of our analysis (United States Census Bureau, 2019). Temporal aggregation was done by month 

or quarter depending on our analysis: for the CVRP-only analysis, we aggregated the number 

rebates by month; for the comparison between the CVRP and EFMP, we aggregated at a 

quarterly scale for which the EFMP rebates data were reported.  

4.2.2 Community characteristics 

Disadvantaged and non-disadvantaged communities were classified according to Cal-

EPA’s guidelines, which relied upon CalEnviroScreen 3.0, a mapping tool that applied an index 

combining measures of population vulnerability (including sensitive population and 

socioeconomic status) and pollution burden (including exposure to pollutants and proximity to 

hazardous sites) across California census tracts (August, 2016; Faust et al., 2017). Cal-EPA 

designates census tracts within the top 25th percentile of CalEnviroScreen 3.0 scores, as well as 

22 tracts in the top 5th percentile of pollution burden but without reliable population vulnerability 

score (due to limited data or low population) as disadvantaged communities (California 

Environmental Protection Agency, 2017). These disadvantaged communities are prioritized in 

climate mitigation and adaptation projects. For example, only these communities are eligible for 

the additional rebate amount from the EFMP Plus-up program.  

Covariates describing tract-level socioeconomic and demographic characteristics include 

median household income, racial/ethnic composition, percent of renter occupied housing units, 

average number of vehicles per household, and population density. These covariates are time-

variant and collected from a time-series of American Community Survey 5-year estimates 

(United States Census Bureau, 2019) ending at each year of the analysis. We calculated 

population density by normalizing total population by developed area, rather than total area, of a 

census tract. Developed areas were derived from the National Land Cover Database 2011 percent 

developed imperviousness dataset (Multi-Resolution Land Characteristics Consortium, 2011). 

Developed areas provide a better characterization of population density, as most people reside 

and work in these areas, while census tract area, the alternative, may underestimate population 

density, particularly in rural areas containing a large amount of other land covers (e.g. forest and 

water bodies) that are not occupied by humans.  
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We also developed time-invariant socioeconomic covariates including the density of 

electric and hydrogen charging stations and urban-rural designation of the census tracts. 

Locations of electric and hydrogen charging stations were obtained from National Renewable 

Energy Laboratory (National Renewable Energy Laboratory, 2019). Each station has information 

on its ownership and operation status including open, planned and temporarily unavailable. We 

included both public and private stations as both types can facilitate clean vehicle adoption 

(Rubin & St-Louis, 2016). We used the stations that were currently open in the analysis for two 

reasons. First, we assumed that the availability of open stations could more effectively affect 

consumers’ decisions about acquiring clean vehicles. Second, the number of open stations and all 

stations were highly corrected (r=0.996, measured by Spearman rank correlation, similar below), 

therefore using either set should produce similar results. Like population density, the density of 

open charging stations was calculated using developed area within a census tract to yield more 

accurate estimates. We treated the density of these open charging stations as a time-invariant 

covariate, as only 38% of stations had their opening date reported. We retrieved urban-rural 

designation of the census tracts from the 2010 Census (United States Census Bureau, 2010). 

Urban represents the census blocks (i.e. subdivisions of census tracts) that have high population 

density and/or a large amount of developed areas, whereas rural represents the rest of the census 

blocks (Ratcliffe, Burd, Holder, & Fields, 2016).  

4.2.3 Air pollution 

We used surface concentrations of nitrogen dioxide (NO2) and particulate matter (PM2.5) 

as proxies for air pollution, to assess whether more polluted areas received more rebates. We 

chose NO2 and PM2.5 because significant portions of these pollutants are emitted from mobile 

sources (Anderson et al., 2018), and clean vehicles can reduce these emissions locally. We 

acquired NO2 concentrations from the Berkeley High-Resolution (BEHR) dataset (The Berkeley 

Satellite Group, 2019) and PM 2.5 concentrations from Donkelaar et al. (Atmospheric 

Composition Analysis Group, 2019; van Donkelaar, Martin, Li, & Burnett, 2019). The NO2 

dataset provides daily ambient concentration estimates gridded at 0.05° × 0.05° (≈ 5.56 km × 

5.56 km) resolution, and we first temporally aggregated these daily estimates to derive an annual 

mean for each grid cell. We then calculated area-weighted annual mean NO2 concentrations for 

each census tract between 2010 and 2016, a time frame that overlapped with our study period. 

Finally, we calculated the average of the area-weighted annual means above as the covariate for 

NO2 concertation. The PM 2.5 dataset provides the annual mean of daily estimates gridded at 

0.01° × 0.01° (≈ 1.11 km × 1.11 km) resolution, and a similar procedure was conducted to 

calculate the average of area-weighted annual mean PM 2.5 concentrations for each census tract 

between 2010 and 2016.  

4.2.4 Analytical approach 

We used mean comparisons and correlations to examine whether more disadvantaged 

communities, as defined by CalEnviroScreen 3.0, received fewer rebates. We also examined if 

this pattern was different between the CVRP and EFMP, and whether the pattern had changed 

after the introduction of an income cap and an additional rebate amount in CVRP. We conducted 

the mean comparisons using a permutation t-test (Millman, 2015) and measured the correlations 

by Spearman rank correlation coefficient. The null hypothesis in the mean comparisons was that 

rebate allocation rates were equal between advantaged and disadvantaged communities.  
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We further conducted a multivariate regression analysis to estimate associations between 

rebate allocation rate, our main outcome of interest, and key covariates including income, 

racial/ethnic composition, air pollution, and other relevant community characteristics. To do this, 

we built several negative binomial models, with their basic form specified as equation (1). We 

chose negative binomial models to account for that rebate allocation rate, measured as the 

number of rebates received per thousand households monthly or quarterly, was discrete and did 

not have values less than zero (Allison, 2009). While we did not transform most covariates, we 

added a quadratic term for air pollution to account for the environmental Kuznets curve that 

represented a non-linear relationship between pollution and income and consequently the 

likelihood of applying for rebates (Bechle, Millet, & Marshall, 2011; Pastor, Morello-Frosch, & 

Sadd, 2005). We also added an interaction term between population density and urban-rural 

designation of the census tracts, as previous studies have found the association between 

population density and participation in similar programs is different between rural and urban 

areas (Lachapelle, 2013).  

 

𝑙𝑜𝑔𝑌𝑖,𝑗,𝑚,𝑛 = 𝛽𝑋𝑖,𝑗,𝑛 + 𝛾𝑍𝑖,𝑗 + 𝛿𝑡 + 𝑐𝑗 + 𝑑𝑚                                                                   (1) 

 

where 𝑌𝑖,𝑗,𝑚,𝑛 is the rebate allocation rate, or number of rebates received per thousand 

households in census tract 𝑖 of county 𝑗 during month or quarter 𝑚 in year 𝑛, 𝑋𝑖,𝑗,𝑛 are the 

covariates varying by both census tract and year, 𝑍𝑖,𝑗 represents the covariates varying only by 

census tract, 𝑡 estimates a linear temporal trend measured as number of months or quarters since 

the start of the programs, 𝑐𝑗 denotes county fixed effects, 𝑑𝑚 is month- or quarter-of-year fixed 

effects. 

In the CVRP-only analysis, we also sought to estimate the combined effect on rebate 

allocation of an income cap and additional $2000 rebate amount for lower-income consumers 

implemented since April 2016. In the CVRP-EFMP comparison, we assessed whether the two 

programs differ in the associations between rebate allocation and the covariates analyzed. To 

estimate the effect of the income cap and addition rebate amount for lower-income consumers, 

we used a dummy variable (𝐷𝑚,𝑛) indicating the presence (coded as 1) or absence (coded as of 0) 

of these policy design elements in the CVRP-only model (equation (2)). We interacted this 

dummy variable with the linear temporal trend to show any changes to this trend (Bernal, 

Cummins, & Gasparrini, 2017), and with median household income to estimate whether its 

relationship with rebate allocation was changed after introducing these policy design elements.  

 

𝑙𝑜𝑔𝑌𝑖,𝑗,𝑚,𝑛 = 𝛽𝑋𝑖,𝑗,𝑛 + 𝛾𝑍𝑖,𝑗 + 𝛿𝑡 + 𝜃𝐷𝑚,𝑛 + 𝜇𝑡𝐷𝑚,𝑛 + 𝜌𝑖𝑛𝑐𝑜𝑚𝑒𝑖,𝑗,𝑛𝐷𝑚,𝑛 + 𝑐𝑗 + 𝑑𝑚               (2)                           

where 𝐷𝑚,𝑛 is a dummy variable indicating the presence (coded as 1) or absence (coded 

as 0) of the income cap and addition rebate amount for lower-income consumers, 𝑖𝑛𝑐𝑜𝑚𝑒𝑖,𝑗,𝑛 is 

median household income. 

Furthermore, we accounted for the effects of place and time that were not reflected by the 

covariates above to reduce omitted-variable bias and to more accurately estimate model 

coefficients. We included county fixed effects (𝑐𝑗) to control for unobserved county-level 

characteristics such as specific incentive programs and awareness of clean vehicles and the 

rebate programs that might differ between the 52 California counties. We included a linear 

temporal trend (𝑡) measured as number of months or quarters since the start of the rebate 
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programs to control for the overall secular increase in market penetration of clean vehicles and 

awareness of the rebate programs, and month- or quarter-of-year fixed effects (𝑑𝑚) to reflect 

monthly (CVRP-only analysis) or quarterly fluctuations (CVRP-EFMP comparison) in rebate 

applications and vehicle acquisitions.  

We estimated the models using a pooled estimator with cluster-robust standard errors. 

The pooled estimator identifies coefficients for both time-variant (𝑋𝑖,𝑗,𝑛) and -invariant (𝑍𝑖,𝑗) 

covariates. We used cluster-robust standard errors to account for that our observations were 

clustered by census tracts within counties. Such error leads to larger but more accurate 

confidence intervals and consequently more conservative statistical significance for the 

coefficients (Allison, 2009; Colin Cameron & Miller, 2015).  

 We used the average marginal effect to evaluate the influence of certain covariates on 

the allocation of rebates. To obtain the average marginal effect we first calculated marginal 

effect at every observed value of a covariate and then averaged across the resulting effect 

estimates (Leeper, 2018). 

4.3 Results and discussion 

4.3.1 Rebate allocation rates and community disadvantage 

Disadvantaged communities had significantly lower rebate allocation rates from the 

CVRP but higher rebate allocation rates from the EFMP compared to their more advantaged 

counterparts (Figure 4-2). Averaged between March 2010 and December 2017, disadvantaged 

communities on average received 0.05 (standard deviation (SD) = 0.07) CVRP rebates per 

thousand households monthly, whereas non-disadvantaged communities on average received 

0.22 (SD = 0.25) CVRP rebates per thousand households monthly. The implementation of an 

income cap and additional $2000 rebate amount in April 2016 helped to reduce but did not close 

the gap between disadvantaged and non-disadvantaged communities in CVRP rebate allocation 

rates. Before April 2016, disadvantaged communities on average received 0.04 (SD = 0.05) 

rebates per thousand households monthly, which was 22% of the 0.18 (SD = 0.23) rebates per 

thousand households monthly received by non-disadvantaged communities; After April 2016, 

disadvantaged communities on average received 0.10 (SD  = 0.14) rebates per thousand 

households monthly, 30% of the 0.33 (SD = 0.34) rebates per thousand households monthly in 

non-disadvantaged communities ((Figure 4-2(a)).  

Averaged between July 2015 and December 2017, in the South Coast and San Joaquin 

Valley air districts where the EFMP and CVRP overlapped, CVRP on average issued 0.29 (SD = 

0.36) rebates to disadvantaged communities and 1.10 (SD = 0.92) rebates to non-disadvantaged 

communities per thousand households quarterly, whereas EFMP on average issued 0.07 

(SD=0.11) rebates to disadvantaged communities and 0.03 (SD = 0.07) rebates to non-

disadvantaged communities per thousand households per quarter ((Figure 4-2(b)). In sum, CVRP 

differentially benefitted non-disadvantaged communities, even after implementing an income cap 

and an additional rebate amount for lower-income consumers, whereas EFMP differentially 

benefitted disadvantaged communities. 
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Figure 4-2. Rebate allocation rates between non-disadvantaged and disadvantaged communities. 

(a) California-wide Clean Vehicle Rebate Project (CVRP) between March 2010 and December 

2017 and before and after implementation of an income cap and additional $2000 rebate amount 

for lower-income consumers in April 2016. (b) Enhanced Fleet Modernization Program (EFMP) 

in South Coast and San Joaquin Valley air districts between July 2015 and December 2017. 

CVRP rebate allocation rate in the same region and period is also shown. Rebate allocation rates 

is number of rebates received by individual applicants per thousand households monthly (a) or 

quarterly (b), averaged over its corresponding period. 25% of California census tracts are 

designated as disadvantaged using CalEnvrioScreen 3.0 (August, 2016; Faust et al., 2017). *** 

indicate significant mean difference between non-disadvantaged and advantaged communities at 

99% confidence interval which was measured by a permutation t-test (Millman, 2015). 

We also found correlations between CVRP and EFMP rebate allocation rates and 

CalEnviroScreen 3.0 score; correlations were stronger with population vulnerability score than 

with pollution burden score (Figure 4-3). Despite an income cap and additional $2000 rebate 

amount for lower-income consumers in the CVRP, the program’s rebate allocation rates were 

consistently negatively correlated with CalEnviroScreen 3.0 scores, indicating that rebates were 

more often provided to less disadvantaged communities. In contrast, the EFMP rebate allocation 

rates were positively correlated with CalEnviroScreen 3.0 scores, likely due to the program’s 

expanded vehicle eligibility, more income-tiered rebate amount, and an extra rebate amount 

offered to consumers of disadvantaged communities. In addition, rebate allocation correlated 

more strongly with population vulnerability than with environmental burden. This pattern likely 

reflects the rebate program’s predominant focus on consumer’s income rather than other 

socioeconomic and environmental characteristics. One exception is EFMP Plus-up which also 

considers the communities’ environmental burden.  
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Figure 4-3. Correlations between CalEnviroScreen 3.0 scores and rebate allocation rates.  Rebate 

allocation rate is number of rebates received by individual applicants per thousand household 

monthly (a) or quarterly (b), averaged over its corresponding period. CVRP: Clean Vehicle 

Rebate Project. EFMP: Enhanced Fleet Modernization Program. * detonates an income cap and 

additional $2000 rebate amount for lower-income consumers that was implemented in CVRP 

since April 2016. Correlations were measured by Spearman rank correlation. 

4.3.2 Multivariate models for the Statewide CVRP program 

Results for the statewide CVRP regression models are shown in Table 4-1. Model 1 

estimated the associations between rebate allocation rate, community socioeconomic and 

demographic characteristics, and ambient air pollution concentrations, after controlling for a 

linear temporal trend, county and month-of-year fixed effects and clustering of our observations 

by counties. Model 2 additionally estimated the effect of the April 2016 implementation of an 

income cap and additional $2000 rebate amount for lower-income consumers in the CVRP by 

including a dummy variable for pre- or post-April 2016. An interaction term between this 

dummy variable and median household income was included to determine whether these changes 

in program design affected the association between rebate allocation rate and median household 

income. Both models assumed that the observations and model errors clustered by counties, 

resulting in broader confidence intervals and more conservative results than other model 

specifications assuming independent model errors or clustered errors by census tracts. All the 

covariates, other than Time and Income cap and increased rebate amount, were standardized to 

make their coefficients comparable with each other, to identify the covariates that were more 

influential on rebate allocation.  

Table 4-1. Negative binominal regression models for CVRP rebate allocation rate, statewide, 

March 2010 – December 2017 

Covariates Model 1 Model 2 

Median household income 0.318*** 

(0.242, 0.393) 

0.391*** 

(0.320, 0.462) 

Income cap and increased rebate  

 

2.179*** 

(1.710, 2.648) 

Median household income × Income cap 

and increased rebate 

 

 

-0.179*** 

(-0.198, -0.159) 
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% non-Hispanic Black -0.137*** 

(-0.164, -0.110) 

-0.130*** 

(-0.158, -0.102) 

% Hispanic -0.478*** 

(-0.531, -0.425) 

-0.467*** 

(-0.521, -0.413) 

% non-Hispanic Asian/Pacific Islander 0.040 

(-0.023, 0.104) 

0.046 

(-0.015, 0.107) 

Average NO2 concentration 0.162 

(-0.043, 0.367) 

0.148 

(-0.047, 0.343) 

Average NO2 concentration squared -0.153*** 

(-0.255, -0.051) 

-0.146*** 

(-0.243, -0.049) 

Average PM2.5 concentration 0.062 

(-0.048, 0.173) 

0.069 

(-0.039, 0.176) 

Average PM2.5 concentration squared -0.021 

(-0.070, 0.028) 

-0.019 

(-0.068, 0.029) 

Density of operating electric and hydrogen 

charging stations 

0.006 

(-0.014, 0.025) 

0.006 

(-0.014, 0.025) 

% Renter occupied housing units -0.060*** 

(-0.101, -0.019) 

-0.050** 

(-0.089, -0.012) 

Population density -0.052 

(-0.129, 0.026) 

-0.043 

(-0.122, 0.035) 

Urban -0.215*** 

(-0.279, -0.150) 

-0.208*** 

(-0.273, -0.143) 

Urban × Population density -0.075* 

(-0.151, 0.001) 

-0.077** 

(-0.151, -0.003) 

Average vehicles per household 0.038 

(-0.023, 0.100) 

0.045 

(-0.015, 0.106) 

Time (number of months since the start) 0.025*** 

(0.024, 0.026) 

0.043*** 

(0.041, 0.044) 

Time × Income cap and increased rebate  

 

-0.037*** 

(-0.043, -0.031) 

Pseudo R2 0.199 0.220 

Confidence interval County-clustered County-clustered 

Spatial and temporal scale Monthly, Mar. 2010 – Dec. 2017, all CA census tracts 

Number of tract-month observations 740010 740010 

Month-of-year fixed effects Yes Yes 

County fixed effects Yes Yes 

Note: Coefficients should be interpreted as the change in ln(monthly rebates received per 

thousand households) for one unit change in the corresponding covariate, when holding other 

covariates constant. All covariates other than Time and Income cap and increased rebate are 

standardized. Covariates on income, race and ethnicity, renter occupied housing units, and 

population density are time-varying on an annual basis. The covariate on the income cap and 

additional rebate amount for lower income consumers is time-varying on a monthly basis. 

Covariates on charging station density, urban status, and air pollution are time-invariant. *, **, 

and *** indicate significant at 90%, 95%, and 99% confidence intervals. 95% confidence 

intervals are in the parenthesis. 

As we expected, median household income had a positive and statistically significant 

association with rebate allocation rate and was the most influential variable given its larger 

coefficient size in the models. This is consistent with CVRP’s design that consumers need 

upfront capital to acquire a new eligible vehicle before receiving the rebate. Compared with ICE 
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vehicles, the additional cost of clean vehicles likely makes lower-income consumers less willing 

to pay for them (Erdem, Şentürk, & Şimşek, 2010; Poder & He, 2017; Potoglou & Kanaroglou, 

2007). A similar phenomenon has also been observed in other rebate programs that encourage 

the adoption of environmental-friendly technologies, such as rooftop solar systems, which 

require a substantial upfront investment (Briguglio & Formosa, 2017; Soskin & Squires, 2013).  

The models also show disparities in rebate allocation with respect to community 

racial/ethnic composition. Increases in the percentages of non-Hispanic Black and Hispanic 

populations were significantly associated with lower rebate allocation rates in the models. In 

contrast, increase in the percentage of non-Hispanic Asian/Pacific Islander population was 

associated with an increase in rebate allocation rates; however, this association was not 

statistically significant. A similar disparity in CVRP rebate allocation for Non-Hispanic Blacks 

and Hispanics has also been previously reported (Rubin & St-Louis, 2016). Racial disparities in 

clean technology access are not unique to CVRP. For example, Kwan finds that across the 

United States, communities with higher percentages of Black and Asian residents have lower 

rates of the residential solar PV installation, whereas the installation is higher for communities 

with more Hispanics (Kwan, 2012). We suggest that the racial and ethnic disparity in rebate 

allocation rate is partially resulted from differences in wealth, as in our analysis median 

household income is positively correlated with the percentage of non-Hispanic Asians/Pacific 

Islanders, but negatively correlated with the percentages of non-Hispanic Blacks and Hispanics. 

Other factors contributing to the disparity may include the racial/ethnical group’s differed 

perceptions about clean vehicles and preference for ICE vehicles, and varied outreach levels of 

the rebate programs in different communities.  

We observed a non-linear relationship between ambient air pollutant concentrations and 

CVRP rebate allocation rates. In census tracts with lower levels of average NO2 and PM2.5 

concentrations, increases in ambient concentrations of either pollutant were associated with an 

increase in rebate allocation rates. However, the positive associations between air pollutant 

concentrations and rebate allocation rates become negative as average NO2 and PM2.5 

concentrations increase (Figure S1). Associations between rebate allocation rates and air 

pollutants were statistically significant for NO2 but mostly insignificant for PM2.5. Therefore, in 

general, it can be expected that CVRP rebate allocation rates are higher in areas with moderate 

levels of air pollution, but lower in areas with very high or low air pollution levels. 

Other covariates generally exhibited relationships with rebate allocation in the expected 

direction. The density of electric and hydrogen charging stations showed a positive association 

with rebate allocation rates in our models. However, the associations are statistically 

insignificant. Prior research has found that charging station is one of the major concerns about 

using electric vehicles (Egbue & Long, 2012), and can even be the most influential factor for 

nationwide electric vehicle adoption (Sierzchula, Bakker, Maat, & van Wee, 2014). The 

insignificant associations observed in our models may have resulted from our ability to estimate 

the density of electric and hydrogen charging stations only at the census tract level rather than 

the individual level (i.e. at home and at work). Percent renter occupied housing units showed 

statistically significant negative associations with rebate allocation rates, which could be 

explained by that compared with homeowners, renters were less able or willing to install 

charging facilities at their homes, therefore felt less convenient to use electric vehicles. This also 

implies the positive role of charging facilities in clean vehicle adoption. 

The association between rebate allocation and population density depended on whether a 

census tract was rural or urban (column 1-2 of Table S2). In rural census tracts, increases in 
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population density were insignificantly associated with greater rebate allocation. Among urban 

census tracts, higher population density was associated with a statistically significant decrease in 

rebate allocation. A similar trend was observed in an early vehicle retirement program in 

Quebec, in which the rate of participation was higher in low-density metropolitan areas 

(Lachapelle, 2013). In urban areas, higher population density may indicate more alternative 

transport, such as public transit, which reduces the demand for personal vehicles. Densely 

populated urban areas also have limited off-street parking for installing electric vehicle chargers, 

making operating PHEVs and BEVs more challenging.  

The average number of vehicles per household showed a positive but statistically 

insignificant association with rebate allocation rate. This is in contrast to Rubin et al. (2016), 

who found that CVRP rebate allocation between 2010 and 2015 was negatively associated with 

the average number of vehicles per household (Rubin & St-Louis, 2016). However, our results 

are consistent with research suggesting that consumers tend view electric vehicles as secondary 

cars when concerned about their battery range (Skippon & Garwood, 2011; Tamor & Milačić, 

2015). 

Finally, we found a statistically significant and increasing temporal trend in rebate 

allocation, which could be explained by the growing market penetration of clean vehicles, likely 

due at least in part to the rebate programs themselves. Combined PHEV and BEV sales in the 

U.S. increased by 446% from 2011 (17,763 vehicles) to 2013 (97,102 vehicles), and incentives 

such as rebate likely had strong positive influences on this increase (Zhou et al., 2015). A 2013-

2015 CVRP consumer survey shows that receiving a rebate is the most important factor in 

deciding to purchase a PHEV or BEV, with  41% and 50% of the respondents indicating they 

would not have purchased a PHEV or BEV without the rebate (Johnson, Williams, Hsu, & 

Anderson, 2017). We also hypothesize that the temporal increase in rebate allocation may be 

partially due to a growing awareness of CVRP over time. 

4.3.3 The Effects of the Income Cap and Additional Rebate Amount on CVRP Rebate 

Allocation 

Implementing equity-promoting policy design elements, i.e. an income cap and additional 

$2000 rebate amount for lower-income consumers, in April 2016 reduced the association 

between CVRP rebate allocation rate and neighborhood income. Based on Model 2, the average 

marginal effect of these equity-promoting policy design elements was to reduce the rebate 

allocation rate by 0.099 rebates (95% confidence interval: -0.137 to -0.061, p-value<0.01) per 

thousand households per month, suggesting that the income cap may have excluded high-income 

consumers that was not offset by an increase in low-income consumers attracted by the increased 

rebate amount. Additionally, our estimates showed that without the income cap and additional 

rebate amount, a one-standard-deviational increase in neighborhood median household income 

was associated with 0.126 more rebates per thousand households per month. With the income 

cap and additional rebate amount, the same increase in median household income was only 

associated with 0.048 more rebates per thousand households per month (Table 4-2). Therefore, 

the association between median household income and rebate allocation rate was attenuated 

significantly with the implementation of an income cap and an additional rebate amount for 

lower-income consumers. Our findings are consistent with simulation studies suggesting an 

income cap and income-base rebate amounts increase the proportion of rebates allocated to 

households with incomes under $75,000 (DeShazo et al., 2017).  
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Table 4-2 Average marginal effects of median household income on CVRP rebate allocation 

rate, with and without an income cap and additional $2000 rebate amount for lower-income 

consumers implemented since April 2016 

Covariate Income cap and additional 

rebate amount for low income 

households 

Average marginal effect 

Median household income If not implemented 0.126*** 

(0.101, 0.151) 

If implemented 0.048*** 

(0.030, 0.065) 

Difference (implemented – not 

implemented) 

-0.079*** 

(-0.090, -0.067) 

Note: average marginal effect is the average change in rebate allocation rate for one-

standard-deviational change in median household income. Rebate allocation rate is the number 

of rebates received per thousand households monthly. This average marginal effect is also 

conditioned on the implementation of an income cap and additional $2000 rebate amount for 

lower-income consumers since April 2016. All other covariates are held at their observed values 

in this calculation. The average marginal effect here was estimated based on model 2 of Table 

4-1. *, **, and *** indicate significant at 90%, 95%, and 99% confidence intervals. 95% 

confidence intervals are in the parenthesis. 

4.3.4 Comparison between CVRP and EFMP 

The models for CVRP and EFMP rebate allocation rates in the South Coast and San 

Joaquin Valley air districts between July 2015 and December 2017 are shown in Table 4-3. The 

models control for county and quarter fixed effects, as well as county clustered standard errors. 

For CVRP, rebate allocation follows the statewide pattern:  the equivalent model for the two air 

districts (Model 3 in Table 4-3) and the entire state (Model 1 in Table 4-1) show similar 

directions of the covariates’ effects, and the models produce similar average marginal effects for 

population density (column 3 in Table S2) and air pollutants (Figure S2) on rebate allocation.  

Unlike CVRP, median household income was associated with a reduction in EFMP 

rebate allocation rate, and an increase in the percentage of Hispanics was associated with an 

increase in rebate allocation rate (Model 2 in Table 4-3). In addition, there was a positive but 

statistically insignificant association between EFMP rebate allocation rate and percentage of 

non-Hispanic Black population in a census tract. These different results between CVRP and 

EFMP can likely be explained by their different designs: while CVRP offered an additional 

$2000 to lower-income consumers during the study period, EFMP offered higher rebate amounts 

to lower-income consumers, expanded the set of eligible vehicles, and gave additional rebates to 

consumers living in socioeconomically and environmentally disadvantaged communities.   

Another difference between EFMP and CVRP in the two air districts is that, while there 

was a positive but statistically insignificant association between charging station density and 

rebate allocation for CVRP, the association was negative and statistically significant for EFMP. 

The reasons for this are unknown but may be partially explained by that non-plug-in vehicles, 

which are not dependent on charging stations, are eligible for EFMP, but not CVRP rebates.  

The associations between other covariates and rebate allocation are similar between 

CVRP and EFMP. For both programs, moderate levels of air pollution were generally associated 
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with higher rebate allocation rates (Figure S2). By design EFMP Plus-up program should attract 

more consumers in disadvantaged communities that have higher pollution burden and population 

vulnerability. Our results indicated that this assumption likely held for NO2: compared with 

CVRP, EFMP rebates were more likely to go to areas with higher NO2 concentration, given the 

tipping point, where the average marginal effect of air pollution on rebate allocation rates shifts 

to negative, was in more polluted areas for EFMP in Figure S2(a). However, we could not 

conclude for PM2.5, as the estimates for its average marginal effect on EFMP rebate allocation 

rates were all statistically insignificant (Figure S2(b)). Both CVRP and EFMP also show positive 

associations between rebate allocation rates and vehicle ownership. This association is however 

only statistically significant for EFMP. In the case of EFMP, which includes a retire-and-replace 

program, this may be because households with more vehicles are more likely to own vehicles 

eligible for retirement. CVRP, however, may include first-time buyers that don’t have any 

vehicles, therefore vehicle ownership had weak and statistically significant association with 

rebate allocation rates.  

Table 4-3. Regression for CVRP and EFMP rebate allocation rate per thousand households in 

South Coast and San Joaquin air districts, quarterly between July 2015 and December 2017 

 Model 3 Model 4 

Median household income 0.273*** 

(0.146, 0.400) 

-0.520*** 

(-0.780, -0.260) 

% non-Hispanic Black -0.107*** 

(-0.146, -0.068) 

0.032 

(-0.054, 0.119) 

% Hispanic -0.467*** 

(-0.555, -0.380) 

0.339** 

(0.038, 0.640) 

% non-Hispanic Asian/Pacific 

Islander 

0.051* 

(-0.001, 0.102) 

0.393*** 

(0.290, 0.497) 

Average NO2 concentration -0.027 

(-0.093, 0.039) 

0.305*** 

(0.123, 0.486) 

Average NO2 concentration 

squared 

-0.182*** 

(-0.219, -0.146) 

-0.399*** 

(-0.608, -0.191) 

Average PM2.5 concentration 0.018 

(-0.041, 0.077) 

0.036 

(-0.145, 0.217) 

Average PM2.5 concentration 

squared 

-0.021* 

(-0.044, 0.001) 

0.006 

(-0.033, 0.046) 

Density of operating electric and 

hydrogen charging stations 

0.005 

(-0.018, 0.028) 

-0.113*** 

(-0.161, -0.065) 

% Renter occupied housing units -0.026 

(-0.096, 0.045) 

0.010 

(-0.136, 0.156) 

Population density -0.269 

(-0.686, 0.147) 

0.121 

(-0.260, 0.502) 

Urban -0.062 

(-0.240, 0.116) 

-0.118 

(-0.489, 0.253) 

Urban × Population density 0.185 

(-0.217, 0.588) 

-0.287 

(-0.668, 0.094) 

Average vehicles per household 0.081 

(-0.024, 0.185) 

0.263** 

(0.009, 0.517) 

Time (number of quarters since 

the start) 

0.011* 

(-0.000, 0.021) 

0.001 

(-0.066, 0.069) 

Pseudo R2 0.176 0.090 
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Confidence interval County-clustered County-clustered 

Scale Quarterly, July 2015 – Dec. 2017, census tracts in the South Coast 

and San Joaquin Valley air districts  

Number of observations 42260 42260 

Month fixed effects Yes Yes 

County fixed effects Yes Yes 

Note: Coefficients should be interpreted as the change in ln(quarterly rebates received per 

thousand households) for one unit change in the corresponding covariate, when holding other 

covariates constant. All covariates other than Time are standardized. Covariates on income, race 

and ethnicity, renter occupied housing units, and population density are time-varying on an 

annual basis. Covariates on charging station density, urban status, and air pollution are time-

invariant. *, **, and *** indicate significant at 90%, 95%, and 99% confidence intervals. 95% 

confidence intervals are in parenthesis. 

 

To summarize, our analysis suggests that different vehicle rebate design elements affect 

equity-based outcomes in terms of the associations between rebate allocation rates and 

community socioeconomic status, racial/ethnic composition, and air pollution. The first iteration 

of CVRP assigns rebate amount only based on vehicle technology (i.e. PHEV, BEV, or FCEV, 

as shown in Table S1), therefore it can be assumed that wealthier consumers will more likely 

apply, which has been confirmed by our analysis and others (Rubin & St-Louis, 2016). 

Introducing an income cap and an addition $2000 rebate amount for lower-income consumers to 

CVRP has lowered the importance of income in rebate allocation. The inclusion of a retire-and-

replace element, extending eligibility to more fuel-efficient used cars, increasing rebate amount 

for lower income households and residents of disadvantaged communities – all features of the 

EFMP program – appears to have had a stronger effect in extending participation to lower-

income and Hispanic communities.  

In addition to the policy designs described above, other policy designs and incentives 

may further improve the equity in acquiring clean vehicles. For potential clean vehicle 

consumers and rebate applicants with lower income, the issue is to find the upfront capital for 

acquiring the vehicle (Rubin & St-Louis, 2016). To resolve this issue, in 2018 CVRP started to 

preapprove rebate applications in San Diego County (Center for Sustainable Energy, 2017). 

These pre-approved rebates are likely to make it easier and faster for consumers to acquire clean 

vehicles.   

While this study uses rebate allocations to evaluate the distribution of the benefits of 

clean vehicle rebate programs, this outcome does not capture a perhaps more essential aspect of 

the programs: the actual reductions in mobile-source emissions of GHG and the co-pollutants 

from the vehicles receiving rebates. To our knowledge, no information on driving behavior, such 

as vehicle mile traveled and typical routes, have been collected from those vehicles. Therefore, it 

is hardly possible to estimate the amount of reductions in mobile-source emissions due to the 

rebate programs, and how these reductions are distributed between disadvantaged and non-

disadvantaged communities. Collection of participant-level data on driving behavior is critical in 

estimating these reductions. Combining existing data including rebate allocation and air 

pollution, however, may not be able to estimate the reduction in air pollution due to the rebate 

programs for two reasons. First, where the rebates are allocated is not a strong indicator of where 

and how the vehicles are operated. Second, observed reduction in air pollution may be largely 

resulted from other efforts, such as improved fuel quality. Research has also shown that only 

substantial replacement of conventional vehicles with clean vehicles (e.g. a replacement rate of 
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25%) can result in significant reduction in air pollution (Ferrero, Alessandrini, & Balanzino, 

2016; Soret, Guevara, & Baldasano, 2014). Therefore, participant-level data including driving 

behavior is needed to better estimate air quality related benefits of these rebate programs and 

their equity implications. 
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Supporting Information 

Table S1. Rebate amounts available under California’s CVRP and EFMP clean vehicle rebate 

programs. See main text for program descriptions.  

Annual 

househo

ld 

income  

Program ^ Conventional 

Vehicle 20+ 

MPG 

Hybrid 

20+ 

MPG 

Hybrid 

35+ 

MPG 

Plug-in 

Hybrid 

(PHEV) 

Battery 

electric 

(BEV) 

Fuel cell 

electric 

(FCEV) 

<= 

225% 

FPL 

CVRP    $1500+$

2000* 

$2500+

$2000* 

$5000+

$2000* 

EFMP Retire 

and 

replace 

$4000 $4000 $4500 $4500 $4500  

Plus-up  $2500 $2500 $5000 $5000  

226%-

300% 

FPL 

CVRP    $1500+$

2000* 

$2500+

$2000* 

$5000+

$2000* 

EFMP Retire 

and 

replace 

  $3500 $3500 $3500  

Plus-up   $1500 $4000 $4000  

301%-

400% 

FPL 

CVRP    $1500 $2500 $5000 

EFMP Retire 

and 

replace 

   $2500 $2500  

Plus-up    $3000 $3000  

EFMP combined with CVRP, 

new vehicles only 

No No No Yes Yes No 

Note: CVRP: Clean Vehicle Rebate Project; EFMP: Enhanced Fleet Moderation Program; 

FPL: Federal Poverty Level; MPG: miles per gallon; PHEVs: plug-in hybrid vehicle; BEV: 

battery electric vehicles; FCEV: fuel cell vehicles. * denotes the additional $2000 CVRP rebate 

issued to lower-income consumers (whose annual household income falls below 300% of the 

Federal Poverty Level) since March 29, 2016. ^ Plus-up rebates are additional to Retire and 

Replace rebates available to consumers living in disadvantaged communities as identified by 

CalEnviroScreen.  
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Table S2. Average marginal effect of population density on CVRP and EFMP rebate allocation, 

conditioned on rural and urban status of the census tracts. See description of model specification 

in Table 2 of the main text.  
 

(1) CVRP, 

statewide, March 

2010 and 

December 2017 

(2) CVRP, state 

wide, March 2010 

and December 

2017 

(3) CVRP, South 

Coast and San 

Joaquin Valley air 

districts, July 2015 

– December 2017 

(4) EFMP, South 

Coast and San 

Joaquin Valley air 

districts, July 2015 

– December 2017 

Rural -0.012 

(-0.029, 0.006) 

-0.009 

(-0.026, 0.008) 

-0.234 

(-0.593, 0.125) 

0.007 

(-0.017, 0.031) 

Urban -0.023*** 

(-0.029, -0.017) 

-0.022*** 

(-0.028, -0.016) 

-0.066*** 

(-0.098, -0.034) 

-0.008*** 

(-0.011, -0.004) 

Difference 

(urban – rural) 

-0.011 

(-0.028, 0.005) 

-0.012 

(-0.028, 0.004) 

0.168 

(-0.181, 0.518) 

-0.015 

(-0.038, 0.009) 

Note: The average marginal effect is the average change in the number of rebates per 

thousand households received in a month (for column 1 and 2) or a quarter (for column 3 and 4) 

per one standard deviation change in population density, conditioned on whether a census tract is 

rural or urban. Column 1 and 2 are estimated based on model 1 and 2 in Table 4-1. Column 3 and 

4 are estimated based on model 3 and 4 in Table 4-3. All other covariates are held at their 

observed values in this estimation. *, **, and *** indicate significant at 90%, 95%, and 99% 

confidence intervals. 95% confidence intervals are in parenthesis. 

 

 

Figure S1. Average marginal effects of census tract-level average ambient NO2 and PM2.5 

concentrations on CVRP rebate allocation statewide, March 2010 – December 2017. The average 

marginal effects are estimated based on model 2 in Table 4-1, and can be interpreted as the 

average change in the number of rebates per thousand households received in a month per one 

standard deviation change in the air pollutant concentration, conditional on initial pollution 

concentrations. All other covariates are held at their observed values in this estimation. Error 

bars are 95% confidence intervals of the estimates for average marginal effects. 
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Figure S2. Average marginal effects of NO2 and PM2.5 concentration on CVRP rebate 

allocation in South Coast and San Joaquin air districts, Q3 2015 – Q4 2017. The average 

marginal effects are estimated based on Table 4-3. They represent average change in number of 

rebates per thousand households receive in a quarter for one standard deviation change in the air 

pollutants, conditioned on different pollution levels. All other covariates are held at their 

observed values in this estimation. Error bars are one standard deviations of the estimates for 

average marginal effects. 
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Chapter 5. Conclusions 

This dissertation focused on characterizing and projecting large-scale urbanization 

typologies, urban exposure to weather-related environmental hazards (sea level rise and storm 

surge) under climate change, and the equity implications of adaptation and mitigation programs 

that address climate change. Through three case studies, we (1) cost-effectively and reproducibly 

quantify, using time-series remote sensing to data, urban expansion in large regions; (2) project 

climate-related uncertainties in urban exposure to sea level rise and storm surge under different 

climate scenarios, and open a discussion with stakeholders on the implications of the 

uncertainties and long-term projection; (3) quantify the effectiveness of policy interventions in 

improving equity aspect of ‘one size fits all’ policy programs for climate change adaptation and 

mitigation. These studies together demonstrate how we can use models and data-driven 

approaches to inform decision-making that can better support and integrate sustainability and 

social equity goals in urban development and for urban population. 

In chapter 2, we design an automated approach to classify temporal typologies of 

urbanization with a dense time-series stack of nighttime light remote sensing images and 

unsupervised classification. Taking mainland China as an example, we identify five temporal 

typologies of urbanization, namely stable urban activity, high-level steady growth, acceleration, 

low-level steady growth, and fluctuation, between 1992 and 2013. Our validation shows that the 

spatial distribution of the five temporal typologies in a city followed a concentric gradient, a 

typical urban development pattern particularly in areas with limited environmental constraints 

(e.g. river and topography). For each temporal typology, the change of its nighttime light 

intensity strongly correlated with the change of proportion of built-up area (with Pearson 

correlation between 0.80 and 0.99). These validations suggest that our approach is valid to 

understand temporal typologies of urbanization, or how urbanization propagated in the past. 

Comparing this to traditional methods including: socioeconomic data, land-cover mapping, and 

in-situ land use survey, our approach is low-cost, timely, and easier to scale up in measuring 

urbanization. Combing our approach with traditional methods can provide a comprehensive 

understanding about urbanization, in terms of how it progresses in space and time. Our approach 

addresses the temporal aspect of urbanization, by providing planners and decision-makers a map 

of where rapid urbanization occurs, and if exists, where urban shrinkage takes place. Overlaying 

these temporal patterns of urbanization with maps of environmental hazards can inform whether 

urban exposure to these hazards is likely to increase due to recent urban expansion (or drastic 

increases in nighttime light intensity) or decrease because of urban shrinkage (or decrease in 

nighttime light intensity). This forms a basis for more informed urban planning and management. 

In chapter 3 we conduct a multi-temporal and multi-scenario projection of an urban area 

exposure to worst-case scenario flooding under climate change and measured how exposure 

uncertainties change by climate scenarios and projection time horizons. Focusing on the San 

Francisco Bay Area’s low-lying coastal zones (< 10 m in elevation), we find that between low 

and high greenhouse gas emission scenarios, the expected uncertainties in flood exposures of 

population distribution, developed areas, lifeline infrastructures, and emergency responders are 

1–2% (i.e. standard deviation of exposure, with exposure measured as the percentage of an item 

that is flooded) in 2000–2020 and 7–10% in 2080–2100. Such increased uncertainties over time 

post challenges for stakeholders, particularly for some private-sector stakeholders with short-

term investment and planning cycles. The uncertainties and challenges may make stakeholders 

overlook long-term planning and limit themselves to short-term options such as emergency 
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management and band aid fixes. To address these issues, decision-makers should promote 

adaptation and mitigation strategies that are no-regret, reversible, and flexible.  Decision-makers 

may also explicitly require a long-term focus for adaptation and mitigation actions and new 

development projects.  

In chapter 4 we perform an equity analysis of a type of climate change adaptation and 

mitigation program that incentives the purchase of clean vehicles. Clean vehicle rebate programs 

are amongst major climate change adaptation and mitigation efforts in California, which aim to 

improve air quality and reduce greenhouse gas emissions, a large portion of which are produced 

by the transportation sector. Addressing the equity aspect of rebate programs may facilitate clean 

vehicle adoption in disadvantaged and low-income communities that are less able to afford clean 

vehicles. Using California’s Clean Vehicle Rebate Project and Enhanced Fleet Modernization 

Program as examples, we investigate how equity-related policy designs shift rebate allocation to 

disadvantaged, lower-income communities, and communities of color. We find that under a 

generalized program design, where the rebate amount is only based on vehicle technology 

(during the first iteration of Clean Vehicle Rebate Project), rebates are more distributed to 

advantaged, wealthier communities with intermediate levels of nitrogen dioxide (NO2) 

concentration, and less distributed to communities with higher percentages of Hispanics and 

Non-Hispanic Blacks. After introducing an income cap, expanding vehicle eligibility, and adding 

income- and geography- tiered rebate amounts (during the second iteration of Clean Vehicle 

Rebate Project and Enhanced Fleet Modernization Program), rebate allocation rates have 

increased in communities with lower-household income, higher percentages of Hispanics, and 

slightly higher NO2 pollution. These findings confirm that equity concerns exist in clean vehicle 

rebate programs with generalized designs that have limited considerations on diverse 

socioeconomic characteristics of potential participants. Our analysis suggests that equity-related 

designs can distribute program benefits to populations with more diverse socioeconomic 

backgrounds. 

Overall, modeling and data-driven approaches in this dissertation with different types of 

geospatial data provides insights into urbanization, its exposure to weather-related environmental 

hazards under climate change, and equity implications of adaptation and mitigation programs. 

The three studies in this dissertation are connected, as they all examine how data and models can 

outline the underlying processes of environmental and societal challenges (i.e. urbanization, 

coastal flooding under climate change, and equity in adaptation and mitigation programs). The 

studies also demonstrate how understandings of these processes can inform decision-making, by 

identifying areas under overly rapid urbanization, discussing uncertainty-related challenges in 

climate change adaptation, and evaluating equity improvements from interventions of clean 

vehicle rebate programs. Therefore, we view the studies in this dissertation as part of a broader 

effort in developing evidence- and process-based decisions and policies. 

While the themes are connected, the three studies examine different geographies and 

cases driven by the best available data. A comprehensive investigation in a single study area, its 

exposure to one (multiple) environmental hazard(s), and adaptation to and mitigation of the 

environmental hazard(s) should be conducted, so that the findings can be more informative for 

this study area, its planners, decision-makers, and other stakeholders. Conducting such a 

comprehensive, place-based study becomes increasingly necessary and possible, with the 

growing impact of environmental hazards on urban areas, availability of adaptation and 

mitigation programs, and public awareness of the need to characterize, project, address, and 

prevent the adverse consequences of urbanization and climate change, particularly for 
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disadvantaged and marginalized population groups. For example, the approaches in this 

dissertation can be applied to the wildland-urban-interface fires in California and evaluate related 

adaptation and mitigation programs. The other future direction from this dissertation is about 

improving and refining spatial and temporal resolution of the modeling, in which the increased 

availability of non-traditional data (e.g. Google Street View, OpenStreetMap) and ‘new’ 

analytical methods (e.g. deep learning) increases our ability to characterize the built and 

socioeconomic environments at a fine scale and in new dimensions. These improvements in data 

and methods may give us new perspectives to better understand our interactions with the 

environment, environmental hazards, and the development of fine-tuned policy programs. 

 




