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ABSTRACT 
Motivation: Many biomedical projects would benefit from reducing 
the time and expense of in vitro experimentation by using computer 
models for in silico predictions.  These models may help determine 
which expensive biological data are most useful to acquire next.  
Active Learning techniques for choosing the most informative data 
enable biologists and computer scientists to optimize experimental 
data choices for rapid discovery of biological function.  To explore 
design choices that affect this desirable behavior, five novel and five 
existing Active Learning techniques, together with three control 
methods, were tested on 57 previously unknown p53 cancer rescue 
mutants for their ability to build classifiers that predict protein func-
tion.  The best of these techniques, Maximum Curiosity, improved 
the baseline accuracy of 56% to 77%. This paper shows that Active 
Learning is a useful tool for biomedical research, and provides a 
case study of interest to others facing similar discovery challenges. 

1 INTRODUCTION AND BACKGROUND 
Ideally, an accurate classifier would be built in the shortest time 
possible using the least amount of expensive biological data.  To 
achieve this goal strategies are needed that select and assay only 
the most informative data points first.  Active Learning methods 
iteratively determine the most informative new data points. p53 
cancer rescue mutants present an ideal test case for Active Learn-
ing while also engaging in useful cancer research. 

Over 6 million people worldwide die of cancer each year (Parkin 
et al., 2002).  The central tumor suppressor protein p53 is an im-
portant part of cancer prevention mechanisms in healthy human 
cells.  The p53 protein induces cell growth arrest or apoptosis (pro-
grammed cell death) in response to cellular stresses (Vogelstein et 
al., 2000; Prives and Hall, 1999).  Close to half of all human can-
cers contain inactivating p53 mutations.  Despite progress, the cure 
rate of cancers remains around 60% (http://www.cancer.org/).  
Resistance of human cancers to standard treatments correlates with 
mutations of p53 (Soussi and Beroud, 2001; Seemann et al., 2004). 

Three quarters of p53 mutations result in full-length protein with 
a single amino acid change.  Several hundred clinically important 
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amino acid changes affect p53 (Olivier et al., 2002; Hamroun et 
al., 2006; Bullock and Fersht, 2001; Sigal and Rotter, 2000). 

These full-length p53 cancer mutants provide an exciting oppor-
tunity to specifically target cancers.  Restoring normal function to 
mutant p53 would trigger apoptosis in affected cells, thus shrinking 
or killing the tumor.  One strategy is to seek small molecule drugs 
that stabilize mutant p53 in a native-like conformation (Bullock 
and Fersht, 2001; Brachmann, 2004; Wang and Rastinejad, 2003; 
Bykov et al., 2003).  While this strategy remains to be realized, 
some p53 cancer mutants are rescued in vitro by intragenic second-
site cancer suppressor mutations (Baroni et al. 2004).  In these 
mutants a second p53 mutation restores active wild-type p53 func-
tion. 

Studies of p53 second-site suppressor mutations indicate that a 
large percentage of p53 cancer mutants can be rescued (Brachmann 
et al., 1998; Baroni et al., 2004; Danziger et al., 2006).  In particu-
lar, changes of amino acids 235, 239 and 240, alone or combined, 
result in the rescue of 16 out of 30 of the most common p53 cancer 
mutants tested (Baroni et al., 2004).  Thus, intragenic second-site 
suppressor mutations identify p53 cancer mutants that are likely to 
be amenable to functional rescue; uncover regions of the p53 core 
domain that, upon alteration, lead to functional rescue; and, com-
bined with structural and other experimental studies, help to eluci-
date the basic mechanisms of p53 functional rescue. 

Unfortunately, in vitro testing of all possible mutation combina-
tions to determine their cancer rescue effects is infeasible due to 
time and expense.  Therefore, it would be very desirable to have a 
computer model to run in silico experiments on virtual mutants.  
Such a model could narrow down the list of likely cancer rescue 
mutants to a number that reasonably could be assayed in the labo-
ratory.  To reach the desired predictive accuracy, such a classifier 
would need a larger training set of known mutants than was pro-
vided by the initial experimental screens (Baroni et al., 2004; Dan-
ziger et al., 2006).  Which expensive data points should be ac-
quired next in order to rapidly discover biological function? 

To this aim, this paper explores different Active Learning meth-
ods and addresses the following questions: 

(1) How well do different Active Learning methods guide the 
exploration of p53 cancer rescue mutants? 
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(2) Is one Active Learning method better than others? 

1.1 Active Learning 
Active Learning refers to iterative machine learning techniques for 
building a classifier by choosing the most informative examples 
from a space of unlabeled examples (Saar-Tsechansky and Pro-
vost, 2001; Cohn et al., 2006; Roy and McCallum, 2001; Jones et 
al., 2003).  This strategy constructs a classifier using few exam-
ples, and is useful in biological problems where data is expensive.  
In the case of p53 cancer mutants, Active Learning is intended to 
select mutants that both quickly improve the classifier and speed 
the search for previously unknown cancer rescue mutations. 

To illustrate the process we give an example of an Active Learn-
ing method from Type I below.  Suppose we have a training set of 
204 mutants with known activities.  We ask if the laboratory 
should assay next the activity of mutant R280T+N239Y or of 
R282W+N239Y. Each mutant, assumed as active and as inactive, 
is added independently to the training set, resulting in 4 new sets: 

(1) original set plus R280T+N239Y as active; 
(2) original set plus R280T+N239Y as inactive; 
(3) original set plus R282W+N239Y as active; 
(4) original set plus R282W+N239Y as inactive. 

A new classifier is built from each new training set and evaluated 
based on the true positive ( tp ), false positive ( fp ), false nega-
tive ( fn ), and true negative ( tn ) receiver operator characteristic 
(ROC) statistics. For stringency we use overlap exclusion cross-
validation (OECV, Danziger et al. 2006), which excludes from the 
training set all mutants that share more than one mutation with the 
mutant being tested (i.e., no cancer/rescue mutation pair is shared 
by tested and training mutants). Finally, the mutant that yielded the 
best classifier, under either assumed activity, would be chosen. 

At each step, typically a small number of mutants are selected, 
assayed, and added to the training set.  The new training set begins 
the next step of in silico prediction and in vitro experimentation. 

The Active Learning methods tested here fall into four catego-
ries, called here Type I, Type II, Type III, and Type IV.  Types I 
and II are novel methods that extend and adapt the original method 
of Danziger et al. (2006). Types III and IV provide a comparison to 
existing methods adapted from the machine learning literature. 
1.1.1 Type I 
Type I methods consider each unclassified example, assumed first 
as active and then as inactive. Type I methods select the example 
that yielded the most improved cross-validated classifier accuracy 
under either assumed mutant activity.  The Type I methods here 
are called Maximum Curiosity, Composite Classifier, and Im-
proved Composite Classifier (Sections 2.1.1, 2.1.2 and 2.1.3).   

A score function, Score( t ), evaluates each training set t . The 
methods differ by choice of the score function. The mutant that 
gave the highest Score( t ) is chosen.  In the example, if Score( 2t ) 
were highest, then Type I methods would choose R280T+N239Y. 
1.1.2 Type II 
Type II methods are identical to Type I until the final step. Type II 
methods choose the mutant with the highest sum of scores across 
active and inactive.  The Type II methods here are Additive Curi-
osity and Additive Bayesian Surprise (Sections 2.1.4 and 2.1.5). In 
the example, if Score( 1t )+Score( 2t ) < Score( 3t )+Score( 4t ), 
then Type II methods would choose R282W+N239Y. 

1.1.3 Type III 
Type III methods involve choosing the next unknown example 
based on how close examples are to the decision boundary.  The 
Type III methods are called Minimum Marginal Hyperplane and 
Maximum Entropy (Sections 2.1.6 and 2.1.7). These methods are 
described further in Jing et al. (2005); Liu (2004); and Park (2004).   
1.1.4 Type IV 
Type IV methods are similar to Type III methods, but choose ex-
amples furthest from the decision boundary rather than closest.  
Examples furthest from the decision boundary should be those that 
the classifier is most likely to predict correctly.  The Type IV 
methods here are Maximum Marginal Hyperplane, Minimum En-
tropy, and Entropic Tradeoff (Sections 2.1.8, 2.1.9, and 2.1.10). 

1.2 Motivation for in silico p53 mutation evaluation 
PCR mutagenesis followed by p53 functional assays in yeast 
(Baroni et al., 2004) provides several experimental advantages, 
such as the ability to combine PCR mutagenesis with repair of a 
gapped plasmid directly in yeast, and the immediate observation of 
phenotypes. This experimental strategy rapidly provides an initial 
training set of positive and negative examples. 

For the broader cancer rescue mutant discovery task, however, 
certain inherent limitations of PCR mutagenesis cannot be over-
come. These include the limited number of amino acid changes 
available per codon, which means that some amino acid changes 
are essentially inaccessible, and the limited number of coordinated 
simultaneous mutations, which means that many mutant combina-
tions are unlikely to be seen. Therefore, we began to apply compu-
tational strategies to the problem of discovering novel intragenic 
second-site suppressor mutations, with the long-term goal of a 
complete functional census of p53 cancer rescue mutations.  

1.3 Relation to previous p53 classifier work 
Danziger et al., (2006), developed a structure-based p53 classifier 
that was used to predict a previously unknown set of putative p53 
cancer rescue mutants.  The principal technical challenge was to 
extract structure-based features from atomic level molecular mod-
els in a way that was useful to feature vector based learning meth-
ods.  Briefly, 1D, 2D, 3D, and 4D features were extracted, filtered, 
and concatenated. 1D features came from the mutation type and 
location in the p53 core domain. 2D features came from steric and 
electrostatic properties measured at points on a cartographic pro-
jection of the molecular surface. 3D features came from spatial 
displacements of mutant residues relative to wild-type. 4D features 
came from the time course of protein unfolding in a simulated heat 
bath, plus other computational estimates of protein thermostability. 

The key finding was that classifiers built from features extracted 
from atomic level molecular models out-performed classifiers built 
from features extracted from string-based representations of the 
same mutant amino acid changes, when compared head-to-head on 
the same mutant data set. Structure is closer to protein function 
than is sequence, so that result was satisfying but not unexpected. 

Danziger et al., (2006) provided a proof in principle that such a 
structure-based classifier could guide biological discovery, by 
exhibiting one Active Learning method that out-performed random 
selection. Several variants and extensions had theoretically desir-
able properties. Existing machine learning methods were attractive 
as well. Which should be used, in practice, to guide the upcoming 
expensive and time-consuming biological experimentation? 
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2 METHODS 
To explain the Active Learning methods used in this paper it is 
helpful to introduce some notation.  T  is the total set of all p53 
mutants under consideration.  During each active learning iteration, 
i , T  is broken up into three groups: (1) iKT , , p53 mutants with 
known activities; (2) iUT , , p53 mutants with unknown activities; 
and (3) iCT , , p53 mutants from iUT ,  chosen to be assayed. 

For the first experiment, the initial training set 1,KT  contained 
204 p53 mutants of known activity, and the initial test set 

1,UT contained 57 putative cancer rescue mutants of unknown 
activity.  Subsequently, after all mutants were predicted and as-
sayed, the total mutant set T  was divided into different initial 
training and test sets to explore how Active Learning methods 
behaved under different conditions. 

2.1 Active Learning Implementation 
At the beginning of each iteration, three mutants are chosen as 

iCT ,  by the Active Learning methods described in this section. 

2.1.1. Type I: Maximum Curiosity 
Maximum Curiosity scores each potential new training set, t , by 
its cross-validated correlation coefficient ( r ), calculated as in (1). 
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The r  for each potential new training set is used to determine 
which unclassified mutants resulted in the largest increase of r . 

Maximum Curiosity optimistically assumes that the highest 
r for each mutant, m , occurs when that mutant is correctly paired 
with its true activity, as per (2). 
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2.1.2. Type I: Composite Classifier 
Composite Classifier scores identically to Maximum Curiosity but 
the classifier is constructed using the methods discussed in Dan-
ziger et al., (2006).  This was done mainly to provide a direct com-
parison to our previously published results.  Briefly, the Composite 
Classifier breaks the 1D, 2D, 3D and 4D attributes up into four 
separate component classifiers.  3000 attributes are selected by 
Mutual Information (MI, Section 2.3) from the 2D set and the four 
classifiers are combined into all 15 possible combinations.  Each of 
these combinations is used to build a support vector machine com-
ponent classifier and given a vote weighted by its cross-validated 
accuracy in a composite naïve Bayes classifier. 

2.1.3. Type I: Improved Composite Classifier 
The Improved Composite Classifier differs from the original Com-
posite Classifier in how it selects attributes from the 9778 in the 
2D component classifier.  In this method, parts of the surface not in 
a promiscuous binding domain (defined in Friedler et al., 2005) are 
compressed resulting in 4,826 attributes.  400 features are then 
selected from those 4,826 attributes using Mutual Information. 
 

2.1.4. Type II: Additive Curiosity 
Additive Curiosity scores much like Maximum Curiosity except in 
the final step curiosity is calculated by adding the scores for each 
training set (3).  In this way the mutant chosen may be the most 
beneficial to the classifier regardless of its revealed activity. 
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2.1.5. Type II: Bayesian Surprise 
Baysian Surprise (Itti and Baldi, 2006) calculates the scores by 
summing the Kullbach-Leibler ( KL ) distance between a priori 
probability and a posteriori probability (4,5) across assumed active 
and inactive mutants. 

)/log(* priorposteriorposteriorKL =        (4) 

In this implementation, the prior probability is the cross-validated 
accuracy of the training set (

iKT ,
) and the posterior is that of the 

training set with the unclassified mutant ( )(, activitymT iK + ).   

 )()( ,, inactivemTactivemTm iKiK
KLKLsurprise ++ +=  (5) 

2.1.6. Type III: Minimum Marginal Hyperplane 
Minimum Marginal Hyperplane scores training sets based on how 
far new unclassified mutants are from the boundary (support vector 
machine hyperplane) separating active from inactive mutants.  In 
its simplest, linear form, a support vector machine creates a hyper-
plane and stores it as an associated normal vector ( w ).  New mu-
tants, described by an attribute vector ( D ), are evaluated by (6).  

Dw ⋅=µ        (6) 

If b>µ , where b  is some threshold, then the new mutant is as-
signed one class, otherwise it is assigned the other.  The margin for 
a new example is the difference between µ  and b .  It may be 
helpful to think of the margin as the distance from the new exam-
ple to the hyperplane.  The Minimum Marginal Hyperplane algo-
rithm assumes that the unclassified mutants closest to the dividing 
hyperplane will be the most informative to the classifier once the 
true class is known.  See Platt (1998) for more details on support 
vector machines. 

2.1.7. Type III: Maximum Entropy 
Maximum Entropy scores each training set by using the informa-
tion theory concept of entropy ( H ).  Entropy is calculated from 
the probability of class membership for each unclassified mutant, 
estimated by a support vector machine logistic regression algo-
rithm (Witten and Frank 2006). 

Formally, given the attributes for an unclassified mutant ( D ) 
and the model ( M ) constructed from the training set, H  is cal-
culated as shown in (7) (Jing et al., 2005). 

)),|(log(*),|(
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By choosing mutants with the highest H , Maximum Entropy 
assumes that the most informative mutants are those that the classi-
fier is most uncertain about. 
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2.1.8. Type IV: Maximum Marginal Hyperplane 
Maximum Marginal Hyperplane scores as in Section 2.1.6 but 
chooses mutants that are furthest from the dividing hyperplane.  

2.1.9. Type IV: Minimum Entropy 
Minimum Entropy scores as in Section 2.1.7 but chooses mutants 
that have the lowest possible H . 

2.1.10. Type IV: Entropic Tradeoff 
Entropic Tradeoff scores using entropy ( H ) as in Sections 2.1.7 
and 2.1.9, giving highest scores to training sets that include mu-
tants with both high and low H .      

If a classifier is both to learn quickly and predict accurately as it 
proceeds, the mutants chosen should be a mix of highly informa-
tive and easily predicted.  Here, the three mutants chosen are: 

(1) The mutant with the highest H . 
(2) The mutant with the lowest H  that is predicted inactive. 
(3) The mutant with the lowest H that is predicted active. 

If the classifier runs out of mutants that are predicted active or 
inactive, the algorithm chooses one mutant with the highest H  
and two mutants with the lowest H . 

2.2 In Vitro Experimentation 
All p53 mutants were evaluated using a well-established functional 
yeast assay for wild-type p53.  The assay findings have proven to 
correlate well with subsequent confirmatory studies in mammalian 
experiments (Baroni et al., 2004; Brachmann et al., 1998; Brach-
mann et al., 1996; Kobayashi et al., 2003; Qian et al., 2002). p53 
mutants are stably expressed from a CEN-based plasmid (one copy 
per cell) using the constitutive ADH1 promoter, thus resulting in 
very similar protein levels of p53 mutants. p53-dependent tran-
scriptional activity results in expression of the URA3 reporter gene 
due to an upstream consensus p53 DNA binding site. Yeast ex-
pressing URA3 will grow on yeast plates lacking uracil. 

All p53 cancer mutations not tested with N235K, N239Y and 
N235K+N239Y in our previous studies (Baroni et al., 2004; Dan-
ziger et al., 2006) were cloned into yeast expression plasmids con-
taining both the suppressor mutation(s) and a p53 cancer mutation 
marked by a unique restriction enzyme site. p53 cancer mutations 
upstream of N235K, N239Y or N235K+N239Y were cloned using 
EcoR V and Xba I. p53 cancer mutations downstream of the sup-
pressor mutations were cloned using Nsi I and Sac I. Correct clon-
ing for all constructs was confirmed by loss of the previously pre-
sent unique restriction enzyme site of a p53 cancer mutation 
(Baroni et al., 2004). 

2.3 Attribute Selection 
Attributes are generated from model p53 mutants constructed in 
silico from chain b of the wild-type p53 crystal structure (Cho et 
al., 1994) using Amber molecular modeling software (Case et al., 
2004).  These attributes include a 1D sequence perspective, a 2D 
steric and electrostatic surface map perspective, a 3D distance map 
perspective and a 4D stability perspective (Danziger et al., 2006).   

Compressing, normalizing and then concatenating attributes 
from these perspectives yields 5,867 attributes per mutant to de-
scribe less than 300 mutants.  To improve speed and generaliza-
tion, attributes were selected using the Conditional Mutual Infor-
mation Maximization (CMIM) algorithm.  Prior to learning, select-
ing X attributes and then cross-validating using overlap exclusion 

cross validation (OECV, see Danziger et al., 2006), we determined 
that 550 out of 5867 was the optimal number of attributes. 

CMIM is a method for determining which attributes are most in-
formative for classifying an example.  It is based around the Mu-
tual Information (MI) algorithm.  MI quantifies the change in in-
formation, I , by measuring the entropy ( H ) of the class A  
before and after attribute B  is known.  Conceptually, MI meas-
ures how much less random the class A  is if B  is known.  MI 
selects attributes with high I  values. 

MI is of limited utility in that highly correlated attributes will 
have very similar scores.  For example, given a 2D surface map, 
two points immediately next to each other would very likely pro-
vide almost exactly the same information and therefore have al-
most exactly the same I  value.  For an effective classifier, attrib-
utes should be as independent as possible (Witten and Frank, 
2006).   

CMIM solves this problem by answering the question “How 
much information does attribute C provide about class A given that 
attribute B is already known?”  Formally, this is shown in equa-
tions (8) and (9). 

),|()|()|,( CBAHCAHCBAI −=            (8) 

),(),,(),|( CBHCBAHCBAH −=             (9) 

Given the probabilities )...,( 1 neeP  of events 1e  through ne oc-
curring simultaneously, the I  provided by CMIM may be imple-
mented as shown in equation (10). 
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The first attribute chosen is that with the highest I  value as calcu-
lated using MI.  All following attributes are scored by calculating 
the CMIM I  value with respect to all attributes already chosen. 

More formally, let nX  be the vector of values for all mutants at 
attribute n , and let  v  be the sorted score vector for each of F  
attributes.  Start by initializing  v  using MI (11) and iteratively 
update the scores as attributes are chosen (12). 
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The CMIM algorithm was implemented using optimizations de-
scribed in Fleuret (2004), which gives fast an efficient execution. 
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2.4 Control 
To test if Active Learning methods are indeed useful, three differ-
ent control methods were used. 

The first control, Non-iterated Prediction, tested if Active Learn-
ing is more effective than no active learning at all.  It predicted all 
unclassified mutants ( 1,UT ) using the initial training set ( 1,KT ). 

The second control, Predict All Inactive, demonstrated the natu-
rally skewed data set by predicting 1,UT  as the most common 
class, inactive.  Because mutants that rescue p53 functionality are 
rare, the classifier could be highly accurate but utterly useless by 
always predicting mutants to be inactive.  In examining the results 
from this control, it is informative to consider the correlation coef-
ficient as well as the accuracy.  

The final control, Random (30 Trials) selects three mutants at 
random from 1,UT  during each iteration for 30 trials.  This tests if 
Active Learning methods are truly more effective than selecting 
the “most informative” examples at random.   

3 RESULTS  
This section shows how well each of the Active Learning tech-
niques predicted a set of 57 unclassified putative p53 cancer rescue 
mutants using a training set of 204 mutant.  The results for the 
Active Learning method that performed best, Maximum Curiosity, 
are presented in Table 1; the in vitro assay results are presented in 
Fig. 1; and the summary prediction statistics for all Active Learn-
ing methods are presented in Table 2. 
 
Table 1. p53 Cancer Rescue Mutants Predicted Using Maximum Curiosity.   
 

Cancer Mutation N235K N239Y N235K+N239Y 
C135Y I I I 
C141Y (A) I A 
P151S I I I 
V157F (A) (A) A 
R158L (A) (A) A 
V173L (I) (A) A 
R175H I I I 
C176F I I I 
H179R I I I 
H179Y I I I 
Y205C (A) (I) A 
Y220C (A) (A) A 
G245C (I) (A) A 
G245D I I I 
G245S (I) (A) A 
R248Q I I I 
R248L I I I 
R248W I I I 
R249M (I) (A) A 
R249S I I I 
V272M (A) (A) A 
R273C (I) (I) I 
R273H (I) (I) A 
R273L (I) (I) I 
P278L I I I 
R280T I I I 
R282W I I I 
E285K (I) NA NA 
E286K (A) (I) I 

“A” indicates active and “I“ inactive as determined by the yeast assays.  Italicized 
yeast phenotypes in parentheses are for p53 mutants that were part of the training set.  
NA means not assayed.  Mutants highlighted in blue were predicted correctly by the 
Maximum Curiosity classifier while those in yellow were predicted incorrectly. 

Fig. 1. Yeast growth results for p53 mutants tested in this experiment.  p53-
dependent transcriptional activity results in URA3 expression and growth at 
37˚C on yeast plates lacking uracil.  

Table 2. Classifier Accuracy Predicting 3 Mutants at a Time 

 
  204 Predicts 57 

Type Method Accuracy Correlation 
Coefficient Student-T  

I Maximum 
Curiosity 77.19% +/- 5.61% .5255 0.00% 

I Composite 
Classifier 70.18%  +/- 6.11% .4447 100.0% 

I 
Improved 
Composite 
Classifier 

71.93% +/- 6.00% 
.4637 

100.0% 

II 
Additive 
Curiosity 

73.68% +/- 5.88% .3857 99.81% 

II 
Additive 
Bayesian 
Surprise 

73.68% +/- 5.88% 
.4342 

99.81% 

III 
Minimum 
Marginal 
Hyperplane 

64.91% +/- 6.38% 
.2845 

100.0% 

III 
Maximum 
Entropy 

64.91% +/- 6.38% 
.2845 

100.0% 

IV 
Maximum 
Marginal 
Hyperplane* 

78.95% +/- 5.45% 
.3699 

90.42% 

IV 
Minimum 
Entropy* 

77.19% +/- 5.61% .3406 0.00% 

IV 
Entropic 
Tradeoff* 

80.70 % +/- 5.27% .4860 
99.89% 

C 
Non-iterated 
Prediction 

56.14% +/- 6.63% 
.2530 

100.0% 
 

C 
Predict All 
Inactive 

80.70% +/- 5.27% 
.0000 

99.89% 

C 
Random (30 
trials) 

74.39% +/- 3.87% 
.3550 +/- .0992 

99.24% 
+/- 2.89% 

The bold and italicized Accuracy and Correlation Coefficient highlight the best and 
second best scores on 

iCT ,
, respectively (excluding Predict All Inactive).  All accura-

cies were calculated by treating each prediction as a separate test for accuracy, and all 
accuracies show the standard error, except for Random (30 trials) which shows the 
standard deviation.  The Student-T percentage was calculated from the mean and 
standard deviation to determine statistical difference from Maximum Curiosity.  Type 
“C” means a control type of active learning. Methods marked * were developed after 
the double-blind predictions.  
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4 ANALYSIS 
When exploring a mutation sequence space of medical importance, 
such as the cancer rescue mutants in this paper, there are two 
things that are desired greatly by the biological researcher: (1) to 
improve the classifier as quickly as possible (Section 4.1); and (2) 
to identify as many novel functionally active mutants as possible 
(Section 4.2).  For the most effective discovery, the Active Learn-
ing method should perform well in both criteria (Section 4.3).  

The Type 1 methods Composite Classifier and Improved Com-
posite Classifier from Danziger et al.(2006) were omitted from 
analysis in this section as they are computationally very expensive 
and theoretically very similar to Maximum Curiosity.   

4.1 The Quickest  
For most Active Learning, the goal is to train a classifier as quickly 
as possible by using the smallest number of examples to reach 
maximum accuracy.  Here we define the forward prediction accu-
racy as the classifier accuracy predicting all remaining unclassified 
mutants ( iUT , ) during each training iterations.  To evaluate the 
forward prediction accuracy of each Active Learning method while 
starting with different size training sets, two additional partitions of 
the 261 mutants in T  were constructed.  One partition used the 
123 mutants known in Danziger et al. (2006) as the training set 

1,KT  to predict the other 138 mutants as 1,UT .  The other parti-
tion assigned all 25 single amino acid mutants as 1,KT to predict 
the other 236 mutants as 1,UT .  The results of these trials are pre-
sented in Table 3. 

To better illustrate Active Learning behavior, the forward pre-
diction accuracy for each Active Learning method using 25 mu-
tants as 1,KT is plotted in Fig. 2.  From this figure, Type III meth-
ods Minimum Marginal Hyperplane and Maximum Entropy 
achieve the highest accuracy the most rapidly.  This is not surpris-
ing as Type III Active Learning methods use the decision boundary 
to choose the hardest mutants to predict during each iteration.  

Therefore, as expected, Type IV methods Maximum Marginal 
Hyperplane and Minimum Entropy failed to achieve high accuracy 
rapidly.  Interestingly, the Type I method, Maximum Curiosity, 
learns nearly as quickly as the Type II methods. 

Fig. 2. Accuracy predicting the remaining unclassified mutants at each 
iteration using an initial set of 25 known mutants.  A scree test on the one 
standard deviation error bars from Random (30 trials) was used to truncate 
the graph at 61 of 79 iterations. 

4.2 The Most Accurate and the Positive Predictive Value 
The long term goals of this p53 cancer rescue mutant study involve 
iteratively and correctly identifying new active p53 mutants to be 
verified using in vitro assays.  Active Learning, here choosing 3 
unclassified mutants at a time, is essentially a scaled down version 
of this larger project.  Therefore, the 3-pt. Classifier Accuracy, the 
accuracy predicting the three mutants chosen at the beginning of 
each Active Learning iteration, icT ,  (Table 4), is an indicator of 
how this study will progress toward accurate classifiers. 
 

Table 3. Active Learning Across Varying Data Sets 

  25 Predicts 236 123 Predicts 138 204 Predicts 57 
Type Method Accuracy Area Under The Curve Accuracy Area Under The Curve Accuracy Area Under The Curve 

I 
Maximum 
Curiosity 

.7274 +/- .0046 .7700 +/- .0094 .7410 +/- .0077 .7891 +/- .0140 .7246 +/- .0187 .7722 +/- .0254 

II 
Additive 
Curiosity 

.7018 +/- .0047 .7364 +/- .0087 .6835 +/- .0082 .7387 +/- .0158 .7316 +/- .0186 .7900 +/- .0291 

II 
Additive 
Bayesian 
Surprise 

.6674 +/- .0049 
.7068 +/- .0090 

.7095 +/- .0080 
.7637 +/- .0160 

.7456 +/- .0182 
.8054 +/- .0291 

III 
Minimum 
Marginal 
Hyperplane 

.7250 +/- .0046 
.7780 +/- .0124 

.7475 +/- .0076 
.8246 +/- .0207 

.7193 +/- .0188 
.8141 +/- .0425 

III 
Maximum 
Entropy 

.7507 +/- .0045 .8118 +/- .0122 .7348 +/- .0078 .8089 +/- .0199 .7544 +/- .0180 .8354 +/- .0359 

IV 
Maximum 
Marginal 
Hyperplane 

.6440 +/- .0049 
.6621 +/- .0049 

.6432 +/- .0084 
.6803 +/- .0166 

.6122 +/- .0204 
.6192 +/- .0178 

IV 
Minimum 
Entropy 

.6156 +/- .0050 .5959 +/- .0060 .6392 +/- .0084 .6530 +/- .0130 .6158 +/- .0204 .5902 +/- .0222 

IV 
Entropic 
Tradeoff 

.6965 +/- .0047 .7139 +/- .0058 .7058 +/- .0080 .7423 +/- .0122 .7456 +/- .0182 .8044 +/- .0272 

C 
Random (30 
trials) 

.6700 +/- .0141 .6922 +/- .0237 .6931 +/- .0231 .7326 +- .0231 .6950 +/- .0331 .7392 +/- .0372 

“25 Predicts 236” uses the 25 mutants with single point mutations as the initial training set and iteratively predicts the remaining 236 mutants in sets of 3.  Similarly, “123 
Predicts 138” uses the 123 mutants known in Danziger et al. (2006) to predict the remaining 138 mutants.  “204 Predicts 57” is the data set discussed in Section 3.  Accuracy is 
the forward prediction accuracy discussed in Section 4.1  weighted by how many mutants are predicted in each iterations.  Area Under The Curve is the average forward predic-
tion accuracy for all iterations.  The bolded and italicized Accuracy and Area Under The Curve highlight the best and second best scoring classifiers (respectively) for each 
data set.  All errors show the standard error, except for Random (30 trials) which shows the standard deviation.   Type “C” means a control type of Active Learning.  
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Table 4. 3-pt. Classifier Accuracy  

Type Method 25 Predicts 
236 

123 Predicts 
138 

204 Predicts 
57 Average 

I Maximum 
Curiosity 0.6525 0.7391 0.7719 0.7211 

II 
Additive 
Curiosity 0.6313 0.7101 0.7368 0.6927 

II 
Additive 
Bayesian 
Surprise 

0.6398 0.7246 0.7368 0.7004 

III 
Minimum 
Marginal 

Hyperplane 
0.6483 0.6522 0.6491 0.6498 

III 
Maximum 
Entropy 0.6652 0.6667 0.6491 0.6603 

IV 
Maximum 
Marginal 

Hyperplane 
0.6992 0.6956 0.8070 0.7339 

IV 
Minimum 
Entropy 0.70339 0.7681 0.7895 0.7536 

IV 
Entropic 
Tradeoff 0.7119 0.7681 0.7719 0.7506 

C 
Random (30 

trials) 0.6900 0.7374 0.7439 0.7237 

The classifier accuracies predicting the three mutants chosen during each iteration.  
The bold and italicized scores highlight the highest scoring and second highest scor-
ing Active Learning methods in each column, respectively.   

However, for a classifier to find new cancer rescue mutants ef-
fectively, functionally active mutants must be predicted as accu-
rately as possible.  That is to say, true positives ( tp ) are more 
important than true negatives ( tn ) for the classifier to be useful.  
Therefore, a good way to evaluate a classifier is to use the Positive 
Predictive Value ( PPV ), shown in (13), as well as accuracy. 
 

(13) 
 

Table 5 shows the 3-pt. PPV (Section 4.2) from predicting the 
three mutants selected at the beginning of each iteration. 

Table 5. 3-pt. PPV 

Type Method 25 Predicts 
236 

123 Predicts 
138 

204 Predicts 
57 Average 

I Maximum 
Curiosity 0.4875 0.4687 0.4545 0.4702 

II 
Additive 
Curiosity 0.4533 0.4250 0.4000 0.4261 

II 
Additive 
Bayesian 
Surprise 

0.4658 0.4500 0.4090 0.4416 

III 
Minimum 
Marginal 
Hyperplane 

0.4789 0.3158 0.3200 0.3716 

III 
Maximum 
Entropy 0.5116 0.3333 0.3200 0.3883 

IV 
Maximum 
Marginal 
Hyperplane 

0.5672 0.3824 0.5000 0.4832 

IV 
Minimum 
Entropy 0.5676 0.5333 0.4167 0.5059 

IV 
Entropic 
Tradeoff 0.5857 0.5333 0.4286 0.5159 

C 
Random (30 
trials) 0.5377 0.4682 0.3993 0.4684 

The PPV calculated on the three mutants chosen during each iteration.  The bold and 
italicized scores highlight the highest scoring and second highest scoring Active 
Learning methods in each column, respectively.   

To a certain extent, the values shown in Table 4 and Table 5 rep-
resent an unfair comparison.  Since each Active Learning method 
selects mutants in a different order, all of the mutants except the 
first three, 1,cT , are predicted using different training sets.  To 
partially correct for this, Table 6 shows the Unclassified PPV , 
calculated by predicting all unclassified mutants, iUT ,  that do not 
appear in the training set for any method at iteration i  . 

Table 6. Unclassified PPV 

Type Method 25 Predicts 
236 

123 Predicts 
138 

204 Predicts 
57 Average 

I Maximum 
Curiosity 0.4595 0.3918 0.3556 0.4023 

II 
Additive 
Curiosity 0.4946 0.3669 0.3261 0.3959 

II 
Additive 
Bayesian 
Surprise 

0.4962 0.3745 0.3261 0.3989 

III 
Minimum 
Marginal 

Hyperplane 
0.4450 0.3964 0.3333 0.3916 

III 
Maximum 
Entropy 0.4895 0.4120 0.3298 0.4104 

IV 
Maximum 
Marginal 

Hyperplane 
0.4854 0.3148 0.3529 0.3844 

IV 
Minimum 
Entropy 0.4816 0.3667 0.3253 0.3912 

IV 
Entropic 
Tradeoff 0.4258 0.3599 0.3086 0.3648 

The PPV was determined for all unclassified mutants at each iteration that did not 
appear in any training set at that iteration.  The bold and italicized scores highlight the 
highest scoring and second highest scoring Active Learning methods, respectively.  
Random (30 trials) was omitted from this scoring method because 30 additional classi-
fiers would prematurely eliminate too many mutants from consideration. 

Across all methods for determining the most useful Active 
Learning method, the three Type IV Active Learning methods and 
the Type I Maximum Curiosity tend to do best. 

4.3 Overall Best Methods 
If some Active Learning methods perform better at learning 
quickly, but other methods perform well at finding active mutants, 
which method is best?  In this context, there is no clear theoretical 
framework for quantifying speed versus accuracy.  However, there 
are (at least) three reasonable metrics that combine the accuracy 
presented in Section 4.1 ( 1acc ) with any of the measures pre-
sented in Section 4.2 ( 2acc ). 

(1) Distance From an Ideal Classifier:  Assume an ideal clas-
sifier with the maximum possible accuracies, i.e. 

121 == accacc .  Then Euclidean distance from this 
ideal classifier is described in (14) and shown in Fig 3. 

 
(14) 

(2) Maximum Area:  If 1acc and 2acc are assumed to be or-
thogonal measures, like the width and height of a rectangle, 
then a good measure would be the resulting area as de-
scribed in (15) and shown in Fig 4. 

(15) 
(3) Average Accuracy: If 1acc  and 2acc  are assumed to be 

interchangeable in terms of usefulness, then the best classi-
fier could be found by adding them as shown in (16) and 
shown in Fig 5. 

(16) 

)/( fptptpPPV +=

2/)21( accaccAverage +=

22 )21()11(tan accaccceDis −+−=

2*1 accaccArea =
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Fig 3. The Active Learning methods, ordered left to right: Type I - Maxi-
mum Curiosity, Type IV - Entropic Tradeoff, Type C - Random (30 trials), 
Type IV - Minimum Entropy, Type III - Maximum Entropy, Type IV - 
Maximum Marginal Hyperplane, Type II - Additive Bayesian Surprise, 
Type III - Minimum Marginal Hyperplane, and Type II - Additive Curios-
ity, evaluated using Average Accuracy.  Shorter distances are better. 

Fig 4. The Active Learning methods as described in Fig 3 evaluated using 
the Maximum Area metric.  Larger areas are better. 

To merge Figs. 3, 4 and 5, each Active Learning method was or-
dered and assigned points based on how well it performed for each 
metric relative to the other methods.  For example, if there were 
eight methods, the highest rated method scored 7 points, the sec-
ond highest 6, and so on, until the lowest rated method received 0 
points.  Table 7 ranks each Active Learning method based on the 
average number of points per category, revealing the top 3 Active 
Learning Methods to be Maximum Curiosity, Entropic Tradeoff, 
and Random (30 trials).  

4.3.1. Maximum Curiosity 
Maximum Curiosity was the overall best ranked Active Learning 
method.  It performed well, usually at least third best according to 
any scoring metrics.  However it is computationally slow, requir-
ing a separate cross-validation for each unclassified mutant. 

Fig 5.  The Active Learning methods as described in Fig 3 evaluated using 
the Average Accuracy metric.  Larger scores are better. 

Table 7. Overall Average Rank 

Rank Method Average 
Score 

1 Maximum Curiosity 6.11 
2 Entropic Tradeoff 5.56 
3 Random (30 trials) 5.50 
4 Minimum Entropy 4.44 
5 Maximum Marginal Hyperplane 3.22 
6 Maximum Entropy 3.22 
7 Additive Bayesian Surprise 2.89 

8 Minimum Marginal Hyperplane 2.33 

9 Additive Curiosity 1.89 

The average score for each Active Learning Method, calculated based on the rank of 
each classifier scored in Figs 3, 4 and 5.   

4.3.2. Entropic Tradeoff 
As per Figs 4 and 5, Type IV methods, including Entropic Trade-
off, accurately predict the three mutants chosen each iteration 
while performing no worse than random at learning quickly.  En-
tropic Tradeoff’s primary advantages are computational speed and 
that it can be tuned by adjusting the ratio of high entropy to low 
entropy mutants chosen. 

4.3.3. Random (30 trials) 
Perhaps the most surprising result is that picking mutants at ran-
dom did so well.  We hypothesize that other methods tend to get 
stuck in local minima, wasting iterations disproving false hypothe-
ses.  Previous research has shown that Random Active Learning is 
only initially more accurate (Tong et al., 2001).  Therefore, 261 
mutants may be too few data points to reveal this disadvantage.   

5 CONCLUSION 
This paper demonstrated the use of computer models and Active 
Learning to guide the exploration of p53 cancer rescue mutants.  
Follow up studies will proceed by identifying interesting clusters 
of putative p53 cancer rescue mutants.  The p53 classifier will 
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iteratively identify interesting mutants which biologists will syn-
thesize and test them, until cancer rescue mutants have been ex-
plored for the top 100 p53 mutants found in human cancers. 

It is expected that random Active Learning will become much 
less useful as the experiments progress into larger mutant spaces.  
Therefore, further experiments will use Maximum Curiosity and 
Entropic Tradeoff depending on the computational load to process 
mutants in the pool currently under consideration.  

Ultimately, this research will help others studying mutant pro-
tein function using crystal structures.  The techniques described 
here will help reveal mutants with a desired function from a larger 
pool of candidates.  This would be useful for any similar experi-
ment program exploring a large sequence space of expensive bio-
logical data.   
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