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Abstract. The existence of global small O(") solutions to quadratically non-
linear wave equations in three space dimensions under the null condition is
shown to be stable under the simultaneous addition of small O(⌫) viscous dis-
sipation and O(�) non-null quadratic nonlinearities, provided that "�/⌫ ⌧ 1.
When this condition is not met, small solutions exist “almost globally”, and in
certain parameter ranges, the addition of dissipation enhances the lifespan.

1. Introduction. We shall be concerned with the nonlinear PDE

@2t '��'� ⌫@t�' =

3X

↵,�=0

3X

`=1

C`
↵,�@↵'@`@�', (t, x) 2 R+ ⇥ R3, (1.1)

in which @
0

= @t, @` = @x` , ` = 1, 2, 3, and R+

= [0,1). Greek indices will
always range from 0 to 3 and Latin indices from 1 to 3. Hereafter, we shall employ
the summation convention. The viscosity parameter will be assumed to satisfy
0 < ⌫  1. The equation (1.1) serves as a simplified, dimensionless model for
viscoelasticity.

In Theorem B of [9], Ponce proved that the initial value problem for (1.1) has a
unique, global, strong solution for initial data that is sufficiently small. His argu-
ment is based on the dissipative properties of the linear equation, and although he
does not quantify it, the size of the initial data must be small relative to the viscos-
ity parameter. On the other hand, in the hyperbolic case ⌫ = 0, when the nonlinear
terms satisfy the Klainerman null condition, there exist global small solutions, see
[6, 1]. One would expect this result to be stable under viscous perturbations, and
moreover, based on Ponce’s result one also expects that the introduction of small
viscosity would allow a simultaneous nonlinear perturbation from the null condition.
However, proving this requires the by no means routine adaptation of hyperbolic
methods to dissipative equations such as (1.1).

The main result of this paper, Theorem 4.1, shows that these suppositions do
indeed hold. We define a parameter � which measures the deviation of the non-
linearity from being null, and we quantify the limitation on the size of the initial
data, roughly ⌫/�, leading to global existence. We also obtain in Theorem 4.3 lower
bounds for the lifespan of solutions in cases where our global existence result does
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not hold. In the hyperbolic case, it is well-known that the lifespan T (") of small so-
lutions of size " satisfies an “almost global” lower bound of the form [T (")]" � C > 1,
see [3, 5]. We show that dissipative effects can improve the almost global lifespan
of the hyperbolic case if the viscosity ⌫ is large enough relative to the size of the
data.

These results require decay estimates which are uniform with respect to ⌫, given
in Sections 8 and 9. The derivation of the decay estimates extends the weighted L2

approach, introduced in [7] and refined in [11], to the case of partial dissipation, at
the expense of introducing space-time weighted norms. To implement the method of
[11], it is helpful to reformulate the problem as a first order system, and this is done
in the next section. The decay estimates are coupled with energy estimates based
on the translational, rotational, and scaling vector fields, derived for two distinct
energy levels in Sections 10 and 11. The energy estimates are also nonstandard
insofar as occurrences of the scaling vector field are indexed separately because the
linear equation is not scaling invariant. Hidano [2] has also used energy norms with
a limitation on the use of scaling operator. A short discussion of local existence is
provided in Section 12, for completeness.

There is an extensive literature on existence of solutions to dissipative wave equa-
tions in three space dimensions. However, the authors are aware of only one other
work, [8], with uniformity in the viscosity parameter. There the underlying nonlin-
ear hyperbolic system is Hamiltonian with a positive definite conserved energy, and
the nonlinearity is bounded at infinity. It is possible to use the dissipation to es-
tablish local well-posedness in spaces of low regularity and to prove global existence
for large data.

2. PDEs. It is convenient to rewrite equation (1.1) in first order form. To do so,
let e

0

, . . . , e
3

be the standard basis on R4 (viewed as column vectors), and define
the new unknowns

u = u↵e↵ = @↵'e↵. (2.1a)

We shall denote the spatial and space-time gradients of u as ru and @u, respectively.
Thus, we have

(ru)↵k = @ku
↵ and (@u)↵� = @�u

↵,

as well as the relations
@u = @u>. (2.1b)

We obtain from (1.1), (2.1a), (2.1b), the evolutionary system

Lu ⌘ @tu�Aj@ju� ⌫B�u = N(u,ru), (2.2a)

together with the constraints
@ju

k
= @ku

j . (2.2b)

The coefficients are given by

Aj
= e

0

⌦ ej + ej ⌦ e
0

, j = 1, 2, 3; B = e
0

⌦ e
0

(2.2c)

and the nonlinearity has the form

N(u,ru) = N0

(u,ru)e
0

, with N0

(u,rv) = C`
↵,�u

↵@`v
� . (2.2d)
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Conversely, given a solution u of (2.2a)-(2.2d), we can recover a solution of ' of
(1.1) with @'>

= u using

'(t, x) = c+

Z
1

0

h(t, x), u(st, sx)iR4ds.

The system (2.2a)-(2.2d) can be written more explicitly as
@tu

0 �r · ū� ⌫�u0

= N0

(u,ru) (2.3a)

@tū� (ru0

)

>
= 0 (2.3b)

r^ ū = 0, (2.3c)

in which ū = ujej is viewed as an element of R3.

3. Notation. We shall employ the vector fields
r, ⌦ = x ^r, S = t@t + r@r, S

0

= r@r. (3.1)
We avoid the vector field @t because in order to control @kt u(0), the second order
operator L forces the initial data to have 2k derivatives, which clashes with the
hyperbolic case ⌫ = 0. The Lorentz rotations x@t + tr are likewise unsuitable.
Although the system (2.2a), (2.2b) is not scale invariant, it is possible to effectively
use the scaling operator S. However, its usage will be indexed separately (see the
space Xp,q and the energy Ep,q defined below). The rotational operators ⌦ are
modified in the usual way when used with vector-valued functions, consistent with
the rotational invariance of the linear system. Thus, we take

e
⌦i = I⌦i + Zi

in which
Z
1

= e
2

⌦ e
3

� e
3

⌦ e
2

, Z
2

= e
3

⌦ e
1

� e
1

⌦ e
3

, Z
3

= e
1

⌦ e
2

� e
2

⌦ e
1

.

This definition is dictated by the fact that

@(⌦i') = e
⌦i@',

for scalar functions '. We emphasize that these operators are vectorial, and we
use the notation (

e
⌦iu)

↵ to denote the ↵-th component of the vector e⌦iu 2 R4.
However, notice that

(

e
⌦iu)

0

= ⌦iu
0,

and so all of the vector fields act as scalars on the 0-th component of vectors u 2 R4.
We shall frequently rely on the decomposition

r = !@r � !

r
^ ⌦, ! =

x

r
, r = |x|, @r = !j@j . (3.2)

It will be convenient to use the abbreviation
� = {r, e⌦},

however, the fields S
0

and S will always be tracked individually. Thus for example,
given integers 0  q  p, we define the space

Xp,q
= {u 2 Hp

(R3

;R4

) : kSk
0

�

aukL2 < 1, for all |a| + k  p, k  q}.
This is a Hilbert space with the inner product

hu, viXp,q
=

X

|a|+kp
kq

hSk
0

�

au, Sk
0

�

aviL2 .
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The index p indicates the total number of allowable derivatives while the index q
limits the number of occurrences of S

0

which, in practice, could be strictly less than
the total p. These spaces characterize the initial data that we shall consider, and
they may be used to establish local well-posedness for our system for appropriate
pairs (p, q), see Section 12.

Given a solution of (2.2a)-(2.2d), our main objective will be to obtain a priori
estimates for the energy

Ep,q[u](t) =
X

|a|+kp
kq


1

2

kSk
�

au(t)k2L2 + ⌫

Z t

0

krSk
(�

au)0(s)k2L2 ds

�
,

for two sets of pairs (p, q), informally referred to as high and low. If u(0) = u
0

, it
will be convenient to write

Ep,q[u0

] ⌘ Ep,q[u](0) = 1

2

ku
0

k2Xp,q ,

(with a slight abuse of notation).
To get a priori bounds for the energy, it will be necessary to also obtain dispersive

estimates. These will be derived using weighted L2-estimates in two space-time
regions which we shall refer to as the interior and exterior regions.

We now define cut-off functions which determine these regions and the quantities
which in Section 9 will be shown to have good decay properties. Given a function

 2 C1
(R),  (s) =

(
1, s  1/2

0, s � 1

,  0  0, (3.3a)

we define

⇣(t, x) =  

✓ |x|
�hti

◆
and ⌘(t, x) = 1�  

✓
2|x|
�hti

◆
, (3.3b)

where we have used the common notation hti = (1 + t2)1/2. The parameter � ⌧ 1

will be chosen in Lemma 8.1. We have

⇣(t, x) =

(
1, |x|  �hti/2
0, |x| � �hti and ⌘(t, x) =

(
0, |x|  �hti/4
1, |x| � �hti/2 .

This is not a partition of unity. We can say that

1  ⇣ + ⌘ and 1� ⌘  ⇣2. (3.3c)

We shall frequently rely on the property that

hr + ti
h
|@⇣(t, x)|+ |@⌘(t, x)|

i
. 1. (3.3d)

In the interior region, we shall derive estimates in L1

(hti✓dt), with 0  ✓  1, for
the quantities

Y int

p,q[u](t) =
X

|a|+kp�1
kq

k⇣rSk
�

au(t)k2L2

and

Z int

p,q[u](t) =
X

|a|+kp�1
kq

k⇣�Sk
(�

au)0(t)k2L2 ,

for q < p, see Theorem 9.1.
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In the exterior region, it is critical to decompose the solution into its orthogonal
and tangential components along the light cone, Pu and Qu, respectively. These
projections are defined as follows:

Pu(t, x) = 1

2

!̂ ⌦ !̂ u(t, x) =
1

2

⇥
u0

(t, x)� ! · ū(t, x)⇤ !̂ (3.4a)

Qu(t, x) = (I � P)u(t, x),
in which

!̂ =


1

�!
�
2 R4, ! =

x

|x| , 0 6= x 2 R3. (3.4b)

Thanks to the fact that e⌦j! = 0 and @r! = 0, we obtain

[

e
⌦j ,P] = [@r,P] = 0 and [

e
⌦j ,Q] = [@r,Q] = 0. (3.5)

The quantities to be bounded in Theorem 9.2 are

Yext

p,q [u](t) =
X

|a|+kp�1
kq

3X

j=1

⇥k⌘ ht� ri P@jSk
�

au(t)k2L2

+k⌘ ht+ ri Q@jSk
�

au(t)k2L2

⇤

and
Zext

p,q [u](t) = t2
X

|a|+kp�1
kq

k⌘�Sk
(�

au)0(t)k2L2 ,

again with q < p.
Given a quadratic nonlinearity N of the form (2.2d), we associate to it a cubic

polynomial
PN (y) = C`

↵,�y
↵y�y`, y 2 R4.

We say that N is null if
PN (y) = 0, for all y 2 N = {y 2 R4

: y2
0

� y2
1

� y2
2

� y2
3

= 0},
where N is the collection of null vectors in R4.

As a final notational remark, we shall write A . B if there exists a generic
constant C, independent of the initial data and the parameters ⌫, "2, � (the lat-
ter two defined in Theorem 4.1) such that A  CB. Constants may depend on
max↵,�,` |C`

↵,� |. The symbol O(B) denotes any quantity such that O(B) . B.

4. Main results.

Theorem 4.1 (Global existence). Choose (p, q) such that p � 11, and p � q > p⇤,
where p⇤ =

⇥
p+5

2

⇤
. Define

� = max{|⌦aPN (y)| : y 2 N , kyk = 1, |a|  p⇤} (4.1)
and assume that �  1.

There are positive constants C
0

, C
1

> 1 with the property that if the initial data
u
0

satisfies

C
0

Ep⇤,p⇤
[u

0

]

⇣
1 + E1/2

p,q [u0

]

⌘
< "2, (4.2a)

for some "2 ⌧ 1, and

C3

0

✓
�

⌫

◆
2

Ep⇤,p⇤
[u

0

]

⇣
1 + E1/2

p,q [u0

]

⌘
< 1, (4.2b)
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then (2.2a)-(2.2d) has a unique global solution

u 2 C(R+

;Xp,q
)

with u(0, x) = u
0

(x),

sup

0t<1
Ep,q[u](t)  C

1

Ep,q[u0

]htiC1" (4.3a)

and
sup

0t<1
Ep⇤,p⇤

[u](t) < "2. (4.3b)

Remarks.
• The assumption (4.2a) only requires the norm ku

0

kXp,q to be finite, but
ku

0

kXp⇤,p⇤ must be correspondingly small.
• The parameter � measures the deviation of the nonlinearity from the null

condition, see the remark following Lemma 5.3. If � = 0, then (4.2a), (4.2b)
hold for all 0 < ⌫  1, and the existence criterion is uniform in ⌫, consistent
with the hyperbolic case ⌫ = 0.

• The restriction p � 11 is made so that p⇤ + 3  p holds, see Proposition 11.1.
• Successive restrictions on the size of the parameter " arise in Theorem 9.1 and

in Propositions 10.1 and 11.1. Generic constants are not permitted to depend
on ", so it will be possible to decrease the size of " when necessary.

• As soon as the initial data u
0

meets the criterion (4.2a) for a single sufficiently
small ", one can take the infimum over all such ". As a consequence, the
bounds (4.3a), (4.3b) hold with "2 replaced by

C
0

Ep⇤,p⇤
[u

0

]

⇣
1 + E1/2

p,q [u0

]

⌘
.

Outline of Proof. Given data u
0

2 Xp,q satisfying (2.2b), it can be shown using Pi-
card iteration that the IVP for (2.2a)-(2.2d) has a local solution u 2 C([0, T );Xp,q

)

where T depends only on ku
0

kXp,q , and the fixed constants ⌫ and C`
↵,� , see Section

12.
To establish global existence, it is enough to prove that ku(t)kXp,q remains finite.

This norm can not be directly bounded by E1/2
p,q [u](t) because the Xp,q norm is based

on S
0

while E1/2
p,q [u](t) uses S. However, the norm ku(t)kXp,q can be controlled by

a function which depends only on ku
0

kXp,q , ku(t)kXp,0 , and T , see Section 12. By
definition,

1

2

ku(t)k2Xp,0  Ep,0[u](t)  Ep,q[u](t).
Thus, it is enough to show that the energy Ep,q[u](t) remains finite.

Given fixed initial data u
0

for which (2.2b), (4.2a), and (4.2b) hold, let T be the
set of times T 2 (0,1) satisfying the properties:
(P1) Equations (2.2a)-(2.2d) have a unique local solution u 2 C([0, T );Xp,q

), with
u(0) = u

0

, and
(P2) Ep⇤,p⇤

[u](t) < "2, for 0  t < T .
If T 2 T , then (0, T ) ⇢ T , so the set T is connected. Since C

0

> 1, the local
existence result and (4.2a) imply that the set T is nonempty. The set T is relatively
closed in (0,1).

If T 2 T , then by Proposition 10.1 and (P2)

sup

0t<T
Ep,q[u](t)  C

1

Ep,q[u0

]hT iC1" < 1,
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so by the local existence theorem, (P1) holds for some T 0 > T . Using the assump-
tions (4.2a), (4.2b), and (P2) with Proposition 11.1, we get

sup

0t<T
Ep⇤,p⇤

[u](t)  C
0

Ep⇤,p⇤
[u

0

]

⇣
1 + E1/2

p,q [u0

]

⌘
< "2,

and so we have by continuity that (P2) holds for 0  t < T 00, with T < T 00  T 0.
This shows that (0, T 00

) ⇢ T , and so T is open. The nonempty connected set T is
both open and closed in (0,1), and therefore equal to (0,1).

Corollary 4.2. The solution given in Theorem 4.1 satisfies the estimates
Z 1

0

hti✓ ⇥Y int

p⇤,p⇤�1

[u](t) + ⌫2Z int

p⇤,p⇤�1

[u](t)
⇤
dt . "2,

for all 0 < ✓ < 1, and

sup

0t<1

⇥Yext

p⇤,p⇤�1

[u](t) + ⌫2Zext

p⇤,p⇤�1

[u](t)
⇤
. "2.

Proof. The first inequality follows from Theorem 9.1 and Proposition 10.1, and the
second follows from Theorem 9.2.

The next result establishes “almost global” existence of small solutions in the case
where the second smallness condition (4.2b) does not hold.

Theorem 4.3 (Almost global existence). Choose (p, q) with p � 11 and p � q > p⇤,
where p⇤ =

⇥
p+5

2

⇤
. Define �  1 by (4.1).

There are positive constants C
0

, C
1

> 1 with the property that if the initial data
u
0

satisfies (4.2a), for some "2 ⌧ 1, then (2.2a)-(2.2d) has a unique solution

u 2 C([0, T
0

);Xp,q
),

with u(0, x) = u
0

(x), in which the span T
0

is defined by

C
1

hT
0

iC1"
=

 
2 max {⌫, C

1

"}
C

0

� E1/2
p⇤,p⇤ [u

0

]

!
2

.

The solution satisfies the bound

sup

0t<T0

Ep⇤,p⇤
[u](t) < "2.

Proof. Suppose that u
0

satisfies (4.2a), for "2 ⌧ 1. Consider the set

T = {T 2 (0, T
0

) : (P1) and (P2) hold}.
The set T is nonempty, connected, and closed relative to (0, T

0

).
If T 2 T , then Proposition 11.2 and (4.2a) imply that

sup

0t<T
Ep⇤,p⇤

[u](t)  C
0

Ep⇤,p⇤
[u

0

]

⇣
1 + E1/2

p,q [u0

]

⌘
< "2.

Thus, T is open relative to (0, T
0

). By connectness, T = (0, T
0

).
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Remarks. • The following table summarizes the results of the Theorems. The
basic smallness restriction (4.2a) must always be enforced.

" �

⌫
<

1

C
0

Global existence (4.5a)

1

C
0

<
" �

⌫
<

�

C
1

Almost global existence with
diffusion enhanced lifespan (4.5b)

�

C
1

<
" �

⌫
Almost global existence with
hyperbolic lifespan (4.5c)

• The cases (4.5a), (4.5b) show that diffusive effects are important when ⌫ �
C

1

". The constants C
0

, C
1

, depend on max |C`
↵,� |, and we have not verified

that the parameter range in (4.5b) is nontrivial. In any case, it is clear from
(4.5a)–(4.5c) that the quantity "�/⌫ controls the transition from global to
almost global existence.

For the remainder of the article, we assume that properties (P1) and (P2) hold.
In the following sections, we are going to establish a series of a priori estimates
culminating in Propositions 10.1, 11.1, and 11.2.

5. Commutation. Recall the linear operator defined in (2.2a), (2.2c)

L = I@t �Aj@j � ⌫B�.

For any multi-index a and any integer k � 0, we have

LSk
�

au = (S + 1)

k
�

aLu� ⌫B�[Sk � (S � 1)

k
]�

au, (5.1a)

r^ Sk
�

aū = (S + 1)

k
�

ar^ ū. (5.1b)

The appearance of additional Laplacian terms on the right-hand side of (5.1a) re-
flects the lack of scaling invariance for the operator L.

For the nonlinear form (2.2d), we define the commutators

[@i, N ](u,rv) = @iN(u,rv)�N(@iu,rv)�N(u,r@iv)
[(S + 1), N ](u,rv) = (S + 1)N(u,rv)�N(Su,rv)�N(u,rSv)

[⌦i, N ](u,rv) = ⌦iN(u,rv)�N(

e
⌦iu,rv)�N(u,re⌦iv).

Lemma 5.1. The nonlinear commutators satisfy the relations

[@, N ] = [S + 1, N ] = 0

and

[⌦i, N ](u,rv) = eCi,j
↵,�u

↵@jv
� , (5.2)

with
eCi,j
↵,� = Cj

�,�(Zi)↵� + Cj
↵,�(Zi)�� + C�

↵,�(Zi)j�.

Remark. The rotationally invariant case is characterized by the conditions [⌦i, N ] =

0, i = 1, 2, 3.

The higher order commutators [(S + 1)

k
�

a, N ] are defined inductively, each be-
ing a nonlinear form of the type (2.2d). Of course, by Lemma 5.1 a nonlinear
commutator could be nonzero only for pure e⌦ derivatives. Using the higher order
commutators, we have a Leibnitz-type formula:
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Lemma 5.2.

(S+1)

k
�

aN(u,rv) =
X

a1+a2+a3=a
k1+k2=k

a!

a
1

! a
2

! a
3

!

k!

k
1

! k
2

!

[�

a3 , N ](Sk1
�

a1u,rSk2
�

a2v).

Remark. Here again we emphasize that [�

a3 , N ] = 0, unless the derivative �

a3

involves only e⌦.

Lemma 5.3. For any quadratic nonlinearity of the form (2.2d)

⌦iPN (y) = P
[⌦i,N ]

(y), i = 1, 2, 3.

If N is null, then [⌦i, N ] is also null.

Proof. We have e⌦iy = ⌦iy+Ziy = 0, for all y 2 R4. Thus, from the chain rule and
(5.2) we obtain the first statement:

⌦iPN (y) = DyPN (y)[⌦iy] = DyPN (y)[�Ziy] = P
[⌦i,N ]

(y).

Suppose that N is null. The one-parameter family of rotations U(s) = exp(�sZi)

leaves the set of null vectors N invariant. Thus, for any y 2 N , we have

0 =

d

ds
PN (U(s)y)

����
s=0

= DyPN (y)[�Ziy] = P
[⌦i,N ]

(y).

This shows that P
[⌦i,N ]

is also null.

Remark. If N is null, then since the operators ⌦i act tangentially along N , we
have ⌦

aPN (y) = 0, for all a, and the parameter � defined in Theorem 4.1 vanishes.

Lemma 5.4. For any |a|  p⇤, we have

h[e⌦a, N ](u(x),rv(x)), w(x)iR4

=

1

4

P
[

e
⌦

a,N ]

(!̂) h!̂, u(x)iR4 h!̂, @rv(x)iR4 w0

(x) +O(R), (5.3a)

with

R =

h
|Qu(x)| |@rv(x)|+ |u(x)| |Q@rv(x)|+ r�1|u(x)| |⌦v(x)|

i
|w0

(x)|,
and also
����
1

4

P
[

e
⌦

a,N ]

(!̂) h!̂, u(x)iR4 h!̂, @rv(x)iR4 w0

(x)

���� . � |u(x)| |@rv(x)| |w0

(x)|, (5.3b)

with � defined in (4.1).

Proof. By (2.2d), N = N0e
0

, so using (3.2), we can write

h[e⌦a, N ](u(x),rv(x)), w0

(x)iR4
= h[e⌦a, N ](u(x),! ⌦ @rv(x)), w(x)iR4

+O �r�1|u(x)||⌦v(x)||w0

(x)|� .
With the projections defined in (3.4a), (3.4b), we obtain

[

e
⌦

a, N ](u(x),! ⌦ @rv(x)) = [

e
⌦

a, N ](Pu(x),! ⌦ P@rv(x))

+ [

e
⌦

a, N ](Qu(x),! ⌦ P@rv(x)) + [

e
⌦

a, N ](u(x),! ⌦Q@rv(x)).



1416 BOYAN JONOV AND THOMAS C. SIDERIS

The key term is

[

e
⌦

a, N ](Pu(x),! ⌦ P@rv(x)) =
1

4

P
[

e
⌦

a,N ]

(!̂)h!̂, u(x)iR4h!̂, @rv(x)iR4 ,

from which (5.3a) now easily follows.
Notice that Lemma 5.3 gives

P
[

e
⌦

a,N ]

(!̂) = ⌦

aPN (!̂).

Now !̂/
p
2 belongs to {kykR4

= 1} \N , so by homogeneity we have

|⌦aPN (!̂)|  2

3/2�,

and (5.3b) follows.

6. Sobolev inequalities.

Lemma 6.1. Suppose that u 2 X2,0. Set r = |x|. Then

kukL1 .
X

|a|2

kraukL2 (6.1a)

kr�1ukL2 . k@rukL2 (6.1b)

kr1/2ukL1 .
X

|a|1

kre⌦aukL2 (6.1c)

sup

|x|=r

r|u(x)| .

0

@
X

|a|1

k@re⌦aukL2
(|y|�r)

X

|a|2

ke⌦aukL2
(|y|�r)

1

A
1/2

. (6.1d)

Proof. The inequality (6.1a) is the standard Sobolev lemma, and (6.1b) is Hardy’s
inequality. Inequalities (6.1c) and (6.1d) were proven in Lemma 3.3 of [10].

Proposition 6.2. Suppose that u : [0, T )⇥ R3 ! R4 satisfies

Y int

2,0[u](t) + Yext

2,0 [u](t) + E
2,0[u](t) < 1.

Then using the weights (3.3b), we have

k ⇣ u(t) kL1 .
�Y int

2,0[u](t)
�
1/2

+ hti�1E1/2
1,0 [u](t) (6.2a)

k r⇣ ru(t) kL1 .
�Y int

3,0[u](t)
�
1/2

+ hti�1E1/2
2,0 [u](t) (6.2b)

k r�1⇣ u(t) kL2 .
�Y int

1,0[u](t)
�
1/2

+ hti�1E1/2
0,0 [u](t) (6.2c)

k ⌘ u(t)kL1 . hti�1E1/2
2,0 [u](t) (6.2d)

k ⌘ Qu(t)kL1 . hti�3/2
⇣�Yext

2,0 [u](t)
�
1/2

+ E1/2
1,0 [u](t)

⌘
. (6.2e)

Proof. Using the cutoff function  defined in (3.3a), apply (6.1a) to  u(t). This
produces

k u(t)kL1 .
X

|a|=1,2

krau(t)kL2
+ ku(t)kL2

(|y|1)

.

We apply (6.1c) to the second integral

ku(t)kL2
(|y|1)

. kr1/2u(t)kL1kr�1/2kL2
(|y|1)

.
X

|a|1

kre⌦au(t)kL2 .
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Thus, we see that
k u(t)kL1 .

X

|a|1

kr�

au(t)kL2 .

On the other hand, we have using (6.1c) again

k(1�  )u(t)kL1 . kr1/2u(t)kL1 .
X

|a|1

kre⌦au(t)kL2 .

This shows that
ku(t)kL1 .

X

|a|1

kr�

au(t)kL2 . (6.3)

(Clearly, the same bound holds for khri1/2u(t)kL1 , but we do not need it.)
To prove (6.2a), apply (6.3) to the function ⇣u(t), and use (3.3d).
Applying (6.1d) to ⇣ru(t) yields (6.2b).
The inequality (6.2c) follows by applying (6.1b) to ⇣u(t).
Since

htik⌘u(t)kL1 . kr⌘u(t)kL1 ,

we can get (6.2d), by applying (6.1d) to ⌘u(t).
Finally, we prove (6.2e). By (6.1d) applied to ⌘Qu(t), we have

htik⌘Qu(t)kL1 . kr⌘QukL1

.

0

@
X

|a|1

k@re⌦a⌘Qu(t)kL2

X

|a|2

ke⌦a⌘Qu(t)kL2

1

A
1/2

. (6.4)

Using (3.3d) and the commutation property (3.5), we see that
X

|a|1

k@re⌦a⌘Qu(t)kL2 .
X

|a|1

k⌘Q@re⌦au(t)kL2
+ hti�1

X

|a|1

kQe⌦au(t)kL2 .

By linearity, we have Q@r = Q!j@j = !jQ@j , so

X

|a|1

k⌘Q@re⌦au(t)kL2 .
X

|a|1

3X

j=1

k⌘Q@j e⌦au(t)kL2 . hti�1Yext

2,0 [u](t)
1/2.

Since X

|a|1

kQe⌦au(t)kL2 .
X

|a|1

ke⌦au(t)kL2  E1/2
1,0 [u](t),

we obtain the bound
X

|a|1

k@re⌦a⌘Qu(t)kL2 . hti�1

(Yext

2,0 [u](t)
1/2

+ E1/2
1,0 [u](t)).

Noting that
X

|a|2

ke⌦a⌘Qu(t)kL2
=

X

|a|2

k⌘Qe⌦au(t)kL2 .
X

|a|2

ke⌦au(t)kL2 . E1/2
2,0 [u](t),

we deduce from (6.4)

htik⌘Qu(t)kL1 .
⇣
hti�1

⇣
Yext

2,0 [u](t)
1/2

+ E1/2
2,0 [u](t)

⌘
E1/2
2,0 [u](t)

⌘
1/2

,

from which (6.2e) follows by Young’s inequality.
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7. Calculus inequalities.

Lemma 7.1. Suppose that u : [0, T )⇥ R3 ! R4. If

k
1

+ k
2

+ |a
1

|+ |a
2

|  p̄ and k
1

+ k
2

 q̄,

then for ↵,� = 0, . . . , 3, we have1

k⇣(Sk1
�

a1u(t))↵(Sk2
�

a2+1u(t))�kL2

.
✓⇣

Y int

[

p̄+5
2 ]

,
[

p̄
2 ]
[u](t)

⌘
1/2

+ hti�1E1/2

[

p̄+3
2 ]

,
[

p̄
2 ]
[u](t)

◆
E1/2
p̄+1,q̄[u](t),

provided the right-hand side is finite.
In the special case when k

2

+ |a
2

| < p̄, we have

k⇣(Sk1
�

a1u(t))↵(Sk2
�

a2+1u(t))�kL2

.
✓⇣

Y int

[

p̄+5
2 ]

,
[

p̄
2 ]
[u](t)

⌘
1/2

+ hti�1E1/2

[

p̄+3
2 ]

,
[

p̄
2 ]
[u](t)

◆
E1/2
p̄,q̄ [u](t),

provided the right-hand side is finite.

Proof. In the case k
1

+ |a
1

| < k
2

+ |a
2

| + 1, i.e. k
1

+ |a
1

|  ⇥ p̄
2

⇤
, using the Sobolev

inequality (6.2a) we have the following bound:

k⇣(Sk1
�

a1u(t))↵(Sk2
�

a2+1u(t))�kL2

. k⇣Sk1
�

a1u(t)kL1kSk2
�

a2+1u(t)kL2

.
✓⇣

Y int

[

p̄+4
2 ]

,
[

p̄
2 ]
[u](t)

⌘
1/2

+ hti�1E1/2

[

p̄+2
2 ]

,
[

p̄
2 ]
[u](t)

◆
E1/2
p̄+1,q̄[u](t).

And in the case k
2

+ |a
2

|+ 1  k
1

+ |a
1

|, i.e. k
2

+ |a
2

|  ⇥ p̄�1

2

⇤
, we likewise have

k⇣(Sk1
�

a1u(t))↵(Sk2
�

a2+1u(t))�kL2

. k⇣Sk2
�

a2+1u(t)kL1kSk1
�

a1u(t)kL2

.
✓⇣

Y int

[

p̄+5
2 ]

,
[

p̄�1
2 ]

[u](t)
⌘
1/2

+ hti�1E1/2

[

p̄+3
2 ]

,
[

p̄�1
2 ]

[u](t)

◆
E1/2
p̄,q̄ [u](t).

The second statement of the lemma follows similarly from the preceding arguments.

Lemma 7.2. Suppose that u : [0, T )⇥ R3 ! R4. If

k
1

+ k
2

+ |a
1

|+ |a
2

|  p̄ and k
1

+ k
2

 q̄,

then for ↵,� = 0, . . . , 3, we have

k⌘(Sk1
�

a1u(t))↵(Sk2
�

a2+1u(t))�kL2 . hti�1E1/2

[

p̄+5
2 ]

,
[

p̄
2 ]
[u](t)E1/2

p̄+1,q̄[u](t),

provided the right-hand side is finite.
In the special case when k

2

+ |a
2

| < p̄, we have

k⌘(Sk1
�

a1u(t))↵(Sk2
�

a2+1u(t))�kL2 . hti�1E1/2

[

p̄+5
2 ]

,
[

p̄
2 ]
[u](t)E1/2

p̄,q̄ [u](t),

provided the right-hand side is finite.

1We remind the reader that (Sk1�a1u(t))↵ denotes the ↵-th component of the vector
Sk1�a1u(t).
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Proof. In the case k
1

+ |a
1

| < k
2

+ |a
2

| + 1, i.e. k
1

+ |a
1

|  ⇥ p̄
2

⇤
, using the Sobolev

inequality (6.2d) we have the following bound:

k⌘(Sk1
�

a1u(t))↵(Sk2
�

a2+1u(t))�kL2 . k⌘Sk1
�

a1u(t)kL1kSk2
�

a2+1u(t)kL2

. hti�1E1/2

[

p̄+4
2 ]

,
[

p̄
2 ]
[u](t)E1/2

p̄+1,q̄[u](t).

And in the case k
2

+ |a
2

|+ 1  k
1

+ |a
1

|, i.e. k
2

+ |a
2

|  ⇥ p̄�1

2

⇤
, we similarly have:

k⌘(Sk1
�

a1u(t))↵(Sk2
�

a2+1u(t))�kL2 . k⌘Sk2
�

a2+1u(t)kL1kSk1
�

a1u(t)kL2

. hti�1E1/2

[

p̄+5
2 ]

,
[

p̄�1
2 ]

[u](t)E1/2
p̄,q̄ [u](t).

The second statement of the lemma follows analogously.

Two slightly more specialized instances of this basic argument occur in the proof
of Proposition 11.1.

8. Estimates for the linear equation. In this section, we focus on the estimation
of solutions of the linear version of the system (2.3a), (2.3b), (2.3c):

@tu
0 �r · ū� ⌫�u0

= G (8.1a)

@tū� (ru0

)

>
= 0 (8.1b)

r^ ū = 0. (8.1c)

Lemma 8.1. Assume that � in (3.3b) is sufficiently small and that ⌫  1. Let
G 2 L2

([0, T ];L2

(R3

)), for some 0 < T < 1. If u = (u0, ū) is a solution of (8.1a),
(8.1b), (8.1c) such that

sup

0tT
E
1,1[u](t) < 1,

then for any 0  ✓  1,
Z T

0

hti✓ ⇥k⇣ru(t)k2L2 + ⌫2k⇣�u0

(t)k2L2

⇤
dt

. ⌫hT i✓�2E
1,0[u](T ) +

Z T

0

hti✓�2E
1,1[u](t)dt+

Z T

0

hti✓k⇣G(t)k2L2dt.

Proof. By definition (3.1), the PDEs (8.1a), (8.1b) can be written as

t(r · ū+ ⌫�u0

) = Su0 � r@ru
0 � tG0

tru0

= Sū� r@rū.

Squaring and integrating with respect to ⇣2dx, we obtain

t2
⇥k⇣r · ūk2L2 + 2⌫h⇣r · ū, ⇣�u0iL2

+ ⌫2k⇣�u0k2L2 + k⇣ru0k2L2

⇤

. k⇣r@ruk2L2 + E
1,1[u](t) + t2k⇣Gk2L2 , (8.2)

where for notational convenience, we have suppressed the t dependence of the inte-
grated terms.

Thanks to (8.1b), the cross term can be rewritten as

2⌫h⇣r · ū, ⇣�u0iL2
= 2⌫h⇣r · ū, ⇣@t(r · ū)iL2

= ⌫@tk⇣r · ūk2L2 � 2⌫k@t(⇣2)r · ūk2L2 ,
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which can be estimated below by

⌫@tk⇣r · ūk2L2 � 1

2

k⇣r · ūk2L2 � C⌫2

hti2 E1,0[u](t),

using (3.3d) and Young’s inequality. With this, (8.2) yields

t2

⌫@tk⇣r · ūk2L2 +

1

2

k⇣r · ūk2L2 + ⌫2k⇣�u0k2L2 + k⇣ru0k2L2

�

. k⇣r@ruk2L2 + E
1,1[u](t) + t2k⇣Gk2L2 .

Choose 0  ✓  1, multiply the preceding inequality by hti✓�2, integrate in time,
and rearrange the result:

Z T

0

t2hti✓�2


1

2

k⇣r · ūk2L2 + ⌫2k⇣�u0k2L2 + k⇣ru0k2L2

�
dt

.
Z T

0

hti✓�2

⇥k⇣r@ruk2L2 + E
1,1[u](t) + t2k⇣Gk2L2

⇤
dt (8.3)

�
Z T

0

t2hti✓�2⌫@tk⇣r · ūk2L2dt.

We now focus on time derivative term on the right. A simple calculation reveals
that

d

dt
⌫t2hti✓�2

= ⌫thti✓�4

(2 + ✓t2)  2⌫thti✓�2  1

4

t2hti✓�2

+ 4⌫2hti✓�2,

and so, using integration by parts, we get

�
Z T

0

t2hti✓�2⌫@tk⇣r · ūk2L2dt


Z T

0

✓
1

4

t2hti✓�2

+ 4⌫2hti✓�2

◆
k⇣r · ūk2L2dt


Z T

0

1

4

t2hti✓�2k⇣r · ūk2L2dt+ C

Z T

0

hti✓�2E
1,0[u](t)dt.

Combining this with the inequality (8.3), we obtain

Z T

0

t2hti✓�2


1

4

k⇣r · ūk2L2 + ⌫2k⇣�u0k2L2 + k⇣ru0k2L2

�
dt

.
Z T

0

hti✓�2

⇥k⇣r@ruk2L2 + E
1,1[u](t) + t2k⇣Gk2L2

⇤
dt.

Next, thanks to Lemma 8.2 (to follow), we gain control of the full gradient on
the left:
Z T

0

t2hti✓�2

⇥k⇣ruk2L2 + ⌫2k⇣�u0k2L2

⇤
dt

.
Z T

0

hti✓�2

⇥k⇣r@ruk2L2 + E
1,1[u](t) + t2k⇣Gk2L2

⇤
dt.
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Then, inserting t2 = hti2 � 1 on the left, we may write
Z T

0

hti✓ ⇥k⇣ruk2L2 + ⌫2k⇣�u0k2L2

⇤
dt

.
Z T

0

hti✓�2

⇥k⇣r@ruk2L2 + ⌫2k⇣�u0k2L2 + E
1,1[u](t) + t2k⇣Gk2L2

⇤
dt.

According to definition (3.3b), we have r  �hti on the support of ⇣, so for �
sufficiently small, the term

Z T

0

hti✓�2k⇣r@ruk2L2dt .
Z T

0

�2hti✓k⇣@ruk2L2dt

can be absorbed on the left. This key step yields
Z T

0

hti✓ ⇥k⇣ruk2L2 + ⌫2k⇣�u0k2L2

⇤
dt

.
Z T

0

hti✓�2

⇥
⌫2k⇣�u0k2L2 + E

1,1[u](t) + t2k⇣Gk2L2

⇤
dt. (8.4)

Finally, consider the first term on the right. We have
Z T

0

hti✓�2⌫2k⇣�u0k2L2dt =

Z T

0

hti✓�2⌫2
d

dt

Z t

0

k⇣�u0k2L2dsdt

= hT i✓�2⌫2
Z T

0

k⇣�u0k2L2dt+ (2� ✓)

Z T

0

thti✓�4⌫2
Z t

0

k⇣�u0k2L2dsdt

. ⌫hT i✓�2E
1,0[u](T ) + ⌫

Z T

0

hti✓�2E
1,0[u](t)dt.

Insert this into (8.4). The desired estimate follows immediately since ⌫  1.

Remark. Notice that the time integration used in this lemma arises from the
dissipative term in the equation.

In the proof of Lemma 8.1, we used the following simple coercivity estimate:

Lemma 8.2. If w 2 H1

(R3,R3

) and r^ w = 0, then

1

2

k⇣rwk2L2 � k⇣r · wk2L2 . hti�2kwk2L2 .

Proof. The constraint r^ w = 0 implies that

|rw|2 � (r · w)2 = @i(w
j@jw

i
)� @j(w

j@iw
i
).

Using integration by parts and the property (3.3d), we may write

k⇣rwk2L2 � k⇣r · wk2L2 . hti�1k⇣rwkL2kwkL2 .

The result follows by an application of Young’s inequality.

We now establish a higher order version of Lemma 8.1.

Proposition 8.3. Assume that � in (3.3b) is sufficiently small and that ⌫  1. Fix
0  q < p. Suppose that

SkG 2 L2

([0, T ];Xp�k�1,0
), k = 0, . . . , q
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for some 0 < T < 1. If u is a solution of (8.1a), (8.1b), (8.1c) such that

sup

0tT
Ep,q+1

[u](t) < 1,

then for any 0  ✓  1,

Z T

0

hti✓ ⇥Y int

p,q[u](t) + ⌫2Z int

p,q[u](t)
⇤
dt

. ⌫hT i✓�2Ep,q[u](T ) +
Z T

0

hti✓�2Ep,q+1

[u](t)dt

+

X

|a|+kp�1
kq

Z T

0

hti✓k⇣Sk
�

aG(t)k2L2dt.

Proof. We shall prove this by induction on q. Fix a multi-index |a|  p� 1. By the
commutation relations (5.1a), (5.1b), we have that �

au solves (8.1a), (8.1b) with
�

aG on the right. Apply Lemma 8.1 to get

Z T

0

hti✓ ⇥k⇣r�

au(t)k2L2 + ⌫2k⇣��

au0

(t)k2L2

⇤
dt

. ⌫hT i✓�2E
1,0[�

au](T ) +

Z T

0

hti✓�2E
1,1[�

au](t)dt+

Z T

0

hti✓k⇣�aG(t)k2L2dt.

Summing over |a|  p� 1 gives the result for q = 0.
Now take any 1  r < p, and assume that the result holds when q = r � 1.

Choose a and k such that k 6= 0, |a|+ k  p� 1, and k  r. By (5.1a), (5.1b), we
have that Sk

�

au solves (8.1a), (8.1b) with

(S + 1)

k
�

aG� ⌫B�[Sk � (S � 1)

k
]�

au

on the right. Apply Lemma 8.1 again:

Z T

0

hti✓ ⇥k⇣rSk
�

au(t)k2L2 + ⌫2k⇣�Sk
�

au0

(t)k2L2

⇤
dt

. ⌫hT i✓�2E
1,0[S

k
�

au](T ) +

Z T

0

hti✓�2E
1,1[S

k
�

au](t)dt

+

Z T

0

hti✓ ⇥⌫2k⇣�[Sk � (S � 1)

k
](�

au)0k2L2 + k⇣Sk
�

aG(t)k2L2

⇤
dt

. ⌫hT i✓�2E
1,0[S

k
�

au](T ) +

Z T

0

hti✓�2E
1,1[S

k
�

au](t)dt

+

Z T

0

hti✓ ⇥⌫2Z int

p,r�1

[u](t) + k⇣Sk
�

aG(t)k2L2

⇤
dt.
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Notice that this inequality holds for k = 0, as well, by the result for q = 0. Perform
a summation over |a|+ k  p� 1, k  r. This yields
Z T

0

hti✓ ⇥Y int

p,r[u](t) + ⌫2Z int

p,r[u](t)
⇤
dt

. ⌫hT i✓�2Ep,r[u](T ) +
Z T

0

hti✓�2Ep,r+1

[u](t)dt

+

X

|a|+kp�1
kr

Z T

0

hti✓ ⇥⌫2Z int

p,r�1

[u](t) + k⇣Sk
�

aG(t)k2L2

⇤
dt.

The result now follows by the induction hypothesis.

Next, we turn our attention to the exterior region.

Lemma 8.4. Let G 2 C([0, T ];L2

(R3

)), for some 0 < T < 1. If u = (u0, ū) is a
solution of (8.1a), (8.1b), (8.1c) such that

sup

0tT
E
1,1[u](t) < 1,

then for all 0  t  T ,

k⌘(r@ru0

+ tr · ū)k2L2 + k⌘(r@rū+ tru0

)k2L2 + (⌫t)2k⌘�u0k2L2

. E
1,1[u](t) + t2k⌘Gk2L2 .

Proof. As in the proof of Lemma 8.1, write
r@ru

0

+ tr · ū+ t⌫�u0

= Su0 � tG0

r@rū+ tru0

= Sū,

square, and integrate with respect to ⌘2dx

k⌘(r@ru0

+ tr · ū)k2L2 + k⌘(r@rū+ tru0

)k2L2 + (⌫t)2k⌘�u0k2L2

+ 2h⌘(r@ru0

+ tr · ū), ⌘t⌫�u0iL2 . k⌘Suk2L2 + t2k⌘Gk2L2 . (8.5)
We focus on the cross term on the left. Write

I = 2h⌘(r@ru0

+ tr · ū), ⌘t⌫�u0iL2
= 2⌫t

Z
⌘2(r@ru

0

+ tr · ū)�u0dx.

The result will follow from (8.5) once we verify that

|I|  µ(⌫t)2k⌘�u0k2L2 + CE
1,1[u](t), (8.6)

with say µ  1/2.
Using (3.1), (3.2), (8.1b), we have

r · ū = ! · @rū�
⇣!
r
^ ⌦

⌘
· ū

= ! ·
✓
1

r
Sū� t

r
@tū

◆
�
⇣!
r
^ ⌦

⌘
· ū (8.7)

= � t

r
@ru

0

+O
✓
1

r
(|⌦u|+ |Su|)

◆
.

So we may write

I = 2⌫t

Z
⌘2
✓

1� t2

r2

◆
r@ru

0

�u0

+O
✓
t

r
(|⌦u|+ |Su|)

◆
�u0

�
dx.
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Insertion of the identity

r@ru
0

�u0

= r · ⇥r@ru0ru0 � 1

2

x|ru0|2⇤+ 1

2

|ru0|2,

followed by integration by parts yields

I = �2⌫t

Z
r

⌘2
✓
1� t2

r2

◆�
·

r@ru

0ru0 � 1

2

x|ru0|2
�
dx

+ 2⌫t

Z
⌘2

1

2

|ru0|2 +O
✓
t

r
(|⌦u|+ |Su|)

◆
�u0

�
dx.

By (3.3d) and the fact that r & hti on the support of ⌘, we see that

r

����r

⌘2
✓
1� t2

r2

◆����� . ⌘

and hence
|I| . ⌫t

Z
⌘|ru0|2dx+ ⌫t

Z
⌘(|⌦u|+ |Su|)|�u0|dx.

Using integration by parts and (3.3d), we get

⌫t

Z
⌘|ru0|2dx = �⌫t

Z
(⌘u0

�u0

+ u0r⌘ ·ru0

) dx

. ⌫t

Z
⌘|u0

�u0|dx+ ⌫E
1,1[u](t),

so
|I| . ⌫t

Z
⌘(|u0|+ |⌦u|+ |Su|)|�u0|dx+ CE

1,1[u](t).

The estimate (8.6) for I now follows by Young’s inequality.

Proposition 8.5. Fix 0  q  p. Suppose that

SkG 2 C([0, T ], Xp�k�1,0
), k = 0, . . . , q � 1,

for some 0 < T < 1. If u = (u0, ū) is a solution of (8.1a), (8.1b), (8.1c) such that

sup

0tT
Ep,q+1

[u](t) < 1,

then for all 0  t  T ,

Yext

p,q [u](t) + ⌫2Zext

p,q [u](t) . Ep,q+1

[u](t) +
X

|a|+kp�1
kq

t2k⌘Sk
�

aGk2L2 .

Proof. First, we note that from (3.4a), and (3.2), we have for each j,

|P@ju|2R4 =

1

2

(@ju
0 � ! · @j ū)2  1

2

(@ru
0 � ! · @rū)2 +O(

1

r2
|⌦u|2),

and by (8.1c),

|Q@ju|2R4 = |(I � P)@ju|2R4

=

1

2

(@ju
0

+ ! · @j ū)2 + |! ^ @j ū|2R3

=

1

2

(@ju
0

+ ! · @j ū)2 + |! ^ruj |R3

 1

2

(@ru
0

+ ! · @rū)2 +O(

1

r2
|⌦u|2).
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Therefore, since r & ht+ ri � ht� ri on supp ⌘, we obtain

Yext

1,0 [u](t) =

3X

j=1

[k⌘ht� riP@juk2L2 + k⌘ht+ riQ@juk2L2 ]

1

2

k⌘ht� ri(@ru0 � ! · @rū)k2L2

+

1

2

k⌘ht+ ri(@ru0

+ ! · @rū)k2L2 + Ck⌦uk2L2

1

2

k⌘(t� r)(@ru
0 � ! · @rū)k2L2

+

1

2

k⌘(t+ r)(@ru
0

+ ! · @rū)k2L2 + C[kruk2L2 + k⌦uk2L2 ].

A bit of algebraic manipulation produces the relation

1

2

(t� r)2(@ru
0 � ! · @rū)2 + 1

2

(t+ r)2(@ru
0

+ ! · @rū)2

= (r@ru
0

+ t! · @rū)2 + (r! · @rū+ t@ru
0

)

2.

Thanks to (3.2), we have

⌘|r@ru0

+ t! · @rū|  ⌘|r@ru0

+ tr · ū|+O(|⌦ū|)
and

⌘|r! · @rū+ t@ru
0|  ⌘|r@rū+ tru0|R3

+O(|⌦u0|).
Combining the preceding estimates gives us the bound

Yext

1,0 [u](t) . k⌘(r@ru0

+ tr · ū)k2L2 + k⌘(r@rū+ tru0

)k2L2 + E
1,0[u](t).

By Lemma 8.4, we conclude that

Yext

1,0 [u](t) + ⌫2Zext

1,0 [u](t) . E
1,1[u](t) + t2k⌘Gk2L2 .

Now take any multi-index a with |a|  p � 1. By (5.1a), we can apply the
preceding inequality to �

au to get

Yext

1,0 [�
au](t) + ⌫2Zext

1,0 [�
au](t) . E

1,1[�
au](t) + t2k⌘�aGk2L2 .

Summation over |a|  p� 1 yields

Yext

p,0 [u](t) + ⌫2Zext

p,0 [u](t) . Ep,1[u](t) +
X

|a|p�1

t2k⌘�aGk2L2 ,

which proves the result in the case q = 0.
The result for 0 < q < p follows from (5.1b) and induction, as in the proof of

Propostion 8.3.

9. Decay estimates. The next two results establish the dispersive estimates for
the nonlinear equation, using a bootstrap argument in connection with Propositions
8.3 and 8.5.

Theorem 9.1. Choose (p, q) so that p⇤ =

⇥
p+5

2

⇤
< q  p. Suppose that u 2

C([0, T );Xp,q
) is a solution of (2.2a), (2.2b) with

sup

0tT
Ep,q[u](t) < 1,
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and

sup

0tT
Ep⇤,p⇤

[u](t)  "2 ⌧ 1. (9.1)

Then

Z T

0

hti✓ ⇥Y int

p⇤,p⇤�1

[u](t) + ⌫2Z int

p⇤,p⇤�1

[u](t)
⇤
dt

.

8
><

>:

sup

0tT
hti��Ep⇤,p⇤

[u](t), 0 < ✓ + � < 1

log(e+ T ) sup

0tT
Ep⇤,p⇤

[u](t), ✓ = 1

, (9.2a)

and

Z T

0

hti✓ ⇥Y int

p⇤
+1,p⇤ [u](t) + ⌫2Z int

p⇤
+1,p⇤ [u](t)

⇤
dt

. sup

0tT
hti��Ep,q[u](t), 0 < ✓ + � < 1. (9.2b)

Proof. Fix a pair (p̄, q̄) = (p̄, p̄� 1) with 2  p̄  p. Choose a multi-index a and an
integer k, with |a|+ k  p̄� 1 and k  q̄ = p̄� 1. Then, using Lemmas 5.2 and 5.1,
we have that k⇣Sk

⌦

aN(u,ru)k2L2 is bounded by a sum of terms of the form

k⇣Sk1
�

a1u Sk2
�

a2+1uk2L2 , (9.3)

with |a
1

|+ |a
2

|  |a| and k
1

+ k
2

 k. Thus,

k
1

+ k
2

+ |a
1

|+ |a
2

|  k + |a|  p̄� 1 and k
1

+ k
2

 p̄� 1.

Lemma 7.1 implies that the terms in (9.3) can be bounded by (a multiple of)
h
Y int

p̄0,q̄0 [u](t) + hti�2Ep̄0�1,q̄0 [u](t)
i
Ep̄,q̄[u](t),

where p̄0 = [

(p̄�1)+5

2

] = [

p̄
2

] + 2 and q̄0 = [

p̄�1

2

].
Therefore, an application of Proposition 8.3 with G = N(u,ru) yields

Z T

0

hti✓[Y int

p̄,q̄[u](t) + ⌫2Z int

p̄,q̄[u](t)]dt

. ⌫hT i✓�2Ep̄,q̄[u](T ) +
Z T

0

hti✓�2Ep̄,q̄+1

[u](t)dt (9.4)

+

Z T

0

hti✓ ⇥Y int

p̄0,q̄0 [u](t) + hti�2Ep̄0�1,q̄0 [u](t)
⇤ Ep̄,q̄[u](t)dt,

for any 0 < ✓  1. We are going to apply this for two pairs (p̄, q̄).
First, let (p̄, q̄) = (p⇤, p⇤ � 1). Since p̄ = p⇤ � 5, we get

p̄0 =


p⇤

2

�
+ 2  p⇤, q̄0 =


p⇤ � 1

2

�
 p⇤ � 1.
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In this case, (9.4) yields
Z T

0

hti✓ ⇥Y int

p⇤,p⇤�1

[u](t) + ⌫2Z int

p⇤,p⇤�1

[u](t)
⇤
dt

. ⌫hT i✓�2Ep⇤,p⇤�1

[u](T ) +

Z T

0

hti✓�2Ep⇤,p⇤
[u](t)dt

+

Z T

0

hti✓ ⇥Y int

p⇤,p⇤�1

[u](t) + hti�2Ep⇤�1,p⇤�1

[u](t)
⇤ Ep⇤,p⇤

[u](t)dt.

Choose � � 0 such that 0 < ✓+ �  1. By (9.1), the right-hand side is bounded by

sup

0tT
hti��Ep⇤,p⇤

[u](t)

"
hT i✓+��2

+

Z T

0

hti✓+��2dt

#
+"2

Z T

0

hti✓Y int

p⇤,p⇤�1

[u](t)dt.

For "2 sufficiently small, the last term above can be absorbed on the left, and then
the inequalities (9.2a) follow immediately.

Next, we use the pair (p̄, q̄) = (p⇤ + 1, p⇤) in (9.4). Again since p⇤ � 5, we have

p̄0 =


p⇤ + 1

2

�
+ 2  p⇤ and q̄0 =


p⇤

2

�
 p⇤ � 1.

We obtain from (9.4)
Z T

0

hti✓ ⇥Y int

p⇤
+1,p⇤ [u](t) + ⌫2Z int

p⇤
+1,p⇤ [u](t)

⇤
dt

.⌫hT i✓�2Ep⇤
+1,p⇤

[u](T ) +

Z T

0

hti✓�2Ep⇤
+1,p⇤

+1

[u](t)dt

+

Z T

0

hti✓ ⇥Y int

p⇤,p⇤�1

[u](t) + hti�2Ep⇤�1,p⇤�1

[u](t)
⇤ Ep⇤

+1,p⇤
[u](t)dt.

Choose � > 0 such that 0 < ✓ + � < 1. Since p⇤ + 1  q  p, the right-hand side
can be estimated above by

sup

0tT
hti��Ep,q[u](t)

"
⌫hT i✓+��2

+

Z T

0

hti✓+��2dt

+

Z T

0

hti✓+�
⇥Y int

p⇤,p⇤�1

[u](t) + hti�2Ep⇤�1,p⇤�1

[u](t)
⇤
dt

#
.

By (9.2a) and (9.1), the last integral is bounded (by C"2), and so the inequality
(9.2b) now follows.

Theorem 9.2. Fix p � 11. Assume that p⇤ =

⇥
p+5

2

⇤
< q  p. Suppose that

u 2 C([0, T );Xp,q
) is a solution of (2.2a), (2.2b) with

sup

0tT
Ep,q[u](t) < 1

and
sup

0tT
Ep⇤,p⇤

[u](t)  1. (9.5)

Then
Yext

p,q�1

[u](t) + ⌫2Zext

p,q�1

[u](t) . Ep,q[u](t), 0  t  T.
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Proof. Choose a multi-index a and an integer k, such that |a| + k  p � 1, k  q.
Then, using Lemmas 5.2 and 5.1, we have that the quantity k⌘Sk

⌦

aN(u,ru)k2L2

is bounded by a sum of terms of the form
k⌘Sk1

�

a1u Sk2
�

a2+1uk2L2 , (9.6)
with |a

1

|+ |a
2

|  |a| and k
1

+ k
2

 k. Thus,
k
1

+ k
2

+ |a
1

|+ |a
2

|  k + |a|  p� 1 and k
1

+ k
2

 p� 1.

Lemma 7.2 implies that the terms in (9.6) can be bounded by (a multiple of)

hti�2 Ep0,q0 [u](t) Ep,q[u](t),
where p0 = [

(p�1)+5

2

] = [

p
2

]+2  p⇤ and q0 = [

p�1

2

] < p⇤. Thus, we have Ep0,q0 [u](t) 
1, by (9.5). The result is now a consequence of Proposition 8.5.

10. High energy estimates.

Proposition 10.1. Choose (p, q) so that 5  p⇤ =

⇥
p+5

2

⇤  q  p. Suppose that
u 2 C([0, T

0

);Xp,q
) is a solution of (2.2a), (2.2b) with

sup

0t<T0

Ep⇤,p⇤
[u](t)  "2 ⌧ 1. (10.1)

Then there exists a constant C
1

> 1 such that

Ep,q[u](t)  C
1

Ep,q[u0

]htiC1"

Ep⇤,p⇤
[u](t)  C

1

Ep⇤,p⇤
[u

0

]htiC1",

for 0  t < T
0

.

Proof. Thanks to the symmetry of the coefficient matrices (2.2c), we obtain the
basic energy identity

E
0,0[u](T ) = E

0,0[u0

] +

Z T

0

hLu(t), u(t)iL2dt, 0  T < T
0

.

For p � q � 0, we can combine this with (5.1a) to get

Ep,q[u](T ) = Ep,q[u0

] + I +
X

|a|+kp
kq

Z T

0

h(S + 1)

k
�

aLu(t), Sk
�

au(t)iL2dt,

with

I = �
X

|a|+kp
kq

Z T

0

h⌫B�[Sk � (S � 1)

k
]�

au(t), Sk
�

au(t)iL2dt.

For q > 0, using the definition B = e
0

⌦ e
0

and integration by parts we get the
bound

I =

X

|a|+kp
kq

Z T

0

h⌫r[Sk � (S � 1)

k
](�

au)0(t),rSk
(�

au)0(t)iL2dt

. E1/2
p,q�1

[u](T )E1/2
p,q [u](T ).

It follows from induction on q and Young’s inequality that

Ep,q[u](T ) . Ep,q[u0

] +

X

|a|+kp
kq

�����

Z T

0

h(S + 1)

k
�

aLu(t), Sk
�

au(t)iL2dt

����� . (10.2)
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If we combine (10.2) with Lemma 5.2, we find

Ep,q[u](T ) . Ep,q[u0

]

+

X

a1+a2+a3=a
k1+k2=k
|a|+kp

kq

�����

Z T

0

h[�a3 , N ](Sk1
�

a1u,rSk2
�

a2u), Sk
�

auiL2dt

����� . (10.3)

The reader will note that we have deliberately left the absolute value signs on the
“outside” of the integrals because we will later exploit cancellations of the coefficients
of the nonlinear terms.

Special care must be taken for the terms in the sum with |a
2

|+ k
2

= |a|+ k = p.
To simplify the notation when analyzing these terms, set v = Sk

�

au. Then using
the fact that @↵v� = @�v

↵, we may write

hN(u,rSk
�

au), Sk
�

auiR4
=hN(u,rv), viR4

=N0

(u,rv)v0

=C`
↵,�u

↵@`v
�v0

=C`
↵,0u

↵@`v
0v0 + C`

↵,mu↵@`v
mv0

=

1

2

h
C`

↵,0@`[u
↵
(v0)2] + (C`

↵,m + Cm
↵,`)@`(u

↵vmv0)

� C`
↵,m@0(u

↵v`vm)� C`
↵,0@`u

↵
(v0)2

� (C`
↵,m + Cm

↵,`)@`u
↵vmv0 + C`

↵,m@0u
↵v`vm

i

=

1

2

h
C`

↵,0@`[u
↵
(v0)2] + (C`

↵,m + Cm
↵,`)@`(u

↵vmv0)

� C`
↵,m@0(u

↵v`vm)

i
�O(|@u| |v|2).

Integration over [0, T ]⇥ R3 yields
Z T

0

hN(u,rSk
�

au), Sk
�

auiL2dt =� 1

2

Z

R3

C`
↵,mu↵

(T )(Sk
�

au(T ))`(Sk
�

au(T ))mdx

+

1

2

Z

R3

C`
↵,mu↵

(0)(Sk
�

au(0))`(Sk
�

au(0))mdx

+O
 Z T

0

Z

R3

|@u||Sk
�

au|2dxdt
!
.

(10.4)
By (6.1a) and the assumption (10.1), we have

kukL1
(R3

)

. kukH2
(R3

)

 E1/2
2,0 [u] < "⌧ 1. (10.5)

Using (2.2a) and (10.5), we have

|@u| . |@
0

u|+ |ru| . (1 + |u|) |ru|+ |�u0| . |ru|+ |�u|. (10.6)

It follows that the right-hand side of (10.4) is bounded by

"2
✓
Ep,q[u](T ) + Ep,q[u0

]

◆
+O

 Z T

0

Z

R3

(|ru|+ |�u|)|Sk
�

au|2dxdt
!
.
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The remaining terms in (10.3) satisfy

X

|a|+kp
kq

X

a1+a2+a3=a
k1+k2=k
|a2|+k2<p

�����

Z T

0

h[�a3 , N ](Sk1
�

a1u,rSk2
�

a2u), Sk
�

auiL2dt

�����

.
X

|a|+kp
kq

X

|a1+a2||a|
k1+k2k
|a2|+k2<p

Z T

0

Z

R3

|Sk1
�

a1u||rSk2
�

a2u||Sk
�

au|dxdt.

Altogether, taking " sufficiently small we obtain from (10.3)

Ep,q[u](T ) . Ep,q[u0

] +

X

|a|+k=p

Z T

0

Z

R3

(|ru|+ |�u|)|Sk
�

au|2dxdt

+

X

|a|+kp
kq

X

|a1+a2||a|
k1+k2k
|a2|+k2<p

Z T

0

Z

R3

|Sk1
�

a1u||rSk2
�

a2u||Sk
�

au|dxdt.

This immediately leads to

Ep,q[u](T ) . Ep,q[u0

] +

X

|a|+k=p

Z T

0

(kru(t)kL1
+ k�u(t)kL1

)Ep,q[u](t)dt

+

X

|a1+a2|+k1+k2p
k1+k2q
|a2|+k2<p

Z T

0

k |Sk1
�

a1u(t)| |Sk2
�

a2+1u(t)| kL2E1/2
p,q [u](t)dt.

Using (3.3c), (6.2a), (6.2d), and the fact that 5  ⇥p+5

2

⇤
, we obtain

kru(t)kL1
+ k�u(t)kL1 .k⇣ru(t)kL1

+ k⇣�u(t)kL1

+ k⌘ru(t)kL1
+ k⌘�u(t)kL1

.
�Y int

4,0[u](t)
�
1/2

+ hti�1E1/2
4,0 [u](t)

.
⇣
Y int

[

p+5
2 ]

,
[

p+3
2 ]

[u](t)
⌘
1/2

+ hti�1E1/2

[

p+5
2 ]

,
[

p+5
2 ]

[u](t).

By (3.3c) and Lemmas 7.1 and 7.2, we get the same bound
X

|a1+a2|+k1+k2p
k1+k2q
|a2|+k2<p

k |Sk1
�

a1u(t)| |Sk2
�

a2+1u(t)| kL2

.
X

|a1+a2|+k1+k2p
k1+k2q
|a2|+k2<p

k⇣ |Sk1
�

a1u(t)| |Sk2
�

a2+1u(t)| kL2

+

X

|a1+a2|+k1+k2p
k1+k2q
|a2|+k2<p

k⌘ |Sk1
�

a1u(t)| |Sk2
�

a2+1u(t)| kL2

.
⇣

Y int

[

p+5
2 ]

,
[

p+3
2 ]

[u](t)
⌘
1/2

+ hti�1E1/2

[

p+5
2 ]

,
[

p+5
2 ]

[u](t)

�
E1/2
p,q [u](t).



NONLINEAR DISSIPATIVE WAVE EQUATIONS 1431

Inserting this into the previous energy inequality yields

Ep,q[u](T ) . Ep,q[u0

]

+

Z T

0

⇣
Y int

[

p+5
2 ]

,
[

p+3
2 ]

[u](t)
⌘
1/2

+ hti�1E1/2

[

p+5
2 ]

,
[

p+5
2 ]

[u](t)

�
Ep,q[u](t)dt.

An application of Gronwall’s inequality produces

Ep,q[u](T )

. Ep,q[u0

] exp

Z T

0

⇣
Y int

[

p+5
2 ]

,
[

p+3
2 ]

[u](t)
⌘
1/2

+hti�1E1/2

[

p+5
2 ]

,
[

p+5
2 ]

[u](t)

�
dt. (10.7)

We point out that (10.7) holds for any pair (p, q) as long as p � q � ⇥
p+5

2

⇤ � 5,
which requires only p � 5.

Recalling the definition p⇤ =

⇥
p+5

2

⇤
, we obtain using Theorem 9.1

Z T

0

⇣
Y int

[

p+5
2 ]

,
[

p+3
2 ]

[u](t)
⌘
1/2

dt 
 Z T

0

htiY int

p⇤,p⇤�1

[u](t)dt

!
1/2 Z T

0

hti�1dt

!
1/2

.
✓

sup

0tT
Ep⇤,p⇤

[u](t) log(e+ T )

◆
1/2

(log(e+ T ))
1/2

. sup

0tT
E1/2
p⇤,p⇤ [u](t) log(e+ T ).

Likewise, we have the bound
Z T

0

hti�1E1/2

[

p+5
2 ]

,
[

p+5
2 ]

[u](t) . sup

0tT
E1/2
p⇤,p⇤ [u](t) log(e+ T ).

Now thanks to the assumption (10.1), the inequality (10.7) implies that

Ep,q[u](T ) . Ep,q[u0

] exp [C" log(e+ T )]  Ep,q[u0

]hT iC1".

Returning to (10.7), we can repeat this argument with the pair (p, q) = (p⇤, p⇤)
because p⇤ � 5 implies that p⇤ � ⇥p⇤+5

2

⇤
. Therefore, we also obtain the bound

Ep⇤,p⇤
[u](T ) . Ep⇤,p⇤

[u
0

]hT iC1",

after a possible increase in the size of the constant C
1

. Note however, that the choice
of C

1

is independent of ". The size of C
1

may always be increased, while the size
of " may always be decreased. The statement of Proposition 10.1 now follows.

Corollary 10.2. Under the hypotheses of Proposition 10.1, we have

Ep⇤,p⇤
[u](T ) . Ep⇤,p⇤

[u
0

]

+

X

a1+a2+a3=a
k1+k2=k
|a|+kp⇤

kp⇤

�����

Z T

0

h[�a3 , N ](Sk1
�

a1u,rSk2
�

a2u), Sk
�

auiL2dt

����� .

Proof. This is simply (10.3) from the proof of Proposition 10.1 in the case where
(p, q) = (p⇤, p⇤).
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11. Low energy estimates.

Proposition 11.1. Choose (p, q) such that p � 11, and p � q > p⇤, where p⇤ =⇥
p+5

2

⇤
. Let �  1 be defined as in (4.1). Suppose that u 2 C([0, T

0

);Xp,q
) is a

solution of (2.2a), (2.2b) with

sup

0t<T0

Ep⇤,p⇤
[u](t)  "2 ⌧ 1. (11.1)

There exists a constant C
0

> 1 such that if

C3

0

✓
�

⌫

◆
2

Ep⇤,p⇤
[u

0

]

⇣
1 + E1/2

p,q [u0

]

⌘
< 1, (11.2)

then

sup

0t<T0

Ep⇤,p⇤
[u](t)  C

0

Ep⇤,p⇤
[u

0

]

⇣
1 + E1/2

p,q [u0

]

⌘
. (11.3)

Proof. We continue from the inequality of Corollary 10.2. Using the cut-off functions
defined in (3.3b) and recalling (3.3c), we can write:

Ep⇤,p⇤
[u](T ) . Ep⇤,p⇤

[u
0

] + I
1

+ I
2

, (11.4)

with

I
1

=

X

|a1+a2||a|
k1+k2=k
|a|+kp⇤

kp⇤

Z T

0

Z

R3

⇣2|Sk1
�

a1u| |rSk2
�

a2u| |Sk
�

au| dxdt

and

I
2

=

X

a1+a2+a3=a
k1+k2=k
|a|+kp⇤

kp⇤

�����

Z T

0

Z

R3

⌘h[�a3 , N ](Sk1
�

a1u,rSk2
�

a2u), Sk
�

auiR4dxdt

����� ,

for 0  T < T
0

.

Interior Low Energy. The first integral I
1

on the right of (11.4) is bounded by

|I
1

| .
X

k1+k2+|a1|+|a2|p⇤
k1+k2p⇤

Z T

0

k ⇣2|Sk1
�

a1u| |rSk2
�

a2u| kL2 E1/2
p⇤,p⇤ [u](t)dt.

To estimate this, we follow the same strategy as in Lemma 7.1.
In the case k

1

+ |a
1

| < k
2

+ |a
2

|+ 1, i.e. k
1

+ |a
1

| 
h
p⇤

2

i
, we have using (6.2a)

k⇣2|Sk1
�

a1u||rSk2
�

a2u| kL2 . k⇣Sk1
�

a1ukL1k⇣rSk2
�

a2ukL2

.
"✓

Y int

[

p⇤+4
2 ]

,
[

p⇤
2 ]

[u](t)

◆
1/2

+ hti�1E1/2

[

p⇤+2
2 ]

,
[

p⇤
2 ]

[u](t)

#
⇥ �Y int

p⇤
+1,p⇤ [u](t)

�
1/2

.

Next, we consider the terms in I
1

with k
2

+ |a
2

|+ 1  k
1

+ |a
1

|, i.e. k
2

+ |a
2

| h
p⇤�1

2

i
. By Hardy’s inequality (6.2c) and the Sobolev inequality (6.2b), we can
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write:

k⇣2 |Sk1
�

a1u| |rSk2
�

a2u| kL2

. kr�1⇣Sk1
�

a1ukL2kr⇣rSk2
�

a2ukL1

.
h�Y int

p⇤
+1,p⇤ [u](t)

�
1/2

+ hti�1E1/2
p⇤,p⇤ [u](t)

i

⇥
"✓

Y int

[

p⇤+5
2 ]

,
[

p⇤�1
2 ]

[u](t)

◆
1/2

+ hti�1E1/2

[

p⇤+3
2 ]

,
[

p⇤�1
2 ]

[u](t)

#
.

Thanks to the assumption p � 11, we have
h
p⇤

+5

2

i
 p⇤, so altogether for the

interior low energy we have:

I
1

.
Z T

0

"✓
Y int

[

p⇤+5
2 ]

,
[

p⇤
2 ]

[u](t)

◆
1/2

+ hti�1E1/2

[

p⇤+3
2 ]

,
[

p⇤
2 ]

[u](t)

#

⇥
h�Y int

p⇤
+1,p⇤ [u](t)

�
1/2

+ hti�1E1/2
p⇤,p⇤ [u](t)

i
E1/2
p⇤,p⇤ [u](t)dt

.
Z T

0

h�Y int

p⇤,p⇤�1

[u](t)
�
1/2

+ hti�1E1/2
p⇤,p⇤ [u](t)

i

⇥
h�Y int

p⇤
+1,p⇤ [u](t)

�
1/2

+ hti�1E1/2
p⇤,p⇤ [u](t)

i
E1/2
p⇤,p⇤ [u](t)dt

.
Z T

0

�Y int

p⇤,p⇤�1

[u](t)
�
1/2 �Y int

p⇤
+1,p⇤ [u](t)

�
1/2 E1/2

p⇤,p⇤ [u](t)dt

+

Z T

0

hti�1

�Y int

p⇤
+1,p⇤ [u](t)

�
1/2 Ep⇤,p⇤

[u](t)dt+

Z T

0

hti�2E3/2
p⇤,p⇤ [u](t)dt.

By Theorem 9.1 and Proposition 10.1, we can estimate these three integrals as
follows. Note that " in (11.1) must again be taken small enough, 2C

1

" < 1 is
sufficient, in addition to our earlier restrictions.

First integral:
Z T

0

�Y int

p⇤,p⇤�1

[u](t)
�
1/2 �Y int

p⇤
+1,p⇤ [u](t)

�
1/2 E1/2

p⇤,p⇤ [u](t)dt

.
✓

sup

0tT
hti�C1"Ep⇤,p⇤

[u](t)

◆
1/2

⇥
Z T

0

htiC1"/2
�Y int

p⇤,p⇤�1

[u](t)
�
1/2 �Y int

p⇤
+1,p⇤ [u](t)

�
1/2

dt

. E1/2
p⇤,p⇤ [u

0

]

 Z T

0

htiC1"/2Y int

p⇤,p⇤�1

[u](t)dt

!
1/2

⇥
 Z T

0

htiC1"/2Y int

p⇤
+1,p⇤ [u](t)dt

!
1/2

. E1/2
p⇤,p⇤ [u

0

]

✓
sup

0tT
hti�C1"Ep⇤,p⇤

[u](t)

◆
1/2

⇥
✓

sup

0tT
hti�C1"Ep,q[u](t)

◆
1/2

. Ep⇤,p⇤
[u

0

]E1/2
p,q [u0

].

Second integral:
Z T

0

hti�1

�Y int

p⇤
+1,p⇤ [u](t)

�
1/2 Ep⇤,p⇤

[u](t)dt
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. sup

0tT
hti�C1"Ep⇤,p⇤

[u](t)

Z T

0

hti�1+C1"
�Y int

p⇤
+1,p⇤ [u](t)

�
1/2

dt

. Ep⇤,p⇤
[u

0

]

 Z T

0

hti�2+C1"dt

!
1/2

⇥
 Z T

0

htiC1"Y int

p⇤
+1,p⇤ [u](t)dt

!
1/2

. Ep⇤,p⇤
[u

0

]

✓
sup

0tT
hti�C1"Ep,q[u](t)

◆
1/2

. Ep⇤,p⇤
[u

0

]E1/2
p,q [u0

].

Third integral:
Z T

0

hti�2E3/2
p⇤,p⇤ [u](t)dt .

✓
sup

0tT
hti�C1"Ep⇤,p⇤

[u](t)

◆
3/2 Z T

0

hti�2+

3
2C1"dt

. E3/2
p⇤,p⇤ [u

0

]

. Ep⇤,p⇤
[u

0

]E1/2
p,q [u0

].

Combining these estimates, we have

I
1

. Ep⇤,p⇤
[u

0

]E1/2
p,q [u0

]. (11.5)

Exterior Low Energy. Thanks to Lemma 5.4, (5.3a), the second integral I
2

on the
right of (11.4) is estimated by

I
2

. I 0
2

+ I 00
2

, (11.6a)

with

I 0
2

=

X

a1+a2+a3=a
k1+k2=k
|a|+kp⇤

kp⇤

�����

Z T

0

Z

R3

1

4

⌘ P
[

e
⌦

a,N ]

(!̂) h!̂, Sk1
�

a1uiR4

⇥ h!̂, @rSk2
�

a2uiR4
(Sk

�

au)0 dxdt

����� (11.6b)

and

I 00
2

=

X

k1+k2+|a1|+|a2|p⇤
k1+k2p⇤

Z T

0

"
k ⌘|QSk1

�

a1u| |@rSk2
�

a2u| kL2

+ k ⌘|Sk1
�

a1u| |Q@rSk2
�

a2u| kL2

+ k r�1⌘|Sk1
�

a1u| |Sk2 e
⌦�

a2u| kL2

#
⇥ E1/2

p⇤,p⇤ [u](t) dt.

(11.6c)

Before estimating the main term I 0
2

above, we dispatch the easiest terms I 00
2

. We
claim that within the the range of indices of the sum,

k
1

+ k
2

+ |a
1

|+ |a
2

|  p⇤, k
1

+ k
2

 p⇤,

the quantities

Q
1

= k ⌘|QSk1
�

a1u| |@rSk2
�

a2u| kL2
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Q
2

= k ⌘|Sk1
�

a1u| |Q@rSk2
�

a2u| kL2

Q
3

= k r�1⌘|Sk1
�

a1u| |Sk2 e
⌦�

a2u| kL2 ,

which appear in (11.6c), satisfy the estimate

Q
1

+Q
2

+Q
3

. hti�3/2 E1/2
p⇤,p⇤ [u](t) E1/2

p,q [u](t). (11.7)

In the following, we shall make use of the fact that p � 11 implies p⇤ + 3  p

and
h
p⇤

+5

2

i
 p⇤. Recall also that p⇤ < q.

Using (6.2e) and Theorem 9.2, we have

Q
1

= k ⌘|QSk1
�

a1u| |@rSk2
�

a2u| kL2

 k⌘QSk1
�

a1ukL1k@rSk2
�

a2ukL2

. hti�3/2

✓⇣
Yext

k1+|a1|+2,k1
[u](t)

⌘
1/2

+ E1/2
k1+|a1|+1,k1

[u](t)

◆
⇥ E1/2

k2+|a2|+1,k2
[u](t)

. hti�3/2 E1/2
k1+|a1|+2,k1+1

[u](t) E1/2
k2+|a2|+1,k2

[u](t).

Since k
1

+ k
2

+ |a
1

|+ |a
2

|  p⇤, either

k
1

+ |a
1

|+ 2 

p⇤ + 3

2

�
 p⇤ and k

2

+ |a
2

|+ 1  p⇤ + 1  p

or

k
1

+ |a
1

|+ 2  p⇤ + 2  p and k
2

+ |a
2

|+ 1 

p⇤ + 3

2

�
 p⇤.

Therefore (11.7) holds for Q
1

.
The details are quite similar for the term Q

2

:

Q
2

= k ⌘|Sk1
�

a1u| |Q@rSk2
�

a2u| kL2

 kSk1
�

a1ukL2k⌘Q@rSk2
�

a2ukL1

. E1/2
k1+|a1|,k1

[u](t)⇥ hti�3/2

✓⇣
Yext

k2+|a2|+3,k2
[u](t)

⌘
1/2

+ E1/2
k2+|a2|+2,k2

[u](t)

◆

. hti�3/2 E1/2
k1+|a1|,k1

[u](t) E1/2
k2+|a2|+3,k2+1

[u](t)

. hti�3/2 E1/2
p⇤,p⇤ [u](t) E1/2

p⇤
+3,p⇤

+1

[u](t)

. hti�3/2 E1/2
p⇤,p⇤ [u](t) E1/2

p,q [u](t),

since p⇤ + 3  p and p⇤ < q. Thus, the claimed estimate (11.7) is valid for Q
2

, as
well.

By Lemma 7.2, we have

Q
3

= k r�1⌘|Sk1
�

a1u| |Sk2 e
⌦�

a2u| kL2

. hti�1k ⌘|Sk1
�

a1u| |Sk2 e
⌦�

a2u| kL2

. hti�2E1/2
p⇤,p⇤ [u](t)E1/2

p⇤
+1,p⇤ [u](t)

. hti�3/2E1/2
p⇤,p⇤ [u](t)E1/2

p,q [u](t),

which verifies the claim (11.7) for Q
3

.
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Thus, from (11.6c), (11.7), we have that

I 00
2

.
Z T

0

hti�3/2 Ep⇤,p⇤
[u](t) E1/2

p,q [u](t) dt. (11.8)

We now turn to I 0
2

given in (11.6b). By (5.3b), it is estimated by

I 0
2

.
X

a1+a2+a3=a
k1+k2=k
|a|+kp⇤

kp⇤

Z T

0

� k ⌘ |Sk1
�

a1u| |@rSk2
�

a2u| |Sk
(�

au)0| kL1dt

⌘
Z T

0

Q
0

dt.

(11.9)

We are going to estimate these terms for the range of indices in the sum.
First, from (2.3b) we note the simple relation (similar to (8.7))

@ru = @ru
0e

0

+ @rū = @ru
0e

0

+

1

r
Sū� t

r
@tū = @ru

0e
0

+

1

r
Sū� t

r
(ru0

)

>,

and thus,
⌘|@ru| . ⌘(|ru0|+ hti�1|Su|).

So for the terms under consideration, we may write

Q
0

. �k |Sk1
�

a1u| |rSk2
(�

a2u)0| |Sk
(�

au)0| kL1

+ �hti�1k ⌘ |Sk1
�

a1u| |Sk2+1

�

a2u| kL2kSk
�

aukL2 . (11.10a)

Using a slight variant of Lemma 7.2 with (p̄, q̄) = (p⇤, p⇤), we see that the second
term in (11.10a) satisfies

�hti�1k ⌘ |Sk1
�

a1u| |Sk2+1

�

a2u| kL2kSk
�

aukL2

. �hti�2 E1/2

[

p⇤+5
2 ]

,
[

p⇤�1
2 ]

[u](t) E1/2
p⇤

+1,p⇤
+1

[u](t)E1/2
p⇤,p⇤ [u](t)

. �hti�2 Ep⇤,p⇤
[u](t)E1/2

p⇤
+1,p⇤

+1

[u](t)

. �hti�2 Ep⇤,p⇤
[u](t)E1/2

p,q [u](t).

(11.10b)

The first and dominant term in (11.10a) measures the deviation from the null
condition, and it will be estimated with the aid the diffusion term in the energy.
We use (6.1b) to get

k |Sk1
�

a1u| |rSk2
(�

a2u)0| |Sk
(�

au)0| kL1

. k r |Sk1
�

a1u| |rSk2
(�

a2u)0| kL2kr�1Sk
(�

au)0kL2

. k r |Sk1
�

a1u| |rSk2
(�

a2u)0| kL2krSk
(�

au)0kL2 .

(11.10c)

Now, we employ the usual strategy. For the terms under consideration, we have

Case (a): k
1

+ |a
1

| 

p⇤

2

�
and k

2

+ |a
2

|  p⇤

or

Case (b): k
2

+ |a
2

| 

p⇤

2

�
and k

1

+ |a
1

|  p⇤.
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So by (6.1d), we obtain

k r |Sk1
�

a1u| |rSk2
(�

a2u)0| kL2

.
(
krSk1

�

a1ukL1krSk2
(�

a2u)0kL2 , Case (a)
kSk1

�

a1ukL2krrSk2
(�

a2u)0kL1 , Case (b)

.
(
kSk1

�

a1+2ukL2krSk2
(�

a2u)0kL2 , Case (a)
kSk1

�

a1ukL2krSk2
(�

a2+2u)0kL2 , Case (b)

. E1/2
p⇤,p⇤ [u](t)krSk2

(�

bu)0kL2 ,

(11.10d)

with k
2

+ |b|  p⇤.
Combining (11.10a), (11.10b), (11.10c), (11.10d), we end up with

Q
0

. �E1/2
p⇤,p⇤ [u](t)krSk2

(�

bu)0kL2krSk
(�

au)0kL2
+�hti�2 Ep⇤,p⇤

[u](t)E1/2
p,q [u](t),

where k
2

+ |b|  p⇤. Thus, from (11.9), we have shown that

I 0
2

.
X

k+|a|p⇤

Z T

0

� E1/2
p⇤,p⇤ [u](t) krSk

(�

au)0k2L2 dt

+

Z T

0

�hti�2 Ep⇤,p⇤
[u](t)E1/2

p,q [u](t) dt. (11.11)

Inserting the estimates (11.11) and (11.8) into (11.6a), we find that

I
2

.
Z T

0

hti�3/2 Ep⇤,p⇤
[u](t) E1/2

p,q [u](t) dt

+

X

k+|a|p⇤

Z T

0

� E1/2
p⇤,p⇤ [u](t) krSk

(�

au)0k2L2 dt.

By Proposition 10.1, we get

I
2

. sup

0tT

⇣
hti� 3

2C1"Ep⇤,p⇤
[u](t)E1/2

p,q [u](t)
⌘Z T

0

hti� 3
2 (1�C1")dt

+ � sup

0tT
E1/2
p⇤,p⇤ [u](t)

X

k+|a|p⇤

Z T

0

krSk
(�

au)0k2L2 dt (11.12)

. Ep⇤,p⇤
[u

0

]E1/2
p,q [u0

] +

�

⌫
sup

0tT
E3/2
p⇤,p⇤ [u](t),

provided C
1

" < 1/3.
We deduce from (11.4), (11.5), (11.12) that

Ep⇤,p⇤
[u](T ) . Ep⇤,p⇤

[u
0

]

⇣
1 + E1/2

p,q [u0

]

⌘
+

�

⌫
sup

0tT
E3/2
p⇤,p⇤ [u](t),

for every 0  T < T
0

. Thus, there exists a constant C
0

> 4 such that

Ep⇤,p⇤
[u](T )  C

0

4


Ep⇤,p⇤

[u
0

]

⇣
1 + E1/2

p,q [u0

]

⌘
+

�

⌫
sup

0tT
E3/2
p⇤,p⇤ [u](t)

�
,

for every 0  T < T
0

. In other words, the function
S(T ) = sup

0tT
Ep⇤,p⇤

[u](t)
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satisfies
S(T )  A

0

+B
0

S(T )3/2, 0  T < T
0

, (11.13)
with

A
0

=

C
0

4

Ep⇤,p⇤
[u

0

]

⇣
1 + E1/2

p,q [u0

]

⌘
and B

0

=

C
0

�

4⌫
.

We now conclude the proof with a standard argument, using (11.13) to show that
(11.2) implies (11.3).

Suppose that S(T ) < 4A
0

. Then by (11.13), we have

S(T )  A
0

+ (4A
0

)

1/2B
0

S(T ).

If (4A
0

)

1/2B
0

< 1/2, i.e. (11.2) holds, then S(T ) < 2A
0

. Thus, since S(0) < 4A
0

,2
we obtain by continuity that S(T ) < 2A

0

< 4A
0

, for all 0  T < T
0

, i.e. (11.3)
holds.

Remark. The reader will note that (11.12) is the only point in this paper where
⌫ > 0 is relied upon. In particular, we never use the estimates for ⌫2Z int and ⌫2Zext

given in Corollary 4.2.

We now consider the situation when the condition (11.2) does not hold.

Proposition 11.2. Choose (p, q) with p � 11 and p � q > p⇤, where p⇤ =

⇥
p+5

2

⇤
.

Let �  1 be defined by (4.1). Suppose that u 2 C([0, T
0

);Xp,q
) is a solution of

(2.2a), (2.2b) with
sup

0t<T0

Ep⇤,p⇤
[u](t)  "2 ⌧ 1.

There exist constants C
0

, C
1

> 1 such that if

C
1

hT
0

iC1" 
 
2 max {⌫, C

1

"}
C

0

� E1/2
p⇤,p⇤ [u

0

]

!
2

, (11.14)

then
sup

0t<T0

Ep⇤,p⇤
[u](t)  C

0

Ep⇤,p⇤
[u

0

]

⇣
1 + E1/2

p,q [u0

]

⌘
.

Remark. The constant C
0

may be assumed to be the same in Propositions 11.1
and 11.2. The constant C

1

is the one given by Proposition 10.1.

Proof. We continue with the same notation as used in the proof of Proposition
11.1. All of the estimates derived there up to and including (11.13) are valid under
the current hypotheses, insofar as the assumption (11.2) is used only in the final
paragraph of the proof.

Using (11.13) with Proposition 10.1, we have

S(T )  A
0

+B
0

(C
1

Ep⇤,p⇤
[u

0

]hT
0

iC1"
)

1/2 S(T ) (11.15)

 A
0

+B
1

(C
1

hT
0

iC1"
)

1/2 S(T ),

with

B
1

= B
0

E1/2
p⇤,p⇤ [u

0

] =

C
0

�

4⌫
E1/2
p⇤,p⇤ [u

0

].

2We may assume that A0 > 0, for otherwise the solution is identically zero.
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Alternatively, we may avoid using the dissipation when estimating I 0
2

in (11.6b).
Consider the terms in the sum for I 0

2

with k
2

+ |a
2

| 6= p⇤. By Lemma 7.2, these can
be estimated by

�

Z T

0

hti�1E3/2
p⇤,p⇤ [u](t)dt. (11.16)

The remaining terms have the form

X

k+|a|=p⇤
kp⇤

Z T

0

Z

R3

1

4

⌘PN (!̂)h!̂, uiR4h!̂, @rSk
�

auiR4
(Sk

�

au)0dxdt

=

X

k+|a|=p⇤
kp⇤

Z T

0

Z

R3

1

4

⌘PN (!̂)!̂�!̂µ!̂ju�@j(S
k
�

au)µ(Sk
�

au)0dxdt.

By (5.1a), (5.1b), v = Sk
�

au satisfies @jvµ = @µv
j , so we can write:

@j(S
k
�

au)µ(Sk
�

au)0 =

1

2

@j
⇥
(Sk

�

au)µ(Sk
�

au)0
⇤
+

1

2

@µ
⇥
(Sk

�

au)j(Sk
�

au)0
⇤

� 1

2

@
0

⇥
(Sk

�

au)µ(Sk
�

au)j
⇤
.

Using integration by parts, these terms are estimated by
Z

R3

|u(T )| |Sk
�

au(T )|2 dx +

Z

R3

|u(0)| |Sk
�

au(0)|2 dx

+

Z T

0

Z

R3

max

�,µ,j
|@(⌘PN (!̂)!̂�!̂µ!̂j

)| |u| |Sk
�

au|2 dxdt

+

Z T

0

Z

R3

⌘ |PN (!̂)| |@u| |Sk
�

au|2 dxdt.

By (11.1), (3.3d), and (4.1), this can be bounded by

"
h
Ep⇤,p⇤

[u](T ) + Ep⇤,p⇤
[u

0

]

i
+

Z T

0

hti�3/2kr1/2ukL1Ep⇤,p⇤
[u](t)dt

+ �

Z T

0

k⌘@ukL1Ep⇤,p⇤
[u](t)dt.

From (6.1c), (10.6), and (6.2d), this in turn is estimated by

"
h
Ep⇤,p⇤

[u](T )+Ep⇤,p⇤
[u

0

]

i
+

Z T

0

hti�3/2E3/2
p⇤,p⇤ [u](t)dt+�

Z T

0

hti�1E3/2
p⇤,p⇤ [u](t)dt.

And so, in view of (11.16), the preceding expression serves as a bound for I 0
2

. By
Propositions 7.2 and 10.1, we have

I 0
2

. "
h
Ep⇤,p⇤

[u](T ) + Ep⇤,p⇤
[u

0

]

i
+ (C

1

Ep⇤,p⇤
[u

0

])

3/2

Z T

0

hti�3/2(1�C1")dt

+ � sup

0tT
Ep⇤,p⇤

[u](t)(C
1

Ep⇤,p⇤
[u

0

])

1/2

Z T

0

hti�1+C1"/2dt

. "
h
Ep⇤,p⇤

[u](T ) + Ep⇤,p⇤
[u

0

]

i
+

�

C
1

"
S(T )(C

1

Ep⇤,p⇤
[u

0

] hT iC1"
)

1/2.

(11.17)
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Combined with (11.4) and (11.6a), (11.17) leads to the bound

S(T )  A
0

+B
2

�
C

1

hT
0

iC1"
�
1/2

S(T ), (11.18)

with A
0

as above and

B
2

=

C
0

�

4C
1

"
E1/2
p⇤,p⇤ [u

0

].

Putting (11.15), (11.18) together, we have derived

S(T )  A
0

+min{B
1

, B
2

} �C
1

hT
0

iC1"
�
1/2

S(T ).

If (11.14) holds, then

min{B
1

, B
2

}(C
1

hT
0

iC1"
)

1/2  1/2,

and we obtain the desired conclusion

S(T )  2A
0

 4A
0

= C
0

Ep⇤,p⇤
[u

0

]

⇣
1 + E1/2

p,q [u0

]

⌘
,

for 0  T < T
0

.

12. Remarks on local existence.

Lemma 12.1. The operator

P (r) = Aj@ju+ ⌫B�u

from (2.2a), (2.2c) generates a C0 semigroup U(t) on Xp,q.

Proof. The explicit formula for the Fourier transform of U(t) is

bU(t, ⇠) = exp tP (i⇠)

= exp t

�⌫|⇠|2 i⇠>

i⇠ 0

�

=

2

4
b0(t, ⇠) i⇠>b(t, ⇠)

i⇠b(t, ⇠) �⇠ ⌦ ⇠
R t

0

b(s, ⇠)ds+ I

3

5 ,

where b(t, ⇠) solves the ODE

D2

t b(t, ⇠) + ⌫|⇠|2Dtb(t, ⇠) + |⇠|2b(t, ⇠) = 0,

b(t, ⇠) = 0, Dtb(0, ⇠) = 1.

The C1 function b(t, ⇠) is given by

b(t, ⇠) =
e�1(|⇠|2)t � e�2(|⇠|2)t

�
1

(|⇠|2)� �
2

(|⇠|2)
with

�
1

(|⇠|2) = 1

2

⇣
�⌫|⇠|2 +

p
⌫2|⇠|4 � 4|⇠|2

⌘
⇠ �1

⌫

�
2

(|⇠|2) = 1

2

⇣
�⌫|⇠|2 �

p
⌫2|⇠|4 � 4|⇠|2

⌘
⇠ �⌫|⇠|2,

as |⇠| ! 1.
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Lemma 12.2. If u
0

2 Xp,q and f = (f0, . . . , f3

) = (f
0

, ¯f) 2 L2

([0, T ], Xp,q
), then

the IVP
@tu� P (r)u = [f0

+r · ¯f ]e
0

, u(0) = u
0

has a unique solution u 2 C0

([0, T ], Xp,q
) given by

u(t) = U(t)u
0

+

Z t

0

U(t� s)[f0

(s) +r · ¯f(s)]e
0

ds.

This solution satisfies the estimate

ku(t)k2Xp,q + ⌫

Z t

0

kru0

(s)k2Xp,qds

. htiq

ku

0

k2Xp,q +

Z t

0

(kf0

(s)k2Xp,q + ⌫�1k ¯f(s)k2Xp,q )ds

�
. (12.1)

Proof. This can be shown using the Fourier transform, energy estimates, and in-
duction on q.

Theorem 12.3. If u
0

2 Xp,q, p � 4, satisfies (2.2b), then there exists a T > 0

depending only on ku(0)kXp,q , ⌫, and max↵,�,` |C`
↵,� | such that the IVP for (2.2a),

(2.2b) has a unique solution u 2 C([0, T ], Xp,q
).

Proof. For |a|+ k  p, k  q, and u 2 Xp,q, we may write (as in Proposition 10.1)

Sk
0

�

aN(u,ru) = f0

+r · ¯f,
with f = (f0, ¯f) 2 Xp,q. Thanks to the energy estimate (12.1), the map

F (u)(t) = U(t)u
0

+

Z t

0

U(t� s)N(u(s),ru(s))ds

is a contraction on C([0, T ], B
1

(u(0))), provided T is sufficiently small, where B
1

(u
0

)

denotes the closed ball of radius one with center u
0

in Xp,q.

Proposition 12.4. There is a continuous function � : R3 ! R+ such that the local
solution of Theorem 12.3 satisfies

ku(t)kXp,q  �(ku
0

kXp,q , t, sup

0st
ku(s)kXp,0

), 0  t  T.

Proof. This is proven by induction on q. For |a|+ k  q, the equation satisfied by
v = Sk

0

�

au is linear in v.
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