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Abstract 

 

Resting-state functional near-infrared spectroscopy: analytical challenges 

Pradyumna Lanka 

Doctor of Philosophy in Psychological Science 

University of California, Merced, 2022 

Professor Heather Bortfeld, Chair 

 

Resting-state functional connectivity has revolutionized neuroimaging in the past 

20 years and helped us gain insights into the functional organization of the human brain. 

Although most studies use functional magnetic resonance imaging (fMRI) for studying 

functional connectivity, functional near-infrared spectroscopy (fNIRS) has become 

increasingly popular due to its advantages over fMRI. However, fNIRS data is often 

corrupted by systemic physiology, extracerebral signal contamination, and motion 

artifacts which limit its widespread use. These noise sources in resting-state fNIRS data 

often violate the assumptions of the linear models used to model functional connectivity 

and may lead to incorrect inferences about statistical significance. This dissertation aims 

to examine the impact of these noise sources in resting-state fNIRS data and proposes 

preprocessing strategies and connectivity models that ameliorate their effects and 

improve the statistical validity of functional connectivity analysis. Chapter 2 examines 

multiple analysis pipelines using simulated resting-state fNIRS data to find the best 

strategies to correct for the effects of global systemic physiology on resting-state 

functional connectivity. Our results indicate that pre-filtering using principal components 

extracted from short-separation fNIRS channels as part of a partial correlation model was 

most effective in reducing spurious correlations due to shared systemic physiology. 

Given the high temporal resolution of fNIRS, modeling the lagged relationships between 

brain regions is crucial in understanding the flow of information over time. Hence, we 

also explored methods to model these lagged relationships while controlling for the 

effects of noise using multivariate Granger causality analysis. Chapter 3 surveys some 

strategies and techniques that have been proposed to correct for temporal autocorrelation, 

systemic physiology, and motion artifacts. Together, these two chapters highlight the 

challenges for resting-state functional connectivity analysis with fNIRS, emphasizing the 

need for better strategies to remove the effects of noise in the service of obtaining 

statistically valid inferences about the relationships between cortical regions.
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Chapter 1: General introduction 

 

Our understanding of neural correlates of mental processes in the brain often 

evolves with technological advances in neuroimaging methods, better preprocessing 

techniques, and advanced statistical analyses. Cognitive neuroscience has evolved from 

'blobology' where certain brain regions are associated with complex mental processes, to 

networks of brain regions involved in such mental processes, to a more recent view that 

spatio-temporal patterns of neural activity are correlated with cognitive processes. Some 

of the methods and applications discussed in this dissertation help us build complex 

spatio-temporal models of cognition and draw statistically valid inferences from such 

models to help understand cognition. So firstly, I describe the neuroimaging methods that 

form the basis of this dissertation. Next, I talk about resting-state analysis. Following 

that, I compare functional magnetic resonance imaging with functional near-infrared 

spectroscopy on the advantages and disadvantages of these methods with respect to 

resting-state analysis. I conclude this chapter with the proposed organization of my 

dissertation studies. 

Neuroimaging methods 

Functional magnetic resonance imaging (fMRI): FMRI has revolutionized the 

field of cognitive neuroscience, particularly in allowing us to infer neural correlates of 

mental processes and behaviors (Poldrack, 2012). fMRI is an indirect measure of neural 

activity that uses the blood-oxygen-level-dependent (BOLD) contrast to assess changes in 

local metabolic and hemodynamic parameters to infer the neural activity in specific brain 

regions. BOLD contrast exploits the differences in magnetic properties of oxygenated and 

deoxygenated forms of hemoglobin. Hemoglobin has two forms depending on oxygen 

saturation, oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) which are diamagnetic 

and paramagnetic, respectively. While HbO does not affect the MR signal, HbR, which is 

paramagnetic, distorts the surrounding magnetic field (susceptibility), reducing the T2* 

relaxation time, thereby reducing the MR signal (Buchbinder, 2016). In response to 

action potentials and metabolic demand in a particular region of the brain, there is 

increased metabolic oxygen consumption. Increased metabolic demand, in turn, causes an 

increase in the flow of oxygen-rich blood that outstrips the demand, thus locally 

increasing the relative proportion of HbO and reducing the concentration of HbR, thus 

increasing the MR signal a few seconds after the presentation of the stimulus. This 

measurement of the hemodynamic response to neural activity is the basis for BOLD-

fMRI imaging. 

Functional near-infrared spectroscopy (fNIRS): Unlike fMRI, which uses the 

differences in magnetic properties of oxygenated and deoxygenated blood, fNIRS utilizes 

the differential optical properties of the two forms of hemoglobin to infer brain function. 

Specifically, fNIRS relies on differences in the absorption of electromagnetic waves by 

metabolically relevant chromophores such as HbO and HbR in the near-infrared part of 

the electromagnetic spectrum. The near-infrared (NIR) region of the electromagnetic 

spectrum (wavelengths of 650-950 nm) is used because of the relative transparency of 

NIR light to biological tissues, i.e., lower absorption of both water, a major constituent of 

biological tissue, and hemoglobin, thus allowing light to pass through without significant 

attenuation (Pinti et al., 2020). Since the concentrations of both forms of hemoglobin 
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change in response to the metabolic demand, at least two wavelengths of NIR light are 

needed to resolve the differential absorption for two chromophores, HbO & HbR. Like 

fMRI, even with fNIRS, we are not directly measuring the neural activity but the relative 

changes in oxygenated (increase) and deoxygenated (decrease) concentrations in 

response to the neural activity, termed the hemodynamic response. The hemodynamic 

response is predominantly caused by the increased regional cerebral blood flow in 

response to the increased metabolic demands of particular brain regions (Scholkmann et 

al., 2014). 

Continuous wave-fNIRS (CW-fNIRS) is the most used form of fNIRS. It relies on 

continuously shining NIR light through a light source and a detector placed on either side 

of brain tissue,  and capturing the backscattering of light after probing the neural tissue. 

Even though the brain is a scattering medium in which attenuation due to scattering is 

much higher than absorption, a reasonable assumption can be made that attenuation 

attributable to scattering does not change significantly in response to neural activity, 

unlike attenuation attributable to absorption. Another common assumption is that the 

concentration of other chromophores does not change considerably during the session. 

So, the modified Beer-Lambert law (MBLL) can be used to convert the changes in the 

light intensity to changes in the relative concentrations of HbO and HbR.  

The cortical tissue probed is assumed to be the cortical projection of the midpoint 

between the source and detectors and is referred to as a channel. Increasing the distance 

between the source and the detector could lead to considerable light attenuation, whereas 

shorter distanced channels do not penetrate the cortical tissue. Hence, an optimal range of 

source-detector distances can be used to probe neural activity from the cortical surface, 

which is around 3 cm. Unfortunately, CW-fNIRS cannot be used to infer the absolute 

concentrations of HbO and HbR, but this is not a significant limitation in cognitive 

neuroscience. We are often interested in changes related to mental processes and task 

demands compared to a baseline rather than absolute concentrations. 

A significant limitation of neuroimaging methods such as fMRI and fNIRS is that 

the relationship between the brain and a particular mental process is inherently 

correlational. While these methods allow for forward inference, in which specific brain 

regions are activated in response to certain cognitive processes induced by certain stimuli 

and tasks, these methods do not specify whether the activated region is necessary nor 

sufficient for a particular mental process (Poldrack, 2012).  

Resting-state analysis 

Resting-state paradigms on functional neuroimaging methods focus on the 

spontaneous, spatially structured, low-frequency fluctuations (< 0.1 Hz) in the brain when 

the person is not performing an explicit task. Resting-state functional connectivity was 

discovered in the mid-90s by Bharat Biswal when he observed the left and right 

sensorimotor cortices were highly correlated (Biswal et al., 1995). Several sensory 

(Visual & auditory), higher-order cognitive (default mode network, central executive 

network, salience network), and several other networks have since been identified (Lee et 

al., 2013). The brain consumes large amounts of energy at baseline. Despite being just 

2% of the body weight, the brain consumes over 20% of the total body energy 

consumption, with cognitive tasks increasing the local energy consumption by less than 

2.5% (Buchbinder, 2016). Thus, the bulk of metabolic demands is from baseline neural 
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activity. The resting-state analysis focused on the spatial and temporal structure of the 

low-frequency fluctuations in the baseline neural activity to identify functional brain 

networks and map the brain's functional architecture. 

Processing resting-state data is often more challenging than processing task-based 

data. Typically, task-based analyses are univariate approaches based on the general linear 

model (GLM) in which the fNIRS data is fitted as a linear combination of the neural 

signal (expected neural response based on the stimuli) and the noise is modeled as 

nuisance regressors (Pinti et al., 2020). Unlike task-based analysis, where the neural 

response can be approximately modeled, only the noise is often modeled with resting-

state analysis since the neural signal is unknown. The modeled noise is then 

removed/subtracted from the total signal to infer the neural activity. Hence any 

unmodeled noise will remain and be conflated with the neural signal. This could 

significantly affect statistical inferences on resting-state connectivity metrics (Bright et 

al., 2017). Most task-based analyses use univariate approaches rather than bivariate and 

multivariate approaches used in the resting-state analysis. Hence, methods that work well 

for removing noise in the task-based analyses do not work well for resting-state analyses.  

Comparison of resting-state fNIRS with resting-state fMRI 

fMRI had several years head-start compared to fNIRS with resting-state analysis 

and identifying resting-state networks. However, resting-state analysis with fNIRS is 

increasing in popularity. Below we compare the advantages and disadvantages of resting-

state analysis with fMRI and fNIRS. Though some of these differences result from the 

nature of the data acquisition with these methodologies, some of the differences are 

specific to resting-state analyses.  

FMRI has high spatial resolution and allows for greater brain coverage, including 

cortical and subcortical regions; thus, subcortical and cortico-subcortical networks can be 

inferred from fMRI. Unlike fMRI, fNIRS currently only probes the cerebral cortex and 

cannot detect neural activity from the subcortical structures; hence resting-state analysis 

with fNIRS is limited to identifying cortical networks. 

Typically, fMRI data is high dimensional with tens of thousands of voxels; often, 

atlases are used to group the voxels into anatomical or functional divisions ROIs before 

calculating connectivity measures to reduce the dimensionality of the data. Reducing the 

dimensionality of the data could make the analysis less computationally intensive, more 

interpretable, and reduce the statistical errors associated with multiple hypothesis testing. 

With fNIRS, the number of channels can range from a few channels to at most a few 

hundred, depending on the number of sources, detectors, and the instrument's 

configuration. So, fNIRS data is low-dimensional compared to fMRI; thus, we are limited 

to probing the neural activity from a few cortical areas. Processing fNIRS data is, 

therefore, less computationally intensive. 

FNIRS has a higher temporal resolution than fMRI, with typical sampling rates 

around 10 Hz, though both methods estimate the slow and lagged hemodynamic response 

to neural activity. Oversampling of the hemodynamic signals can have certain advantages 

with task-based fNIRS, such as better estimation of the shape of the HRF, prevention of 

aliasing of relatively high-frequency cardiac noise (around 1-1.2 Hz), and better 

statistical power. A higher sampling rate in resting-state data can lead to increased 

autocorrelation and, consequently, increased false positives (Santosa et al., 2017). The 
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higher temporal resolution also necessitates using time-lagged connectivity methods such 

as Granger causality to model the relationship between different regions in the brain as 

the zero-lag metrics such as functional connectivity may not completely capture the 

relationship between brain regions. 

  Similarly, fMRI is extremely sensitive to head motion, especially with resting-

state fMRI, as head movements can have lingering effects on the fMRI signal. 

Uncorrected motion artifacts in the resting-state fMRI lead to distance-dependent artifacts 

in which connectivity varies as a function of distance since the signal changes in response 

to head motion are similar across nearby regions and more dissimilar across farther 

regions (Power et al., 2012, 2015; Satterthwaite et al., 2012). Removal of motion artifacts 

involves removing the motion corrupted time points and their neighboring time points, 

thus reducing the degrees of freedom of our data. Though motion artifacts affect the 

fNIRS signal, they have momentary effects. Even after motion artifact correction, fNIRS 

can have more degrees of freedom due to its higher sampling rate leading to more data 

points in fNIRS for the same duration of data collection. 

With fMRI, an anatomical image is often also captured along with the rest scans. 

The anatomical image is co-registered to the functional scan, which allows for better 

registration later onto a standard atlas such as MNI-152, leading to lower inter-subject 

variability and the ability to draw better group-level inferences. However, with fNIRS, 

anatomical images are often unavailable, so either the 10-20 system is used for localizing 

the probe, or 3D digitizers are used to capture anatomical locations of optodes and the 

corresponding cortical regions probed. The 10-20 system, due to lack of spatial 

specificity, may not be appropriate for fNIRS due to its relatively higher spatial 

resolution. Hence the use of digitizers to capture optodes locations and cranial landmarks 

and transform them from the subject space to the common standard space for group-level 

analysis is more appropriate. Given the limited information available from the cranial 

coordinates, even 3D digitizers may still lead to inaccurate spatial localization, greater 

inter-subject variability, and difficulty with group-level inferences with fNIRS compared 

to fMRI.  

Finally, with fNIRS, since the light passes through extracerebral layers before and 

after penetrating the neural tissue, fNIRS signals are more contaminated with 

extracerebral physiological changes compared to fMRI. While CSF and WM regression 

are used to remove physiological noise in fMRI, short separation (SS) channels in which 

the source-detector distance is typically less than 10 mm, just enough to penetrate the 

extracerebral layers but not enough to penetrate the cortical tissue, can be used to capture 

the extracerebral signal changes. These SS channels can then be used to partially 

ameliorate the effects of extracerebral signal changes and systemic physiology in the 

fNIRS data (Pinti et al., 2020). 

Organization 

In chapter 2, methods to reduce the impact of physiological noise on resting-state 

fNIRS analysis are proposed. Although several other methods have been proposed to 

reduce physiological noise in resting-state fNIRS, no method currently accounts for 

temporal autocorrelation, global signal, and motion artifacts. However, we argue that the 

robust AR partial correlation proposed in Chapter 2 does exactly that. Further, as 

suggested earlier, modeling lagged relationships becomes particularly important with 
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fNIRS given the higher sampling rate. Thus, we propose using modified multivariate 

Granger causality (MVGC)—an extension of traditional Granger causality—that can 

model both lagged and zero-lag relationships. Furthermore, the robust version of the 

modified MVGC can estimate robust statistical estimates of fNIRS data corrupted by 

head motion. 

Chapter 3 of the dissertation surveys methods and preprocessing strategies for 

reducing the impact of noise associated with systemic physiology and head motion, 

which themselves lead to autocorrelation, a global signal, and large fluctuations in 

resting-state fNIRS data. With over 150 publications currently focused on resting-state 

fNIRS analyses and its rapidly increasing use, it is critical to assess the current status of 

research in resting-state analysis with a specific focus on preprocessing strategies. While 

current preprocessing methods to correct for systemic physiology and head motion are 

predominantly tested with task-based analysis in mind, their relevance and effectiveness 

for resting-state analysis is examined. Autocorrelation in resting-state fNIRS data is a 

huge issue that is further exacerbated by the increased physiological noise and high 

temporal resolution. Unfortunately, this issue has received scant attention. Thus, this 

chapter also highlights the effect of temporal autocorrelation on resting-state functional 

connectivity, along with strategies to remove its influence.  

Finally, I conclude the dissertation by highlighting some of the limitations of the 

current work, suggesting directions for future research that addresses these limitations 

and contributes to our understanding of functional brain organization. 
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Chapter 2: Correction of global physiology in resting-state functional near-infrared 

spectroscopy 

 

Chapter abstract 

Resting-state functional connectivity (RSFC) analyses of functional-near infrared 

spectroscopy (fNIRS) data reveal cortical connections and networks across the brain. 

Motion artifacts and systemic physiology in evoked fNIRS signals present unique 

analytical challenges, and methods that control for systemic physiological noise have 

been explored. Whether these same methods require modification when applied to 

resting-state fNIRS (RS-fNIRS) data remains unclear. We systematically examined the 

sensitivity and specificity of several RSFC analysis pipelines to identify the best methods 

for correcting global systemic physiological signals in RS-fNIRS data. Using numerically 

simulated RS-fNIRS data, we compared the rates of true and false positives for several 

connectivity analysis pipelines. Their performance was scored using receiver operating 

characteristic (ROC) analysis. Pipelines included partial correlation and multivariate 

Granger causality, both with and without short-separation measurements, and a modified 

multivariate causality model that included a non-traditional zeroth-lag cross term. We also 

examined the effects of pre-whitening and robust statistical estimators on performance. 

Consistent with previous work on bivariate correlation models, our results demonstrate 

that robust statistics and pre-whitening are effective methods to correct for motion 

artifacts and autocorrelation in the fNIRS time series. Moreover, we found that pre-

filtering using principal components extracted from short-separation fNIRS channels as 

part of a partial correlation model was most effective in reducing spurious correlations 

due to shared systemic physiology when the two signals of interest fluctuated 

synchronously. However, when there was a temporal lag between the signals, a 

multivariate Granger causality test incorporating the short-separation channels was better. 

Since it is unknown if such a lag exists in experimental data, we propose a modified 

version of Granger causality that includes the non-traditional zeroth-lag term as a 

compromising solution. A combination of pre-whitening, robust statistical methods, and 

partial correlation in the processing pipeline to reduce autocorrelation, motion artifacts, 

and global physiology are suggested for obtaining statistically valid connectivity metrics 

with RS-fNIRS. Further studies should validate the effectiveness of these methods using 

human data. 

Introduction 

Spontaneous or resting-state functional connectivity (RSFC) has been an 

important tool for characterizing the network architecture of the human brain. Biswal and 

colleagues first noted that synchronized spontaneous fluctuations in the functional 

magnetic resonance imaging (fMRI) blood-oxygen-level-dependent (BOLD) signal were 

organized into distinct networks that were conserved across subjects (Biswal et al., 1995). 

More than twenty-five years later, these results have been replicated in hundreds of 

research studies and expanded to nearly every aspect of human brain function, 

development, and disease (Badhwar et al., 2017; Betzel et al., 2014; Hull et al., 2017; Lee 

et al., 2013; Oldham & Fornito, 2019; van den Heuvel & Hulshoff Pol, 2010; Vértes & 

Bullmore, 2015). Resting-state networks have also been observed using other 

neuroimaging modalities, including electroencephalography and 
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magnetoencephalography (Gaudet et al., 2020; van Diessen et al., 2015), as well as 

functional near-infrared spectroscopy (fNIRS) (Hu et al., 2020; Niu & He, 2014). A 

major advantage of the resting-state paradigm is that there is no task compliance 

necessary, which is especially useful in research with infant, aging, diseased, and other 

non-compliant populations.  

 Not surprisingly, several analytical methods have been developed to quantify 

resting-state connectivity. For both fMRI and fNIRS, these methods often focus on the 

zeroth-lag relationship between brain regions. Zeroth-lag relationships are ones in which 

signal fluctuations occur simultaneously (within measurement sampling time) in both 

signals. Perhaps the most common method for estimating functional connectivity is to 

calculate the Pearson’s correlation coefficient between the time-series from two brain 

regions. There are several ways to characterize resting-state functional connectivity in the 

time-domain, including (i) seed-based connectivity, (ii) pairwise connectivity, and (iii) 

independent component analysis (ICA). In seed-based connectivity, a seed region is 

selected, and its connectivity with all other brain regions is assessed (Mesquita et al., 

2010). In pairwise connectivity, the correlation between all possible pairs of channels is 

calculated (Homae et al., 2010). ICA decomposes the covariance of fNIRS channel data 

into several statistically independent spatiotemporal components, with some components 

representing functional networks in the brain either for each subject individually or for 

the entire dataset concatenated across subjects (Blanco et al., 2021; Ferradal et al., 2016). 

Granger causality is an example of an “effective connectivity” method, which 

relies on the lagged relationship between fNIRS channels in the time-domain. Granger 

causality analysis (GCA) is based on the principle of Granger causality, which states that 

for two signals, 𝒙 and 𝒚, if the past values of signal 𝒙 contain information that helps 

predict 𝒚 above and beyond the information contained in past values of 𝒚 alone, then we 

can say 𝒙 Granger-causes 𝒚 (Bressler & Seth, 2011; Seth et al., 2015). The term “causal” 

refers to the mathematical predictability that the history of the time course of 𝒙 has to the 

current value of 𝒚, rather than the more linguistic context of “cause and effect”. GCA is 

statistically tested by using a likelihood ratio test comparing the goodness-of-fit of a 

linear model containing both 𝒙 and 𝒚 terms to a restricted model containing only 𝒚 terms. 

In the case of a multivariate model, this is a likelihood ratio test of a model containing 

{𝒙, 𝒚, and other confounds 𝒁} to one containing only {𝒚 and other confounds 𝒁}. GCA 

is especially suited for modeling time-lagged relationships between brain regions. It 

benefits from computational simplicity without the need to prespecify the direction of 

influence, unlike the other effective connectivity methods including structural equation 

modeling and dynamic causal modeling, which are more confirmatory than exploratory. 

Although several studies have looked at Granger causality in task-based fNIRS 

paradigms (Z. Liu et al., 2017; Wan et al., 2018; G. Zhou et al., 2016), there is a paucity 

of studies that examine GCA in resting-state paradigms. 

Another method commonly used to model functional connectivity in fNIRS is the 

wavelet transform coherence (WTC), which models the relationship between the 

channels in the time-frequency domain. WTC relies on the continuous wavelet transform 

(CWT). CWT is the convolution of the scaled and shifted versions of a mother wavelet, 

and transforms the time series data into the time-frequency domain. Often the Morlet 

wavelet, a gaussian scaled sine wave, is chosen as the mother wavelet. WTC is estimated 
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as a cross-correlation between the time series in the time-frequency domain (Chang & 

Glover, 2010; Grinsted et al., 2004; Tan et al., 2015). 

Functional near-infrared spectroscopy  

FNIRS is an optical imaging method that uses light in the near-infrared 

wavelength range (650-950 nm) to estimate temporal changes in the concentrations of 

oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) (Delpy & Cope, 1997). In this range 

of red to near-infrared light, the differential optical absorption of HbO and HbR allows 

for estimation of hemodynamic signals in the brain through a set of optical sources and 

detectors placed non-invasively on the scalp of participants (Pinti et al., 2020; 

Scholkmann et al., 2014). Light from these optical sources passes through the skull and 

scatters through the tissue and can reach the outer few millimeters of the cerebral cortex 

allowing detection of underlying brain signals. Thus, fNIRS measures the hemodynamic 

changes in the brain reflecting changes in blood flow, volume, and blood oxygenation 

and therefore is an indirect measure of neural activity like the fMRI BOLD signal. 

FNIRS has some advantages compared to fMRI including lower cost, a greater resiliency 

to head motion (provided the optical sensors remained secured to the scalp), and higher 

data sampling rates (although still measuring slow hemodynamic signals). FNIRS is also 

portable and is commercially available in participant-wearable systems, which allows 

subject movement, application to a wider range of populations that would have 

contraindications in other modalities, and the ability to perform more flexible or 

ecologically valid tasks.   

 However, the disadvantages of fNIRS are its lower spatial resolution, limited 

depth penetration into the brain, and increased sensitivity to superficial layers of the head 

relative to the brain itself. The latter issue is particularly confounding for fNIRS 

measurements, since systemic physiology in the scalp, including cardiac, respiratory, and 

blood pressure fluctuations, often result in spatially global noise, which is often larger in 

amplitude than the underlying brain signals of interest (Huppert et al., 2009; Tachtsidis & 

Scholkmann, 2016). Thus, in the case of RSFC using fNIRS, the separation of the 

overlying spatial networks due to superficial physiological signals and true underlying 

neural-related brain networks is challenging.     

The first study to demonstrate the feasibility of fNIRS in capturing the very-low 

frequency and low-frequency oscillations that contribute to resting-state functional 

connectivity was by Obrig et al., (2000). Following that, several early studies used to 

investigate the feasibility of RSFC found reliable and expected visual, sensorimotor, and 

language networks using functional near-infrared spectroscopy (fNIRS) and diffuse 

optical tomography (DOT) (Lu et al., 2010; Mesquita et al., 2010; White et al., 2009; Y.-

J. Zhang, 2010). Since then, researchers have used resting-state fNIRS (RS-fNIRS) and 

DOT to study infant development (Homae et al., 2010), gender differences in the 

prefrontal cortex (Chuang & Sun, 2014), preterm birth (Fuchino et al., 2013), language 

networks (Gallagher et al., 2016), autism spectrum disorder (J. Li et al., 2016; Zhu et al., 

2014), affective disorders (Zhu et al., 2017), and aging (Tan et al., 2016). Studies 

examining the test-retest reliability of RSFC have found good to excellent intraclass 

correlations across both individual and group level RSFC maps across multiple sessions 

ranging from an hour to a week (Niu et al., 2013; H. Zhang, Zhang, et al., 2011). More 

importantly, RSFC with fNIRS (RS-fNIRS) has also been validated with RS-fMRI (Duan 
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et al., 2012; Sasai et al., 2012). Although extremely popular with fMRI, just a few papers 

have applied graph-theoretic approaches to RS-fNIRS (Niu et al., 2013; Novi et al., 

2016). 

Statistical properties of RS-fNIRS signal 

 RS-fNIRS has some unique challenges compared to RS-fMRI given the signal 

and noise properties of RS-fNIRS. Due to the way the fNIRS signal is collected, it is 

sensitive to non-neural extracerebral signal changes in the scalp. RS-fNIRS signal is 

composed of 3 components: (i) low-frequency neural oscillations (signal of interest), (ii) 

intracerebral physiological noise originating in the brain, and (iii) extracerebral 

physiological noise originating in the scalp and non-brain tissues. All the signals are non-

evoked, given the nature of the resting-state paradigm. Thus, fNIRS signals are 

contaminated by both extracerebral signal changes as well as non-neural cerebral signal 

changes due to systemic physiology attributed to cardiac (around 1-1.2 Hz), respiratory 

(0.3-0.6 Hz), and blood pressure/Mayer wave (0.1 Hz) fluctuations (Pinti et al., 2019; 

Tachtsidis & Scholkmann, 2016). 

Physiological noise has two effects on the RS-fNIRS signal: (i) inducing temporal 

autocorrelation, and (ii) increasing spatial covariance between channels across the brain. 

Both these issues and how they affect the statistical assumptions of the connectivity 

models used to identify the interactions between time series will be discussed in detail 

below. The proposed ways to correct for them will be discussed in the subsequent 

sections. 

Temporal autocorrelation 

Previous work has demonstrated that the high sampling rate and the systemic 

physiology (heart rate, respiration and blood pressure), combined with the underlying 

hemodynamic response, can together lead to temporal dependencies, and hence 

autocorrelation in RS-fNIRS time series (Santosa et al., 2017). Colored noise reduces the 

effective degrees of freedom. Autocorrelation may be present for up to several seconds, 

thus lasting multiple time points depending on the sampling rate (Christova et al., 2011; 

Santosa et al., 2017). In this case, the assumption of independence of cases is no longer 

valid and using linear regression/correlation to model the relationship between 

autocorrelated time series could lead to increased false positives (Granger & Newbold, 

1974). The reason for the increased false positives can be attributed to the  

underestimation of standard errors of the null distribution of the regression coefficients, 

as well as a possible bias in the estimates (if the autocorrelation structures are different 

across the time series) due to the temporal autocorrelations in the time series 

(Arbabshirani et al., 2014), neither of which are considered when drawing statistical 

inferences.  

 An effective way to remove the autocorrelation in the time series to obtain more 

statistically valid estimates of relationships is a procedure called pre-whitening. Pre-

whitening works by removing the serial correlations in the time series. Autoregressive 

(AR) models can be used for pre-whitening the data and removing the serial correlations. 

Specifically, for fNIRS, using pre-whitening entails using a 𝑝𝑡ℎ  order AR model to 

model the current time point as a function of the previous time points. The residual term 

in the AR model after removing the temporal dependencies is termed the innovation term, 

and is now used to calculate the Pearson’s correlation coefficient between channels rather 
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than using the autocorrelated channel data (Santosa et al., 2017). In a study comparing 

the use of standard correlation without pre-whitening and AR correlation with pre-

whitening on simulated data, Santosa et al. reported a false discovery rate (FDR) as high 

as 50% at 1 Hz sampling rate and increasing to 70% for a sampling rate of 10 Hz when 

the standard correlation is used to model the functional connectivity between fNIRS 

(Santosa et al., 2017). With the use of AR-correlation with pre-whitening incorporated, 

however, the uncontrolled FDR reduced to the expected 5% at 1 Hz sampling rate and a 

higher 30% FDR at 10 Hz sampling rate. Similar findings were also reported for 

experimental fNIRS data, thus demonstrating a reduced type-I error rate when pre-

whitening is incorporated into the preprocessing pipeline for estimation of functional 

connectivity (Santosa et al., 2017). Despite correcting for the temporal autocorrelations in 

fNIRS, Santosa et al. did not account for the increased spatial covariance due to systemic 

physiology, which could also lead to increased FDR.  

Global systemic physiology 

Since systemic physiology is thought to be relatively homogenous across the brain, 

the signal changes caused by the systemic fluctuations that are shared across all the 

channels can increase the spatial covariance in the channels (Blanco et al., 2018). This 

can artificially inflate the strength of the relationship between the time series due to a 

third term (physiological noise). Figure 1 shows that not correcting for the increased 

spatial covariance in the fNIRS data could lead to increased type-I errors and reduced 

specificity, as far more connectivity paths are present than expected based on the “ground 

truth” 

. 

 

Figure 1. Connectivity maps show the effectiveness of (i) Pearson's correlation 

coefficient, (ii) autoregressive (AR) correlation, and (iii) AR partial correlation, to 
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recover true connectivity, in simulated fNIRS data with added physiological noise 

mimicking AR smoothing and shared covariance. The figure demonstrates the success of 

AR partial correlation to recover most of the true connectivity patterns in simulated data 

with fewer false positives. 

Proposed solutions to correct for the effects of physiological noise  

 Several solutions have been proposed to deal with reducing the influence of 

physiological noise on the violations of assumptions of connectivity due to them. Most 

methods that have been proposed to remove the effects of physiological data do not 

account for the autocorrelation in the fNIRS time series, but instead aim to improve the 

signal-to-noise ratio by removing the influence of physiological noise and non-neural 

signals. 

Generally, the most common method to reduce the interference of physiological 

noise in fNIRS data is band-pass filtering. Brain-derived signals, exhibit a power spectral 

density in accordance with the inverse-power law with greater power at lower frequencies 

and much less power at higher frequencies (Blanco et al., 2018). It must be noted that 

with fNIRS, we are measuring the hemodynamic/vascular changes associated with neural 

activity rather than the neural activity itself, so the hemodynamic response function 

(HRF) acts as a temporal low-pass filter. Given the inverse-power law and the low-pass 

filtering properties of HRF, there is little high-frequency information present in the RS-

fNIRS signal. Finally, the fNIRS signal is also corrupted by high-frequency noise 

structures such as cardiac and respiratory noise, thus a good signal-to-noise ratio of 

neural activity compared to noise is often restricted to low-frequency bands in fNIRS. 

The fNIRS signal also generally has very-low-frequency drift noise which can be another 

source of autocorrelation. The very-low-frequency drift noise can be modeled and 

removed by linear, polynomial, or discrete cosine transform (DCT) basis functions, or by 

filtering the data with an appropriate high-pass filter. Thus, using an appropriate band-

pass filter could remove physiological noise, while still preserving the low-frequency 

neural oscillations (Huppert et al., 2009). It must be noted that low-pass filtering/band-

pass filtering often increases the autocorrelation in the time series, whilst reducing the 

degrees of freedom. Consequently, low-pass/bandpass filtering also increases the false 

positive rate (Huppert, 2016). 

 An alternative approach to removing spatial noise is to use spatial principal 

component (PCA) filtering (Huppert et al., 2009; Y. Zhang et al., 2005). PCA depends on 

the idea that shared spatial covariance between the signals is due to shared physiology, 

and the variance is much larger in magnitude compared to the neural signal. So, the first 

few components obtained from PCA can be used to extract the spatially correlated global 

signal. Regressing out the PCA components from the fNIRS data provides a way to 

reduce the shared global signal due to systemic physiology, while still preserving neural-

related components. 

 Still another way to reduce the presence of the physiological signals is to use 

external recording devices to measure respiration, heart rate and blood pressure, and 

remove their effects from the RS-fNIRS signal (Kirilina et al., 2012; Scholkmann et al., 

2014; Tachtsidis et al., 2010). However, this method is often expensive as it requires 

using additional instruments to record the physiological signals. Moreover, reducing 

physiological noise may not entirely remove the autocorrelation in the time series. More 
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recently, the use of short-separation channels has become a popular approach to estimate 

local systemic physiology. Because the depth of penetration of light into the tissue is a 

function of the spacing between the fNIRS light source and detector positions, typically 

for measuring the brain, a spacing of about 3-4 cm is used, which provides penetration to 

a few millimeters into the cortex. When short-separation (~5-10mm) spacings are used, 

the light only reaches into the scalp and can be used as a regressor of superficial 

physiology (Sato et al., 2016). The use of these short-separation fNIRS measurements has 

been shown to be an effective way to remove the global effects of systemic physiology 

for evoked (task-based) functional signal (Santosa et al., 2020). 

Previously, several approaches using these short-separation channel 

measurements been proposed, including as pre-filtering operators or as regressors within 

linear regression models (Gagnon et al., 2012; Saager et al., 2011; Saager & Berger, 

2005; Santosa et al., 2020; Sato et al., 2016; Yamada et al., 2009). However, shorter 

distance channels can introduce engineering challenges when another detector has to be 

placed so close to the source, and it can also cause saturation issues (Brigadoi & Cooper, 

2015). Placing the detector too far from the source can introduce false negatives in the 

data because the short-separation channel can capture neural-related variance. Studies 

have identified the optimum distance for a short-separation channel for adults is 8.4 mm 

and 2.15 mm for infants using Monte-Carlo simulations (Brigadoi & Cooper, 2015). 

Meanwhile, hybrid approaches that use short-separation channels together with PCA 

appear to be more effective in reducing systemic physiology (Wyser et al., 2020; X. Zhou 

et al., 2021). 

One final method for reducing the impact of global systemic physiology on 

fNIRS-based RSFC data is to use partial correlation instead of Pearson’s correlation 

coefficient. Partial correlation is better at removing the shared covariance between the 

signals and is more sensitive to the relationship between deep brain signals that reflect 

true neural connectivity (Sakakibara et al., 2016). Connectivity values obtained from the 

partial correlation between channels are lower than those obtained from Pearson’s 

correlation due to the removal of extracerebral contributions to the connectivity. 

However, using partial correlation by controlling for other channels can also often 

remove neural variance as well, thus increasing the rate of false negatives. 

Head motion artifacts 

In addition to physiological noise, motion artifacts are another source of error in 

fNIRS data. Motion artifacts occur when the head movements of the participant cause the 

optodes to slide or momentarily lose contact with the scalp, leading to spikes in signal 

intensity or changes in baseline signal intensity (Brigadoi et al., 2014). Motion artifacts 

are common in datasets from certain populations, such as infants and young children, as 

well as in experimental paradigms that require movement. Usually, the signal changes 

induced by head motion are much larger than the signal changes due to neural activity 

(Barker et al., 2013). Motion artifacts can affect only a few probes or most of the probes, 

thus increasing or reducing the shared covariance between the channel time series 

(Santosa et al., 2017). 

The simplest way to address the effect of motion artifacts is to remove the motion 

corrupted time points from analysis, although it has been argued that correcting for 

motion rather than simply removing the motion corrupted time points is a better strategy 
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(Brigadoi et al., 2014). For RS-fNIRS, completely removing motion corrupted time 

points from analysis may reduce the stability of connectivity metrics due to the reduced 

number of time points/degrees of freedomM. Methods to correct for motion artifacts 

include spline interpolation (Scholkmann et al., 2010), wavelet filtering (Molavi & 

Dumont, 2012), PCA (Huppert et al., 2009; Y. Zhang et al., 2005), discrete Kalman 

filtering (Izzetoglu et al., 2010), and correlation-based signal improvement (CBSI) (Cui 

et al., 2010). Although these methods are discussed in detail in Brigadoi et al. (2014), in 

the context of task-based analyses, they are also applicable to RS-fNIRS data. For task-

based fNIRS analysis, wavelet filtering was identified as the best performing method 

relative to the other options (Brigadoi et al., 2014). Since then, several other methods and 

improvements to existing methods have been proposed with varying degrees of success in 

correcting for multiple manifestations of motion artifacts in the fNIRS data. Some of 

those methods include kurtosis-based wavelet filtering (Chiarelli et al., 2015), temporal 

derivative distribution and repair (TDDR) (Fishburn et al., 2019), and global variance of 

temporal derivatives (GVTD) -based motion censoring (Sherafati et al., 2020). 

Alternatively, motion artifacts in the fNIRS data can be corrected within the 

context of a generalized linear model by using robust statistics. Head motion present in 

the resting-state data violates the assumptions of non-normality, as the motion 

contaminated time points could appear as outliers in the distribution of the innovation 

terms (Barker et al., 2013; Huppert, 2016; Santosa et al., 2017). Using pre-weighting by 

downweighting time points considered outliers can reduce the impact of the motion 

contaminated time points on calculated connectivity metrics such as correlation (Santosa 

et al., 2017). Santosa et al. proposed a general linear model (GLM) that was robust to the 

violations of assumptions using methods such as pre-whitening and pre-weighting such 

that the inferences drawn about the parameters were still statistically valid, unlike 

traditional methods that do not explicitly account for the violation of assumptions 

(Santosa et al., 2017). 

Aims 
In this article, we examine the performance of several approaches to correcting 

systemic physiology and global signal artifacts for RS-fNIRS as a tool to track functional 

connectivity between different brain regions. To this end, we quantified the 

sensitivity/specificity and false positive rates of various numerical methods, including 

several approaches that use short-separation fNIRS measurements as either pre-

filtering/partial correlation methods, as well as within multivariate correlation and causal 

models. This work is a multi-channel/multivariate expansion of our previous examination 

of bivariate correlation analysis for fNIRS (Santosa et al., 2017). Santosa et al. 

demonstrated that the slow hemodynamic signals measured by fNIRS result in spurious 

correlations, very high false positive rates, and uncorrected type-I error in the standard 

Pearson correlation model unless corrected for noise autocorrelation and other non-

spherical statistical errors (Santosa et al., 2017). However, their work did not address the 

issue of spatially correlated noise due to superficial systemic physiology, the topic of the 

current research.   

Methods 

In order to characterize the sensitivity and specificity of each of the proposed 

analysis methods, we relied on numerically simulated data with a known ground truth. 
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We explored the model performance over several classes of simulations ranging from 

simple normally distributed random noise (where all the statistical assumptions of our 

model are valid) to “physiological” signals with temporally autocorrelated noise to global 

spatial physiological noise. Finally, we included the presence of motion artifacts. Each 

step introduced additional violations to the statistical assumptions of the model, requiring 

modifications for model generalization. Each data simulation represented a more 

challenging (and experimentally plausible) statistical problem, which we examined using 

receiver operator characteristics (ROC) analysis by simulating true and null correlations 

in the data. All of the methods were implemented in the NIRS AnalyzIR toolbox (Santosa 

et al., 2018) using MATLAB (R2019b) (MathWorks, Natick, MA). 

Data simulation 

FNIRS data were simulated for a probe consisting of 16 long-distance channels 

(27 mm) and 9 short-separation channels (7.1 mm) using a multivariate normal 

distribution with a specified spatial covariance matrix. The data were simulated assuming 

near-infrared wavelengths of 690 nm and 830 nm. This known spatial covariance 

generates the underlying “true” correlations in the data, upon which the various 

algorithms are assessed. These true correlations were generated with either a zero lag (no 

time shift) and/or a temporal lag between channels (mathematically causal model). The 

target “true” correlations were simulated in channel-space for only the long-distance 

channels. To add additional noise to the model, a semi-infinite homogenous slab model 

was used to compute the optical forward model (sensitivity of each channel to the 

underlying “brain” volume). Noise was added to the voxels in the first 2.5 mm modeling 

a superficial skin layer. For some simulations, superficial noise was temporal and/or 

spatially smoothed as detailed below. The optical forward model was then used to project 

these voxels to channel space and added to the base truth correlation signals.  

For each simulation, we generated 300 seconds of resting-state data at a 4 Hz 

sample rate. To generate the ROC curves, a total of 200 data sets were generated for each 

test. In the ROC analysis, of all possible connections between any two channels in the 

probe, true connections were simulated for around 10% for the possible connectivity 

paths, ensuring that global systemic noise was the dominant spatial noise feature. So only 

10% of the non-diagonal elements in the covariance matrix used for generating the 

simulated data were non-zeros. Any significant connections between the remaining 90% 

of the paths are false positives due to temporal autocorrelation, global systemic 

physiology or motion artifacts. To generate true and false positive estimates, an equal 

number of true and null connections were randomly taken from the total adjacency 

matrix.    

Random noise simulations 

For the initial simulations, the normally distributed, white noise model described 

above was used to generate the ROC curves. No additional superficial noise was added to 

the data. Thus, this set of simulations lacked any realistic “physiological” noise and 

consisted of both temporally and spatially uncorrelated noise. However, this set of 

simulations is consistent with the statistical assumptions of the standard Pearson 

correlation model, which assumes normally distributed, independent, random samples. 

Results for random noise simulation are not shown. 

Physiological temporal noise simulations 



15 

  

 

In the second set of simulations, serially correlated noise structures were 

introduced to mimic the temporal structure of physiological noise and the hemodynamic 

response function. In the voxels of the “skin” layer of the model, a random noise model 

was convolved with an auto-regressive noise structure of model order 10 to generate 

physiologically colored noise. These signals were then projected through the optical 

forward model to channel-space and added to the base true correlation signals. For this 

set of simulations, only temporally structured noise was added as there was no spatial 

structure to the noise across channels. The ratio of the simulated neural components to 

the superficial simulated physiological noise was 1:1 in the simulated data. The signal-to-

noise ratio of the neural signal to the random white noise in these simulations was 100:1 

(40 dB). The white noise models the shot noise and the signal-to-noise ratio is in the 

range previously reported (Joseph et al., 2006; Zeff et al., 2007). 

Physiological temporal and spatial noise simulations 

In the third set of simulations, an additional spatial noise structure was introduced 

in addition to temporal autocorrelation. In this set of simulations, the skin layer voxels 

were spatially smoothed using a Gaussian spatial kernel with a full-width half-max of 

150 mm. These voxels were projected into channel space to generate a “global” systemic 

noise model. Since we used the optical forward model, the projection of this noise to the 

long-distance and short-separation NIRS channels was consistent with the skin origins of 

these signals. As with earlier simulation, the ratio of the simulated neural signal to the 

superficial simulated physiological noise was 1:1 in the simulated data and the ratio of 

neural signal to the white noise was 100:1. 

Motion artifact simulations 

  Two types of motion artifact were added to the time series to mimic the motion 

artifacts encountered in fNIRS time series: shift artifacts and spike artifacts. These 

artifacts were added to the base simulations described above (random noise, temporal 

noise, or spatial and temporal noise). The simulated motion artifacts that were added 

were similar to the motion effects observed in child imaging studies with moderate levels 

of head motion (Perlman et al., 2014). 

Shift artifacts: The rate of shift artifacts added to the data was around 0.5 per minute or 1 

shift artifact for every 480 time points if the data is assumed to be sampled at 4 Hz. The 

shift artifact was modeled as a scalar shift in amplitude added to the time series sampled 

from a normal distribution with a zero mean and a standard deviation of 5 times the 

original data. 

Spike artifacts: Similarly, the rate of spike artifacts added to the data was around 2 per 

minute or 1 spike artifact for every 120 time points of the data for data sampled at 4 Hz. 

The spike artifact was modeled with a Laplacian distribution function with the peak 

amplitude sampled from a normal distribution with a mean zero and a standard deviation 

of 5 times the standard deviation of the original data. The scale parameter was randomly 

sampled from a uniform distribution of 0.05-5. This ensures that the spike artifact occurs 

at the same time across multiple channels, but the amplitude of the spike artifact varies 

across the channels. 

Experimental fNIRS data 

fNIRS data acquisition 
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We also wanted to test the effectiveness and applicability of our functional 

connectivity methods to experimental resting-state data. NIRS data were recorded using a 

commercial NIRScout-2 (NIRx GmbH, Berlin, Germany) continuous-wave fNIRS 

system with short-separation measurements. A total of 50 channels (42 channels for long-

distance and 8 channels for short separation measurements) were distributed across the 

bilateral frontal and sensorimotor cortices (see Figure 2). Long-distance channels 

comprised 16 source optodes (orange circles) and 13 detector optodes (blue rectangles) 

placed on the scalp, as shown in Figure 2. A detector optode split into 8 detectors (green 

diamonds) was used for short-separation channels in eight locations across the scalp. The 

solid line represents long-distance and the green dotted line represents the short-

separation channels. The distances between source and detector were 23-50 mm and 7.5 

mm for long-distance and short-separation channels, respectively with the light blue solid 

line in Figure 2 representing the channels. Data for two wavelengths (760 and 850 nm) 

were recorded at a sampling rate of 7.8125 Hz. After positioning the headcap, signal 

quality was optimized using the NIRx Aurora software. The ambient light was blocked 

using an opaque, black shower cap placed on the participant’s head during acquisition. 

 

 

Figure 2. The schematic shows the placement of probes on the bilateral frontal and 

sensorimotor cortices superimposed on a 10-10 coordinate system for the experimental 

fNIRS data. 16 sources and 13 detectors optodes formed a total of 42 long-distance 

channels. Additionally, a detector optode was split into 8 short-separation detectors to 

give 8 short-separation channels. The data acquired from these probes in 24 subjects was 

used to compare the effectiveness of zero-lag correlation methods. 
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Participants & task 

About 24 healthy subjects participated in the experiment (9 males and 15 females; 

mean age 27.4 years, s.d. 8.7 years; 23 right-handed). The subjects were informed about 

the experimentation and written consent was obtained. The study was approved by the 

University of Pittsburgh Institutional Review Board. Each subject performed one session 

of the resting-state scan along with other task scans. The subjects were instructed to 

minimize body motion and remain relaxed in the sitting position for 5 min without 

employing any mental effort for the duration of the resting-state scan. 

Data pre-processing 

We converted simulated fNIRS signal intensities to changes in optical density, 

and then converted optical density units to HbO and HbR concentrations using the 

modified Beer-Lambert law (MBLL) with a differential path length factor of 6 and a 

partial volume correction of 60 for both wavelengths. The data was preprocessed in a 

similar manner compared to the simulated data except for downsampling the 

experimental fNIRS time series. After the raw signal intensity was converted to HbO and 

HbR concentrations using MBLL, the experimental RS-fNIRS data was downsampled to 

4 Hz from 7.8125 Hz to match the sampling rate of the simulated data. For the remainder 

of the article, the analyses focus on just changes in the HbO concentrations and the 

findings should be applicable for HbR as well. 

Figure 3 shows an example fNIRS time series from the simulated data for three 

conditions, (i) just temporal autocorrelation, (ii) with both temporal autocorrelation and 

global systemic physiology, and (iii) with both temporal autocorrelation, global systemic 

physiology, and motion artifacts. Specifically, the left panels of Figure 3 show the time 

traces of two channels for the three conditions after converting the raw simulated fNIRS 

signals to HbO signal changes using MBLL. The right panels in Figure 3, show the 

correlation structure of the channels. As expected, there is increased covariance in the 

channels with the introduction of global systemic physiology. The covariance further 

increases drastically with correlation values between channels close to 1, with the 

introduction of the motion artifacts in the simulated data. 
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Pre-whitening 

Pre-whitening often uses AR models to remove the autocorrelation in the time 

series and whitens the frequency content of the signal. Several other articles have 

explored pre-whitening and its effects in detail (Barker et al., 2013; Santosa et al., 2017). 

Pre-whitening greatly reduces the false discovery rate in the connectivity models. Here, 

pre-whitening was implemented using an AR model as follows: 

fNIRS time course can be expressed as  

𝑦𝑡 =  ∑ 𝑎𝑖

𝑝

𝑖=1

∙ 𝑦𝑡−𝑖 + 𝜀𝑡  ∀𝑡 

and 𝜀𝑡 ∈ 𝑁(0,  𝜎2) 

Here 𝑦𝑡 is the fNIRS time series, 𝑎𝑖  are the autoregressive parameters, 𝑝 is the 

model order, which is determined using Bayesian information criterion (BIC), and 𝜀𝑡 is 

the innovation term. The innovation term is used to calculate the connectivity metrics 

rather than the time series themselves.  Figure 4 shows the (A) power spectral density, 

and (B) autocorrelation function plots for a representative channel before and after pre-

whitening for three cases of simulated data including, (i) with temporal autocorrelation, 

(ii) with temporal autocorrelation and global systemic physiology, and (iii) with temporal 

autocorrelation, global systemic physiology and motion artifacts. As expected, the pre-

whitening step flattens the power spectral density plot and reduces the temporal 

autocorrelation in the fNIRS time series. 

 

 

 

 



20 

  

 

Figure 4. Plots showing the (A) power spectral density, and (B) autocorrelation function 

plots for a representative channel before and after pre-whitening for three cases of 

simulated data in each column including, (i) with temporal autocorrelation, (ii) with 

temporal autocorrelation and global systemic physiology, and (iii) with temporal 

autocorrelation, global systemic physiology and motion artifacts. 

 

Robust methods 

After pre-whitening the time series, the innovation terms contain information 

added at that time point. The large signal changes due to motion are more prominent as 
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they came from a different data generating process (motion) relative to the neural data 

generating process. Because motion artifacts are considered outliers, they can affect 

assumptions of normality. Often these influential points can have a significant impact on 

the estimates of connectivity metrics. As mentioned earlier, motion artifacts affect 

connectivity metrics differently depending on whether the motion is shared across many 

channels or if it is limited to just a few channels. Motion corrupted time points that are 

shared across multiple channels can impact the functional connectivity by increasing the 

covariance between them. Thus, to identify statistical outliers we used a multivariate 

version of a joint weighting function that was previously introduced in Santosa et al., 

(2017). The joint weighting function can identify the outliers by computing the geometric 

length of the time series and downweighting them appropriately depending on how they 

deviate from the mean, with motion corrupted outliers being assigned lower weights, 

which results in them having a lower impact on the correlation and regression methods. 

A geometric length function 𝑟𝑡 is computed from the innovation terms of all the 

channels (including short-separation channels if available) as follows. 

𝑟𝑡  =  √𝜀1,𝑡
2 + 𝜀2,𝑡

2 + 𝜀3,𝑡
2 . . . . . . 𝜀𝑐,𝑡

2  

Where 𝜀𝑖,𝑡 indicates the innovation terms of the 𝑖𝑡ℎ channel for time point 𝑡 and 𝑐 

is the total number of channels. 

A weighting function (S) that downweights outliers depending on how much they 

deviate from the mean, can be calculated as follows for all time points using the square 

root of Tukey’s bisquare function. 

𝑆 (
𝑟

𝜎
)  =  1 −  (

𝑟

𝜎 ∙ 𝜅
)

2

    𝑓𝑜𝑟  |
𝑟

𝜎
| < 𝜅 

                                     0                 𝑓𝑜𝑟   |
𝑟

𝜎
| > 𝜅 

Here σ is the standard deviation of the distribution and is estimated from the 

relationship between median absolute deviation (MAD) and the standard deviation of a 

normal distribution (σ ≈ 1.4826*MAD). MAD is used because it is a more robust 

dispersion statistic (Hoaglin et al., 1983). The constant 𝜅 is set to a value of 4.685 which 

provides 95% efficiency for a standard normal distribution without any outliers. A 

weighting matrix 𝑺 with diagonal elements representing the weighting function for all 

time points can be multiplied with the innovation terms for all the time series to 

downweight the statistical outlier points from the normal distribution 

𝒀𝑐  =  𝑺 ∙ 𝜠𝑐 

Here 𝒀𝑐 is the reweighted innovation terms matrix for all channels, and 𝑬𝑐 is the 

innovation terms obtained after pre-whitening. 

So, to reduce the impact of motion artifacts, for regression models, instead of 

using a linear model and estimating the parameters with ordinary least squares (OLS) 

estimates, we use robust statistics that use weighted least squares (WLS) to downweight 

the outliers calculated from the studentized residuals. The weights are calculated using 

Tukey’s bisquare function using the process detailed earlier. The weights calculated are 

then applied to the original data, and the residuals are re-estimated. The process is 

repeated till convergence. Robust regression is implemented in the in-built MATLAB 

function ‘robustfit’.  The MATLAB function ‘robustfit’ uses a convergence criterion of 
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50 iterations or no detectable numerical change in the values of the regression 

coefficients, whichever is earlier, to assess the convergence of the coefficients. Since 

MVGC and modified MVGC did not converge in 50 iterations, we changed the 

maximum iteration limit to 150 iterations, to ensure that the regression parameters 

converged. The parameters estimated using the WLS regression can be obtained by 

�̂�  =  (𝑿𝑻𝑺 𝑿)−𝟏𝑿𝑻𝑺𝒚 

Here  �̂� is the parameter estimates and 𝑺 is the weighting matrix. 

More details about the use of robust statistics in fNIRS data processing can be found in 

other articles (Barker et al., 2013; Huppert, 2016; Santosa et al., 2017). 

Principal components analysis-based regression for reducing global signal changes 

If the probes are widely distributed across the brain, then the large signal variance 

shared across multiple channels may mostly reflect physiological noise (Santosa et al., 

2020). Hence, the first few components of principal components analysis (PCA) can be 

used to identify the global signal changes due to physiological noise and regress out its 

effects from the channel data. The data covariance matrix can be decomposed using 

singular value decomposition using 

𝑪 =  𝑼 ∙ 𝚺 ∙ 𝑽𝑻 

where 𝑪 is the data covariance matrix given 𝑪 =  𝒀𝑻 ∙ 𝒀, 𝑼 is a matrix containing left 

singular vectors. 𝜮 is a diagonal matrix containing singular values and 𝑽 is the matrix 

containing right singular vectors. Usually, the first few components explaining the most 

variance are used as a measure of global systemic physiology. We used the minimum 

number of principal components that explained at least 90% of the channel covariance. 

The global signal can be extracted from the decomposition of covariance of just the long-

distance channels, just the short-separation channels, or both. All three options were 

examined in our testing. The channel data after PCA regression be obtained by  

𝒚𝑷𝑪𝑨 𝒇𝒊𝒍𝒕𝒆𝒓𝒆𝒅  = [𝑰 − 𝒁 ∙  (𝒁𝑻 ∙ 𝒁)−1 ∙ 𝒁𝑻] ∙ 𝒚  

Here 𝒚 is either the innovation term or the raw data for the channel depending on 

the analysis pipeline. 𝒁 is the matrix containing the first few components as columns. 

Functional connectivity metrics 

In this work, we examined several ways to estimate functional connectivity. Here 

we focus only on time-domain methods including correlation, partial correlation, and 

several variations of Granger causality. Time-frequency methods like wavelet coherence 

were not examined in this work for two reasons. First, in our previous work (Santosa et 

al., 2017), we found that in bivariate connectivity analysis, wavelet coherence 

outperformed standard Pearson correlation in ROC analysis but did not perform as well 

as our pre-whitened, robust correlation models. Wavelet coherence also had high false 

positive rates and uncontrolled type-I errors unless the standard wavelet coherence model 

(Cui et al., 2012; N. Liu et al., 2016) was modified to include higher-order autoregressive 

terms and robust (outlier rejection) methods. With these modifications, we found no 

benefit to wavelet coherence over our pre-whitened robust models. Secondly, to our 

knowledge, a multivariate and/or partialed version of wavelet coherence has not been 

described and would require the development of a new statistical model.      

Correlation-based analysis models 



23 

  

 

Pearson’s correlation coefficient: Pearson’s correlation coefficient between two 

time series 𝒙 and 𝒚 are calculated as 

𝑟 =  
𝜎𝑥,𝑦

𝜎𝑥  𝜎𝑦
 

where 𝜎𝑥,𝑦 is the covariance of time series 𝒙 and 𝒚 and 𝜎𝑥 and 𝜎𝑦 are the standard 

deviations of 𝒙 and 𝒚 respectively. Standard Pearson’s correlation is not a robust 

statistical estimator and several robust variations have been proposed (Shevlyakov & 

Smirnov, 2011), and described in the context of fNIRS in Santosa et al., (2017). Robust 

correlation is calculated as the geometric mean of the standardized regression coefficients 

on the regression models 𝒚 on 𝒙 and 𝒙 on 𝒚, to reduce outliers in either 𝒙 or 𝒚, which can 

still influence the correlation estimates. The procedure is described below 

𝒚 =  [𝟏 𝒙] [
𝛽0,1

𝛽𝑥→𝑦
] 

A weighting matrix is estimated based on the studentized residuals in the above 

regression model that downweights the outliers in 𝒚. The weighting matrix 𝑺𝒙→𝒚 is then 

multiplied on both sides of the regression model above and the estimates of the 

parameters are updated. 

𝑺𝒙→𝒚. 𝒚 =  𝑺𝒙→𝒚 [𝟏 𝒙] [
𝛽0,1

𝛽𝑥→𝑦
] 

Similarly, we can fit 𝒙 on 𝒚, 

𝒙 =  [𝟏 𝒚] [
𝛽0,2

𝛽𝑦→𝑥
] 

A weighting matrix 𝑺𝒚→𝒙 is then estimated based on the studentized residuals to 

downweight the outliers in 𝒙. 𝑺𝒚→𝒙 is multiplied on both sides of the regression model 

above and the estimates of the parameters are updated. 

𝑺𝒚→𝒙. 𝒙 =  𝑺𝒚→𝒙 [𝟏 𝒚] [
𝛽0,2

𝛽𝑦→𝑥
] 

The two regression models are solved alternatively until the parameters 𝛽𝑦→𝑥 and 

𝛽𝑥→𝑦 converge. The final robust correlation coefficient is estimated using the formula 

‖𝑟𝑟𝑜𝑏𝑢𝑠𝑡‖  =  √𝛽𝑥→𝑦 . 𝛽𝑦→𝑥  

The sign of the robust correlation coefficient estimate is determined by the signs 

of the regression coefficients. The effective degrees of freedom given by 

∑ (𝑚𝑖𝑛 (𝑺𝒚→𝒙, 𝑺𝒚→𝒙, 𝑺𝒚,𝒙))  − 2. The effective degrees of freedom are reduced due to the 

downweighting of the data points especially the outliers.   

For both the standard and robust correlation estimates, the probability of 

observing the data given the null hypothesis (p-value) can be estimated from the T-

statistic using  

𝑡 =  
𝑟 √𝑑𝑓

√1 − 𝑟2
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with 𝑑𝑓is the effective degrees-of-freedom with a value of 𝑛 − 2 for standard Pearson’s 

correlation, and 𝑟 is the Pearson’s correlation coefficient. Here 𝑛 denotes the number of 

time points. 

Autoregressive (AR) correlation: The autoregressive correlation was Pearson’s 

correlation coefficient calculated on the pre-whitened time series. As described in 

Santosa et al., a 𝑝𝑡ℎ order autoregressive model is estimated for each channel of data and 

used to pre-whiten the signal (Santosa et al., 2017). The innovations term in the 

autoregressive model (e.g. the new information added at each time step) is then used in 

the correlation analysis. We used a maximum model order of 40 (ten times the sample 

rate) which is higher than the AR filter used in simulating the fNIRS data. Based on 

empirical observations, the model order is typically less than 10 ∙  𝐹𝑠 (here 𝐹𝑠 is the 

sampling frequency) in experimental RS-fNIRS data. 

AR partial correlation:  Partial correlation involves a two-step process in which 

the other channels are first projected out of the data of interest and then the correlation is 

performed on the residuals. We used PCA regression-based projection to partial out the 

effect of other channels as described in section ‘Principal components analysis-based 

regression for reducing global signal changes.’ PCA regression is used to avoid 

collinearity instabilities of the model. The minimum number of eigenvectors to explain at 

least 90% of the spatial covariance were used. We examined the case where i) only the 

other long-distance channels were used in the PCA, ii) only the short-separation channels 

were used, and iii) both long-distance and short-separation channels were used. For two 

channels 𝑖 and 𝑗, if the innovation terms after pre-whitening are denoted by  𝜺𝒊, 𝜺𝒋, the 

whitened PCA filtered time series are calculated as: 

𝜺𝒊,𝑷𝑪𝑨 𝒇𝒊𝒍𝒕𝒆𝒓𝒆𝒅  =  [𝑰 − 𝒁 ∙  (𝒁𝑻 ∙ 𝒁)−1 ∙ 𝒁𝑻] ∙ 𝜺𝒊   

𝜺𝒋,𝑷𝑪𝑨 𝒇𝒊𝒍𝒕𝒆𝒓𝒆𝒅  =  [𝑰 − 𝒁 ∙  (𝒁𝑻 ∙ 𝒁)−1 ∙ 𝒁𝑻] ∙ 𝜺𝒋   

Now, the AR partial correlation can be calculated as the Pearson’s correlation 

between the two residuals as the global signal is removed from the channels. The degrees 

of freedom are further reduced based on the number of principal components retained. 

The input data to this model was the pre-whitened innovations time series rather than 

channel data, hence this method is termed AR partial correlation. 

Granger causality-based analysis models 

Multivariate Granger causality: Multivariate Granger causality (MVGC) tests for 

lagged relationships between two time series after controlling for the effects of other time 

series. This is essentially a model-fit test of two regression models. We can test 

whether 𝒙 “Granger causes” 𝒚 after controlling for the channels 𝒁 using multivariate 

autoregressive models (MVAR) as detailed below. For a channel time series, we can 

model the current time point 𝑦𝑡 as a function of previous lags of 𝒚 and other channels 𝒁 

in the restricted model. 

𝑦𝑡 = ∑ 𝛼𝑖

𝑝

𝑖=1

𝑦𝑡−𝑖 + ∑ ∑ 𝛾𝑖

𝑝

𝑖=1

𝑧𝑗,𝑡−𝑖

𝑛𝑃𝐶

𝑗 =1

+ 𝑐1 + 𝜀𝑡 

(Restricted model) 
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In the unrestricted model, we add the lag terms of 𝒙, to model the current time 

point in 𝒚  

𝑦𝑡 = ∑ 𝛼𝑖

𝑝

𝑖=1

𝑦𝑡−𝑖 + ∑ 𝛽𝑖

𝑝

𝑖=1

𝑥𝑡−𝑖 + ∑ ∑ 𝛾𝑖

𝑝

𝑖=1

𝑧𝑗,𝑡−𝑖

𝑛𝑃𝐶

𝑗 =1

+ 𝑐2 + 𝜀𝑡 

(Unrestricted model) 

Here 𝑝 is the number of lag terms included in the model, it is determined by using fit 

measures using Bayesian information criteria (BIC). To test for causality, we statistically 

test if adding the additional lag terms in 𝒙 (unrestricted model) improves the 

predictability of 𝑦𝑡  compared to the model without 𝒙 (restricted model). If the past of the 

𝒙 contains predictive information about the current time point 𝑦𝑡, then the error in the 

prediction of 𝑦𝑡is improved even after controlling for the lost degrees of freedom. This 

can be assessed statistically as  

Null Hypothesis: 𝒙 does not Granger cause 𝒚  

H0: 𝛽1 = 𝛽2 = 𝛽3 =  … 𝛽𝑝 = 0 

Alternative Hypothesis: 𝒙 does Granger cause 𝒚  

HA: At least one of 𝛽𝑖 is non-zero 

Since we have nested models, we can use a nested F-statistic to test for Granger 

causality 

𝐹 =  
𝑆𝑆𝐸𝑅 − 𝑆𝑆𝐸𝑈 𝑝⁄

𝑆𝑆𝐸𝑈 [𝑛 − (2𝑝 + 1)]⁄
 

Here, 𝑆𝑆𝐸𝑅 and 𝑆𝑆𝐸𝑈 are the sums of squared errors of the restricted and 

unrestricted models respectively and n is the number of time points. So, we can calculate 

a p-value for the F-statistic at degrees-of-freedom of 𝑝 and [𝑛 − (2𝑝 + 1)]. A Granger 

causality metric 𝐺, can also be calculated to assess the strength of the lagged relationship 

as follows 

𝐺 =  log 𝑆𝑆𝐸𝑅 𝑆𝑆𝐸𝑈⁄  

The purpose of using multivariate Granger causality over bivariate Granger 

causality is to control for the effects of third variables including systemic physiology. The 

addition of lag terms of several channels in the MVGC model can easily make the 

regression model unsolvable as the number of variables would exceed the number of time 

points. So rather than using the channel data itself, we first perform PCA and included 

the fewest components that explained at least 90% of the variance as we did with partial 

correlation earlier. We then include components and the time-lagged components rather 

than the channel data in the restricted and unrestricted models. 

Modified multivariate Granger causality: Traditional MVGC includes only the 

time-lagged history of 𝒚, 𝒙, and 𝒁 on the right-hand side of the equations. Thus, MVGC 

only models non-zero lagged relationships (hence the “causality” term).  In comparison, 

the correlation methods described in earlier sections only model zeroth-lag correlation. It 

is important to recognize that “zeroth-lag” is relative to the sample rate and that at a 4 Hz 

sampling of the simulated fNIRS data, any synchronous signal changes occurring within 
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one sample (250ms) would be mathematically zeroth-lag. While neural signaling in the 

brain is expected to be fairly fast (100s of milliseconds), we did not want to assume that 

all correlations would be zeroth-lag and, in this paper, we examined multiple scenarios. 

Here, we introduce a modified MVGC model to model both lagged and zero-lagged 

relationships between channels. In the modified MVGC we include the zero-lag terms of 

𝒁 (top principal components) in both the restricted and unrestricted model as well as the 

zero-lag terms of channels 𝒙 in the unrestricted model. So, the restricted model can be 

written as 

𝑦𝑡 = ∑ 𝛼𝑖

𝑝

𝑖=1

𝑦𝑡−𝑖 + ∑ ∑ 𝛾𝑖

𝑝

𝑖=0

𝑧𝑗,𝑡−𝑖

𝑛𝑃𝐶

𝑗 =1

+ 𝑐1 + 𝜀𝑡 

(Restricted model) 

Similarly, the unrestricted model can be written as  

𝑦𝑡 = ∑ 𝛼𝑖

𝑝

𝑖=1

𝑦𝑡−𝑖 + ∑ 𝛽𝑖

𝑝

𝑖=0

𝑥𝑡−𝑖 + ∑ ∑ 𝛾𝑖

𝑝

𝑖=0

𝑧𝑗,𝑡−𝑖

𝑛𝑃𝐶

𝑗 =1

+ 𝑐2 + 𝜀𝑡 

(Unrestricted model) 

The above equations also include the zero lagged terms of 𝒁 and 𝒙. Now to test 

for statistical significance of Granger causality, we test a null hypothesis and alternative 

hypothesis as follows: 

H0: 𝛽0  =  𝛽1 = 𝛽2 = 𝛽3 =  … 𝛽𝑝 = 0 

HA: At least one of 𝛽𝑖 is non-zero 

The statistical significance is assessed with the nested F-statistic and the Granger 

causality is calculated similarly to traditional multivariate Granger causality. One caveat 

of this modified model is that the hypothesis does not test whether the connection 

between 𝒚 and 𝒙 was due to the zeroth or non-zeroth lag terms. One could examine this 

further by modifying the unrestricted model to also contain the non-zero lagged terms of 

𝒙, such that the only difference between the unrestricted and restricted models is the 

inclusion of the zeroth-lag term in 𝒙.  

Robust multivariate Granger causality: Finally, we developed a robust statistical 

version of both the MVGC and modified MVGC models. The definition of outliers in this 

multivariate model is a bit challenging since, like the bivariate correlation model, outliers 

can exist in the time courses of 𝒚, 𝒙, and/or 𝒁.  In bivariate correlation, we used the union 

of outlier weights (e.g. an outlier in 𝒚 or 𝒙). However, we found that the extension to 

many channels of data often resulted in too much of the data being downweighted since 

an outlier point in any one of the channels caused that time point to be downweighted for 

all the channels. In particular, the time lags in the MVGC required all lagged columns of 

the matrix containing that entry to be downweighted as well.    

To reduce the complexity of robust regression methods described earlier with 

multiple terms (channels and their lag terms) in the regression model, rather than using 

channel data by itself, we use the innovation terms. The procedure for robust multivariate 

Granger causality is described below. First, the channel data (both short-separation and/or 

long-distance) is pre-whitened and the innovation terms are calculated. The data are pre-

weighted with a weighting matrix calculated from the innovation terms in a procedure 

described in the section on ‘Robust methods.’ After pre-whitening and pre-weighting, the 
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innovation terms of the other channels (𝒁) is included in the regression for the restricted 

model as described below. 

𝜀𝑡
𝑦

= ∑ ∑ 𝛾𝑖𝜀𝑗,𝑡−𝑖
𝑧

𝑝

𝑖=0

𝑛𝑃𝐶

𝑗 =1

+ 𝑐1 + 𝜀𝑡 

(Restricted model) 

Here 𝜀𝑡
𝑦

 is the innovation term of channel 𝒚 at time point 𝑡 after pre-whitening and pre-

weighting. 𝜀𝑗,𝑡−𝑖
𝑧  are the principal component weights for the jth component at time point 

𝑡 − 𝑖. 𝑛𝑃𝐶 denotes the number of principal components used. 

Similarly, the innovation terms are also used in the unrestricted model rather than 

the channel data itself 

𝜀𝑡
𝑦

= ∑ 𝛽𝑖

𝑝

𝑖=1

𝜀𝑡−𝑖
𝑥 + ∑ ∑ 𝛾𝑖

𝑝

𝑖=0

𝜀𝑗,𝑡−𝑖
𝑧

𝑛𝑃𝐶

𝑗 =1

+ 𝑐2 + 𝜀𝑡 

(Unrestricted model) 

Compared to the restricted model, the unrestricted model additionally includes the 

innovation terms and lags of channel 𝒙. 𝜀𝑡−𝑖
𝑥  is the innovation term of channel 𝒙 at time 

point 𝑡 − 𝑖. 
A weighted least square regression using an iterative robust estimator is used to fit 

both the restricted and the unrestricted models with the data being downweighted from 

the estimated studentized residuals. The process is repeated until convergence of the 

weight matrix and parameter estimates. As with other MVGC models, nested F-statistic 

is used to test for the statistical significance of the lagged relationship between the two 

time series. 

Data analysis plan 

To test the effectiveness of each processing method in reducing the effects of 

temporal autocorrelation, global shared physiology, and motion artifacts, all the 

connectivity metrics were compared. We expected that all methods which had the pre-

whitening step would correct for temporal autocorrelation. To test the need for correcting 

for global signals due to shared physiological noise between the channels, we expected 

methods that controlled for the effects of other channels such as partial correlation and 

MVGC would perform better when the data had systemic physiology. We also expected 

the robust methods to perform better than the non-robust methods when the simulated 

data had added motion artifacts. Finally, we expected the zero-lag correlation measures to 

perform better when the shared simulated neural covariance was at zero-lag and the 

Granger causality methods to perform better when the information was present in the first 

lag. The modified Granger causality with zero-lag which models both zero-lag and 

lagged relationships is expected to perform better at both the zeroth-lag and the first lag. 

In Figure 5, we provide a summary of the different analysis pipelines examined. 

We also compared the effectiveness of robust versions of (i) Pearson’s 

correlation, (ii) AR correlation, (iii) AR partial correlation on the RS-fNIRS data from 24 

subjects. After group-level analysis, with subject as a random factor, we expected AR 

partial correlation to show the sparsest network, followed by AR correlation. We 

expected the Pearson’s correlation to show the densest network with almost every 

channel connected with the other. Since we do not know the ground truth nor do we have 
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a “gold standard” such as fMRI to compare our results to, we cannot draw broad 

conclusions about performance of these analyses methods. 

 

Figure 5. Figure showing different pipelines and connectivity methods that were applied 

to the four types of simulated data. 

 

Performance metrics 

  We ran the simulation 200 times, each time generating a different dataset with 

different covariance structure to mimic shared neural activity. Then we calculated the p-

values from the ‘correlation coefficient’ for correlation-based methods or an ‘F-statistic’ 

for Granger causality methods. The false positives, true positives, true negatives, and 

false negatives were tallied up to compare the effectiveness of each of the multiple data 

processing methods for quantifying connectivity. We used two plots to assess the 
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performance of the different methods (i) type-I error control plots and (ii) receiver 

operating characteristic (ROC) curves. 

 

Type-I error control plots 

  To understand how well the data processing methods control for Type-I error, we 

plotted the actual false positive rate (from bootstrapping) against the theoretical p-value 

obtained from the test statistic for the method (denoted by p-hat). An ideal method would 

indicate that the p-value from the method (p-hat) would match the actual p-value, hence 

the plot would have a unit slope. Parts of the curve above the unit slope line, indicate the 

model is likely to have more false positives than expected at that significance level, and 

the parts under the line indicate that the model is likely to have more false negatives than 

expected at that significance level. 

ROC curves 

To investigate the sensitivity and specificity of the data processing methods and 

the model performance, ROC curves were generated from the known ground truth as 

some channels were simulated with shared “neural” covariance. The ROC curve plots the 

true positive rate (sensitivity) vs false positive rate (1-specificity) at different thresholds. 

Ideal performance of the processing method would result in very high true positives (TP) 

and very high true negatives (TN) approaching the top left corner of the plot. Similarly, a 

curve with slope one and an AUC of 0.5 would indicate random guessing. Since the 

number of true positives was less than the true negatives (only 10% of the non-diagonal 

elements in the covariance matrix used to generate the simulated data were non-zero) in 

the simulated data, a random subsample of true negatives equal in size to the true 

positives was used to generate the ROC curves.  

Code implementation 

All of the methods were implemented in MATLAB (Natick, Massachusetts). 

Inbuilt MATLAB functions and the functionality of the NIRS Brain AnalyzIR toolbox 

(Santosa et al., 2018) were used for preprocessing and implementation of the correlation 

methods. Other methods including partial correlation, Granger causality, and robust 

Granger causality were implemented using custom MATLAB scripts. The toolbox and 

the codes used for this article are available online at https://github.com/pradlanka/rsfc-

fnirs. 

Results 

Comparison of processing methods  

As expected, as the progression of simulations and challenges of the noise 

increased, the basic models such as standard Pearson’s correlation quickly failed. For 

example, Pearson’s correlation assumes independent measurements, which is violated by 

the addition of temporally autocorrelated noise. As shown in Figure 6B, the Pearson’s 

and robust Pearson’s correlation models which did not include an autoregressive (pre-

whitening) filter had considerably lower performance on ROC curves compared to the 

pre-whitened and MVGC models. Almost all other methods have an area-under-the-curve 

(AUC) close to 1. In addition, as shown in Figure 6A, the Pearson’s and robust-Pearson’s 

models had substantial false positive rates as indicated by lines above the diagonal in the 

plot of actual false positive rate versus expected rate (p-hat). For example, at an expected 

p-hat of 0.05, the actual false positive rate was over 80%. The other analysis models had 

https://github.com/pradlanka/rsfc-fnirs
https://github.com/pradlanka/rsfc-fnirs
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type-I error plots much closer to ideal (diagonal) where the expected rate equals the 

realized rate. The AR-correlation and robust AR-correlation both had the closest to ideal 

type-I error control. The AR partial correlation model had a slight overestimation of the 

significance of the test statistic, whereas the robust AR partial correlation overcorrects 

leading to underestimation of significance of the test statistic (less than expected false 

positive rate). Both versions of the modified MVGC tended to underestimate the p-values 

slightly, thus leading to slightly higher than expected false-positive rate. Here, we are not 

showing the results for the standard MVGC model, which does not include a specific 

zeroth-lag term. Because the data were simulated at the zeroth-lag, which the MVGC does 

not model, the MVGC shows no significant channels. These results support the necessity 

of correcting for the autocorrelation in the time series as highlighted in a previous article 

(Santosa et al., 2017). 

 

Figure 6. The (A) Type-I error control plots and (B) ROC curves for all the methods with 

simulated data containing temporal autocorrelation. The dotted lines indicate the non-

robust version of the methods, while the solid lines represent their robust counterparts. 

 

 The second set of simulations (Figure 7) was generated using both temporal 

autocorrelation and spatially global systemic physiology. As expected, AR correlation 

joins the Pearson’s correlation coefficient in increased false positives (Figure 7A) and 

lower AUC in the ROC curves (Figure 7B). While the use of pairwise correlation worked 

when the noise was independent between channels, spatial noise introduced global false 

positive connections and large over-reporting of the significance of the model. AR Partial 

correlation and the modified (zero-lagged) Granger causality still performed well. Again, 

all the analysis methods except pairwise Pearson’s correlation had AUC of near 1 on the 

ROC curves, which indicates that the true positive channels were still well separated from 

the true negatives, but that the reporting of the p-values (p-hat) was very wrong. In other 

words, one can find the true connections by setting the right threshold on the correlation 

coefficient, but that one cannot trust the reported p-value for setting that threshold. In the 

results for both the simulations shown in Figure 6 and Figure 7, there were no motion 

artifacts added to the simulated data and thus the robust and non-robust methods 

performed similarly well with their type-I error control curves and the ROC curves. 

Though the use of robust methods can lead to a loss in degrees of freedom as the weights 
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of data points can be less than 1, the number of time points is still much larger (>1000), 

hence the loss in degrees of freedom is almost negligible.  

Figure 7. The (A) Type-I error control plots and (B) ROC curves for all the methods with 

simulated data containing temporal autocorrelation and shared global signal mimicking 

systemic physiology. The dotted lines indicate the non-robust version of the methods, 

while the solid lines are their robust counterparts. 

 

For, the third simulation, head motion modeled as spike and shift artifacts was 

added to the simulated data containing both the temporal autocorrelation and global 

signal. As shown in Figure 8, the robust methods which downweights outlier points, 

performed much better than their non-robust counterparts, with robust modified Granger 

causality and AR partial correlation with short-separation channels having similar AUC, 

but AR partial correlation had fewer false positives than modified multivariate Granger 

causality. It is important to note that while robust modified Granger causality was 

effective at reducing the false positives it still had much higher-than-expected false 

positives (false positive rate of 0.25 at an expected rate of 0.05). 

 

Figure 8. The (A) Type-I error control plots and (B) ROC curves for all the methods with 

simulated data containing temporal autocorrelation, shared global signal mimicking 

systemic physiology and head motion artifacts. The dotted lines indicate the non-robust 

version of the methods, while the solid lines are their robust counterparts. 
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Comparison of the effectiveness of short-separation channels 
 In the previous section, we showed AR partial correlation and modified MVGC 

models that included both the short-separation and other long-distance fNIRS channels in 

the model. Our results indicated that using these components was important to remove 

global noise signals. In this section, we explore these models in more depth and compare 

the use of just short-separation channels, the other long-distance channels, or both short-

separation channels and other long-distance channels in the performance of the whitened 

partial correlation method. In Figure 9A, we show these comparisons for data simulated 

with both temporal and spatial correlated noise. In the type-I error control plot, the use of 

only long-distance channels was the worst and likely led to the overestimation of 

significance of the test statistic (correlation coefficient) indicating that the results still 

retained too many global connections. The use of only short-separation channels 

produced the best result, although it slightly under-estimated the significance of the 

robust estimator and result in a slight introduction of false-negatives in the estimates. 

Finally, the use of both the short-separation and long-distance channels was slightly 

worse than the use of the short-separation channels alone, but better than the use of only 

the long-distance channels. This is probably due to some overfitting in the model. 

 In Figure 9B, we show the comparisons for data simulated with additional motion 

artifacts. As expected, the robust statistical estimators greatly outperform the non-robust 

ones, with the short-separation channels-only model being the most sensitive to these 

artifacts. Consistent with the motionless simulations, the robust short-separation 

channels-only and robust version of both short-separation & long-distance gave the best 

results. The use of only long-distance channels in the robust model still had a substantial 

over-reporting of the significance of test statistics.  

Figure 9. Plots showing Type-I error control plots comparing whitened partial correlation 

methods using short-separation, long-distance channels or both on simulated data 

containing (A) temporal autocorrelation and shared global signal mimicking systemic 

physiology, and (B) temporal autocorrelation, systemic physiology and added head 

motion. Results are shown for short-separation channels both with PCA and without PCA 

performed on them before partialing out its effects. The dotted lines indicate non-robust 

versions of the methods, while the solid lines indicate their robust counterparts. 
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 Finally, in Figure 10, we examined the same analysis using the modified MVGC 

model in place of the AR partial correlation. Figure 10A shows the results for motion-less 

simulated data. We found that the MVGC was less sensitive to which channels were used 

in the model and the short-separation, long-distance, and both models all had similar 

performance. The robust version of the MVGC was observed to have a substantial over-

reporting of the significance of the test statistics even with the motionless data 

simulations. We believe that this is an uncorrected error in the model concerning the 

effective degrees of freedom of the estimates. In particular, the definition of statistical 

outliers in the robust estimator is difficult because the time points in the measurement 

variables 𝒚, 𝒙, and/or 𝒁 can all be outliers due to motion. The Tukey’s bisquare weight 

being used in this model assumes the outliers are independent, but our current model does 

not effectively account for shared outlier time points across multiple channels and thus 

the degrees of freedom are slightly overestimated. In Figure 10B, the MVGC models are 

compared for the data simulations with added motion artifacts. Here we found that robust 

methods out-perform their non-robust versions, but we again found over-reporting in the 

statistical estimates. 

Figure 10. Plots showing Type-I error control plots comparing multivariate Granger 

causality methods using short-separation, long-distance channels or both on simulated 

data containing (A) temporal autocorrelation and shared global signal mimicking 

systemic physiology, and (B) temporal autocorrelation, systemic physiology and added 

head motion. The dotted lines indicate the non-robust version of the methods, while the 

solid lines are their robust counterparts. 

 

Modeling lagged connectivity  
So far, we have shown the results for the simulated data when the relationships 

between channels were present at the zero lag. The Pearson’s and partial correlation 

models all assumed zeroth-lag connections whereas the standard MVGC assumed only 

non-zero lag (causality). The modified MVGC considered both zero and non-zero 

connections. Thus, when the data were simulated with only zeroth-lag connections, the 

AR partial correlation was determined to be the best. Standard MVGC (with no zeroth-

lag) was not even presented in the previous sections since it failed to find anything in the 

zeroth-lag simulations (Figure 11A). Likewise, when data were only simulated with 
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relationships at non-zero lag terms, the AR partial correlation models failed, as shown in 

Figure 11B.  The modified MVGC was the only model that worked in both cases. 

 

Figure 11. ROC curves comparing whitened partial correlation, multivariate Granger 

causality, modified multivariate Granger causality with and without robust regression 

when the linear relationships between channels are simulated at (A) zero-lag, (B) first 

lag. The simulated data contains temporal autocorrelation and shared global signal 

mimicking systemic physiology. The dotted lines indicate the non-robust version of the 

methods, while the solid lines are their robust counterparts. 

  

In Figure 12, with motion artifacts added, the same pattern is shown in that the 

ROC curves are best for the robust AR partial correlation and robust modified MVGC 

models in the case of zeroth-lag simulations and best for robust MVGC and robust 

modified MVGC with non-zero lag simulations.  In both cases, the modified MVGC was 

not quite as good as the AR partial correlation or the MVGC, so if one knew what kind of 

connections were present, the modified MVGC is not the preferred choice. However, in 

the absence of this knowledge, this was the only model to work in both scenarios. 
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Figure 12. ROC curves comparing whitened partial correlation, multivariate Granger 

causality, modified multivariate Granger causality with and without robust regression 

when the linear relationships between channels are simulated at (A) zero-lag, (B) first 

lag. The simulated data contains temporal autocorrelation, shared global signal 

mimicking systemic physiology and head motion. The dotted lines indicate the non-

robust version of the methods, while the solid lines are their robust counterparts. 

 

Overall simulation results 
 Figure 13 demonstrates the resulting null distributions produced by each of the 

simulation types and analysis methods. The dashed red line shows the theoretical 

distribution assumed by the statistical model. The closer the match between the empirical 

distribution and the theoretical one, the more accurate the reported statistics and the less 

bias in the estimates. We see that the standard Pearson’s correlation model was quite 

inaccurate for data with temporally correlated noise. The distribution was too wide 

compared to the theoretical, which means that p-values would be underestimated. 

Moving to the AR whitened correlation model (second column), we see that this 

distribution was fixed for the temporally correlated noise (no bias in the estimate), but in 

the presence of spatially correlated noise (middle row) was shifted from mean zero (bias 

in the estimate) and the distribution was too wide. The AR partial correlation model did 

correct for most of the global spatial noise, but then failed when motion artifacts were 

present. The robust AR partial correlation worked best under these conditions 

(bottom/right plot), although that distribution is still not ideal.   
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Results on experimental RS-fNIRS data 
To test the applicability of our functional connectivity methods on experimental RS-

fNIRS data, we compared using robust versions of Pearson’s correlation, AR correlation 

and AR partial correlation to model the functional connectivity between the channels on a 

sample of 24 participants. The group-level results with the significant paths (q < 0.001, 

FDR correction) for the three methods are shown in Figure 14. As the results indicate 

using AR partial correlation leads to much sparser networks, compared to AR correlation 

and Pearson’s correlation as it corrects for global physiology and autocorrelation. Using a 

Pearson’s correlation revealed a very dense network of connections with most 

connections likely being false positives. Though, there is no known ground truth or gold 

standard RS-fMRI networks available for quantitative comparison of the methods, AR 

partial correlation would probably provide the lowest false positive rate among the three 

methods. 

 

Figure 14. Comparison of the effectiveness of robust versions of Pearson’s correlation, 

AR correlation and AR partial correlation in correcting for temporal autocorrelation, 

global systemic physiology and motion artifacts in experimental fNIRS data. The maps 

show significant (q < 0.001, FDR corrected) connections between the channels projected 

on to the 10-5 coordinate system after group analysis using different connectivity 

methods based on changes in HbO. 

Discussion 

In the current article, we used simulated data to explore how physiological noise 

and the sluggish hemodynamic response together lead to temporal autocorrelation and 

spatial covariance in channel data, which in turn lead to increased false positives and 

lower AUC for the ROC curves. Although pre-whitening can reduce temporal 

autocorrelation, spatial covariance due to shared systemic physiology should still be 

corrected. Our results confirm and expand on previous studies by showing that a 

combination of pre-whitening with an autoregressive (AR) filter, and partial correlation 

of short-separation channel data to control for spatial covariance were effective in 

substantially lowering the false positive rate for resting-state connectivity analysis.   

In particular, a shared systemic physiological signal can be captured from the 

short-separation or both short-separation and long-distance channels, using the first few 

principal components. We found that long-distance channels alone, while better than no 
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corrections, were not sufficient to remove the global signals. The use of robust regression 

was modestly successful in controlling for signal changes due to head motion especially 

for Granger causality models, although it was very effective for correlation models. One 

of the challenges in the multivariate models is regarding the definition of motion outliers. 

One way whether to consider a time point to be an outlier is if it is an outlier in any 

channel, which tends to lead to over-correction with so many channels and when lagged 

terms are included (since all lags are also outliers). Another way is to consider a time 

point as an outlier when it is an outlier in a large enough subset of channels. We followed 

the latter approach by using the geometric length of the innovations vector (across 

channels).    

In this study, we also introduced a modified MVGC which included both the 

traditional lagged (causal) terms and a zeroth-lag component. This new model did relieve 

the assumptions about the zero or non-zero nature of the lag in connectivity and could be 

used in both scenarios. However, this model scored worse on the ROC analysis for 

specifically non-zero lag connections compared to the MVGC model and was more 

sensitive to motion (outliers) compared to AR partial correlation. For both the modified 

MVGC and MVGC, our robust statistical models were not perfect, and we found that 

both tended to over-report significance. This as mentioned earlier, may be due to the 

deficiency of the proposed methods in not fully accounting for the degrees of freedom in 

the model associated with the Tukey bisquare weighting of outliers in multiple channels 

of data simultaneously.    

Use of pre-whitening models 

Temporal autocorrelation in fNIRS and fMRI time series is a known issue that 

leads to reduced degrees of freedom, increased variance of the correlation coefficient (not 

accounting causes underestimation of the variance), and thus increased false positives. 

Although pre-whitening has been suggested to reduce autocorrelation in time series and 

subsequently false discoveries in both fMRI (Bright et al., 2017; Christova et al., 2011) 

and fNIRS (Santosa et al., 2017), it must be noted that the use of pre-whitening as a 

processing step in resting-state analyses is not universally accepted. There are some 

concerns regarding pre-whitening the time series and its ability to distort the power 

spectrum which inherently follows the inverse power law (Afyouni et al., 2019; Blanco et 

al., 2018). Blanco and colleagues argued that if the intrinsic signal is inherently colored, 

the use of pre-whitening may be inappropriate (Blanco et al., 2018). These researchers 

observed that the anticorrelation between HbR and HbO signals is diminished by 

incorporating pre-whitening step in RS-fNIRS processing pipeline (Blanco et al., 2018). 

However, it must be noted that although the HbO and HbR signals are in antiphase given 

the cerebral hemodynamics, their peaks are not maximally anticorrelated at zero-lag. 

Specifically, the positive peak of the HbO and the negative peak in HbR signals do not 

occur at the same time (Huppert et al., 2006). Zeroth-lag is defined as within the same 

sample time, which means that this definition depends on the sample rate. As we see 

from the results in Figures 11 and 12, when there is an intrinsic temporal lag in the 

underlying connectivity, correlation methods are not designed to capture this. Strictly 

speaking, HbO and HbR are not actually truly correlated, so much as they are “causal” in 

the mathematical sense with HbO preceding changes in HbR. Thus, the modified MVGC 

and MVGC methods are required to model these lagged signals and the finding that HbO 
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and HbR are no longer correlated once autocorrelation is accounted for, is actually the 

expected mathematical result.   

Recently, other methods than pre-whitening, have been proposed to control for 

the false positive rate in fMRI. These methods either correct for the reduced degrees of 

freedom or directly correct for the increased variance of the correlation. Some of these 

methods were compared on their effectiveness in accounting for the effects of 

autocorrelation in the time series on functional connectivity in fMRI (Afyouni et al., 

2019). However, since fNIRS has a higher sampling rate than fMRI and therefore serial 

correlations are most prominent, the applicability and the utility of both pre-whitening 

methods and other methods need to be systematically compared for fNIRS datasets. Our 

findings differ from previous results from RS-fMRI. Unlike Arbabshirani et al., (2014) 

who observed some bias in sample correlation coefficient (when the autocorrelation 

structures were different between the time series), our results were similar to Afyouni et 

al., (2019) in not finding a bias in the estimate of the sample correlation coefficient for a 

zero correlation coefficient. Secondly, unlike the results of Arbabshirani et al., (2014) 

wherein the bias in the estimate canceled out the inflated variance due to autocorrelation, 

our results show that the inflated variance of sample correlation due to autocorrelation in 

the time series was much higher. This is probably attributable to temporal dependencies 

at larger lags due to higher sampling rate of fNIRS data. Hence correction for 

autocorrelation may be more important for fNIRS than for fMRI, and some of the 

conclusions from RS-fMRI may not be directly applicable to RS-fNIRS. It should also be 

noted that the method for correcting for autocorrelations can have important 

consequences for other steps in the preprocessing pipeline such as motion correction and 

reduction of spatial covariance using partial correlation. Furthermore, since the 

autocorrelation in the fNIRS time series is due to a combination of factors including, the 

hemodynamic response, high sampling rate and presence of physiological noise, 

removing modeled physiological noise using external measurements, or short-separation 

filtering, though may reduce the need for higher AR model orders, the residual data is 

still autocorrelated as has been shown with short repetition times in fMRI (Bollmann et 

al., 2018). Further validation studies are necessary to support incorporating pre-whitening 

in the fNIRS data processing pipeline. 

Use of filtering methods in the preprocessing pipeline 
Filtering methods especially band-pass filtering are often used in the 

preprocessing pipeline for RSFC as it is assumed that filtering increases the signal-to-

noise ratio by reducing the contributions of frequency bands with physiological and other 

noise sources. However, incorporating both filtering and pre-whitening in the 

preprocessing pipeline requires some careful thought. First, filtering—especially low pass 

filtering—often increases the autocorrelation in the time series, worsening the issue of 

increased false positives in the data. So, any low-pass filtering needs to be performed 

before pre-whitening (Santosa et al., 2017). Second, filtering removes the high-frequency 

components in the data, and since pre-whitening tries to whiten the frequency spectrum, 

it can make the estimates of the AR parameters during pre-whitening unstable. So any 

filtering should be done within the GLM model (Bright et al., 2017; Santosa et al., 2017). 

Third, any filtering needs to be applied to both the signal and the noise model (including 

any physiological signals, short-separation channels) to prevent the reintroduction of the 
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unwanted frequencies (Bright et al., 2017). Finally, any filtering applied to the data must 

account for the lost degrees of freedom from filtering, so that the significance of the 

correlations is not inflated along with increased false positives (Bright et al., 2017; Davey 

et al., 2013). In the current work, we did not incorporate filtering into the processing 

pipeline. Future studies must examine if indeed there is an increased sensitivity to the 

underlying neural activity by incorporating filtering into the preprocessing pipeline, 

despite some of the issues outlined above. 

Use of robust methods to reduce the influence of head motion 
Head motion artifacts in fNIRS are often statistical outliers as these changes are 

much larger in magnitude than the underlying physiological and intrinsic noise in the 

signal. The introduction of robust statistical estimators is required to avoid the over-

leverage of these outlier points on the connectivity estimates. These approaches worked 

well for the correlation and partial correlation models but only offered a modest 

improvement for the MVGC models. In particular, these robust methods failed to 

converge at max iterations of 50 (but did converge when max no. of iterations was 

increased to 150), especially with MVGC, thus limiting the use of robust MVGC for 

heavily motion-corrupted data. Future methods should probably explore estimating 

reliable and robust estimates of multivariate Granger causality in presence of large 

motion artifacts. The issue with marking and correcting for head motion with multivariate 

Granger causality is that a motion corrupted time point is downweighted across all lags, 

hence, there is a large reduction in the degrees of freedom when robust regression is used. 

Some studies correct for motion artifacts before the estimation of functional connectivity. 

These methods should explicitly control for the lost degrees of freedom due to motion 

correction in their analysis of functional connectivity. A related issue to the use of robust 

methods is to determine what time points are considered outliers and subsequently 

marked as motion artifacts. Aggressively labeling data as motion-related outliers, could 

reduce the degrees of freedom of the data and may, unfortunately, lead to downweighting 

lots of data. However, using lenient thresholds to determine motion-related outliers could 

lead to increased false positives due to residual motion artifacts uncorrected for in the 

data. Similarly, robust AR partial correlation though was effective at reducing false 

discoveries significantly, still had more than expected false positives in the data. Thus, 

better strategies or multi-step strategies may be needed to reduce the influence of head 

motion on connectivity. 

Impact of imaging duration and sampling frequency on RS-fNIRS 
The acquisition rate (sampling frequency, 𝐹𝑠) and the duration of the RS-fNIRS 

scan determine the number of time points available for the calculation of connectivity 

metrics and determine the power and sensitivity of these methods. Longer duration scans 

may lead to stable measures of connectivity, but in infant and other clinical populations, 

they may present challenges. However, since the temporal autocorrelation also increases 

with sampling frequency, higher order models may be necessary in data with higher 

sampling rate to correct for autocorrelation, else it may lead to increased false-positives 

(Santosa et al., 2017). The methods discussed in this study may need to be modified 

slightly by using a higher-order AR models for pre-whitening, if the sampling frequency 

of the data is higher. Nevertheless, we still expect the patterns of results to hold true, with 
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methods that include pre-whitening outperforming the methods that do not include pre-

whitening. 

Secondly, different connectivity metrics may require different imaging durations 

to achieve stability and probably in different populations. The imaging duration may also 

depend on the effectiveness of the data preprocessing pipeline. Studies show that scan 

durations as short as 1 minute may be enough to obtain stable and reproducible measures 

of functional connectivity, and nodal network metrics such as nodal efficiency and nodal 

betweenness for data acquired at a sampling frequency of 25 Hz in adult populations 

(Geng et al., 2017). However, longer scan durations (> 5 minutes) may be needed for 

obtaining stable measures of connectivity measures such as network clustering 

coefficient, local efficiency and global efficiency (Geng et al., 2017). Similarly, in a 

sample of children aged 7-8 years with fNIRS data was acquired at 50 Hz, an imaging 

duration of 2.5-7 minutes was needed to obtain accurate and stable functional 

connectivity and graph-theoretic network metrics (Wang et al., 2017). Furthermore, lower 

acquisition rate (~ 4 Hz as in this study) may require longer duration scans to achieve 

stability of connectivity measures. A thorough analysis on the impact of the acquisition 

rate and scanning duration on the stability of fNIRS connectivity metrics is needed. 

Furthermore, the stability of lagged connectivity measures including Granger causality as 

well as the extensions and variations discussed in this paper with RS-fNIRS data has not 

been studied and may warrant further research. 

Limitations of the current study 

This work was primarily a numeric simulation study and, while we introduced 

structured temporal and spatial noise and motion artifacts as realistically as we could, our 

findings are nonetheless limited to the properties of our simulations. First, it must be 

noted that the time series was assumed to be stationary to obtain reliable and valid 

estimates of connectivity. In real datasets, the use of more complex autoregressive 

integrated moving average (ARIMA) models may be necessary for pre-whitening. 

Additionally, the stationarity of the time series can be tested by Augmented Dickey-

Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests (Z. Liu et al., 2017). 

The use of scale-less measures such as WTC could lead to more reliable estimates of 

connectivity if indeed fNIRS time series are non-stationary. Also, the non-stationarities 

of the time series could provide interesting insights into the dynamics of functional 

connectivity across time. Second, in our simulations, we used a Gaussian spatial 

smoothing kernel to produce spatially correlated noise originating in the skin layer. 

Spatial heterogeneity in global physiology could reduce the effectiveness of the proposed 

methods as do the number and location of short-separation measurements. Furthermore, 

the way the data were simulated, both HbO and HbR contain the same information, so the 

utility of including both HbO and HbR short-separation channels in the partial-correlation 

models has not been explored. Analyses with task-based fNIRS data, seem to suggest that 

adding both HbO and HbR short-separation channels in the model is beneficial (Santosa 

et al., 2020), future studies should explore this with resting-state analysis. Future studies 

should replicate the current analyses using experimental RS-fNIRS data and compare the 

results with the gold standard RS-fMRI to confirm our conclusions. Often, in resting-state 

analysis, we are concerned more about connectivity differences between population 

groups or between different conditions. So future studies should also evaluate how the 
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issues due to autocorrelation, and systemic physiology manifest as group differences or 

as differences in conditions in functional connectivity and causality. 

Conclusion 

Complex numerical simulation models may theoretically capture more 

information about the relationship between fNIRS time channels, but in practice solving 

them is difficult. In the absence of head motion, use of robust methods may be both 

computationally inefficient and suboptimal as they can reduce the degrees of freedom. 

Similarly, although methods such as modified Granger causality can model both the zero-

lag and the time-lagged relationships, pre-whitened partial correlation performs best 

when connectivity information is present at the zero-lag while Granger causality 

performs best when there is a lagged relationship between time series. The modified 

MVGC performed well in both scenarios, but at the cost of fewer degrees of freedom and 

possibly lower sensitivity in situations with low signal-to-noise ratios. Similarly, band-

pass filtering, while could probably improve the signal-to-noise ratio and sensitivity, it 

could also lead to lost degrees of freedom and increased autocorrelation which may offset 

the gains. Hence a careful consideration of the steps in the preprocessing pipeline is 

suggested to maximize sensitivity while still reducing false positive rates to near expected 

levels. 



     

43 

 

 

Chapter 3: A review of preprocessing strategies for resting-state functional 

connectivity analysis with functional near-infrared spectroscopy 

 

Chapter abstract 

Functional near-infrared spectroscopy (fNIRS) has become a popular tool to map 

resting-state networks across the brain. Though functional magnetic resonance imaging 

(fMRI) is the dominant method for resting-state analyses, fNIRS has certain advantages 

over fMRI, including higher temporal resolution. Unfortunately, the extracerebral noise 

and the higher temporal resolution lead to severe temporal autocorrelation in resting-state 

fNIRS (RS-fNIRS) data. Additionally, noise sources, such as systemic physiology and 

participant’s head movements, can artificially inflate functional connectivity estimates, 

thereby increasing false positives. Hence correcting for autocorrelation, global signal due 

to systemic physiology, and head motion artifacts is imperative before estimating 

functional connectivity and other related measures.  Though several methods are 

proposed to address systemic physiology and motion artifacts, the performance of most 

of these methods has been evaluated with evoked responses and not on RS-fNIRS data. 

In this review, we survey methods and strategies used to correct for temporal 

autocorrelation, systemic physiology, and motion artifacts and discuss their applicability 

to RS-fNIRS data. Since most articles using resting-state connectivity analyses do not 

correct for temporal autocorrelation, the issue of increasing variance in the sampling 

distribution is discussed. We further highlight the increased use of hybrid methods that 

combine multiple strategies for motion correction. Finally, we discuss some unresolved 

issues in resting-state connectivity analyses with fNIRS and highlight directions for 

future research.  

Introduction 

Functional near-infrared spectroscopy (fNIRS) is a brain imaging method that 

uses light in the near-infrared window to monitor changes in blood oxygenation, which 

serves as the basis for researchers to make inferences about changes in neural activity. 

Oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) have different 

optical properties, specifically, differential absorption of electromagnetic radiation in the 

near-infrared window. Moreover, the human tissue is relatively transparent to near-

infrared light; hence it can pass through the scalp, skull, and meninges to reach the 

cortical surface with minimal absorption and scattering. The relative change in the 

absorption of near-infrared light detected through detectors placed at an appropriate 

distance on the scalp can be used to infer the changes in concentrations of HbO and HbR 

in response to neural activity in particular brain regions. 

 FNIRS has several advantages over other neuroimaging methods. It has higher 

temporal resolution than functional magnetic resonance imaging (fMRI) and better spatial 

resolution than electroencephalography. Its portability and adaptability to multiple 

settings make it a more versatile and ecologically valid neuroimaging modality. It is less 

susceptible to motion artifacts, thus making it ideal for cognitive neuroimaging 

applications in developmental and clinical populations. Further, its relatively lower cost 

and the ability to localize cortical activations make it a useful neuroimaging method to 

study the human brain across tasks, ages, patient groups, and cultures. 
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 Resting-state functional connectivity (RSFC) or intrinsic functional connectivity 

characterizes the brain's functional architecture using spontaneous low-frequency 

fluctuations across anatomically distinct brain regions when the person is not performing 

an overt task. While predominantly used with fMRI, resting-state analysis with fNIRS is 

increasingly popular for identifying resting-state networks. A search on the PubMed 

database with the search term "(resting-state functional connectivity) AND ((functional 

near-infrared spectroscopy) OR (diffuse optical tomography) OR (fNIRS) OR (NIRS) 

OR (near-infrared spectroscopy))" revealed a total of 158 publications. The number of 

publications using resting-state fNIRS (RS-fNIRS) over the years is shown in Figure 1. 

As the figure illustrates, though the number of publications utilizing RS-fNIRS is 

minuscule compared to the thousands of publications every year on RS-fMRI, there is 

still a considerable year-on-year increase in the number of published RS-fNIRS studies. 

Furthermore, RS-fNIRS is reliable (Niu et al., 2013; Niu & He, 2014; Novi et al., 2016; 

H. Zhang, Duan, et al., 2011; H. Zhang, Zhang, et al., 2011) and valid (Duan et al., 2012; 

Sasai et al., 2012) method to study the properties of cortical networks across the brain. A 

detailed comparison of the advantages of resting-state analysis with fNIRS vis-à-vis 

fMRI is included in the introduction chapter of this dissertation. 

 

Figure 1. The number of resting-state fNIRS publications over the years. 

 

There are several ways to characterize resting-state connectivity, including in the 

time domain with Pearson's correlation coefficient (Mesquita et al., 2010; Novi et al., 

2016; Sakakibara et al., 2016; Santosa et al., 2017), in the time-frequency domain with 

wavelet transfer coherence (WTC) (Han et al., 2014; Tan et al., 2015), blind source 

separation methods such as independent component analysis (Blanco et al., 2021; 

Ferradal et al., 2016;  Zhang et al., 2010),  and effective connectivity measures including 

Granger causality analysis (Medvedev, 2014; Lanka et al., in press). Furthermore, 

dynamic measures of functional connectivity (Z. Li et al., 2015; Niu et al., 2019) and 
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graph theoretical measures were also applied to study the properties of resting-state 

networks with fNIRS (Cai et al., 2018; Niu et al., 2012). 

 There are some challenges associated with preprocessing RS-fNIRS data and 

obtaining valid statistical inferences with resting-state connectivity due to the signal and 

noise properties in the fNIRS data. The hemodynamic signal originating in response to 

the neural activity in the cerebral cortex is the signal of interest. There are several sources 

of noise. The global physiological noise in fNIRS mainly arises from the physiologically 

driven changes in the vasculature that correspond to respiratory, heart rate, and blood 

pressure changes in the superficial tissue layers, including the scalp and the skull 

(extracerebral), and from the brain itself. The fNIRS signal is 10-20 times more sensitive 

to the systemic physiology originating in the blood vessels in the skull and the scalp 

(extracerebral physiology) than signal changes in the cerebral cortex (Kirilina et al., 

2012; Scholkmann et al., 2014; Tachtsidis et al., 2010). The primary sources of systemic 

physiology are fluctuations attributable to cardiac (around 1.2 Hz), respiratory (0.3-0.6 

Hz), and blood pressure (0.1 Hz) cycles (Tachtsidis & Scholkmann, 2016). Another 

significant source of noise in fNIRS signals is the subject's head movements. The 

subject's head movements during acquisition can cause the optodes placed on the scalp to 

slide or momentarily lose contact. These events appear in the fNIRS data as large spikes 

or changes in the baseline of the fNIRS signal (Brigadoi et al., 2014) and further 

contribute to the noise in the fNIRS data.  

 Though the above noise sources are not just limited to RS-fNIRS data, processing 

RS-fNIRS data can be more challenging than processing task-based fNIRS data. The 

neuronal signal of interest (typically the experimental design convolved with the 

hemodynamic response function) and the noise are explicitly modeled in task-based 

analyses. However, in RS-fNIRS, where there is no expected hemodynamic response, 

processing often consists of modeling and removing noise sources. Hence any unremoved 

or statistically unaccounted for noise sources are interpreted as neural fluctuations (Bright 

et al., 2017). Furthermore, evoked fNIRS responses from task-based paradigms can be 

averaged across trials to cancel out some types of noises. However, trial-averaging is not 

feasible with RS-fNIRS. Hence noise has a greater impact on RSFC analyses, and there is 

a greater need to correct for its effects. 

 RS-fNIRS signal and the various sources of noise violate the statistical 

assumptions of Pearson's correlation coefficient, the most commonly used measure to 

characterize functional connectivity, thus increasing the probability of obtaining incorrect 

inferences, often leading to increased false positives (Santosa et al., 2017; Lanka et al., 

2022). The slow hemodynamic response and the systemic physiology combined with the 

high sampling rate of fNIRS often induce autocorrelation in the fNIRS time series, thus 

violating the assumption of independence. Furthermore, motion-induced signal changes 

appear as outliers in the RS-fNIRS data due to their large magnitude compared to neural 

fluctuations. Finally, systemic physiology shared across all the channels can increase the 

spatial covariance between the channels leading to an artificially inflated value of sample 

Pearson's correlation coefficient between RS-fNIRS time series. These issues have been 

discussed in detail previously (Santosa et al., 2017; Lanka et al., 2022).   

 Given the previously described issues, it is imperative to correct systemic 

physiology and motion artifacts. Several noise correction methods rely on separating the 
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signal and noise from the RS-fNIRS data based on differences in the spatial, temporal, 

and spectral differences between the signal and the noise. Often fNIRS data are 

transformed to clarify/amplify these differences. Many noise correction methods rely on 

certain assumptions about the properties of the signal and noise. For example, noise 

originating from head motion and systemic physiology is assumed to be global while 

neural activity is localized. The neuronal oscillations are assumed to be smooth and 

localized to a specific frequency band (0.01-0.1 Hz). In contrast, noise is assumed to be 

abrupt and may (systemic physiology) and may not (motion artifacts) be restricted to 

specific frequencies. Another class of methods to remove noise from fNIRS data relies on 

obtaining independent noise measures from external measurements such as 

accelerometers for head motion, instruments measuring physiology such as HR monitors, 

pulse oximeters, etc., and short-separation (SS) channels to capture extracerebral 

physiology. These measurements can then be used to remove the noise from the fNIRS 

data either with regression or filtering (Santosa et al., 2020). 

 There is growing concern that correction methods applied to RS-fNIRS data 

during preprocessing are often insufficient (Hocke et al., 2018; Pfeifer et al., 2018). 

Furthermore, as mentioned earlier, since methods to correct for noise in fNIRS rely on 

certain assumptions, these assumptions are often not met, or the methods are not properly 

applied, leading to suboptimal noise correction (Hocke et al., 2018). The purpose of the 

current review is three-fold. The first goal is to survey the popular methods used for 

correcting motion and systemic physiology and examine their efficacy on RS-fNIRS data. 

The second goal is to highlight the importance of autocorrelation correction for RSFC 

analyses, as the correction for temporal autocorrelation is often ignored in the 

preprocessing pipeline with RS-fNIRS analysis. The third and final goal is to highlight 

the gaps in implementing these preprocessing methods and suggest areas for future 

research. Accordingly, this review has been organized as follows: In section 2, we 

describe the issues encountered in drawing valid inferences on temporally autocorrelated 

fNIRS time series. In section 3, we discuss some strategies, including pre-whitening and 

variance correction methods, to correct for the effects of autocorrelation on the 

significance of the correlation coefficient. In the following two sections, sections 4 and 5, 

we survey some of the methods proposed to correct for systemic physiology and motion 

artifacts, respectively. We emphasize each method's assumptions, applicability, and pros 

and cons. In section 6, we discuss some popular toolboxes used for RSFC analyses. Often 

the toolbox used determines what preprocessing methods and steps are included in an 

analysis; hence it is vital to understand the methods available in each toolbox to correct 

for noise. We finally end this review with a discussion in section 7 on some unresolved 

issues and highlight directions for future research. 

Effect of temporal autocorrelation on functional connectivity 

FNIRS measures cerebral hemodynamics, a slow and lagged response to the 

neural activity rather than the neural activity itself. Systemic physiology and 

hemodynamic response to neural activity combined with the higher sampling rate of 

fNIRS introduce serial correlations (also termed autocorrelation) into the fNIRS time 

series. Autocorrelation implies that the individual time points in the fNIRS time series are 

no longer independent of each other (Santosa et al., 2017). Colored noise can reduce the 

effective degrees of freedom in the fNIRS time series. The presence of temporal 
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autocorrelation in fNIRS time series can lead to incorrect statistical inferences with 

RSFC. 

Most studies use Pearson's correlation coefficient to measure the strength of 

connectivity between two channels. Statistical inferences about the significance of 

functional connectivity can be drawn from the null distribution of Pearson's correlation 

coefficient. When there is no autocorrelation (i.e., the observations are independent) in a 

time series with 𝑛 time points, and the observations follow a bivariate normal 

distribution, the sampling distribution of the sample Pearson's correlation coefficient 

asymptomatically (with large 𝑛) follows a normal distribution (James et al., 2019) with 

mean equal to the population correlation 𝜌  and the variance given by  

𝑉 =  
(1 − 𝜌2)2

𝑛
 

However, since the variance of the sampling distribution of the Pearson's correlation 

coefficient is dependent on the population correlation 𝜌, a Fisher r to z transformation is 

performed as below. Applying this transformation also improves the 'normality' of the 

distribution. 

𝐹(𝑟) =  
1

2
ln (

1 + 𝑟

1 − 𝑟
) 

The sampling distribution of the Fisher transformed correlation coefficient 

asymptomatically follows a normal distribution with a mean given by 𝐹(𝜌) and a 

standard error (SE), with an increased sample size as defined below: 

𝑆𝐸 =  
1

√𝑛 − 3
 

Thus, a Z-test can be used to test for significance against a null hypothesis of zero 

correlation. Unfortunately, inferences are valid from the null distribution only in the 

absence of serial correlation. In serially correlated RS-fNIRS data, the standard error is 

underestimated if the autocorrelation is not accounted for. Further, differences in the 

autocorrelation structure of the time series can also introduce bias in the estimates of 

functional connectivity, i.e., the expected sample correlation differs from the ‘true’ 

population correlation coefficient (Arbabshirani et al., 2014). Similar results can be 

obtained if the hemodynamic response is assumed to be a low pass filter acting on the 

intrinsic neural fluctuations (Davey et al., 2013). Thus autocorrelation could lead to 

spurious correlations and incorrect inferences regarding the significance of RSFC 

(Santosa et al., 2017). At a sampling rate of 4 Hz, on simulated fNIRS data with temporal 

autocorrelation, a false positive rate of a whopping 80% is obtained at an expected false-

positive rate of 5% (Lanka et al., in press). Figure 2 illustrates the presence of temporal 

autocorrelation in the RS-fNIRS time series and its impact on the null distribution of the 

sample Pearson's correlation coefficient. Furthermore, the validity of inferences drawn 

with the T-score and the Z-score for sample Pearson's correlation also fails for time series 

with non-zero cross-correlations (at both zero-lag and non-zero lags) (Afyouni et al., 

2019). Thus, the variance of the sampling distribution of the Pearson's correlation 

coefficient should take into account non-zero cross-correlations and autocorrelations 

within each time series (Afyouni et al., 2019). 
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This issue is not just limited to RS-fNIRS but also present in RS-fMRI 

(Arbabshirani et al., 2014; Christova et al., 2011). However, it is much worse with RS-

fNIRS due to extracerebral noise contamination and much higher temporal resolution. 

The false positive rate increases with increasing sampling rate, thus negating the 

advantage of high temporal resolution of fNIRS over fMRI (Santosa et al., 2017). 

Therefore, there is a greater need to correct for temporal autocorrelation in RS-fNIRS. 

Unfortunately, removing the extracerebral noise and systemic physiology does not 

remove the temporal autocorrelation as one of the significant contributors to the 

autocorrelation is the hemodynamic response which has an impulse response that peaks 

after 5-6 seconds and can last for several seconds before returning to baseline (Bollmann 

et al., 2018; Santosa et al., 2017). Thus, temporal autocorrelation in fNIRS data must be 

corrected independently of global systemic physiology. 

Methods to correct for temporal autocorrelation 

One of the two classes of methods proposed to correct for temporal 

autocorrelation is pre-whitening. Pre-whitening removes temporal autocorrelation and 

whitens the power in fNIRS time series using autoregressive (AR) models. Pre-whitening 

on fNIRS entails fitting a 𝑝𝑡ℎ order AR model to model the current time point as a 

function of the previous time points (Santosa et al., 2017). After fitting an AR model, the 

residuals termed ‘innovations’ which are independent, can be used for estimating 

functional connectivity. Pre-whitening as a procedure to correct for temporal 

autocorrelation has been described in previous articles in RS-fMRI (Bright et al., 2017; 

Christova et al., 2011) and RS-fNIRS (Santosa et al., 2017; Lanka et al., 2022). 

Typically, a model order for the AR model proportional to the sampling rate of the fNIRS 

data is chosen to ensure effective correction of autocorrelation (Arbabshirani et al., 2014; 

Bright et al., 2017). Further, more complex models such as  autoregressive-moving-

average (ARMA) or autoregressive-integrated-moving-average (ARIMA) can be used to 

model the fNIRS time series to achieve stationarity (Bright et al., 2017). Pre-whitening is 

described in detail in other articles (Santosa et al., 2017; Lanka et al., 2022). 

Dynamic time-varying connectivity measures are not as frequently used with RS- 

fNIRS (Z. Li et al., 2015; Niu et al., 2019; Price et al., 2014) compared to RS-fMRI. 

However, pre-whitening could be helpful with dynamic functional connectivity as it can 

reduce the variability in connectivity estimates attributable to increased sampling 

variability due to autocorrelation. This increased variability due to autocorrelation can be 

misinterpreted as variability in brain states (Honari et al., 2019).  

However, there are some concerns about pre-whitening. Firstly, since pre-

whitening reverses the effects of autocorrelation by fitting an AR model, the 

effectiveness of this method is determined by the appropriateness of the model and the 

ability to obtain accurate parameter estimates of the AR model (Afyouni et al., 2019; 

James et al., 2019). It has also been pointed out that since the intrinsic signal is inherently 

colored, pre-whitening may be inappropriate and can complicate the interpretation of pre-

whitened time series (Afyouni et al., 2019; Blanco et al., 2018). However, pre-whitening 

the fNIRS signal in the absence of systemic physiology inverts the filtering effects of the 

hemodynamic response function. Hence it can be interpreted as a hemodynamic 

deconvolution filter. Though in the presence of systemic physiology, that interpretation is 

complicated. Furthermore, pre-whitening reduces the anticorrelation between HbO and 
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HbR (Blanco et al., 2018), thus limiting the effectiveness of motion correction methods 

such as correlation-based signal improvement (CBSI). 

The second class of methods that correct for autocorrelation compensate for the 

increased standard error of the sampling distribution of the correlation. Though these 

methods have been less explored with RS-fNIRS, they have been extensively studied 

with RS-fMRI (Afyouni et al., 2019; Arbabshirani et al., 2014; Fiecas et al., 2017; James 

et al., 2019). For a history of methods used for correcting for the increased variance 

estimates due to temporal autocorrelation, please see Afyouni et al., (2019). Some of the 

methods that were used to correct for the increased variance are discussed. (i) Bartlett 

correction factor (BCF) (Bartlett, 1935): Corrects for the inflated variance by assuming 

an AR(1) time series. Further extensions to BCF proposed by (ii) Assuming a single 

autocorrelation structure with multiple lags across all nodes (Fox et al., 2005), (iii) 

Allowing for different autocorrelation structures across multiple lags but not considering 

the lagged cross-correlations (Bayley & Hammersley, 1946) and (iv) xDF (Afyouni et al., 

2019): Correcting for increased variance by considering both autocorrelations and lagged 

cross-correlations. As expected xDF, had the least bias in estimating the variance of the 

Pearson's correlation coefficients (Afyouni et al., 2019). Further, the correction proposed 

by Bayley & Hammersley (1946) was more conservative and overcorrected for the 

variance due to the confounding of autocorrelation and cross-correlation. However, a 

limitation of this method is that effectiveness of xDF correction requires knowing auto 

and cross-correlation estimates in the population. Often with real neuroimaging datasets 

that is not feasible, so we need to rely on the estimates obtained from the sample. 

In RSFC analyses, we are often interested in significance testing and not with 

point estimates of connectivity (Arbabshirani et al., 2014), so either class of methods can 

be used. The increased sampling rate can have an proportional impact on lowering the 

degrees of freedom, underestimating the variance of the sampling distribution, and 

increasing false positives (James et al., 2019; Santosa et al., 2017), especially with typical 

sampling rates used in fNIRS. So there is a critical need to evaluate and compare pre-

whitening against variance correction methods at higher sampling rates with RS-fNIRS 

data as only pre-whitening methods have been used (Abdalmalak et al., 2022; Santosa et 

al., 2017; Lanka et al., 2022) Thus, future studies should compare variance correction 

methods with pre-whitening methods using RS-fNIRS data at multiple sampling 

frequencies and in the presence of non-zero cross-correlations. 

Method to reduce global systemic physiology 

Band-pass filtering: Filtering is probably the most commonly used method to 

remove systemic physiology in fNIRS processing (Pinti et al., 2019). Band-pass filtering, 

typically with a lower and higher cut-off frequencies of 0.01 Hz and 0.1 Hz, respectively, 

is used in RS-fNIRS and RS-fMRI to remove physiology. The success of filtering in 

removing systemic physiology relies on a few factors. Firstly, the systemic physiology is 

restricted to a few frequency bands with cardiac fluctuations from 1-2 Hz, respiratory 

from 0.3-0.6 Hz, blood pressure changes at around 0.1 Hz, and very-low-frequency 

fluctuations at around 0.04 Hz, as discussed earlier. The low-frequency oscillations 

typically contributing to resting-state functional connectivity are also restricted to a 

narrow bandwidth < 0.1 Hz due to the low-pass filtering effects of the hemodynamic 

response function. So, there is not much frequency overlap between the signal of interest 
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and systemic noise due to cardiac fluctuations and respiration. Given the relatively high 

sampling rate of the RS-fNIRS signal, both these noise sources can be filtered out 

without aliasing. However, the Mayer waves (arterial blood pressure changes) and other 

very-low-frequency fluctuations overlap with the resting-state connectivity signal and 

cannot be removed via filtering. Removal of the Mayer wave signal may require using SS 

channels (Yücel et al., 2016). Despite this, the signal-to-noise ratio of the RS-fNIRS 

signal is improved due to filtering. Guidelines for choosing optimal parameters, including 

the filter type and filter order, are provided in Pinti et al., (2019). 

However, filtering has some caveats. Though applying a filter can remove some 

of the systemic physiology, it can reduce the degrees of freedom in the data (Bright et al., 

2017) and increase autocorrelation in the RS-fNIRS time series (Christova et al., 2011; 

Davey et al., 2013; Santosa et al., 2017). Thus if a time series is filtered,  then the degrees 

of freedom in the time series must be corrected appropriately based on a factor that 

depends on the frequency response of the applied filter (Davey et al., 2013). For an ideal 

band-pass filter with a lower cut-off frequency of fl, and the upper cut-off frequency of fh, 

and on data with sampling frequency fs,  the effective degrees of freedom can be obtained 

by a corrective factor  given by 2
𝑓ℎ−𝑓𝑙

𝑓𝑠
 times the original degrees of freedom (Davey et 

al., 2013). However, James et al., (2019) have argued that the previously described 

correction factor overcorrects by overestimating the varia8nce at all sample rates. 

Alternatively, they propose a more accurate correction factor computed based on the 

filter's impulse response and the autocorrelation induced by systemic physiology and the 

hemodynamic response (James et al., 2019). 

Principal component analysis (PCA): Blind source separation algorithms such as 

PCA and independent component analysis (ICA) are also often used for removing 

systemic physiology from fNIRS (Duan et al., 2018; Virtanen et al., 2009). PCA and ICA 

decompose the fNIRS signal into a series of orthogonal and statistical independent 

components, respectively. PCA outperforms ICA in removing systemic physiology 

(Virtanen et al., 2009), and so PCA is more often used in preprocessing pipeline for 

removal of systemic physiology, and ICA is used more for identifying cortical networks. 

PCA-based spatial filters can be used to identify the global physiological signal and 

partial out its effects when calculating the statistical relationship between channels. PCA 

depends on the idea that spatial covariance between the signals due to shared physiology 

is global, whereas the neural variation is local. So, using PCA when the channels are 

distributed across the head can extract the spatially correlated global signal. PCA-based 

filtering was as effective as short separation (SS) channel regression in removing the 

systemic physiology from the data and increasing the reliability of RS-fNIRS metrics 

(Abdalmalak et al., 2022; Noah et al., 2021). However, PCA requires specification of the 

number of components to be removed, and PCA cannot be used effectively if the optode 

locations are confined to a small area on the head (Sato et al., 2016). PCA can also be 

used on SS channels to capture global physiology. Further, PCA-based filtering with SS 

can be automated with the best PC component obtained from the PCA decomposition on 

SS removed rather than the component that explains most variance (F. Zhang et al., 

2021). 

Short-separation (SS) channels-based methods: As fNIRS signal is corrupted by 

extracerebral signal changes, using SS channels is an effective strategy to remove the 
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variance associated with extracerebral signal from the fNIRS signal. SS channels in 

which the source-detector distance is often less than 10 mm are sensitive to superficial 

physiological noise and not as sensitive to cerebral signal changes as the distance is too 

short for the detected light to pass through the cerebral cortex (Cooper et al., 2012; 

Gagnon et al., 2012; Saager et al., 2011; Saager & Berger, 2005). Thus, using SS 

channels is a very effective way to reduce the influence of superficial physiological noise 

on the fNIRS signal. Simulation studies have identified the optimum distance for SS 

channels is 8.4 mm for adults and 2.15 mm for infants (Brigadoi & Cooper, 2015). 

Although this method is very effective, multiple SS channels may be needed to improve 

the effectiveness of the methods until an optimal number is reached (Santosa et al., 

2020). Increased effectiveness due to more channels can be attributed to the fact that the 

superficial physiological noise is not homogeneously distributed on the head (Gagnon et 

al., 2012). Some spatial variability exists in the extracerebral signal changes due to the 

probe’s proximity to major blood vessels. Furthermore., the effectiveness of SS channels 

increases with good SS channel signal quality and effective distribution of SS channels 

across the scalp (Santosa et al., 2020). Using SS also removes the effects of Mayer waves 

in the data that overlap with low-frequency fluctuations of neural origin and hence cannot 

be easily removed with filtering (Paranawithana et al., 2022).  

Partial correlation: Partial correlation could be used to reduce the effects of 

global systemic physiology on functional connectivity. Instead of using standard 

Pearson’s correlation coefficient between time series, partial correlation that controls for 

the effects of other channels can remove the shared global covariance between the signals 

due to systemic physiology. Moreover, in the absence of SS channels, partial correlation 

reflects the relationship between deep brain signals more accurately than Person’s 

correlation (Sakakibara et al., 2016). However, using partial correlation by controlling for 

other channels can often remove neural variance and increase false negatives. PCA 

combined with partial correlation is an effective strategy to capture and remove 

covariance due to global physiology while preserving the neural-related variance. Partial 

correlation with PCA on long-channels effectively reduced the false-positive rate, though 

not to the same extent as using SS channels (Lanka et al., in press). However, if PCA is 

combined with partial correlation, the number of principal components and the variance 

that needs to be partialed out becomes an important tunable parameter as it balances 

removing systemic physiology with neural covariance. The optimum value for this 

parameter would depend on the subject population and the probe layout. 

External measuring devices: Another way to reduce the presence of the 

physiological signals is to use external recording devices to measure respiration, heart 

rate, and blood pressure and remove their effects from the RS-fNIRS signal (Abdalmalak 

et al., 2022; Mesquita et al., 2010; Novi et al., 2016; Tachtsidis et al., 2010). These 

measurements can provide complementary information to those already present in the SS 

methods in possibly removing systemic physiology obtained from the cerebral cortex 

(Abdalmalak et al., 2022). However, this method entails additional complexity with 

setting up and synchronizing these different instruments to record the physiological 

signals. Furthermore, regressing out physiological noises from these devices from the 

fNIRS signal may require these measurements to be shifted in time before regression, as 
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these physiological changes may either precede or succeed fNIRS signal changes 

(Abdalmalak et al., 2022; Birn, 2012). 

Methods to correct for head motion artifacts 

Motion artifacts typically occur in the data due to the relative displacement of the 

optodes with respect to the scalp due to the subject’s head movements. So the best way to 

prevent motion artifacts in the fNIRS data is to ensure that the optodes are tightly coupled 

to the scalp so that motion artifacts do not arise or are minimal in the first place (Yücel et 

al., 2014). Often this may not be feasible, especially in infants, elderly or clinical 

populations. Hence, post-processing correction of motion artifacts is the most common 

way to deal with motion artifacts (Yücel et al., 2014). As mentioned earlier, fNIRS is less 

sensitive to motion artifacts than fMRI. However, unlike fMRI, fNIRS does not provide 

realignment parameters that can be used to characterize subject head movement across 

the scan duration. Though external motion measurements can be used, they are still 

relatively rare in fNIRS settings (Virtanen et al., 2011). Motion artifacts are often 

characterized as generating from a different statistical distribution compared to the neural 

signal and thus having different spatio-temporal-spectral properties compared to the non-

motion corrupted time points. This difference is often exploited in effective motion 

correction methods. There are usually two steps to correct motion artifacts. In the first 

step, the motion corrupted time points/segments are identified. In the second step, the 

motion artifacts are corrected and the motion artifact-corrected fNIRS data is obtained for 

further analysis. Some of the popular methods to correct for motion artifacts are 

discussed below. 

PCA: Just as PCA can be used to correct for global physiology, it can also help 

correct for motion artifacts. PCA assumes motion artifacts show global, shared, and 

proportional effects across channels. PCA decomposes the multichannel fNIRS data into 

orthogonal components ordered by the explained variance. Since motion-related signal 

changes contribute the most to the data covariance, then by removing the components 

explaining the largest variance and reconstructing the signal back in the channel space 

with the remaining components, PCA can be used to correct for head motion. However, 

as discussed earlier, PCA can overcorrect by removing neural variance, especially if the 

probe placement is restricted (Jahani et al., 2018; Sherafati et al., 2020). 

Targeted PCA (tPCA) (Yücel et al., 2014): Some of the concerns with PCA, 

including removing neural-related variance, can be ameliorated with tPCA. Unlike 

standard PCA in which all time points are transformed into an orthogonal basis set, with 

tPCA only the motion corrupted segments in any channel are included in matrix, that is 

decomposed into principal components. Motion corrupted segments are identified using a 

Homer2 function called ‘hmrMotionArtifactByChannel’ that uses certain criteria to mark 

motion corrupted segments, including if a segment exceeds a certain peak-to-peak 

amplitude threshold or if the standard deviation in the segment exceeds a multiple (called 

STD threshold) of the standard deviation of the entire data. Further, other parameters 

determine the length of the segment (Huppert et al., 2009). The top principal components 

that explain the most variance are removed. Following that, the remaining components 

are retained and projected back to the channel space and joined with the non-motion 

corrupted segments in a procedure similar to that described in Scholkmann et al., (2010). 
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This process is repeated multiple times (default value of 3) to remove motion corrupted 

segments in the data.  

TPCA has a few advantages in correcting for head motion artifacts. Firstly it 

performed better than Spline interpolation and Wavelet filtering for task-based analyses, 

which were reported to be the best performing methods at that time (Yücel et al., 2014). 

Unlike standard PCA, there is increased specificity as only the motion corrupted 

segments are included, so there is minimal concern about loss of neural-related variance. 

Thirdly, unlike other methods where the motion artifacts are corrected across channels 

individually, tPCA considers all channels simultaneously. Since motion artifacts are often 

shared across channel, tPCA as a multivariate approach maybe better suited because even 

if signal changes are not large enough to be quantified as motion artifacts in one channel, 

they may be deemed large enough in others.  Thus, with tPCA, even the smaller shared 

signal changes due to motion not deemed large enough to be to be marked and corrected 

in other methods but that nevertheless impact functional connecitivty metrics, can be 

corrected.  

However, tPCA has a few disadvantages. Firstly, this method requires several 

tunable parameters to ensure optimal correction, the first set of parameters to identify the 

motion corrupted segments and the second set of parameters for the PCA decomposition 

including the number of components to be included and the number of iterations the PCA 

decomposition process should be repeated.  Secondly, this method may not work when 

head motion is correlated with the task design in task-based paradigm as it may remove 

neural variance (Yücel et al., 2014). However, it is not a major concern with resting-state 

analyses. 

Correlation-based signal improvement (CBSI) (Cui et al., 2010): CBSI relies on 

the similarity in the hemodynamic response and motion artifacts in HbO and HbR. It 

assumes that the hemodynamic changes in HbO and HbR associated with neural activity 

are anticorrelated while the motion artifacts are positively correlated. Since HbO and 

HbR differ in scale, with HbO having higher amplitude than HbR, a scaled average of 

HbO & HbR can cancel out the motion artifacts while improving the hemodynamic 

signal. An advantage of CBSI is that it does not require any free parameters as parameters 

such as ‘α’ are estimated from the data itself. However, this method has a few drawbacks. 

First, HBO and HBR are no longer independent measures of the same underlying neural 

activity. Additionally, since HbR is less corrupted by systemic physiology than HbO, it 

can increase systemic physiology in the HbR signal. Further, HbO and HbR do not peak 

at the same time, and there is a temporal lag between their peaks (Huppert et al., 2006; 

Wolf et al., 2002) that becomes especially prominent at higher sampling rates and if a 

low-pass and or band-pass filtering step is not performed in the preprocessing. So HbO 

and HbR are not maximally anticorrelated at zero-lag. Thirdly, this method assumes that 

the scale of the motion artifacts and the fluctuations due to neurophysiology in HbO and 

HbR are equal, which may not be justified. Fourth, the method assumes zero or minimal 

correlation between the motion artifact and the hemodynamic changes, that in certain 

task-based analyses can be violated as motion could be correlated with the experimental 

design. However, it is not a cause for concern in RS-fNIRS data. 

Spline interpolation-based motion artifact reduction algorithm (MARA) 

(Scholkmann et al., 2010): Like many other motion correction methods, MARA relies on 
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first identifying the motion corrupted segments by selecting time windows where the 

standard deviation exceeds the specified threshold based on either signal amplitude or the 

standard deviation using a sliding window procedure. Then the motion corrupted 

segments are fitted using cubic smoothing spline interpolation. A tunable parameter 

𝑝 (default 0.99) balances the competing goals of minimizing the error and the curvature 

(smoothness). Once the data are interpolated, the difference is calculated between the 

motion corrupted segment and the interpolated data. Then the motion-corrected fNIRS 

time series is obtained by stitching the difference time series back into the non-motion 

corrupted segments by shifting the data accordingly by considering the mean value of the 

previous and current segments. This algorithm also requires several parameters to be 

tuned, including window length for calculating the sliding window statistics, a threshold 

to identify motion artifacts, and the smoothing parameter for spline interpolation. This 

method is effective in correcting for shift artifacts in fNIRS data. 

Wavelet filtering (WF) (Molavi & Dumont, 2012): WF corrects for motion 

artifacts by first decomposing the data into wavelet domain using the discrete wavelet 

transformation (DWT). In the wavelet domain, it is assumed that the motion artifacts, 

specifically the spike artifacts (large abrupt changes in the amplitude of the signal) 

present themselves as large wavelet detail coefficients at different levels. A Gaussian 

distribution is assumed for wavelet coefficients for the background hemodynamic signals, 

and the wavelet coefficients that exceed a certain probabilistic threshold (α) are 

considered motion artifacts. The coefficients are zeroed-out for those that exceed the 

threshold and the data is reconstructed back into the time-domain, thus correcting for the 

motion artifacts. A parameter ‘α’ determines which coefficients are considered outliers 

and is a tunable parameter that balances motion (noise) and signal removal. WF performs 

well on spike artifacts (large amplitude changes in shorter time intervals). Unfortunately, 

it does not perform as well against shift artifacts (Yücel et al., 2014). 

Kurtosis-based wavelet filtering (kbWF) (Chiarelli et al., 2015): A further 

improvement to the WF was proposed called kbWF which uses a different criterion to 

identify and remove the influence of outliers in the distribution of wavelet coefficients. 

Unlike WF, which uses a second-order moment in SD to measure an outlier’s departure 

from normality, the kbWF uses kurtosis, a fourth-order moment. Some of the 

assumptions of this method are similar to WF, with the notable difference that a motion 

artifact has a large enough wavelet coefficient to influence the distribution of the wavelet 

coefficients. The kurtosis of a Gaussian distribution is 3 and the coefficients from 

neurophysiological data would be Gaussian or sub-Gaussian. So, motion artifacts in 

fNIRS data can distort a distribution to have a kurtosis greater than 3. KbWF iteratively 

estimates kurtosis and removes the influence of (zeroes out) the largest wavelet 

coefficient until the kurtosis below a specified threshold. If the kurtosis is below a certain 

threshold, the procedure is stopped, and the data is reconstructed back in the time domain 

with the non-zeroed coefficients. The threshold is chosen to be 3.3 with the rationale that 

it is closer to 3 but large enough to detect significant deviation in kurtosis. KbWF has 

similar advantages as traditional WF with a few additional ones. As mentioned earlier, 

WF relies on threshold ‘α’ to identify outliers in the distribution of wavelet coefficients. 

The threshold ‘α’ can be sensitive to the SNR of the data. In a data with high SNR, a 

higher α may cause real neurophysiological changes to be removed and using a low α in 
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low SNR may lead to insufficient removal of motion artifacts (Chiarelli et al., 2015). So, 

fNIRS data with lower SNR may require a larger α value and vice-versa. Unlike WF, 

kbWF is less sensitive to the SNR of the data, thus reducing the need to finetune the 

parameters. Instead, a threshold 3.3 can be used across various SNRs. However, KBWF, 

similar to WF, also has difficulty removing baseline shift motion artifacts. Similarly, 

since WF characterizes motion artifacts as large changes in shorter durations, it may be 

sensitive to the sampling frequency of the fNIRS data (Chiarelli et al., 2015). 

Empirical mode decomposition (EMD) (Gu et al., 2016): EMD decomposes each 

channel data into components/basis called intrinsic mode functions (IMF) which are 

orthogonal to each other and satisfy certain properties such as (a) the number of extrema 

(minima and maxima) and the number of zero crossings must be the sample or differ at 

most by one; and (b) at any point in the dataset the mean value of the envelope defined by 

the maxima and the minima must be zero (Gu et al., 2016). So, this method first identifies 

data segments contaminated with motion artifacts similar to the previously described 

methods. Each motion-contaminated data segment is then individually decomposed into 

IMFs, and the correlation is calculated between each IMF and the original data. The IMF 

with the largest correlation coefficient is the IMF that captures the motion artifacts. Then 

this IMF is subtracted from the data, and the remaining IMFs are used to reconstruct the 

motion-corrected time series. Baseline shifts due to the motion correction are corrected 

using a similar procedure described in Scholkmann et al., (2010). A few advantages of 

this method is that it can correct for baseline shifts like some of the previous methods, 

and does not assume a specific distribution of the neurophysiological signal or the motion 

artifact. While this method does not require tunable parameters, it does require specifying 

several parameters for detecting motion contaminated segments. 

Temporal derivative distribution repair (TDDR) (Fishburn et al., 2019): TDDR 

makes similar assumptions to other methods that rely on correction in the time domain in 

that (i) signal fluctuations of neural origin are normally distributed, (ii) fluctuations in the 

NIRS data due to motion artifacts are much larger in magnitude than those with a neural 

origin, (iii) motion artifacts occur far less frequently, i.e.,  just a few time points across 

fNIRS data are corrupted by motion artifacts. Thus, the signal changes due to motion 

appear as outliers in the distribution of NIRS signal fluctuations. By down-weighting the 

time points with large fluctuations, motion-corrected time series can be obtained. TDDR 

consists of 3 major steps. In the first step, signal fluctuations are obtained by differencing 

the fNIRS time series. Assessing signal fluctuations also ensures that both spike and 

baseline shift artifacts can be identified as outliers in the data. In the second step, a 

weighted mean is calculated and is subtracted from the singal fluctuations to estimate the 

residuals/variance of the signal fluctuations. Then a robust estimate of the standard 

deviation of the distribution is estimated from the median absolute deviation. The 

residuals are scaled by the product of a tuning constant (4.685) and a robust estimate of 

the standard deviation. The outliers are down-weighted using weights estimated using 

Tukey’s biweight function on the scaled residuals. Since the weights depend on the 

deviance from the weighted mean, which in turn depends on the weights of the data 

points, an iterative reweighting procedure is used until all the large fluctuations 

presumable of non-neural origin are shrunk or eliminated. In the third step, once the 
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outliers are corrected by downweighing them, the data is integrated to give a motion 

corrected fNIRS signal.   

Unlike some of the methods discussed previously, TDDR has far fewer tuning 

parameters and works well as long as the assumptions are met. Typically, a tuning 

parameter of 4.685 achieves a 95% efficiency on a normal distribution. It may depend on 

the SNR of the data and the proportion of time points corrupted by motion artifacts. 

Further, the efficacy of this method, like the WF methods, relies on the sampling rate of 

the data, as a high enough sampling rate is necessary to capture the motion artifact 

effectively. Also, since TDDR can conflate high-frequency signals with motion artifacts, 

applying TDDR to the low-frequency part of the data is preferred. Hence the data must be 

filtered using a low-pass filter, and TDDR must only be applied to the low-frequency 

component of the fNIRS data. However, this should not be an issue with traditional 

resting-state preprocessing, as the data is often low-pass filtered. Low-pass filtering, 

however, can inflate false positives and smear the motion artifact across multiple time 

points. Since, motion artifacts are not restricted to lower frequencies, TDDR’s 

effectiveness may just be limited to the removal of manifestation of motion artifacts at 

lower frequencies. While TDDR may be helpful in task-based analyses, its effectiveness 

may be limited for resting-state connectivity as TDDR corrects for channels individually, 

while motion is often shared across multiple channels. So TDDR can further be improved 

by considering and downweighing multivariate outliers in the difference time series 

across all channels in the multivariate space. Secondly, for RS-fNIRS analysis, rather 

than temporal differencing, repairing the distribution of the innovation terms after pre-

whitening may be more appropriate (Lanka et al., in press). 

Motion censoring using global variance of temporal derivatives (GVTD) 

(Sherafati et al., 2020): While a large majority of methods rely on motion detection 

function ‘hmrMotionArtifactByChannel’ as specified in Homer2 for identifying motion 

corrupted time points, a new method called GVTD was proposed as an alternative. 

Unlike ‘hmrMotionArtifactByChannel’, which identifies motion artifacts in each channel 

individually, GVTD relies on all the channels for identifying and marking motion 

corrupted segments. This method takes its inspiration from framewise displacement (FD), 

which can be obtained from realignment parameters and derivative variance of signal 

(DVARS), two correlated measures of signal quality that have been proposed to identify 

motion corrupted time points for RS-fMRI data (Power et al., 2015). Since we do not 

have motion measurements without external measuring devices to assess average head 

motion from one time point to the next, Sherafati et al. proposed GVTD, which relies on 

the root mean square (RMS) of signal changes/fluctuations/temporal derivatives across 

all channels, an analogue of DVARS for marking motion corrupted time points in RS-

fNIRS data. 

Similar to TDDR, GVTD assumes that the fluctuations of neural origin in the 

fNIRS signal are roughly normally distributed, with motion artifacts appearing as outliers 

farther from the mean. Thus, GVTD which is computed as the RMS of the temporal 

derivatives across all channels follow the Chi distribution which is right-skewed when 

little to no-motion artifacts are present in the fNIRS data. The right skew of GVTD 

increases with the increased presence of motion artifacts in the fNIRS time series. Thus, a 

threshold ‘𝑐’ for GVTD based on the certain standard deviations from the mode (default 
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value of 10) was chosen to identify motion corrupted time points across all channels. The 

standard deviation is estimated from the left side of the right-skewed Chi distribution. 

The motion corrupted time points are then removed and the functional connectivity is 

calculated from the remaining data. The tuning parameter ‘𝑐’ optimizes removing too 

much data and insufficient correction for motion artifacts.  

As suggested earlier, multichannel approaches like PCA, tPCA and GVTD may 

be more appropriate for correcting motion artifacts compared to single channel methods 

used predominantly. Second, scrubbing /censoring motion corrupted data (i.e., removing 

them entirely) may not be appropriate for specific resting-state connectivity analyses 

which require temporal continuity, such as dynamic measures of connectivity and 

Granger causality. However, since GVTD can be used as a motion detection method, 

rather than removing the data entirely, it could be combined with other motion correction 

methods such as Spline interpolation with MARA and tPCA that traditionally rely on the 

Homer2 function ‘hmrMotionArtifactByChannel’ for motion artifact detection (Sherafati 

et al., 2020). Further, even when the motion corrupted time points are interpolated to 

avoid temporal discontinuities, the interpolation error may increase the uncertainty of 

connectivity metrics.  

Hybrid approaches:  Since, some methods are more effective in correcting for 

certain type of artifacts, there is increasing consensus that hybrid approaches combining 

multiple motion correction approaches may be more effective than any single method. 

Several hybrid motion correction methods have been proposed and can be formulated. 

Some of the popular ones are described below. 

Spline Savitzky–Golay (Jahani et al., 2018): This method is one of the first hybrid 

methods to correct for motion. First, the gradient of the data is estimated after passing the 

data through a Sobel filter to detect edges or large signal changes in the data. Outliers are 

then identified in the gradient signal as values that are 1.5 times the  interquartile range of 

the signal gradient. The part of the signal not corrupted by motion artifacts is then used 

for estimating the SNR of the signal. Second, the segments where the time points exceed 

a certain threshold are identified as baseline shifts and interpolated and removed with 

spline interpolation (Scholkmann et al., 2010). This effectively removes the baseline 

shifts and slow spike artifacts. If the SNR of the data is not high enough, then the spline 

interpolation step is omitted. Finally, the data is passed through the Savitsky-Golay (SG) 

smoothing filter to further remove the fast spikes in the data. This way, baseline shifts 

and spike artifacts are corrected with this approach.  However, the downside of using a 

hybrid approach is that tunable parameters now increase to the sum of tunable parameters 

of each method. So spline and Savitzky–Golay hybrid requires optimizing the threshold 

for identifying baseline shifts and the parameter  𝑝 for fitting the smoothing spline 

interpolation.  Further, two additional parameters need to be optimized for the SG part of 

the algorithm: the frame length and the polynomial order. 

Spline interpolation & WF hybrid approach (Di Lorenzo et al., 2019): Spline 

interpolation and wavelet filtering are some of the best-performing methods for motion 

correction (Brigadoi et al., 2014; Cooper et al., 2012; Di Lorenzo et al., 2019). Wavelet 

filtering and spline interpolation can be used in tandem to correct for both shift and spike 

artifacts encountered in the data. The success of the combination method relies on the 

fact that spline interpolation is more successful at correcting baseline shifts, and wavelet 
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filtering is more effective in correcting for spike artifacts. In fact, a combination of Spline 

interpolation and wavelet filtering outperformed either method alone, tPCA, and Spline 

Savitzky–Golay in correcting for motion artifacts in multiple infant datasets for task-

based analyses (Di Lorenzo et al., 2019). Further, this combination was also effective in 

correcting for motion artifacts in speech tasks (Novi et al., 2020). 

Robust correlation methods (Santosa et al., 2017): Unlike the methods discussed 

earlier that correct for motion during preprocessing, robust estimates of the Pearson’s 

correlation coefficient account for motion artifacts during the estimation of functional 

connectivity itself. This method is used in tandem with pre-whitening (Santosa et al., 

2017) as the innovation terms of neurophysiological origin are assumed to be normally 

distributed with motion artifacts as outliers in the distribution of the innovation terms. 

This method consists of two steps. In the first step, the geometric length of both the time 

courses is calculated with the scaled residuals (innovation terms). Then a pre-weighting 

function based on the square root of Tukey’s biweight function is used to downweigh the 

influence of outliers, similar to the ‘repair’ step in TDDR. This step corrects for motion 

artifacts that are shared across channels. In step 2, robust correlation coefficient estimates 

are used to estimate functional connectivity from the pre-weighted and pre-whitening 

fNIRS. Several approaches for calculating robust correlation coefficient estimates can be 

found in Shevlyakov & Smirnov, (2011). Robust estimates of correlation can be obtained 

by taking the geometric mean off the robust regression coefficients of the regression of 

one time series over the other. This method has been described in detail in Santosa et al., 

(2017). This step further corrects for motion outliers that are further present in just one of 

the two time series. 

Though the performance of robust correlation has not been compared against 

other methods, it successfully reduced the false positives due to head motion on RSFC 

estimates (Santosa et al., 2017). Furthermore, it is one of the few methods developed for 

RS-fNIRS and can be combined with other methods during preprocessing. An additional 

advantage of robust methods is that not many parameters need to be tuned. A single 

tuning constant 𝜅 determines the weights in the Tukey’s biweight function and is 

typically set to 4.685. Unfortunately, like most motion correction methods, this method 

can fail when the assumptions of the method fail, including when motion artifacts are not 

large enough to be classified as outliers. Additionally, it can remove some neural-related 

variance. 

Summary of motion correction methods: Though several methods have been 

proposed to correct for motion artifacts in fNIRS data, a few issues remain. While similar 

methods can be applied to correct for head motion artifacts for processing resting-state 

functional connectivity as with task-based connectivity, it is important to note that 

methods which perform best with task-based data do not necessarily perform best with 

RS-fNIRS. This can be attributed to the univariate nature of task-based analysis with a 

known expectant response and the bivariate and multivariate nature of most functional 

connectivity methods. This difference not only applies for motion correction but also for 

motion detection as well. In general, methods like spline interpolation and wavelet 

filtering perform much better with task-based analysis than tPCA (Chiarelli et al., 2015), 

while tPCA that relies on multiple channels usually tends to perform better for resting-

state analysis (Sherafati et al., 2020). Furthermore, since a lot of methods require specific 
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parameters to be tuned/optimized for effective motion correction, and often these 

methods are compared on evoked fNIRS data, it is unclear if these same default 

parameters also work with RS-fNIRS data. Additionally, optimal parameters often 

depend on the properties of the fNIRS data and the relative prevalence and type of the 

motion artifacts. Hence, studies should often report data quality measures such as signal-

to-noise (SNR) ratio, number of time points marked as motion outliers, the type of 

motion artifacts, etc. For example, wavelet filtering and TDDR may perform well at 

higher sampling rates when the motion artifact is captured in detail, while CBSI may 

work better and distort the data less at lower sampling frequencies. 

Many methods characterize motion artifacts as outliers deviating from the normal 

distribution either on the time series itself or after transformation into a different domain. 

So, motion correction, is often about finding effective strategies to remove outliers or 

their influence from the fNIRS time series and subsequent analyses. So different 

strategies to remove the influence of outliers can be tested and optimized. Often signal 

fluctuations are not large enough to be considered motion artifacts but can significantly 

overestimate functional connectivity metrics when shared across multiple channels. 

Additionally, methods that work for adults may not necessarily work for infants, given 

infants' propensity to move more and their inability to follow instructions to remain still 

for the experiment. 

Finally, while most data processing methods can be used for most types of 

analyses, methods that rely on interpolation or motion censoring can alter the degrees of 

freedom available in the data and may cause discontinuities that may either preclude or 

increase the error in estimates of certain resting-state analysis including dynamic 

connectivity and Granger causality analyses. So, there is a greater need for a thorough 

comparison of the effectiveness of motion correction methods on multiple datasets and 

validating them with resting-state fMRI. 

RSFC analyses toolboxes 

Several toolboxes provide users access to tools and methods for processing RS-

fNIRS data. These toolboxes often provide greater accessibility to RS-fNIRS analysis and 

can help with reproducibility when the processing steps are properly documented. Many 

of these toolboxes also provide tools to visualize data effectively and compare the results 

using multiple processing pipelines. Below, we list a few popular toolboxes that provide 

preprocessing methods as well as methods to estimate functional connectivity and obtain 

graph-theoretical measures. A notable exclusion in the below list is Homer2 (Huppert et 

al., 2009). Though it contains several preprocessing methods, it does not support resting-

state connectivity analyses.  

FC-NIRS (Xu et al., 2015): FC-NIRS is one of the earliest and most used 

toolboxes for RS-fNIRS analyses. It is a standalone application based on MATLAB and 

is compatible with Windows and macOS. It has tools in the preprocessing pipeline that 

converts optical density to HbO and HbR conc. using modified Beer-Lambert’s law 

(MBLL). Further, it provides band-pass filtering with a default range from 0.01-0.1 Hz to 

remove systemic physiology. For motion correction, the FC-NIRS offers a PCA-based 

correction and spline interpolation with MARA (Scholkmann et al., 2010). Earlier 

versions supported CBSI for motion correction. Further, the toolbox provides options for 
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detrending (removing linear trends from the data) and global signal regression (to remove 

global systemic physiology). 

 For calculating connectivity metrics, FC-NIRS supports lagged cross-correlation 

and Pearson’s correlation. Further, it supports graph theoretical network analysis by 

interfacing with the GRETNA toolbox (Wang et al., 2015). The network metrics are 

calculated after thresholding either on the absolute threshold (selects edges if the strength 

of the connectivity is greater than the threshold) or a sparsity threshold (selects edges 

based on the specified proportion of top edges). 

NIRS-KIT (Hou et al., 2021): NIRS-KIT is a MATLAB-based toolbox. It 

supports multiple fNIRS data formats and instruments. NIRS-KIT can support spatial 

registration of individual positioning of NIRS optodes and channels to standard MNI 

space when a 3D digitizer is used to capture optodes locations. Further it has several 

standard RS-fNIRS preprocessing steps available, including converting signal intensities 

to optical density and further to HbO and HbR conc. using MBLL. Further preprocessing 

steps that can be used in a pipeline include time point trimming (removes the first few 

points for experimental acclimatization), detrending (uses a polynomial regression model 

to remove linear and higher order trends in the signal), motion correction (CBSI and 

TDDR) and filtering. The default band-pass filtering of 0.01 to 0.08 Hz is suggested. To 

remove the systemic physiology from the RS-fNIRS data, NIRS-KIT provides SS 

regression, or if SS channels are unavailable, decomposition the RS-fNIRS data into 

functional and systemic signals based on their hemodynamic differences as described in 

Yamada et al., (2012). It also provides options for incorporating customized 

preprocessing steps in the pipeline. 

Additionally, NIRS-KIT supports multiple RSFC analyses, including ROI to ROI, 

ROI to the whole brain, pair-wise connectivity, and ICA decomposition. Functional 

connectivity is assessed using Pearson’s correlation coefficient. Like the FC-NIRS, 

NIRS-KIT also interfaces with the GRETNA toolbox (Wang et al., 2015) to calculate 

graph-theoretical network measures and supports both absolute and sparsity threshold. 

Furthermore, the toolbox also supports amplitude of low-frequency oscillations (ALFF) 

& fractional amplitude of low-frequency fluctuations (fALFF) that measure low-

frequency oscillations that are the basis for resting-state signal. 

NIRS AnalyzIR toolbox (Santosa et al., 2018): It is a MATLAB-based toolbox 

that utilizes object-oriented programming paradigms for the representation of fNIRS data 

at different stages in data processing and provides appropriate methods depending on the 

object class at those stages. It is the most flexible toolbox among the toolboxes described 

as it interfaces with Homer2 and can utilize all the preprocessing tools for motion 

corrections and removal of systemic physiology in Homer2. However, the GUI interface 

in the NIRS AnalyzIR toolbox is extremely limited in functionality, and running the 

toolbox requires some prior experience with MATLAB’s command line interface and 

object-oriented programming. Specifically, the NIRS AnalyzIR toolbox supports 

correction of autocorrelation in the RS-fNIRS time series using pre-whitening (Santosa et 

al., 2017). Furthermore, along with motion correction methods implemented in Homer2, 

the NIRS AnalyzIR toolbox further supports robust regression methods in general and 

robust correlation in particular to reduce the influences of outliers on the correlation 

coefficient estimate (Santosa et al., 2017). 
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Furthermore, for connectivity analysis, NIRS AnalyzIR toolbox supports 

Pearson’s correlation coefficient, AR correlation (estimates the correlation after pre-

whitening), partial correlation (controlling for global physiology by controlling for either 

SS channels, other long channels or both), Granger causality analyses. All these 

correlation methods can also be implemented in robust methods framework. The 

effectiveness of some of these methods in obtaining statistically valid inferences on 

functional connectivity has been studied in Lanka et al., (in press). Finally, NIRS 

AnalyzIR toolbox interfaces with the Brain Connectivity Toolbox (Rubinov & Sporns, 

2010) to calculate brain network measures including measures of functional integration, 

functional segreagation and centrality. 

LIONirs (Tremblay et al., 2022): LIONirs is also a MATLAB-based toolbox that 

aims to provide greater visualization and flexibility for processing fNIRS data without the 

need for programming expertise. It provides options for specifying processing pipelines 

and also allows for a hierarchical pipeline with branches for comparing alternative 

preprocessing methods. It provides a GUI and also provides options for visualizing 

multimodal data, including from external measuring devices (heart rate, respiration) and 

electrophysiological data (EEG). To assess the signal quality of channels, LIONirs uses 

the presence of the cardiac signal within a user-specified frequency. It supports tPCA 

(Yücel et al., 2014) or PARFAC (Hüsser et al., 2022) for motion artifact correction. For 

physiological noise correction, the toolbox provides options to filter and regress out the 

measures of physiology obtained either from external devices, SS channels, or the global 

signal average (GSR). After noise correction, the toolbox provides a step to convert the 

optical density to HbO and HbR using the MBLL. 

For resting-state analyses, it supports multiple functional connectivity (FC) 

measures, including Pearson correlation, Hilbert joint phase probability (Molavi et al., 

2014), and magnitude squared coherence (Kida et al., 2016). Further, individual 

connectivity matrices are converted to Z-maps using Fisher r to z transformation. Finally, 

non-parametric tests are used to test for the significance of the connectivity measures. 

Discussion 

There are several unresolved questions in RS-fNIRS preprocessing. Unlike in RS-

fMRI, there are no commonly used preprocessing pipelines with RS-fNIRS analysis 

(Hocke et al., 2018). While we would not like to recommend any specific methods for 

preprocessing to obtain statistically valid measures of functional connectivity, we 

recommend including methods that correct for the systemic physiology of both cerebral 

and extracerebral, temporal autocorrelation, and head motion artifacts in the 

preprocessing pipeline. Given the experimental setup and availability of short separation 

channels and external physiology recording devices, different preprocessing pipelines 

may be appropriate. While using both SS and external recording devices to remove 

systemic physiology would improve the fNIRS data quality, the complexity of the setup 

may offset these benefits in some situations.  

Additionally, careful thought must be given to the inclusion of a preprocessing 

step and its efficacy and consequences downstream in the analysis. For example, as 

discussed earlier, while filtering removes systemic physiology and improves SNR, at the 

same time, it reduces the effective degrees of freedom in the fNIRS time series and can 

increase autocorrelation. Another major issue with RS-fNIRS that is unresolved is the 
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order in which preprocessing steps need to be applied. For example, filtering prior to pre-

whitening may make the AR coefficients unstable. However, filtering after pre-whitening 

may reintroduce temporal autocorrelation. Also, motion correction may need to be 

performed prior to filtering as filtering can smear the motion artifacts and can corrupt 

adjacent time points. The impact of the order of the preprocessing steps needs to be 

explored in future studies. 

Similarly, motion correction methods with several tunable parameters can be 

optimized for effective motion correction, implying that they perform extremely well if 

the optimal parameters are tuned and do not perform as well when they are not tuned 

(Hocke et al., 2018). Conversely, other methods with fewer tunable parameters perform 

moderately in most cases. While hybrid methods are ideal for motion correction, they 

also increase the number of tunable parameters. 

The impact of autocorrelation and the correction strategies for autocorrelation in 

RS-fNIRS has been understudied, despite the greater impact of autocorrelation on RS-

fNIRS analysis due to the higher sampling rate. Furthermore, autocorrelation correction 

has received scant attention except for a few publications compared to methods that 

correct for systemic physiology and motion correction. The impact of autocorrelation on 

group-level analyses should be studied as rigorous correction for filtering and 

autocorrelation could reduce previously observed differences in functional connectivity 

between different study populations (Arbabshirani et al., 2014; Fiecas et al., 2017; James 

et al., 2019). Similarly, due to the widespread use of graph-theoretical measures with RS-

fNIRS and the potential for autocorrelation to significantly impact these measures 

(Afyouni et al., 2019), further studies should be conducted with autocorrelation 

correction to validate these findings.  

The Mayer waves signal and their contribution to the changes in HbO depend on 

the posture during data collection with higher blood pressure and contamination with the 

Mayer waves in supine compared to sitting and standing (Tachtsidis et al., 2004). These 

differences must be considered when correcting for systemic physiology and comparing 

across population groups when imaging in different postures, or across imaging 

modalities as in fMRI the data collection is performed in the supine position. 

 The impact of the preprocessing methods and sampling rate on the scan duration 

for obtaining reliable functional connectivity and network measures must be studied. 

Though a few studies have examined this issue they have come up with variable scan 

durations ranging from 1-7 minutes to obtain stable and reproducible functional 

connectivity estimates and graph theoretical network measures (Geng et al., 2017; Wang 

et al., 2017). Typically, graph theoretical network measures may require shorter duration 

scans for stable and reproducible measures than correlation metrics, and different 

measures would require different scan durations (Geng et al., 2017; Wang et al., 2017). 

There could be a difference in the minimum scan duration for adults and infants because 

of the differences in signal and noise properties in the RS-fNIRS data. Also, longer scan 

durations in infants and children may not be feasible. Further, effective preprocessing 

methods and  pipelines that include pre-whitening may require shorter duration scans to 

obtain reliable measures of functional connectivity as pre-whitening the time series can 

reduce the variance in the sample Pearson’s correlation coefficient. More research is 

needed to address the knowledge gaps in this area. 
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Often fNIRS publications do not describe the preprocessing methods in sufficient 

detail or perform suboptimal processing which can lead to variability in the fNIRS results 

(Pinti et al., 2019). This is further exacerbated by the different montages and the 

variability in the placement of probes. Unfortunately, these issues may limit the 

reproducibility and the generalizability of the findings. Moreover, certain methods such 

as PCA may work best only with certain probe placements. Similarly, despite the higher 

spatial resolution, most studies use a 10-10 coordinate system for placing probes and 

inferring activations about the brain function. Future studies should examine how the 

variability in probe placement across subjects and the inability to localize the signal 

properly to a standardized space affect group level analysis by comparing the 10-10 

system with other localization methods such as using a digitizer and an anatomical MRI 

to map optode locations. 

Further, unlike with fMRI, given the variability of experimental setups, study 

populations, and fNIRS devices, no single preprocessing method or pipeline will be 

appropriate in all contexts. Efforts to develop an automated pipeline have not succeeded 

(Hocke et al., 2018). However, there is a greater need to understand the relative 

effectiveness of each methods across various contexts. Thus, there is a need for studies 

that perform a comparison of multiple preprocessing pipelines across multiple data sets 

and validate the results with resting-state fMRI as a “gold standard”. 
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Chapter 4: General conclusion 

 

Though fNIRS has enormous potential for mapping resting-state functional 

connectivity, that potential has still not been realized, primarily due to some of the issues 

raised in the preceding two chapters. In Chapter 2, we proposed a strategy to reduce the 

impact of the global signal due to shared systemic physiology across the brain. More 

importantly, we proposed methods to model lagged relationships and information flow 

using multivariate Granger causality analyses. The proposed robust multivariate Granger 

causality (MVGC) analysis is relatively effective in correcting for global systemic 

physiology and head motion artifacts. Further, given the need /opportunity to model 

lagged connectivity, the extension to MVGC called modified MVGC with zero-lag can 

test for both zero-lag and lagged relationships between cortical regions. Unfortunately, 

we could not test the effectiveness of these proposed methods on experimental fNIRS 

data, which is a significant limitation of the study. While efforts were made to make the 

resting-state fNIRS (RS-fNIRS) data as realistic as possible, given the difficulty in 

accurately modeling experimental fNIRS data, it is possible that some factors that impact 

the effectiveness of our methods were not modeled. Thus, the results may not generalize 

well to experimental RS-fNIRS data. Unfortunately, an objective evaluation and 

comparison of the efficacy of several noise correction methods on experimental RS-

fNIRS data is extremely challenging as we often do not know the “ground truth.” While 

visual inspection of “known networks,” an increase in intra-subject reliability or 

validation with functional magnetic resonance imaging (fMRI), considered the “gold 

standard,” can be used to compare the effectiveness of several noise correction strategies, 

each of these validation approaches has its limitations.  

Several methods, as discussed in Chapter 3, have been proposed to deal with 

motion artifacts and remove systemic physiology. Unfortunately, most of these methods 

have been validated on evoked fNIRS data, and their applicability to RS-fNIRS is 

unclear. We hope that noise correction strategies will be developed based on the specific 

challenges associated with resting-state functional connectivity analyses. Similarly, 

correction for temporal autocorrelation during resting-state connectivity processing has 

largely been ignored, with most studies not accounting for temporal autocorrelation. 

Unfortunately, not accounting for temporal autocorrelation in the data could lead to 

spurious correlations and increased false positives.  

Choosing the proper preprocessing steps to correct for motion, temporal 

autocorrelation, and head motion artifacts is subjective and challenging, as the optimal 

strategy often depends on several factors, including the placement of optodes, study 

population, experimental setup, data acquisition parameters such as sampling rate, 

presence/absence of short separation channels, and use of external devices that measure 

physiology. Hence there is no one effective data processing pipeline that would work 

with all scenarios and applications. Researchers should carefully consider the strategies 

they plan to use for noise correction, visualize their data before and after the application 

of the method, understand the impact of the technique on the data and other 

preprocessing steps, and finally, the order of this method in the preprocessing pipeline. 

For example, as discussed in Chapter 3, there is often an added cost associated with 

filtering. While filtering can increase the signal-to-noise ratio, it reduces the degrees of 
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freedom. Reduction in the degrees of freedom increases the uncertainty in our 

connectivity estimates. Also, filtering before pre-whitening can make the AR coefficients 

unstable, whereas filtering after pre-whitening can reintroduce temporal autocorrelation 

in the data. Often the preprocessing steps are informed by the type of the RSFC analyses 

and the subject population. For example, there may be a greater need to correct for 

physiology in adults due to greater extracerebral contamination of the fNIRS signal than 

in infants. Similarly, there is a greater need to correct for head motion in infants than in 

adults.  

Unfortunately, many noise correction methods have to balance sensitivity, 

specificity, and generalizability. While techniques with several parameters can be 

optimally tuned to work well for a particular dataset, those optimized parameters may be 

suboptimal for a different dataset. Similarly, in the absence of head motion, robust 

methods may be computationally inefficient and suboptimal, as they can reduce the 

degrees of freedom. We hope that future researchers document the properties of their data 

(including signal-to-noise ratio and data quality metrics), filter characteristics (if filtering 

was included in the preprocessing pipeline), the range and mean number of time points 

per subject marked as motion artifacts, the kinds of motion artifacts encountered in the 

data, and the parameters used for noise correction strategies, to name just a handful of 

items of importance. Documenting this information should contribute to improved 

reproducibility of resting-state findings, and can contribute to the development of 

automated preprocessing pipelines in the future.  

While fMRI may be the dominant imaging modality for mapping connectivity, 

fNIRS can be extremely useful in mapping brain connectivity in hyperkinetic 

populations, children, clinical populations, populations in developing countries, and 

subjects in which MRI is contraindicated due to non-removable electronic devices or 

metal implants. Another exciting area of research for resting-state analyses is multimodal 

imaging, in which fNIRS can be used concurrently with either fMRI or 

electroencephalography. FNIRS is particularly suitable for multimodal imaging as it does 

not interfere with other imaging methods and can synergistically help map the functional 

organization and information flow in the brain. The first step to increase the utility of 

resting-state connectivity analyses is to develop optimal noise correction methods as 

optimal noise correction in resting-state data leads to reliable and generalizable results, 

thus contributing to scientific progress. 
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