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[1] In the past few years sequential data assimilation
(SDA) methods have emerged as the best possible method
at hand to properly treat all sources of error in hydrological
modeling. However, very few studies have actually
implemented SDA methods using realistic input error
models for precipitation. In this study we use particle
filtering as a SDA method to propagate input errors through
a conceptual hydrologic model and quantify the state,
parameter and streamflow uncertainties. Recent progress in
satellite-based precipitation observation techniques offers an
attractive option for considering spatiotemporal variation of
precipitation. Therefore, we use the PERSIANN-CCS
precipitation product to propagate input errors through our
hydrologic model. Some uncertainty scenarios are set up to
incorporate and investigate the impact of the individual
uncertainty sources from precipitation, parameters and also
combined error sources on the hydrologic response. Also
probabilistic measures are used to quantify the quality of
ensemble prediction. Citation: Moradkhani, H., K. Hsu,

Y. Hong, and S. Sorooshian (2006), Investigating the impact of

remotely sensed precipitation and hydrologic model uncertainties

on the ensemble streamflow forecasting, Geophys. Res. Lett., 33,

L12401, doi:10.1029/2006GL026855.

1. Introduction

[2] The key to potential improvement of hydrologic
prediction is associated with the input, parameter, and initial
condition uncertainty interdependencies. Scenario analysis
of hydrologic model by statistical characterization of
streamflow uncertainty through ensemble forecasting-
updating goes one step further for better understanding of
these interactions. Precipitation is the key forcing variables
and to a large degree responsible for model dynamics
through its spatio-temporal variability. As shown by Clark
and Slater [2006], uncertainty in model simulation is
strongly influenced by reliability on forcing variable and
adequate characterization of their associated uncertainties.
Traditionally, the uncertainties of the rainfall runoff process
and model response are captured through the calibration
process. The automatic calibration methods using the Max-
imum Likelihood framework try to filter the effect of
uncertainties through an additive error term [Sorooshian
and Dracup, 1980].

[3] In this study, we seek to characterize various sources
of uncertainties and their impacts on hydrologic model
response. This is accomplished by incorporating the indi-
vidual and combined error sources into the hydrologic
model consistent with the limited data that allows quantita-
tive assessment of prediction uncertainty. We employ the
particle filter as a sequential ensemble forecasting/updating
technique to characterize the uncertainties of model compo-
nents. Our analysis is built upon a parsimonious conceptual
rainfall-runoff model applied to the Leaf River basin in
Mississippi. The PERSIANN-CCS (Precipitation Estima-
tion from Remotely Sensed Information using Artificial
Neural Network–Cloud Classification System) product
[Hong et al., 2004] is used as the forcing data into the
system while its uncertainty in terms of variance is propa-
gated into hydrologic model. Finally model predictive
uncertainty is evaluated in conjunction with other uncer-
tainty sources.

2. Precipitation Error Model

[4] A recent development by Clark and Slater [2006]
provides conditional ensemble grid of precipitation in a
sparse rain gage network for mountainous areas with the
intention of model forcing ensemble generation for a
distributed hydrologic model. However, for ungauged
regions and also those regions where rain gage data are
missing, one has to rely on remotely sensed precipitation
products. In this study, we use the PERSIANN-CCS satel-
lite precipitation product and estimate its error conditioned
on the radar data which is assumed as true field. The error is
quantified according to the variance of the point by point
difference between the satellite estimate and radar truth. As
demonstrated by Hong et al. [2006], this conditional error is
related to precipitation magnitude at different spatio-tem-
poral resolutions.

se ¼ f
1

L
;
Dt

T
;P

� �
¼ a � 1

L

� �b

� Dt

T

� �b

Pð Þd ð1Þ

Where, se is the error in precipitation (standard deviation
between the satellite and radar data) which is a function of
spatial coverage A (here substituted by L as spatial scale, the
side length of A), temporal scale (T), satellite sampling
frequency (Dt), and the space-time average of precipitation
rate (P). Also a, b, c, and d are the parameters of error
model need to be calibrated (for more detail see Hong et al.
[2006]). The temporal scale used for calibrating precipita-
tion error model ranges from hourly to daily and special
scale considered ranges from 0.04� to 0.96�. As it appears
from equation (1), the error for no precipitation is equal to
zero which may not be a valid assumption. Considering the
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spatio-temporal scale of our interest in this study, the
assumption of zero precipitation is not crucial, noting that
dealing with this problem is not the thrust of this study.
[5] Finally to generate the precipitation ensemble the

following equation is used:

Pe ¼ P þ se � e ð2Þ

Where, P is the precipitation in the desired spatio-temporal
resolution, e is a random number normally distributed with
mean 0 and standard deviation of 1 and Pe is the perturbed
precipitation. Propagating each member of the precipitation
ensemble into the deterministic rainfall-runoff model will
result in an ensemble of model states and associated
streamflow predictions.

3. Hydrologic Model, Study Region and Data

[6] To demonstrate the influence of various uncertainty
sources in hydrologic response, we used the conceptual
Hydrologic MODel (HyMOD) that has been used previ-
ously [Boyle et al., 2000; Moradkhani et al., 2005a, 2005b].
HyMOD is an extension of some of the lumped storage
models developed in 1960s, and later to the case of multiple
storages representing a spatial distribution of different
storage capacities in a watershed. The Leaf River basin in
Mississippi (�1945 km2) was considered as the study
region. The satellite precipitation product was taken from
PERSIANN-CCS [Hong et al., 2004]. The data were
extracted for two water years of 2002–2003. To estimate
the error associated with satellite product, the National
Weather Service WSR-88D Stage IV radar rainfall data
was extracted from NCEP (National Center for Environ-
mental Prediction) and used as ground reference rainfall
data.

4. State-Parameter Uncertainty Estimation Using
SIR-Particle Filter

[7] Moradkhani et al. [2005b] presented a Bayesian
updating procedure for uncertainty assessment of concep-
tual watershed model components. The procedure was
developed based on the Sequential Importance Resampling
Particle Filter (SIR-PF) which is a class of Bayesian
filtering algorithms derived from a discrete description of
Bayes rule [Arulampalam et al., 2002]. In filtering, two
sequential estimations are discerned, (1) forecasting of state
variables that is the evolution (propagation) of the states
from one measurement time to the next and (2) updating
(correction or analysis) of the forecasted state variables with
the availability of new incoming observation. Because of its
stochastic nature, state xk is a random variable; hence from
Bayesian inference the pertinent information about xk given
observations up to time k can be extracted from the filtering
posterior distribution p(xkjy1:k).

p xk jy1:kð Þ ¼ p yk jxkð Þp xk jy1:k	1ð Þ
p yk jy1:k	1ð Þ ð3Þ

Where p(ykjxk) is the likelihood, p(xkjy1:k	1) is the forecast
density of states and p(ykjy1:k	1) is the normalizing factor,
known as predictive distribution or evidence given by

p(ykjy1:k	1) =
R
xk

p(ykjxk)p(xkjy1:k	1)dxk. For hydrologic

application a practical solution to exact Bayesian scheme
is to rely on discrete approximations of the above densities
as follows:

p xk jy1:k	1ð Þ 
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Where xi and wi denote the value of ith particle and its
weight and d is the Dirac delta function. The weights wk

i

(filtering posterior) are determined through the recursive

Bayesian scheme as wk
i =

wi
k	1

:p yk jxikð ÞPN
i¼1

wi
k	1

:p yk jxikð Þ
.

[8] In general, filtering is used to recursively estimate the
posterior distribution of the model state variables; however,
the successful use of sequential data assimilation relies on
unbiased model state prediction, which is closely linked
with identifiability of parameters [Vrugt et al., 2005;
Moradkhani et al., 2005a, 2005b]. Moradkhani et al.
[2005b] extended the application of the SIR-PF Bayesian
recursive technique to the adaptive inference of the joint
posterior distribution of parameters and state variables. The
use of this methodology relaxes the need for restrictive
assumptions regarding the variables’ probability density
function; i.e., it can readily handle the propagation of
non-Gaussian distribution through a nonlinear model.

5. Uncertainty Analysis Scenarios and Results

[9] To investigate the impact of different uncertainty
sources on hydrologic response, three scenarios are consid-
ered as depicted in Figure 1. The synthetic true states and
streamflow (Figure 1a) are considered as observed quanti-
ties followed by the uncertainty scenario analysis displayed
in Figures 1b–1d. The targeted filtering for the scenario 1 in
Figure 1b is just the state updating, while for scenarios 2
and 3 (Figures 1c–1d) the combined state-parameter updat-
ing is implemented. For each of the uncertainty scenarios,
we aim to evaluate the performance of ensemble streamflow
prediction considering the relative impact of uncertainty. It
is noted that for this study we considered the river basin as a
lumped system with the daily time scale. For demonstration
purpose we display the uncertainty limit associated with the
ensemble streamflow forecast for the combined uncertainty
scenario for a period of 240 days in Figure 2. However, the
assimilation/calibration was made for the period of 2 years
and the probabilistic performance indices are calculated
according to this analysis period. A simplistic conclusion
might be driven that calculated ensemble range (95 percen-
tile) envelopes the observation. However, closer probabilis-
tic interpretation of generated ensemble is required.
Therefore, following verification measures are chosen and
the comparative results are provided.

5.1. Normalized Root Mean Square Error Ratio (NRR)

[10] It is a normalized measure of ensemble dispersion
indicating how confidently the ensemble mean can be
extracted from the ensemble spread. In fact NRR evaluates
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the sensitivity of the filtering scheme to the ensemble
forecasting. According to this method, the ratio of the
time-averaged RMSE of the ensemble mean to the mean
RMSE of the ensemble members is calculated and the result

is divided by

ffiffiffiffiffiffiffiffiffi
nþ1ð Þ
2n

q
, where n is the ensemble size

[Moradkhani et al., 2005a]. The desirable ensemble is
expected to have NRR = 1; while NRR > 1 indicates that
the ensemble has too little spread, and NRR < 1 is an
indication of an ensemble with too much spread. The NRR

for three uncertainty scenarios is shown in Figure 3. The
NRR of the forecast while including just forcing data
uncertainty in modeling is NRR = 0.76 < 1 meaning that
the ensemble has too much spread which is the result of
fairly high value of uncertainty in satellite precipitation
estimation for leaf river basin. The NRR while considering
the parameter uncertainty is NRR = 1.16 > 1 meaning that
ensemble has little spread although more precise with a
little overconfidence. Finally, by accounting for all the

Figure 1. Scenario analysis for investigating the influence of various sources of uncertainties on ensemble streamflow
forecasting: (a) Synthetic true, (b) forcing data error, (c) parameter uncertainty, and (d) combined uncertainties.

Figure 2. Time series of streamflow observation and 95% confidence bound associated with prediction while accounting
for all uncertainty sources including initial condition, satellite forcing data and model parameter uncertainties.
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uncertainty sources, the NRR = 0.91 is between the two
NRRs in individual uncertainty cases. This could be
explained as the interaction of forcing data ensemble with
parameter ensemble. In fact, assuming the time variation
of model parameters through sequential Monte Carlo
filtering will give the flexibility in interaction of model
parameters and state variables which correspondingly
alleviates the influence of forcing data error in model
dynamics. This results to reconfiguration of model state
and parameter ensemble through resampling of posterior
distribution at each time step.

5.2. Exceedence Ratio (ER) and Uncertainty Ratio
(UR)

[11] These two measures examine the spread (wideness)
of prediction quantiles [Borga, 2002; Hossain and
Anagnostou, 2005]. If the uncertainty bounds derived from
ensembles are too wide, then the model is said to have high
predictive capability with low precision and differently if
the uncertainty bounds are derived too narrow then the
overconfidence is put on prediction accuracy albeit precise,
that is, simulation might be highly biased.

ERn ¼
Nn
exceedence

T
* 100% ð6Þ

URn ¼

PT
t¼1

Q
50þn=2
t 	 Q

50	n=2
t


 �

PT
t¼1

Qobs
t

* 100% ð7Þ

Where, ERn and URn are exceedence and uncertainty ratios
respectively at nth percentile. Nexceedence

n is the number of
times during the total number of analysis period, T, that the
observation Qt

obs falls outside the ensemble bound at nth
percentile. UR signifies the aggregate variability of predic-
tion uncertainty ranges. Figure 4 represents the variation of
exceedence and uncertainty ratios for a range of quantiles
while accounting for each uncertainty source in simulation
process. As seen in Figure 4, these two measures behave
conversely where decreasing the ER for higher percentiles
results in increasing UR. Closer examination of these
figures reveal that for forcing data (precipitation) uncer-

Figure 3. Normalized Root Mean Square Error Ratio
(NRR) of ensemble streamflow forecasting by inclusion of
different uncertainty sources in modeling.

Figure 4. Exceedence and Uncertainty Ratios in ensemble streamflow forecasting: (a) Forcing data (precipitation) error,
(b) parameter uncertainty, (c) combined uncertainty, and (d) comparison of average ratios for various uncertainty sources.
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tainty, ER decreases rapidly as compared to parameter
uncertainty case. This signifies lower precision in prediction
due to the individual effect of precipitation uncertainty. On
the other hand, UR for the precipitation case is generally
greater than that of parameter uncertainty case meaning the
wider uncertainty bound. One might argue that this is an
indication of higher predictive capability than considering
parameter uncertainty alone. However, this statistical
measure needs to be interpreted cautiously in conjunction
with NRR index discussed earlier. Figure 4d also shows the
comparison of the average ER and UR over all quantiles for
three scenarios. The result is consistent with the findings in
NRR index as the combined uncertainty scenario ratios are
between the ratios where individual uncertainty sources are
considered.

6. Summary and Conclusion

[12] We aimed at building a framework for investigating
the effect of various sources of uncertainties in hydrologic
response. We used the PERSSIAN-CCS satellite precipita-
tion product as forcing data to the hydrologic model and
characterized its error trough a power law function. Assim-
ilation of synthetic streamflow and state-parameter estima-
tion was done within a sequential Bayesian framework.
Three statistical measures suitable for verification of prob-
abilistic (ensemble) forecasts were used and their competing
characteristics illustrated while applying on a parsimonious
hydrologic model. It was shown that satellite precipitation
error reflects a wide uncertainty range in streamflow fore-
casting as opposed to the narrow range resulting from
parameter uncertainty. It was also discussed that the ensem-
ble filtering through combined state-parameter updating is
capable of reducing the total uncertainty. In fact the resam-
pling nested in such a filtering scheme allows the redistri-
bution of model state and parameter samples. In summary,
such scheme, in addition to introducing the sequential
Bayesian method to estimate the model prediction uncer-
tainty, offers three notable features that are lacking in
conventional model calibration-assimilation schemes as
(1) being sequential, therefore better able to take advantage
of the temporal organization of information well suited for
the ungauged basins such that by availability of new
observation the model behavior is updated, (2) it is capable

of incorporating all uncertainty sources into the modeling,
(3) it employs the resampling scheme giving the chance to
parameter and state particles to be relocated, thereby pro-
viding the flexibility in interaction of model components
with forcing data through ensembles. This relaxes the
impact of uncertainty of forcing data sequentially and result
in reduced combined uncertainty.
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