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The fundamental importance of the 26S proteasome in health and
disease suggests that its function must be finely controlled, and
yet our knowledge about proteasome regulation remains limited.
Posttranslational modifications, especially phosphorylation, of
proteasome subunits have been shown to impact proteasome
function through different mechanisms, although the vast major-
ity of proteasome phosphorylation events have not been studied.
Here, we have characterized 1 of the most frequently detected
proteasome phosphosites, namely Ser361 of Rpn1, a base subunit of
the 19S regulatory particle. Using a variety of approaches including
CRISPR/Cas9-mediated gene editing and quantitative mass spec-
trometry, we found that loss of Rpn1-S361 phosphorylation reduces
proteasome activity, impairs cell proliferation, and causes oxidative
stress as well as mitochondrial dysfunction. A screen of the human
kinome identified several kinases including PIM1/2/3 that catalyze
S361 phosphorylation, while its level is reversibly controlled by the
proteasome-resident phosphatase, UBLCP1. Mechanistically, Rpn1-
S361 phosphorylation is required for proper assembly of the 26S
proteasome, andwe have utilized a genetic code expansion system to
directly demonstrate that S361-phosphorylated Rpn1 more readily
forms a precursor complex with Rpt2, 1 of the first steps of 19S base
assembly. These findings have revealed a prevalent and biologically
important mechanism governing proteasome formation and function.

proteasome | phosphorylation | UBLCP1 | PIM | genetic code expansion

The ubiquitin-proteasome system (UPS) is responsible for
selective degradation of the majority of cellular proteins in

eukaryotes (1). Protein substrates to be degraded are often pol-
yubiquitinated and then captured, unfolded, and digested by the 26S
proteasome, an ATP-driven machinery that is essential for cell viability
(2, 3). In addition to its well-established roles in cell cycle regulation
and signal transduction, the proteasome is also important for regu-
lating the dynamics and fitness of organelles such as mitochondria and
the endoplasmic reticulum (ER), which are key to the maintenance of
cellular homeostasis (4–7). However, proteasome dysregulation under
a variety of stress conditions has been considered an underly-
ing mechanism of aging and certain diseases (8–12). Therefore,
uncovering and understanding the mechanisms of proteasome
regulation is of both biological importance and clinical relevance.
Proteasomal degradation of substrates takes place within the

20S core particle (CP) of the proteasome complex, which houses
caspase-like, trypsin-like, and chymotrypsin-like peptidase activi-
ties. The free 20S CP is a closed cylindrical structure with low or no
activity toward protein substrates. Binding of the 19S regulatory
particle (RP) at 1 or both ends of the 20S CP leads to CP acti-
vation with the formation of singly capped (26S) or doubly capped
(30S) proteasome holoenzyme competent for efficient protein
degradation. The 19S RP consists of a “lid” and a “base,” and the
latter is formed by 6 AAA+ type ATPases (Rpt1–6) plus 3 non-
ATPase subunits Rpn1/2/13. Base assembly starts with 3 modules,

each containing a pair of Rpt subunits, namely Rpt1-Rpt2-Rpn1-
S5b, Rpt3-Rpt6-p28-PAAF1, and Rpt4-Rpt5-p27, with S5b, p28,
PAAF1, and p27 being specific chaperone proteins (13–16). Joining
of these precursor complexes as well as sequential leaving of the
chaperones leads to formation of the base, and subsequent in-
corporation of the remaining Rpn subunits completes 19S RP
assembly (2, 17–19).
Rpn1 of the 19S base is 1 of the 3 proteasome subunits (the other

2 being Rpn10 and Rpn13) that function as receptors of ubiquitin
and proteins with ubiquitin-like (UBL) domains (2). Rpn1 was re-
cently found to possess 2 adjacent regions designated as T1 and T2
(for toroid 1 and 2, respectively). T1 is the receptor site for ubiquitin
and certain UBL domain proteins such as Rad23, while T2 is the
binding site of USP14, a well-studied proteasome-associated deubi-
quitinating enzyme with a UBL domain (20). Despite the critical
requirement of Rpn1 for proteasome formation and function, little is
known about its regulation, and its structural details have been vague
in currently available cryo-electron microscopy models (21–24).
The proteasome has been shown to be regulated by multi-

ple mechanisms (19, 25, 26), 1 of which is reversible protein
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phosphorylation (27, 28). Several proteasome kinases have been
identified, such CaMKIIα, PKA, and DYRK2 (29–32). Consid-
ering that the vast majority of the over 400 known phosphosites
of the human 26S proteasome have not been characterized, it is
highly likely that many more proteasome kinases await discovery.
Proteasome phosphorylation is also reversibly controlled by phos-
phatases such as UBLCP1 (ubiquitin-like domain containing CTD
phosphatase 1, ref. 33). As the only member of the human phos-
phatome that harbors a UBL domain (34), UBLCP1 is directly and
specifically recognized by Rpn1 (33, 35). UBLCP1-mediated de-
phosphorylation down-regulates proteasome activity by interfering
with proteasome assembly (33, 36). However, the exact protea-
some phosphosite(s) targeted by UBLCP1 has been unknown.
Here, we provide evidence that Rpn1-Ser361 is a prevalent

phosphosite that is required for proper assembly and activity of

the 26S proteasome. We have identified multiple kinases, in-
cluding PIM1/2/3, that can phosphorylate Rpn1-S361 and have
demonstrated that UBLCP1 is a physiologically relevant phospha-
tase of this site. Blocking phosphorylation of Rpn1-S361 leads to
slowed proliferation and mitochondrial dysfunction. Our data have
thus expanded our current knowledge of proteasome regulators
and the biological meanings of proteasome phosphoregulation.

Results
Rpn1-Ser361 Is a Conserved and Prevalent Proteasome Phosphosite.
A survey of the PhosphoSitePlus database reveals that Rpn1-
Ser361 is among the top 10 most frequently detected human
proteasome pS/pT sites by mass spectrometry that are conserved
in vertebrates (Fig. 1 A and B and ref. 27). We purified pro-
teasomes from cells stably expressing the Rpn11 subunit with a

A B
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Fig. 1. Rpn1-S361 is a conserved phosphosite regulating proteasome activity. (A) Top 10 pS/pT sites of human 26S proteasome that are most frequently
detected by mass spectrometry. Rpn1-S361 is highlighted. (B) Alignment and conservation of Rpn1 sequences flanking the S361 site (indicated by an asterisk).
Accession numbers of the sequences are NP_002799 (Homo sapiens), NP_598862 (Mus musculus), NP_001026809 (Rattus norvegicus), NP_001094667 (Bos
taurus), NP_001084631 (Xenopus laevis), NP_956840 (Danio rerio), NP_649158 (Drosophila melanogaster), NP_501064 (C. elegans), and NP_011892 (Saccha-
romyces cerevisiae). (C) Proteasomes were isolated by streptavidin pulldown from the indicated cell lines stably expressing Rpn11-TBHA. Samples were treated
with or without λ-phosphatase, and endogenous Rpn1-pS361 was determined by Western blot. (D) For generating Rpn1-S361A knock-in, 2 target sequences
(downward arrows) flanking exons 9 and 10 of the PSMD2 gene (encoding Rpn1) were chosen for CRISPR/Cas9-mediated gene editing. (E) Rpn1-S361A
mutation in 2 independent clones of HaCaT cells (#1 and #2) and in a representative clone of HeLa cells was confirmed by Western blot as in C. P, parental
cells. SA, S361A knock-in. (F) Proteasome activity from the same HaCaT and HeLa cells in E was measured with the fluorogenic peptide substrate Suc-LLVY-
AMC. Results are presented as mean ± SD **P < 0.01; ***P < 0.001 from 2-tailed paired Student’s t test (3 independent experiments for each cell type). (G and
H) Parental and knock-in cells were transfected with the GFPu (G) or GFPodc (H) reporters and treated with cycloheximide (CHX, 50 μg/mL) for the indicated
time course. GFP levels from whole-cell extracts were determined by Western blot and quantified (H). **P < 0.01 from 2-tailed paired Student’s t test (n = 3).
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TBHA tag (TEV site-biotinylation sequence-HA tag, ref. 31),
and S361 phosphorylation of copurified endogenous Rpn1 was
readily detected from multiple human and mouse cell lines using
a rabbit monoclonal phospho-specific antibody generated toward
this site (Fig. 1C and SI Appendix, Fig. S1 A–C). Rpn1-S361
phosphorylation was also found in mouse brain homogenates
(see Fig. 4C), consistent with its wide distribution in various
mouse organs (ref. 37 and SI Appendix, Fig. S1D). Moreover, the
pS361 level in human embryonic stem cells (ESCs) dropped
considerably after differentiation (SI Appendix, Fig. S1E). These
initial observations indicate that Rpn1-S361 phosphorylation is
present in a broad range of cell types and can be dynamically
regulated.
To characterize the biochemical and biological functions of

Rpn1-S361 phosphorylation, we introduced the S361A mutation
in HeLa and HaCaT cells (immortalized human keratinocytes) using
CRISPR/Cas9-mediated gene editing (Fig. 1D). S361 phosphoryla-
tion was abrogated in these cells while the Rpn1 protein level was
unchanged (Fig. 1E). Loss of S361 phosphorylation significantly re-
duced all 3 proteasome peptidase activities in cell extracts as de-
termined by the fluorogenic peptide substrates Suc-LLVY-AMC (for
chymotrypsin-like activity, Fig. 1F), Z-LLE-AMC, and Boc-LRR-
AMC (for caspase-like and trypsin-like activities, respectively, SI
Appendix, Fig. S1F). Proteasomal degradation of folded protein
substrates such as GFPu (38) and GFPodc (39) was also impeded in
S361A cells (Fig. 1 G and H). Similar results were seen in different
cell types (SI Appendix, Fig. S1 G and H). Moreover, we noted
prominent accumulation of proteins modified by K48-linked poly-
ubiquitin chains in 293A cells harboring heterozygous S361A knock-
in (SI Appendix, Fig. S1I). These results suggest that Rpn1-S361
phosphorylation is necessary for proper proteasome function in cells.

Loss of Rpn1-Ser361 Phosphorylation Impairs Cellular Fitness. To
systematically assess the biological significance of Rpn1-S361
phosphorylation, we performed quantitative proteome analysis
on HaCaT parental and S361A cells using the SILAC (stable
isotope labeling by amino acids in cell culture) label-swap ap-
proach, which is generally considered as the most accurate
technology for relative protein quantification (Fig. 2A and SI
Appendix, Fig. S2A). A total of 5,068 proteins were confidently
quantified in 4 biological samples (Dataset S1). Proteins with
significant changes in expression were selected according to fold
change > 1.5 and P value <0.05 determined with 2-tailed Stu-
dent’s t test. Based on these criteria, 212 proteins were up-
regulated and 162 proteins were down-regulated in the S361A
cells (Fig. 2B and Datasets S2 and S3). The increased levels of
some proteins were further validated through Western blotting,
highly consistent with the proteome results (Fig. 2C). Gene
Ontology (GO) analysis of the altered proteins showed their
broad involvement in cell cycle regulation, apoptosis, adhesion,
signal transduction, metabolism, and protein degradation,
reflecting the vast activities governed by the 26S proteasome.
Almost all of the up-regulated proteins in HaCaT-S361A cells
can be ubiquitinated (https://www.phosphosite.org), and their
accumulation might have been a direct result of the overall
weakening of proteasomal degradation. Notably, according to
GO analysis, the up-regulated proteins were significantly
enriched in cellular components such as mitochondria and ER
and in processes such as oxidation-reduction and lipid metabo-
lism (Fig. 2D). This suggests that loss of Rpn1-S361 phosphor-
ylation could lead to perturbed mitochondrial/ER functions in
these cells. Indeed, the mitochondria in S361A cells appeared
more fragmented with impaired bioenergetic capacity compared
to those in WT cells (Fig. 2E and SI Appendix, Fig. S2 B and C).
Consistently, the maximal oxygen consumption rate (OCR) was
drastically reduced in the knock-in cells (Fig. 2F), while the
amount of glutathionylated proteins increased, indicative of ox-
idative stress (Fig. 2G). In addition, the mutant cells also

exhibited reduced glycolysis (SI Appendix, Fig. S2D). These
findings underscore the importance of Rpn1-S361 phosphoryla-
tion in supporting cellular metabolism and redox homeostasis.
Moreover, S361A cells exhibited prolonged cell cycle with evi-
dent accumulation/stabilization of cell cycle inhibitors such as
p21Cip1 and p27Kip1 (Fig. 2 C and H and SI Appendix, Fig. S2 E–
I). All these changes led to a marked reduction in cell pro-
liferation and viability (Fig. 2I), further highlighting the impor-
tance of Rpn1-S361 phosphorylation for cellular fitness.

Multiple Kinases Including PIM1/2/3 Regulate Rpn1-S361 Phosphorylation.
The functional importance of Rpn1-S361 phosphorylation in-
dicates the necessity for maintaining its proper level in cells.
We therefore screened a human kinome cDNA library (40) to
identify the Rpn1-S361 kinase(s). 293T cells stably overexpressing
Rpn1-TBHA were transfected with individual kinase cDNAs,
and an ELISA-based system was devised to capture and detect
pS361 from each cell extract (Fig. 3A). More than a dozen ki-
nases, when transiently overexpressed, were found to markedly
increase S361 phosphorylation (Fig. 3 B and C). Seven of these
kinases (PIM1/2/3, MAP4K1/2, PKA, and NEK6) directly and
robustly phosphorylated recombinant GST-Rpn1 at S361 in vitro
(Fig. 3D and SI Appendix, Fig. S3 A and B). Loss-of-function
studies showed that simultaneous disruption of PIM1, 2, and
3 (PIM triple KO or tKO) in 293T cells decreased, although
did not abolish, endogenous S361 phosphorylation, whereas
knockout or inhibition of the other candidate kinases alone or
in combination had no discernable effect on pS361 level (Fig.
3E and SI Appendix, Fig. S3 C–G). Importantly, PIM1/2/3 tKO
cells exhibited lowered proteasome activity as seen in S361A
knock-in cells (Fig. 3 F and G), while overexpression of WT
PIM1, but not the kinase-deficient mutant (K67R), enhanced
proteasomal degradation of the GFPu reporter (Fig. 3H).
These results are in agreement with the role of Rpn1-S361
phosphorylation and support PIM1/2/3 as the major (albeit
not the only) S361 kinases.

UBLCP1 Dephosphorylates Rpn1-pS361. We next searched for the
pS361 phosphatase and UBLCP1 naturally became our top
candidate, not only because it is the only known proteasome-
resident phosphatase but also because Rpn1 is the very protea-
some subunit that UBLCP1 directly binds (33). Four lines of
evidence substantiated the role of UBLCP1 in regulating pS361.
First, in in vitro phosphatase assays, bacterially expressed WT
UBLCP1, but not the catalytically dead mutant (D143A), ef-
fectively dephosphorylated pS361 of Rpn1 affinity-purified from
293T cells (Fig. 4A and SI Appendix, Fig. S4A). UBLCP1 was
also capable of dephosphorylating a Rpn1-derived phospho-
peptide harboring pS361 (SI Appendix, Fig. S4B), demonstrating
that Rpn1-pS361 is a direct substrate of UBLCP1.
Second, we generated Ublcp1 KO mice and evaluated the level

of endogenous Rpn1-pS361. To facilitate detection of endogenous
pS361, we crossed Ublcp1−/− mice with Rpn11-TBHA knock-in
mice (Psmd14TBHA, also generated in our laboratory) to obtain
Ublcp1+/+;Psmd14+/TBHA and Ublcp1−/−; Psmd14+/TBHA animals
(Fig. 4B). Endogenous proteasomes were then affinity purified
from lysates of cerebellar tissues of littermates. Rpn1-S361 phos-
phorylation was readily detectable from the brain proteasomes,
with a 3-fold increase in UBLCP1-null mice compared to WT
control (Fig. 4C). A similar increase in pS361 was observed when
UBLCP1 was disrupted in 293T and Py8119 cells (a mouse breast
cancer cell line) by CRISPR/Cas9 (Fig. 4D and SI Appendix, Fig.
S4 C–E). Moreover, a specific UBLCP1 inhibitor, Compound 13
(41), as well as the generic UBLCP1 inhibitor BeCl2 also led to
enhanced S361 phosphorylation in control cells but failed to fur-
ther augment the phosphorylation in UBLCP1 KO cells (SI Ap-
pendix, Fig. S4E). Together, these loss-of-function data demonstrate
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that UBLCP1 is a physiologically relevant phosphatase that de-
phosphorylates Rpn1-pS361 in vivo.
Third, mutation of the Rpn1-T2 region essentially abrogated

USP14 interaction as reported (20) and also greatly reduced
UBLCP1 binding (SI Appendix, Fig. S4 F and G), suggesting a
very similar mode employed by Rpn1 for binding these 2 proteins
with highly homologous UBL domains (SI Appendix, Fig. S4H and
ref. 33). Consistent with its weakened interaction with UBLCP1,
the Rpn1-T2 mutant showed elevated S361 phosphorylation
compared to control (Fig. 4D). Importantly, such a difference in
pS361 was not observed when the Rpn1 variants were expressed in
UBLCP1 KO cells (Fig. 4D). These data again strongly support
UBLCP1 as a Rpn1-pS361 phosphatase.

Fourth, we confirmed that knockdown of UBLCP1 enhanced
nuclear proteasome peptidase activity in control cells as shown
before (Fig. 4E and ref. 33). However, the S361A cells no longer
responded to UBLCP1 depletion (Fig. 4E), suggesting that Rpn1-
S361 is a major phosphosite through which UBLCP1 regulates
proteasome function.

Rpn1-S361 Phosphorylation Facilitates Rpn1-Rpt2 Subcomplex
Formation. UBLCP1 negatively regulates proteasome activity by
restricting 26S proteasome assembly (33, 36), and the above data
suggest that this function of UBLCP1 might be achieved through
controlling Rpn1-S361 phosphorylation. To test this hypothesis
and define how S361 phosphorylation regulates proteasome
function, we examined the proteasome complexes in parental
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Fig. 2. Loss of Rpn1-S361 phosphorylation impairs cell homeostasis and viability. (A) Outline of the SILAC method for comparing whole cell lysates (WCL) of
HaCaT parental and S361A cells. (B) Volcano plot of the proteome results. Proteins significantly up-regulated or down-regulated (log2[S361A/Parental] > 0.585
or < −0.585) with P value <0.05 are highlighted in dark red. (C) Equal amounts of whole-cell lysates (20 μg) from HaCaT parental and S361A cells were probed
with the indicated antibodies. ALDH2, aldehyde dehydrogenase (mitochondrial); N-Cad, N-Cadherin; PRC1, protein regulator of cytokinesis 1; SKP2; S-phase
kinase-associated protein 2. (D) GO categories of the 212 up-regulated proteins in S361A cells. (E) The fragmentation status of mitochondria was evaluated by
anticytochrome c immunostaining. (Scale bar, 10 μm.) The number of cells analyzed are shown. ***P < 0.001 from 2-tailed unpaired Student’s t test. (F)
Seahorse measurement of oxygen consumption rates (OCR) of parental and S361A HaCaT cells. AA, antimycin A; DNP, dinitrophenol; Oligo, oligomycin; Rot,
rotenone. (G) Quantification of antiglutathionylated protein immunostaining of parental and S361A HaCaT cells. The number of cells analyzed are shown.
***P < 0.001 from 2-tailed unpaired Student’s t test. (H) 293A cells were treated with CHX (50 μg/mL), and the indicated endogenous proteins were examined
by Western blot. The asterisk designates heterozygous mutation (WT/S361A) in those cells. (I) MTS cell viability assays on HaCaT and 293A cells. Measurement
was made at 24 h (open circles) and 72 h (filled circles) postseeding. Data are presented as mean ± SD from 3 independent experiments. **P < 0.01 from 2-
tailed paired Student’s t test (72-h results).
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and S361A cells by native polyacrylamide gel electrophoresis
(PAGE) (Fig. 5A). Loss of Rpn1-S361 phosphorylation caused a
considerable decrease in 26S/30S proteasome contents and a
corresponding increase in the level of free 20S proteasomes,
indicating defective proteasome assembly in the knock-in cells.
Gel filtration analysis also revealed a similar impairment of
proteasome formation and markedly lower peptidase activity
from fully assembled proteasomes in the mutant cells (Fig. 5B and
SI Appendix, Fig. S5A), consistent with their overall reduction in
proteasome activity (Fig. 1F). These results support the idea that
Rpn1-S361 phosphorylation is required for proper proteasome
assembly, echoing the reported function of UBLCP1.
Rpn1 could be phosphorylated at S361 both before and after

its incorporation into the 26S proteasome (SI Appendix, Fig. S5B).
The native PAGE results showed that certain smaller protein
complexes containing Rpn1 and Rpt2 (likely RP precursor com-
plexes) were also much depleted in the S361A cells (Fig. 5A).
Improper formation of the Rpn1-Rpt1-Rpt2-S5b subcomplex
can cause defects in the assembly of 19S and eventually 26S

proteasomes (13–16). Therefore, we set up an in vitro binding
assay using recombinant proteins of Rpn1 and Rpt2 to directly
assess the role of S361 phosphorylation in precursor complex
formation. Here, we utilized the genetic codon expansion tech-
nique (42) and changed the codon of S361 (AGT) to the Amber
codon (TAG, designated as TAG361). When Rpn1(TAG361)
was expressed in an engineered Escherichia coli strain C321 (43),
phospho-serine (“Sep”) instead of serine was site-specifically
incorporated at the 361 position of Rpn1, allowing us to purify
the phospho-Rpn1 protein (SI Appendix, Fig. S5 C and D).
Immunodepletion assays with our anti-pS361 antibody indicated
that more than 80% of the Rpn1 protein obtained this way was
phosphorylated at S361 (SI Appendix, Fig. S5E). For in
vitro binding, equal amounts of purified phosphorylated
Rpn1(TAG361) and unphosphorylated WT Rpn1 proteins were
individually incubated with recombinant Rpt2. Unphosphorylated
Rpn1 interacted weakly with Rpt2 in vitro as reported before (44).
However, S361 phosphorylation greatly increased Rpn1-Rpt2
binding, while this difference could be completely nullified by
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pretreating phospho-Rpn1 with alkaline phosphatase (Fig. 5C
and SI Appendix, Fig. S5F), demonstrating that it was indeed
phosphorylation of S361 that markedly strengthened the Rpn1–
Rpt2 interaction.
To gain insights into the molecular details of Rpn1–Rpt2 in-

teraction, we examined 1 of the latest Cryo-EM structures of the
human 26S proteasome (Protein Data Bank [PDB] ID code:
6MSJ, ref. 22). In this structure, the side chain of Rpn1-S361
seems to point to the unresolved N-terminal region of Rpt2 (Fig.
5D). Interestingly, this region of Rpt2 contains a stretch of 7
lysine residues (K15/16/19/21/22/23/24) that are conserved in
different species (SI Appendix, Fig. S5G). Mutation of these ly-
sine residues to alanine (7KA) did not affect the binding between
Rpt2 and unphosphorylated Rpn1, but completely canceled the
effect of S361 phosphorylation on promoting the Rpt2–Rpn1
interaction (Fig. 5E). Consistently, when expressed in 293T cells,
the Rpt2-7KA mutant was incorporated into the 26S proteasome
at a lesser amount than WT Rpt2 (Fig. 5F). Thus, by forming a
charge–charge interaction with the N-terminal poly-basic region
of Rpt2, phosphorylation of Rpn1-S361 facilitates 1 of the first
steps of base assembly, hence allowing for more efficient for-
mation of 19S and 26S proteasomes subsequently (Fig. 5G).
These data provide a mechanistic explanation and unequivocal
proof for the role of Rpn1-S361 phosphorylation in regulating
26S proteasome assembly and function.

Discussion
Proteasome phosphorylation has emerged as an important and
versatile mechanism for regulating protein turnover by the UPS
(27, 28). Previous studies have demonstrated that phosphoryla-
tions of Rpt6-Ser120 (by CaMKIIα), Rpn6-Ser14 (by PKA), and
Rpt3-Thr25 (by DYRK2) all result in proteasome activation and
are functionally involved in neuronal synapse formation, clearance
of misfolded proteins, and tumorigenesis, respectively (29–32, 45).

In this study, we characterized a different proteasome phosphor-
ylation event that also positively affects proteasome activity and
safeguards mitochondrial homeostasis. Loss of Rpn1-S361 phos-
phorylation in HaCaT cells led to a major metabolic shift as a
result of defective proteasome assembly and chronic mitochon-
drial impairment. This phenomenon should be distinct from the
transient and reversible 26S proteasome disassembly induced by
acute mitochondrial/oxidative stress (46, 47). Reciprocal regula-
tions between the UPS and mitochondria are known to be important
but also intricate (48–52), making it very challenging to pinpoint the
primary proteasome substrate(s) that caused the mitochondrial de-
fects in the first place. Nevertheless, our work demonstrates that
mutation of a single proteasome phosphosite is sufficient to cause
mitochondrial dysfunction and oxidative stress, highlighting the
functional importance of proteasome phosphorylation.
The impact of S361 phosphorylation extends beyond mito-

chondrial regulation as suggested by our mass spectrometry re-
sults, while a different proteomic signature and different cellular
responses might be expected with the same S361A substitution in
a different cell type. Earlier proteomic studies have documented
changes in pS361 in certain cell types during immune responses
or upon oncogene expression (53, 54); the biological meanings of
these have not been investigated. We also observed a prominent
decrease in pS361 level when human ES cells differentiated into
pancreatic precursor cells, and it correlated with a concurrent
reduction in proteasome activity (SI Appendix, Fig. S1E). Exactly
how this happened remains unknown, but the finding is in
agreement with the idea that a higher proteasome activity is
required to maintain the undifferentiated status of ES cells (55,
56). It further raises the possibility that proteasome modifica-
tions are also important in regulating ES cell self-renewal, a
mechanism alternative or in addition to up-regulation of pro-
teasome expression in ES cells (56). Further studies are needed
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to fully understand the regulation and function of Rpn1-S361
phosphorylation in vivo.
Several previous reports showed that proteasome assembly

can be regulated by phosphorylations of different subunits, but
the molecular mechanisms have been unclear (32, 33, 36, 57,
58). We took advantage of the unnatural amino acid (UAA, in
this case pSer/Sep) incorporation technology and provided
biochemical evidence that the interaction between phosphory-
lated Rpn1-S361 and lysine residues of the Rpt2 N terminus
may serve as an anchor to facilitate the binding between these 2
subunits. This model agrees well with the cryo-EM structures of
the proteasome and with the role of UBLCP1 as the pS361
phosphatase in controlling proteasome assembly. It should be
pointed out that Rpn1-S361 phosphorylation promotes, but is
not required for, proteasome formation as the S361A mutant
cells are still viable. Such phosphoregulation must also be

absent in yeast and Caenorhabditis elegans given the lack of
S361 and its flanking sequences in their Rpn1 proteins (Fig.
1B). Interestingly, there is no UBLCP1 homolog in these spe-
cies, either (33). Despite that UBLCP1 may dephosphorylate
other proteasome phosphosites (33, 36), we argue that Rpn1-
S361 is the primary target through which UBLCP1 controls
proteasome assembly in higher organisms.
Our work identified multiple kinases that can phosphory-

late Rpn1-S361. It is quite possible that different kinases may
be at work in different tissues or under different conditions
to maintain a sufficient level of pS361. This may explain its
wide presence in many mouse organs (37) and in all types of
cells we have examined. Detection of endogenous S361 phos-
phorylation by Western blot or mass spectrometry was rela-
tively easy with no need for treatment or stimulation of the
cell. These features distinguish Rpn1-S361 from the other
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proteasome phosphosites previously reported, suggesting that
phosphorylation of this site is a basic and common mechanism
for proteasome regulation. However, our efforts in generating
homozygous Rpn1-S361D mutant cells to mimic constitutive
S361 phosphorylation have been unsuccessful, suggesting that
dephosphorylation of Rpn1-S361 may also be necessary for op-
timal functioning of cells.
Pharmacological targeting of proteasome phosphorylation

has proven to be an effective approach for manipulating
proteasome function with therapeutic potentials, as exem-
plified by studies on PKA and DYRK2 (45, 59). Cancer cells
often highly rely on the proteasome for survival (10, 60). The
PIM kinases that phosphorylate Rpn1-S361 are well-known
oncogenes overexpressed in a variety of hematological and
epithelial cancers, and PIM inhibitors are currently tested in
clinical trials for treating several malignancies including
multiple myeloma (61, 62), where proteasome inhibitors are
used as first-line drugs. Our finding of PIM-mediated Rpn1-
S361 phosphorylation may provide an important clue for pro-
teasome hyperactivation in certain cancers and a molecular
basis for new combinatorial therapies with PIM inhibitors and
proteasome inhibitors.

Materials and Methods
Details on the general methods, antibodies, reagents, plasmids, cell lines, gene
editing, protein purification, proteasome assays, quantitative mass spectrom-
etry, cell respirometry, and in vitro binding assay are presented in SI Appendix.

Data Availability Statement. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the iProX partner repository with the dataset
identifier PXD016643.
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