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ABSTRACT
We present a method for identifying localized secondary populations in stellar velocity data
using Bayesian statistical techniques. We apply this method to the dwarf spheroidal galaxy
Ursa Minor and find two secondary objects in this satellite ofthe Milky Way. One object is
kinematically cold with a velocity dispersion of 4.25± 0.75 km s−1 and centered at (9.1′ ±
1.5, 7.2′ ± 1.2) in relative RA and DEC with respect to the center of Ursa Minor. The second
object has a large velocity offset of−12.8+1.75

−1.5 km s−1 compared to Ursa Minor and centered
at (−14.0′+2.4

−5.8,−2.5′+0.4
−1.0). The kinematically cold object has been found before usinga smaller

data set but the prediction that this cold object has a velocity dispersion larger than 2.0 km s−1

at 95% C.L. differs from previous work. We use two and three component modelsalong with
the information criteria and Bayesian evidence model selection methods to argue that Ursa
Minor has one or two localized secondary populations. The significant probability for a large
velocity dispersion in each secondary object raises the intriguing possibility that each has its
own dark matter halo, that is, it is a satellite of a satelliteof the Milky Way.
keywords: DarkMatter: Substructure, Dwarf Galaxies: Ursa Minor, Bayesian Statistics

1 INTRODUCTION

The Milky Way dwarf spheroidal galaxies (dSphs) are the faintest
but most numerous of the Galactic satellites. About 22 dSphshave
been discovered with nine known before the Sloan Digital SkySur-
vey (SDSS). The latter satellites are often collectively referred to
as the classical dSphs. Thus, thanks to the advent of the SDSS,
the number of known Milky Way dSphs has more than doubled
(Willman et al. 2005; Belokurov et al. 2006; Zucker et al. 2006b,a;
Belokurov et al. 2007; Sakamoto & Hasegawa 2006; Irwin et al.
2007; Walsh et al. 2007). The classical systems are in general
brighter and more extended than their post-SDSS counterparts, usu-
ally referred to as the ultra-faint dwarfs. The dSph population of the
Milky Way have a wide range of luminosities, 103−7L⊙, and sizes
(half-light radii) from 40 to 1000 pc (Mateo 1998; Simon & Geha
2007; Martin et al. 2008), but span a narrow range of dynami-
cal mass:M(r < 300pc) ≈ 107 M⊙ for most of the dwarfs
(Strigari et al. 2008). In the context of hierarchical structure forma-
tion scenario, these dSphs would reside in the dark matter subhalos
of the Milky Way host halo and so the dynamical mass provides an
estimate of the amount of dark matter in subhalos. The dynamical
mass-to-light ratios span a large range of 8-4000 (in solar units);
some of these systems are the most dark matter dominated systems
known (Walker et al. 2009a; Wolf et al. 2010; Simon et al. 2011;
Martinez et al. 2011).

Simulations also predict that subhalos should have their
own subhalos (“sub-subhalos”, e.g., Shaw et al. 2007; Kuhlen et al.
2008; Springel et al. 2008; Diemand et al. 2008). While theirpres-

ence in cold dark matter simulations has been verified, the mass
function of these sub-subhalos hasn’t been well-quantified. The
subhalo mass function is seen to follow a universal profile when
scaled to the virial mass of the host halo. If the sub-subhalos fol-
low the same pattern, then we expect to see a sub-subhalo with
Vmax ≃ 0.3Vmax(subhalo) (Springel et al. 2008). We are motivated
by this fact to search for stellar content that could be associated
with these sub-subhalos.

Several dSphs show signs of stellar substructure or multiple
distinct chemo-kinematic populations (Fornax, Sculptor,Sextans,
Ursa Minor, Canes Venatici I). For instance, in Fornax, there are
stellar over-densities along the minor axis, possibly remnants of
past mergers (Coleman et al. 2004, 2005) and five globular clus-
ters (Mackey & Gilmore 2003). In addition, Fornax’s metal-rich
and metal-poor stellar components seem to have different velocity
dispersions (Battaglia et al. 2006). Similarly, Sextans and Sculptor
each contain two kinematically distinct secondary populations with
different metallicities (Bellazzini et al. 2001; Battaglia et al. 2008).
Sculptor’s populations have different velocity dispersion profiles,
in addition to their distinct metalicities (Battaglia et al. 2008),
whereas Sextans has localized kinematically distinct population ei-
ther near its center (Kleyna et al. 2004; Battaglia et al. 2011) or
near its core radius (Walker et al. 2006). There are claims oftwo
populations with distinct velocity and metallicity distributions in
the brightest ultra-faint dwarf, Canes Venatici I (CVI) (Ibata et al.
2006), but this is not seen in two other data sets (Simon & Geha
2007; Ural et al. 2010). The Boötes I ultra-faint could alsohave
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Table 1.Observed and derived properties of Ursa Minor.

Parameter Value

Distance1 77± 4 kpc
Luminosity1 3.9+1.7

−1.3 × 105L⊙,V
Core radius1 17.9′ ± 2.1
Tidal radius1 77.9′ ± 8.9
Half-light radius1 0.445± 0.044 kpc
Deprojected half-light radius1 (r1/2) 0.588± 0.058 kpc
Average velocity dispersion2 11.61± 0.63 km s−1

Mean velocity2 -247 km/s
Dynamical mass withinr1/2

1 5.56+0.79
−0.72 × 107M⊙

Mass-to-light ratio withinr1/2
1 290+140

−90 M⊙/L⊙
Ellipticity 3 0.56± 0.05
Center (J2000.0)4 (15h09m10s.2, 67◦12′52′′)
Position angle5 49.4◦

Note: References are as follows 1. Wolf et al. (2010) and references therein
2. This paper 3. Mateo (1998) 4. Kleyna et al. (2003) 5. Kleynaet al. (1998)

two kinematically distinct populations with different scale lengths
(Koposov et al. 2011), although this wasn’t apparent in earlier data
sets (Muñoz et al. 2006; Martin et al. 2007). The largest of these
Boötes I data sets contains 37 member stars and this has to be
weighed against the results of Ural et al. (2010) who suggestthat at
least 100 stars are required to differentiate two populations.

Among the classical dSphs, only Draco has a lower V-band
luminosity but Ursa Minor is twice as extended as Draco (in terms
of its half-light radius) (Irwin & Hatzidimitriou 1995; Palma et al.
2003). Its observed and derived properties are summarized in Ta-
ble 1. Ursa Minor is also likely the most massive satellite interms
of its dark matter halo, apart from the Magellanic clouds andthe
disrupting Sagittarius dSph. These properties make Ursa Minor an
ideal target to search for substructure. The Vmax at infall for the sub-
halo hosting Ursa Minor should be greater than 25 km/s but proba-
bly no larger than about 50 km/s (Boylan-Kolchin et al. 2012) and
thus we can expect Ursa Minor to have a sub-subhalo with Vmax

in the range of 8− 16km s−1. Despite its low mass, such a small
sub-subhalo could have held on to its gas because it was protected
by the deeper potential well of Ursa Minor.

Several photometric studies with different magnitude limits
and overall extent observed, have reported additional localized
stellar components of the stellar distribution that deviates from a
smooth density profile (Olszewski & Aaronson 1985; Kleyna etal.
1998; Palma et al. 2003), particularly near the center (Demers et al.
1995; Eskridge & Schweitzer 2001). To the northwest of the cen-
ter, a secondary peak in the spatial distribution is seen in con-
tours and isopleths (Irwin & Hatzidimitriou 1995; Kleyna etal.
1998; Bellazzini et al. 2002; Palma et al. 2003). However, differ-
ent studies have concluded that this secondary peak is inconclusive
or of low significance (Irwin & Hatzidimitriou 1995; Kleyna et al.
1998; Bellazzini et al. 2002; Palma et al. 2003). Smaller scale
stellar substructure is, however, seen with higher significance
(Eskridge & Schweitzer 2001; Bellazzini et al. 2002). Combining
proper motion information with shallow photometric data inthe
central 20 arcmin of Ursa Minor, Eskridge & Schweitzer (2001)
claim that the distribution of stars in Ursa Minor shows highsignif-
icance for substructure in clumps of∼ 3′0 in size. Bellazzini et al.
(2002) used the presence of a secondary peak in the distribution of
the distance to the 200th neighboring star to argue that the surface
density profile of Ursa Minor is not smooth. In addition, the stel-
lar density is not symmetric along the major axis with the density

falling more rapidly on the Western side (Eskridge & Schweitzer
2001; Palma et al. 2003) Statistically significant S-shapedmor-
phology is also seen in contours of the red giant branch stars
(Palma et al. 2003).

Spectroscopic studies of Ursa Minor (Hargreaves et al. 1994;
Armandroff et al. 1995; Kleyna et al. 2003; Wilkinson et al. 2004;
Muñoz et al. 2005) have shown a relatively flat velocity dispersion
profile ofσ ≈ 8− 12km s−1. Kleyna et al. (2003) (K03) used a two
component model to test whether the second peak in photometry
was a real feature. They found a second kinematically distinct pop-
ulation withσ = 0.5km s−1 and∆v = −1km s−1. Our results lends
support to this discovery by K03 but we do not agree on the magni-
tude of the velocity dispersion of the substructure. We discuss this
in greater detail later.

K03 argued through numerical simulations that the stellar
clump they discovered could survive if the dark matter halo of Ursa
Minor had a large core (about 0.85 kpc) but not a cusp like the
prediction for inner parts of halos of 1/r from CDM simulations
(Navarro et al. 1997). Similar numerical simulations including the
Ursa Minor stellar clump have confirmed this result (Lora et al.
2012). Similar conclusions have been reached using the observed
projected spatial distribution of the five globular clusters in Fornax
dSph (Mackey & Gilmore 2003). The survival of these old globu-
lar clusters has been interpreted as evidence that the dark matter
halo of Fornax may have a large core in stark contrast to the pre-
dictions of dark-matter-only CDM simulations (Goerdt et al. 2006;
Sánchez-Salcedo et al. 2006; Cowsik et al. 2009; Cole et al.2012).
Thus, the study of the properties of the substructure in UrsaMinor
has far reaching implications for the dark matter halo of this dSph
and by extension the properties of the dark matter particle.Our
study is complementary to the recent studies using the presence of
multiple stellar populations in Fornax and Sculptor that also seem
to point towards a cored dark matter density profile (Battaglia et al.
2008; Walker & Peñarrubia 2011; Amorisco & Evans 2012).

Current methods for finding kinematic substructure in the
dSphs has relied on likelihood comparison parameter tests
(Kleyna et al. 2003; Ural et al. 2010), non-parametric Nadaraya-
Watson estimator (Walker et al. 2006), or metalicity cuts and
kinematics (Battaglia et al. 2011), but not Bayesian methods.
Hobson & McLachlan (2003) presented a Bayesian method for
finding objects in noisy data. The object detection method isable
to find two or more objects using only a two component model in
photometric data. This method can be extended to include spec-
troscopic line-of-sight velocity data to search for objects using
kinematics, as well as structural properties. We extend andap-
ply this method to Ursa Minor to search for stellar substructure
(Irwin & Hatzidimitriou 1995; Kleyna et al. 1998) and the kine-
matically cold feature found by K03.

1.1 Data and Motivation for more Complex Models

The spectroscopic data used contains 212 Ursa Minor member stars
(Muñoz et al. 2005); the sample that K03 used to discover thecold
feature contained 134 stars. Figure 1 (left) shows the radial veloc-
ities binned with the best fit single component Gaussian: this is a
reasonable fit. The data are, however, fit better if we use a three
component Gaussian model, cf., Figure 1 (right). The mean and
dispersion of these Gaussian distributions were derived from our
Bayesian object detection that is the subject of this paper.As a pre-
lude to our final results, we note that the centers of all threepopu-
lations (the primary and two secondaries) found through theobject
detection method are spatially segregated.

c© 0000 RAS, MNRAS000, 000–000
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Figure 1. The binned line-of-sight velocity data (red dashed) in UrsaMinor. Right: Over-plotted is the most probable Gaussian withσ = 11.51 and an
v = −247.25 (black solid) from the null model (single Gaussian component). Left: The line-of-sight velocity distributions of the secondaryobjects and
primary populations.The lines correspond to the velocity dispersions of different populations found with the Bayesian object detectionmethod; velocity offset
object (blue dot-dot-space), cold object (green dotted), primary distribution (purple dot-dash), and the total (black solid). Each component is weighted by its
average number of stars found using the Bayesian object detection method. The additional kinematic components providea better fit to the Ursa Minor data.

Before we develop the Bayesian methodology, we would like
to dissect the data to see if secondary populations are visible as
strong local deviations in either mean velocity or velocitydisper-
sion. To this end, we grid a 50′ × 30′ region around the center
of Ursa Minor finely and for each grid point, we find the aver-
age velocityv and velocity dispersionσ in a 5′ × 5′ bin using the
expectation-maximization (EM) method (see Equations 12b and 13
of Walker et al. (2009b)). We disregard grid points where there are
fewer than 7 stars in the bin. We have plotted the smoothedσ and
v maps created using this method in Figure 2. The velocity disper-
sion map is the upper left panel and the average velocity map is
the upper right panel. The data is rotated such that the majoraxis
is aligned with the abscissa (θ = 49.4◦, see Table 1 for the photo-
metric properties of Ursa Minor we use). There are two interesting
features evident: in theσ map, roughly centered at (11′ ,−4′), σ is
significantly lower than the rest of the galaxy (σ < 6km s−1), and
in thev map centered at (−13′,6′), thev significantly differs from
Ursa Minor’s overall average (∆|v| > 10 km s−1). For reference, the
entire data set hasσ = 11.5 km s−1 andv = −247.2 km s−1 with the
EM method andσ = 11.6±0.6km s−1 andv = −247.2±0.8km s−1

using a single component Gaussian model sampled with a Bayesian
nested sampling technique (see next section for an explanation of
the Bayesian methods we use). We have also plotted the number
density (lower left panel) and the positions of the stars (lower right
panel) in Figure 2 to provide a sense for where the data is and how
significant the features in thev andσ maps are. The number den-
sity map is created the same way as thev andσmaps and it shows
that both features are in regions that are reasonably sampled. In the
plot with the positions of the stars, we have also indicated the most
probable locations for the centers and the extent of the the two fea-
tures as found by our Bayesian object detection method. We caution
the reader that the plotted extents (tidal radii) of the these features
have large error bars see Table 2.1).

The center of the dip in the velocity dispersion (upper left
panel of Figure 2) is near the spectroscopic feature found by
K03 and the secondary density peak seen in the photometry by
several authors (Irwin & Hatzidimitriou 1995; Kleyna et al.1998;
Bellazzini et al. 2002; Palma et al. 2003). The average velocity fea-
ture we see does not correspond to any previous noted photometry

or kinematic features. However, we note that the stellar isodensity
contours of Ursa Minor are significantly asymmetric (Kleynaet al.
1998; Palma et al. 2003) and could hide both features.

Here we aim to show that these two localized kinematic fea-
tures in Ursa Minor are statistically significant. We now turn to
describing our Bayesian object detection method for findingsec-
ondary objects and model selection methods for assessing their sig-
nificance.

2 METHODOLOGY: THEORY

This paper has two primary objectives: to present a statistical
methodology for detecting discrete features within a kinematic data
set and apply this methodology to the Milky Way satellite galaxy
Ursa Minor. In this section we detail the statistical techniques used
to detect kinematic objects within the Ursa Minor data set. The per-
tinent question we are addressing is whether statisticallydistinct
kinematic objects can be detected within a galaxy’s stellarline-of-
sight kinematic data and, if such an object is detected, how certain
can we be that this object is an actual physical attribute of the sys-
tem. Thus we require that any methodology used to detect multiple
smaller composite objects within the kinematic data set have two
important properties. First, any proposed algorithm must be able to
discern an unspecified numbers of statistically separable features
within the a galaxy’s kinematic data set. And second, this method-
ology must allow for some kind of determination of the significance
of a proposed object detection.

To meet these criteria, we employ a Bayesian object detection
technique first introduced by Hobson & McLachlan (2003). In our
implementation, the data distribution is modeled with two separate
components: a background distribution referred to as the primary
distribution, in our case, the Ursa Minor dSph (Pp), and a ’sec-
ondary’ distribution (Ps) which is interpreted here as a feature or
object of the Ursa Minor data set. Thus, the actual distribution is of
the form:

P(di |M ) = (1− F)Pp(di |Mp) + FPs(di |Ms) (1)

whereF is the total fraction of stars in the secondary population,
di represents an individual element of the Usra Minor data setD

c© 0000 RAS, MNRAS000, 000–000
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Figure 2. The local kinematics of Ursa Minor using the Muñoz et al. (2005) data set.Upper Left:A map of the velocity dispersion of Ursa Minor. A portion
of the lower right quadrant drops below 6 km s−1 while the rest of the galaxy is relatively uniform.Upper Right:The average velocity of Ursa Minor found
concurrently with the velocity dispersion. In the upper left quadrant the deviation∆v > 10− 15 km s−1 relative to Ursa Minor while the rest of the galaxy
does not differ more than 5 km s−1. To make the contour plots, the velocity dispersion and the average velocity were found within a 5′ × 5′ bin (5′ ≃ 110 pc
for a distance of 77 kpc).Lower Left:The stellar density profile of the stars in the Muñoz et al. (2005) data set.Lower Right:The most probable locations and
sizes (tidal radii) of the two objects using the Bayesian object detection method in Ursa Minor. Both of these locations correspond to the deviations seen in
the average velocity and velocity dispersion maps. The coordinate system used here is such that the x-axis lines up with the major axis which has a position
angle of 49.4◦ (Kleyna et al. 1998). The adopted center for Ursa Minor was RA= 15h09m10s.2, DEC= +67◦12′52” (J2000.0) (K03). For the entire sample,
we obtain a mean velocityv = −247.25 km s−1 and velocity dispersionσ = 11.51 km s−1.

(D = {di}), and M denotes the parameter set of the respective
distribution’s model. A major benefit of this type of analysis is that
data sets with multiple features will cause the secondary population
parameter posteriors to become multi-modal where each individ-
ual mode represents a unique feature. This enables us to search for
an arbitrary number of objects without requiring an overly compli-
cated probability distribution. In addition, the local Bayesian ev-
idences of each mode can be used as a selection criterion. The
evidenceZ ≡ P(D |H) is equal to the integral of the product of
the likelihood,L(M ) ≡ P(D |M ,H) =

∏
i P(di |M ,H), and prior

probability,Pr(M ) ≡ P(M |H):

Z =
∫
L(M )Pr(M )dM . (2)

Here, the probability density of the parameter setM (i.e.,
P(M |D ,H)), or posterior, is related to the evidence by the Bayes’
theorem

P(M |D ,H) =
P(D |M ,H)Pr(M )

Z
, (3)

Later, we use the evidence as a criterion for selecting between two
models, or hypotheses (H): One that assumes a ‘secondary’ fea-
ture represented by equation 1 (H1) and another ‘null hypothesis’
that only assumes the background distributionPp (H0). In section
2.2 we use this both directly in the ratio of evidences, or Bayes
factor, and indirectly in the determination of the the Kullback-
Leibler divergence, a quantity the quantifies the amount of infor-
mation gained from the assumption of one hypothesis over another.
Through a large set of Monte Carlo simulations, these criteria are
then used to derive confidence levels on the exclusion of the null
hypothesis.

Calculation of the above quantities and sampling of the poste-
rior space was done utilizing a Bayesian nested sampling technique
(Skilling 2004; Feroz et al. 2009). The reason for this choice is that
this sampling algorithm possesses all the capabilities required for
this project: multi-modal posteriors can be explored efficiently, and
the evidence is inherently evaluated.

c© 0000 RAS, MNRAS000, 000–000
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2.1 Likelihood

Our methodology utilizes a two component probability distribution
similar to that in the K03 paper (also see Martinez et al. (2011)).
We base the ‘primary’ (p) and ‘secondary’ (s) probability distri-
butions on a Gaussian with mean velocityvp,s, using the velocity
errorsǫi , and the assumption of a constant velocity dispersion,σp,s,
as the spread:

Pp,s(vi ,Ri |Mp,s) =
exp

[
− 1

2
(vi−vp,s)2

(σ2
p,s+ǫ

2
i )

]

√
2π(σ2

p,s + ǫ
2
i )

ρp,s(Ri)

Np,s
(4)

Here,ρp,s(R) is the 2-d stellar number density normalized to the
total number in the population (Np,s).

Unfortunately, because of spatial selection biases,ρp,s(R) is
difficult to model. To account for this uncertainty, we consider only
the ‘conditional’ likelihood (see Martinez et al. (2011) for details):

Pp,s(vi |Ri ,M ) = Pp,s(vi ,Ri |M )/(ρp,s(Ri)/Np,s). (5)

With this, equation 1 becomes:

P(vi |Ri ,M ) = (1− f (Ri))Pp(vi |Ri ,Mp) + f (Ri)Ps(vi |Ri ,Ms) (6)

where f (Ri) is now the ‘local’ fraction of stars in the secondary
population defined by

f (Ri) =
ρs(Ri |Ms)

ρs(Ri |Ms) + αρp(Ri |Mp)
(7)

Here, we have introduced the variableα = Ns/Np. Instead of vary-
ingα directly, we found that, in some instances, using total fraction
as a free parameter simplifies the analysis:

Ftotal =

∫
ρs dxdy

∫
ρs dxdy+ α

∫
ρp dxdy

. (8)

For the primary population, we assume a king 2-d density pro-
file whose parameters are fixed to the observed photometry. The
secondary object’s density profile is taken to be a top-hat1. Our
Bayesian object detection model constituted of 8 parameters: 2 pri-
mary kinematic parameters, 2 secondary kinematic parameters, the
x and y center and tidal radius for the secondary population and the
total fraction. The parameters, priors, and posteriors arelisted in
the first row of Table 2.1.

2.2 Model Selection

Even with accurate probability density modeling and thorough pa-
rameter space exploration, any object detection methodology will
have fairly limited capabilities if the significance of a detection
cannot be determined. In our method, we use several model se-
lection techniques to assess the significance of finding suchan ob-
ject. Here, the posterior, likelihood, and evidence are used as the
basis for determining selection criteria that measure the suitabil-
ity of an hypotheses. The two hypotheses that are compared are a
model that contains no sub-component feature (the ‘null hypothe-
ses’ (H0)) and a model containing a sub-population (H1). Model
selection techniques generally fall into two categories: those de-
rived from the Bayesian evidence, and those based on information

1 Other profiles were tried including a King, and Plummer profile. We de-
tected both objects in all cases. The scale radii for the stellar profiles were
unconstrained and errors were higher in other cases.

theory (specifically the Kullback-Leibler divergence (DKL) or in-
formation entropy). Among the most common are the Bayes fac-
tor, the Bayesian information criterion (BIC), the Akaike informa-
tion criterion (AIC) (Akaike 1974), the Deviance information cri-
terion (DIC) (Spiegelhalter et al. 2002), and direct calculation of
the Kullback-Leibler divergence (DKL) (Kullback & Leibler 1951).
(For a review and the use of information criterion in cosmology see
Liddle (2007), for more general reviews of of model selection par-
ticularly Bayesian methods in cosmology see Liddle et al. (2006);
Trotta (2008).) In this paper we use the Bayes Factor, DIC, and
DKL to quantitatively derive confidence levels. We do not discuss
the AIC or BIC since they are Gaussian approximations of the evi-
dence andDKL respectively.

The Bayes factor is the ratio of the evidence of two models or
hypotheses. For example, the Bayes factor between two hypothe-
sesH0 andH1, or single component versus multiple components is
defined to be

B01 =
P(D |H1)
P(D |H0)

. (9)

The general rule of thumb is thatB01 > 1 favors hypothesisH1

and B01 < 1 favors hypothesisH0. The significance ofB01 is
usually computed as lnB01 with ln B01 < 1, 1 < ln B01 < 2.5,
2.5 < ln B01 < 5, ln B01 > 5 corresponding to inconclusive, weak,
moderate and strong evidence, respectively, in favor of hypothesis
H1. The Bayes factor has the advantage that it is an output of our
sampling algorithm. But, the main disadvantage is that the Bayes
factor inherently penalizes the model whose parameter space has
the larger degrees of freedom. This can make determination of the
significance of a detection ambiguous in that the Bayes factor will
naturally underestimate the importance of a proposed detection.
We address this issue by first utilizing additional selection crite-
ria based on information theory and second, null hypothesismock
data set analyses.

As mentioned in the previous paragraph, we wish to supple-
ment the Bayes factor with other selection criteria based oninfor-
mation theory. Typically, these criteria are derived fromDKL that
quantifies how much more information you gain by switching from
one probability distribution to another. For our case, thisquantity
is:

DKL(P1,P0) =
∫

ln

(
P(M |D ,H1)
P(M |D ,H0)

)
P(M |D ,H1)dM , (10)

whereP0,P1 are the posteriors under hypothesesH0 and H1, re-
spectively. Another quantity, the DIC (Spiegelhalter et al. 2002), is
related to the amount of information gained through the fullposte-
rior as opposed to assuming only the prior probability distribution
(i.e.,DKL(P,Pr)):

DIC ≡ −2D̂KL(P,Pr)+ 2Cb (11)

whereCb ≡ χ2(M ) − χ2(M ), χ2 ≡ −2 ln(L), and D̂KL(P,Pr) ≡
ln(L(M )) − ln(Z) (Trotta 2008). We emphasize that the evidence
or Bayes factor andDKL should be used over the traditional in-
formation criterion whenever possible. We also introduce the total
membership as a physically interpretable model selection method
tailored for the problem at hand. The membership that a star is part
of the secondary population is derived from the posterior bythe ra-
tio of the secondary likelihood to total likelihood (Martinez et al.
2011). For the ith star, the membership is:

mi =
f (Ri)Ps(vi |Ri ,Ms)

(1− f (Ri))Pp(vi |Ri ,Mp) + f (Ri)Ps(vi |Ri ,Ms)
(12)
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Parameter Type Prior (Units) Cold Spot Velocity Offset

Model parameters from Bayesian object detection method

σs flat Cuts 1/2 (see caption) 3.5+1.75
−2.25 8.75+1.5

−2.25
σp flat 0 to 20 km s−1 11.75± 0.5 10.75± 0.5
vs flat Cuts 1/2 (see caption) −246.75+1.75

−2.0 −258.75+2.0
−1.75

vp flat -242 to -252 km s−1 −247.5± 0.75 −245.25± 0.75
xcen flat -0.6 to 0.6 kpc 0.25+0.04

−0.06 −0.24± 0.09
ycen flat -0.4 to 0.4 kpc −0.07+0.03

−0.07 0.23± 0.02
rtidal flat in log10 10 to 300 (pc) 151+53

−28 251+24
−22

Ftotal flat in log10 10−5 to 1 0.79+0.21
−0.16 0.32+0.47

−0.26

Secondary Population Model Parameters from simultaneous 3-component modeling

xcen flat −0.24± 0.1 kpc 0.26± 0.02 −0.23+0.095
−0.035

ycen flat 0.23± 0.1 kpc −0.07± 0.01 0.22± 0.02
rtidal flat in log10 10 to 300 pc 151+151

−10 269+26
−24

σs flat Cuts 1/2 (see caption) 4.25± 0.75 9.25± 1.25
σp flat 0 to 20 km s−1 11.5± 0.5 11.5± 0.5
vs flat Cuts 1/2 (see caption) −246.25± 1.0 −258.0± 1.5
vp flat -252 to -242 km s−1 −245.25+0.75

−0.5 −245.25+0.75
−0.5

flocal derived – 70% (15.8/22.5) 85 % (27.0/31.6)

Table 2. Parameters, Priors, and Posteriors.σs andσp are the velocity dispersions of the secondary and primary populations.vs and vp are the average
velocities of the secondary and primary populations.xcen andycen refer to thex andy centers of the secondary population. Note that the data was rotated such
that the x axis and the major axis are parallel.rtidal is the tidal radius in a top hat model for the secondary population. Ftotal is the ratio of stars in the secondary
population to the total population. For the first section, the 4th and 5th columns denote the values when detecting the twoobjects individually. The two cuts
indicated in the table as “Cuts 1 and 2” are defined as follows.Cut 1 is 06 σ 6 10km s−1 and−2526 v 6 −242km s−1 to find the cold spot object. Cut 2 is
0 6 σ 6 20km s−1 and−2676 v 6 −237km s−1 to find the velocity offset object. In the second section, the 4th and 5th column denote the values calculated
for the two objects simultaneously using a 3-component model. The coordinatesxcen andycen of the objects were only allowed to vary within±0.1kpc of the
value obtained from the Bayesian object detection method.flocal is the weighted average fraction of secondary population stars in each secondary object’s
location.

As the membership is derived from the posterior, each star will have
its own probability distribution. Our data set contains 212stars and
so to simplify the analysis we use the average membership of each
star’s probability distribution. A global model selectionparameter,
the total average membership, can be found and interpreted as the
average number of stars contained in the secondary population. We
find (see Figure 3-4) that the membership correlates with each of
the other model selection parameters (i.e., a model with high evi-
dence will have high membership and a model with low evidence
will have low membership).

2.3 Testing the Method with Mock Data

We created 100 mock data sets containing a second population
to test whether known secondary objects could be detected using
our object detection method. The second populations were located
at either (0.2, -0.1) or (-0.23, 0.24) kpc (roughly the locations of
the cold and velocity offset objects). The kinematic and structural
parameters of this second population were selected to mimicthe
cold and velocity offset objects. The positions and velocity errors
from the Ursa Minor data set were used to simulate observational
errors. To pick which population a star is assigned to, the local
fraction was found via Equation 8 and membership was randomly
assigned with the second population weighted by the local frac-
tion. The primary population parameters were the best fit values
from Ursa Minor photometry and the kinematics of the entire sam-
ple: rtidal = 1.745 kpc,rcore = 0.401 kpc, ellipticityǫp = 0.56,
σ = 11.5 km s−1, and v = −247 km s−1. The second popula-
tion’s base parameters were:ǫs = 0, θs = 0.0, Ftotal = 60/212,
rcore = 0.05kpc,∆vs = 0 km s−1, σ = 4km s−1, rtidal = 0.15kpc

for (0.2, -0.1) location. For the (-0.23, 0.24) location, weused a
slightly larger value for tidal radius,rtidal = 0.25kpc. We note that
both populations were created assuming an underlying King pro-
file but the object detection used a top-hat model when findingthe
second population, identically to how the objects were found in the
actual data. Each individual mock data set had 1-3 secondarypa-
rameters that deviated from the base parameters to test how each
parameter effected the detection. In some sets we did not expect to
find the secondary population, for example, if they had smalltidal
radius or small secondary population fraction.

The results for model selection of theDKL, DIC, ln B01, and
total membership using two different kinematic priors are summa-
rized in the right and middle columns of Figure 3 (secondary pop-
ulation located at (0.2, -0.1)) and Figure 4 (secondary population
located at (-0.23, 0.24)). The left and middle columns show dif-
ferent kinematic priors with the left column showing the cuts to
find kinematically cold objects (06 σ 6 10km s−1, −252 6 v 6
−242km s−1). The middle has the cuts to find objects with a signif-
icant velocity offset (06 σ 6 20km s−1, −2676 v 6 −237km s−1);
this cut will also find the kinematically cold objects, but inthe
Ursa Minor case the velocity offset object was significantly more
likely and tended to dominate the posterior. The symbols forthese
columns are labeled/colored according to a by-eye definition of the
x and y posterior: peaked/“found” (red square), not peaked/“not
found” (green x), “possible” peaks (blue triangle), doublepeaked
with one correct (light blue diamond). Results for the actual Ursa
Minor data with corresponding cuts are shown as filled black circle.
The “possible” peaks are posteriors where there was a peak near the
second population’s center, a small/medium peak somewhere else
in the posterior, or a small peak at the correct location. Thedou-

c© 0000 RAS, MNRAS000, 000–000



Bayesian Object Detection 7

-0.5

 0.5

 1.5

 2.5

 3.5

 0  10  20  30  40  50

lo
g

(B
F

)

Total Membership

-40

-30

-20

-10
 0  10  20  30  40  50

D
IC

Total Membership

 0

 4

 8

 12

 0  10  20  30  40  50

D
K

L

Total Membership

-0.5

 0.5

 1.5

 2.5

 3.5

 0  5  10  15  20  25  30  35

lo
g

(B
F

)

Total Membership

-50

-40

-30

-20

-10
 0  5  10  15  20  25  30  35

D
IC

Total Membership

 0

 4

 8

 12

 16

 0  5  10  15  20  25  30  35

D
K

L

Total Membership

 0

 0.5

 1

-0.5  0.5  1.5  2.5  3.5
N

u
m

b
er

 o
f 

S
et

s
log(BF)

 0

 0.5

 1

-40-30-20-10

N
u

m
b

er
 o

f 
S

et
s

DIC

 0

 0.5

 1

 0  4  8  12  16

N
u

m
b

er
 o

f 
S

et
s

DKL

Figure 3. Model selection tests usingDKL, DIC, logBF = ln B01 (cf., §2.2 for definitions) for 50 mock data sets located at (0.2, -0.1). Also shown for
comparison are the results for the actual Ursa Minor data set. A more negative DIC favors the secondary object hypothesismore strongly, while the same is
true for larger values ofDKL and Bayes factor.Left column: Figures in column 1 show the results of the analysis of the mock data sets in exactly the same way
as the real data set was analyzed to look for the cold object with cuts on mean velocity and dispersion given by 06 σ 6 10km s−1 and−2526 v 6 −242km s−1

(Cut 1). The top panel showsDKL, the middle panel DIC and the bottom panel the logarithm of the Bayes factor (written in the text as lnB01. Mock data sets
that had second populations with significant differences in their kinematics with respect to the background population were found with our object detection
method. The symbols are labeled/colored according to a by-eye classification of the x and y posterior: peaked/found (red square), not peaked/ not found (green
x), possible peaks (blue triangle) and double peaked with one correct (light blue diamond). The results for the actual Ursa Minor data set is shown as filled
black circle.Middle column: This panel has the same symbols and colors as the left most column. The difference here is that the velocity cuts used are broader
(and the same as that used to find the velocity offset object). The cuts are 06 σ 6 20km s−1 and−2676 v 6 −237km s−1 (Cut 2).Right column: Histograms
of DKL, DIC and Bayes factor from analyses of 1000 null hypothesis mock data sets with Cut 1 (red dotted) and Cut 2 (blue solid). The vertical lines show the
DKL, DIC and Bayes factor values (in the top, middle and bottom panels, respectively) for the actual Ursa Minor data set with Cut 1 (green dotted) and Cut 2
(magenta dot-dashed).

ble peaked data had one peak at the correct location and a second
at another location. The “possible” sets tended to span the border
between “found” and “not found” and were not easily categorized
otherwise.

Both Figures show a clear trend between the “found” and “not
found” sets in all the model selection methods. Note that more neg-
ative DIC corresponds to favoring the more complicated model.
Sets that are “not found” by-eye have model selection criteria that
is equivalent to the model selection criteria of null hypothesis mock
data sets (i.e., sets made with no second population), cf., Sec-
tion 3.1. The model selection criteria for the two objects found in
Ursa Minor also lie in the “found” section of the mock data’s selec-
tion criteria. From the analysis of these mock data sets we conclude
that our method is fully capable of detecting the cold and velocity
offset objects, and the model selection criteria favor the favor pres-
ence of two additional components in Ursa Minor.

3 RESULTS

We have found two objects in the Ursa Minor data set of
Muñoz et al. (2005) using a Bayesian object detection method. The
first object, referred to as the “cold object” here, is kinematically
cold,σcold = 3.5+1.8

−2.3km s−1, with an average velocity close to that
of the full Ursa Minor sample,vcold = −246.8+1.8

−2.0km s−1 . The loca-
tion coincides with the location of the K03 stellar clump. The sec-
ond object, referred to as the velocity offset object, has a large av-
erage velocity offset compared to the mean velocity of Ursa Minor,
vvo = −258.8+2.0

−1.8km s−1 with a dispersion ofσvo = 8.8+1.5
−2.3km s−1.

The kinematics and structural properties are summarized inthe first
section of Table 2.1. The model selection tests for the cold ob-
ject are: Total Membership= 15.8, DKL = 4.8, DIC = −26.1,
ln B01 = 0.9. The model selection tests for the velocity offsets ob-
ject are: Total Membership= 27.0, DKL = 13.9, DIC = −36.5,
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Figure 4. Model selection tests usingDKL, DIC, ln B01 for 50 mock sets located at (-0.24, 0.23) and the Ursa Minor data. The layout is the same as Figure 3.
The third column from left displays the results from the scrambled mock data sets instead of the null hypothesis mock datasets plotted in Figure 3.

ln B01 = 3.6. In Figures 3- 4 the results of model selection test
are plotted along side the mock set distributions. All of themodel
selections tests favor the additional secondary objects with mod-
erate to high significance except for the Bayes factor which has
weak to moderate significance for the cold and velocity offset ob-
jects. This significance is based on the recommendations of Trotta
(2008); Ghosh et al. (2006); Spiegelhalter et al. (2002). However, it
is important to judge the significance of the information criteria and
the Bayes factor for the problem at hand. We do this by generating
mock data sets and deriving the information criteria and Bayes fac-
tor in the same way as the real data is handled. When this test is
performed, we find that the confidence levels of both objects are
above the 98% C. L. (see Table 2.1). In addition, all of the model
selection values, for both locations/objects, lie in the “found” re-
gion of the mock sets of Figure 3-4.

3.1 Significance of Information Criteria and Bayes’ Factor

In order to assess the significance of the model selection tests,
knowledge of the false positive rate is helpful. We make use of two
types of tests: null hypothesis mock data sets and scrambleddata
sets. Null hypothesis mock data sets are constructed by redrawing
the line-of-sight velocities from a Gaussian with Ursa Minor kine-

matics2. To simulate positional and velocity errors, the positionsof
stars and the line-of-sight velocity errors were kept. The scrambled
sets were constructed by repicking a random observed line-of-sight
velocity and line-of-sight velocity error pair, without replacement,
for each star in the data set. 1000 null hypothesis mock data sets
and scrambled data sets were constructed and analyzed with our
object detection method.

The results of the object detection method and our employed
model selection tests for the null hypothesis mock data setsand the
scrambled mock data sets are shown in the last columns of Fig-
ures 3 and 4, respectively. TheDKL (top), DIC (middle), and lnB01

(bottom) are binned and the maximum is normalized to unity. The
analysis with the cuts to find cold objects (06 σ 6 10km s−1,
−252 6 v 6 −242km s−1) is shown in red, while that with cuts
to find objects with significant velocity offset (06 σ 6 20km s−1,
−2676 v 6 −237km s−1) is shown in blue. The model selection re-
sults for the real Ursa Minor data are plotted as vertical lines: cold
object with green dotted line and velocity offset object with purple
dash-dot line. The confidence levels of the model selection criteria
for the null hypothesis mock data sets and scrambled data sets are
above the 98.5% c. l. with every model selection criteria. They are
summarized in Table 3.1. Even though the lnB01 shows weak evi-
dence for the cold object according to standard definitions,it is still

2 We usedv = −247.0km s−1 andσ = 11.5km s−1.
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Figure 5.The posteriors for the secondary populations in Ursa Minor using the three-parameter model. The secondary populationsare fixed at (0.25,−0.07)kpc
and (+0.24, 0.23)kpc and allowed to vary 0.1kpc in both coordinates. They correspond to the cold (blacksolid) and the velocity offset (red dots) objects,
respectively.Upper Left:The x coordinate posteriors for of the secondary populations.Upper Right:The y coordinate posteriors for the secondary populations.
Lower Left:The velocity dispersion posteriors of the cold object (black solid), velocity offset object (red dotted), and the primary (blue dashed).Lower Right:
The average velocity posteriors of the cold object (black solid), velocity offset object (red dotted), and the primary (blue dashed). The secondary populations
have distinct kinematic properties and are both localized.

above the 95% confidence level for both the null hypothesis mock
data sets and scrambled data sets.

3.2 Narrowing down secondary population parameters using
a 3-component model

To reliably calculate the kinematic properties of the secondary ob-
jects we introduce a model with two secondary populations. The
additional populations are only allowed to vary by 0.1 kpc in both
x and y from the best-fit center locations found in the Bayesian
object detection method for the cold and velocity offset objects.
Equation 7 is changed to include the third component and instead
of the normalization parameter,α =

Np

Ns
, there are now two nor-

malization parameters,α2 =
N2
N1

, andαp =
Np

N1
whereN1 and N2

denote the normalization of the first and second object. The re-
sults for the kinematic parameters are:σcold = 4.3 ± 0.8km s−1,
vcold = −246.3 ± 1.0km s−1, σvo = 9.3 ± 1.3km s−1, and vvo =

−258.0 ± 1.5km s−1, respectively. These values are in full agree-
ment with the values obtained using the two-component (Bayesian
object detection) method.

The normalization ratios, as defined, are not easily interpreted.
So we introduce a derived parameter, local fraction orflocal, that is

defined as the weighted average of stars with memberships greater
than 50% in the secondary population compared to the total number
of stars within the secondary object’s tidal radius. In short, it is a
measure of the fraction of secondary stars in each object’s location.
We derive flocal,cold = 15.8/22.5 or 70% andflocal,vo = 27.0/31.6
or 85%. Clearly, we are able to find these objects only because
they seem to have a high local fraction. The kinematics and struc-
tural properties of the secondary population model are summarized
in the second section of Table 2.1. In upper left and right panels
of Figure 5, we have plotted the posteriors for the x and y cen-
ters, respectively, for the cold (black solid) and velocityoffset ob-
jects (red dotted). The centers for the cold and velocity offset ob-
ject are (0.25,−0.07) kpc and (+0.24,0.23) kpc and the two panels
show the deviation from the “fixed” centers. The lower right (lower
left) panel of Figure 5 is the posterior of theσs (vs) for the cold
(black solid), velocity offset objects (red dotted), and primary (blue
dashed).

An increased prior volume for the centers and tidal radius in
the 3-component model changes the posteriors for the structural
parameters of the velocity offset object but does not changes its
kinematics. By only allowing more freedom in the location ofthe
centers (200 pc versus 100 pc) the posteriors of both centersgain
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Test using null hypothesis mock data sets

Total Average Information Entropy Bayesian Evidence
Membership DKL DIC ln B01

Value at 95% C.L. from null hypothesis mock data sets using Cut 1 5.25 1.28 -16.35 0.17
Cold object values from data (inferred C. L.) 15.82 (99.8%) 4.82 (99.7%) -26.08 (99.5%) 0.87 (99.7%)
Value at 95% C.L. from null hypothesis mock data sets using Cut 2 4.49 1.84 -17.79 0.13
Velocity offset object values from data (inferred C.L.) 27.02 (> 99.9 %) 13.93 (> 99.9 %) -36.49 (99.9 %) 3.59 (> 99.9 %)

Test using scrambled data sets

Total Average Information Entropy Bayesian Evidence
Membership DKL DIC ln B01

Value at 95% C.L. from scrambled mock data sets using Cut 1 6.99 2.22 -20.45 0.40
Cold object values from data (inferred C. L.) 15.82 (99.7%) 4.82 (99.1%) -26.08 (98.5%) 0.87 (99.0%)
Value at 95% C.L. from scrambled mock data sets using Cut 2 3.89 1.46 -16.30 0.07
Velocity offset object values from data (inferred C.L.) 27.02 (> 99.9 %) 13.93 (> 99.9 %) -36.49 (> 99.9 %) 3.59 (> 99.9 %)

Table 3. Confidence Levels computed from null hypothesis and scrambled mock data sets. The inferred C.L.. refers to the number of null hypothesis mock
data sets and scrambled data sets sets that have a model selection value lower than that of the actual Ursa Minor data. The 95% C.L. value is defined such
that 95% of the null hypothesis or scrambled data sets have a value below this. Both additional populations found in the Ursa Minor data are above the 98%
C.L. for all the model selection methods. The two cuts indicated in the table as “Cuts 1 and 2” are defined as follows. Cut 1 is0 6 σ 6 10km s−1 and
−2526 v 6 −242km s−1 used to find the cold spot object in the data. Cut 2 is 06 σ 6 20km s−1 and−2676 v 6 −237km s−1 used to find the velocity offset
object in the data.

tails. An increase in the maximum tidal radius (in the prior)of the
objects (500 pc from 300 pc) increases the size of the velocity offset
object and moves its center roughly 150 pc away from the center
of Ursa Minor while the same change introduces tails in the pos-
terior of the cold object. Given these results, it is fair to say that
the the size and center of the secondary objects are not knownwith
precision and more data will help considerably. However, our con-
clusions regarding kinematics seem to be robust.

3.3 Perspective Motion

Line-of-sight velocity measurements for the Milky Way satellites
receive a small contribution fromx and y direction velocities of
the star (wherez is along the line-of-sight to the center of the
galaxy), and this contribution increases with distance from the cen-
ter (Feast et al. 1961; Kaplinghat & Strigari 2008). A similar con-
tribution could also arise due to solid-body rotation or some other
physical mechanism (such as tides) that leads to a velocity gradient.
Motivated by the large velocity-offset we found, we ask whether
the this term changes our conclusions. The observed line-of-sight
velocity of a star may be written as,

vlos = vz − vxx/D − vyy/D (13)

whereD is the distance to the galaxy and (x, y) are the projected
coordinates on the sky. This method has been applied to the dSph’s
Fornax, Sculptor, Sextans, and Carina and results agree with other
methods (Walker et al. 2008). The proper motion we find assuming
only a primary population with a constant velocity dispersion is
(µα, µδ) = (529± 848, −280± 449) mas century−1, which shows
clearly that we are unable to constrain the proper motion of Ursa
Minor using this effect.

Observations from the HST find a proper motion for Ursa Mi-
nor of (µα, µδ) = (−50± 17, 22± 16) mas century−1 (Piatek et al.
2005), which is an order of magnitude smaller (when comparing
the mean) than the result we calculate. If stars with high member-
ship in the velocity offset object are weighted as not being in Ursa

Minor the proper motion of this subset is (µα, µδ) = (117±90, 163±
127) mas century−1. Removing both secondary populations this
way results in (µα, µδ) = (−84± 79,−185± 174) mas century−1.
If we remove all the stars in these locations we find (µα, µδ) =
(−67± 60,−203± 181) mas century−1. These comparisons provide
clear proof that it is hard to estimate the tangential velocity with
perspective motion if there are secondary populations in the data
set.

To investigate this issue further we run a three-component
model to try and pin down the two secondary components when
including perspective motion. We add this effect into our likeli-
hood function by changing the model velocity for all three com-
ponents (cf.,vp,s in Equation 4) tovlos,i given by Equation 13 with
xi and yi for each star measured from the center of Ursa Minor.
Each component has its ownvz but vx andvy are the same for all
three components. Note that the actual tangential velocityof the
two secondary components is now implicitly tied to thevz value
– there is no hope of disentangling them given the small projec-
tion on the sky of the secondary components. We then impose the
same constraints on the center as before (cf.,§3.2). We find results
that are consistent with those we found in§3.2 in the absence of
perspective motion:xcold = 0.245+0.03

−0.04kpc, ycold = −0.065+0.015
−0.025kpc

andxvo = −0.275+0.04
−0.035kpc, yvo = 0.24± 0.025kpc. The kinematic

properties are the same as without perspective motion except the
error bars are larger. Thus the three-component model with the
prior on the centers provides a different fit and favors the pres-
ence of the secondary objects over perspective motion. Had per-
spective motion or a velocity gradient or rotation been a better
fit to the likelihood instead of either of the objects, this would
not have been the case since the likelihood allows for the free-
dom to dial down the fraction of stars in the secondary objects.
In this three-component fit, the mean velocity of Ursa Minor is
(−311± 212, −548+357

−324,−245.5 ± 0.75) km s−1, in good agreement
with the results obtained when stars in the locations populated by
the secondary populations are removed.

Instead of using a three component model (as we did above),
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we also explored the effect of using the Bayesian object detection
method including the perspective motion effect. This could lead
to faulty results (and we show below that it does) because theve-
locity offset spot has a large impact on the determination of the
background parameters – specifically the perspective motion. With
the velocity cuts to find the cold object, we find a mean velocity
for Ursa Minor of (−100+100

−100,−1125+275
−250,−247.5+0.5

−0.5)km s−1 and a
dispersion in the line-of-sight velocity of 11.0 ± 0.5km s−1. The
dispersion of the cold object is now consistent with zero at about
1-σ, 3.25± 3.0 km s−1 and the location of the centers is now much
less well-determined. However, the values obtained for theperspec-
tive motion are unphysically large and hence this is clearlynot
the correct model to be considering. With the±20km s−1 veloc-
ity cut (to find the velocity offset object), we find a mean veloc-
ity for Ursa Minor of (−200+150

−150,−1175+400
−400,−247+1.0

−1.25)km s−1 and
10.75 ± 0.5 km s−1 for its dispersion in the line-of-sight veloc-
ity. The center, as with the other object, is no longer tightly con-
strained, and the hint for deviation in mean velocity for this ob-
ject is muted (−258+7.5

−4.5 km s−1). Thus, we arrive at the conclusion
(unsurprisingly) thatvarying background parametersin Bayesian
object detection methods can lead to faulty results in data sets con-
taining multiple signals if those signals have a significanteffect on
the determination of the background parameters. In particular, for
this analysis we saw that the presence of the velocity offset spot
affects the magnitude and the direction of the inferred tangential
motion and hence the object detection method has trouble fitting
one secondary location and perspective motion. But with twolo-
calized secondary populations and perspective motion the method
still picks out both secondary objects. Thus, the three component
model is preferred by this data set.

A tangential velocity measured using perspective motion
could also be hiding a possible solid-body rotation. An order
of magnitude estimate of this rotation speed would bevrot =

Re
D

√
v2

x + v2
y (Re = 445± 44 pc,D = 77± 4 kpc). Using the re-

sults presented in this section, we calculate:vrot ∼ 7km s−1 with
entire data set, andvrot ∼ 4km s−1 when the velocity offset popula-
tion is removed, and when both secondary populations are removed
or when all stars near the secondary populations are removed. The
rotation speeds are all comparable but in each estimate the rotation
is about a different axis. The summary of our results from this sec-
tion is that a larger data set is required to simultaneously constrain
properties of the secondary populations and rotation or proper mo-
tion. The results of our three-component analysis suggest that the
data prefer the presence of both secondary objects to perspective
motion (or a rotation that masquerades as it).

4 DISCUSSION

K03 utilized a frequentist likelihood test with a two component
kinematic model (Ursa Minor dSph plus a secondary population)
similar to our Bayesian object detection method. They discovered
a stellar clump with a high likelihood ratio (∼ 104) located at
(10′,4′) (on-sky frame) relative to the Ursa Minor center with pa-
rameters,σ = 0.5 km s−1, vs = −1 km s−1 and clump fraction
of 0.7 (fraction of stars in the second population). The kinemati-
cally cold object found with our Bayesian object detection method
is centered at (10.8′ ±1.8, 5.5′ ±0.9) (on-sky frame relative to Ursa
Minor center), has a size of 6.7′ ± 0.5, with kinematic properties
σ = 4.25± 0.75 km s−1, and∆v = −1.1+1.5

−1.25 km s−1. The difference
between our results and those of K03 lie in the velocity disper-

sion of the cold object. We have considerably more stars (in total
roughly 212 to 134 of K03) and are therefore able to infer the dis-
persion with much greater confidence. We find the mean value for
the velocity dispersion to be close to 4 km s−1, similar to the dis-
persion of Segue 1 dSph (Simon et al. 2011).

The main uncertainty in our estimates of the dispersion for
cold and velocity offset objects is the presence of perspective mo-
tion or solid-body rotation. Perspective motion by itself cannot
explain these secondary populations. A three-component analysis
(i.e., main Ursa Minor population and both secondary populations)
with the coordinates of the centers fixed to within 0.1 kpc andin-
cluding perspective motion (with unconstrained tangential veloc-
ity) prefers the presence of both the secondary populations. In this
analysis, the velocity dispersions of the cold or velocity offset ob-
jects are not significantly different from the values obtained without
including perspective motion.

To estimate the luminosity of the secondary objects, we use
the total membership of the objects with the assumption thatthe
stars were drawn uniformly from the three distributions of Ursa
Minor. We find the luminosity of the cold and velocity offset ob-
jects to be 4× 104 L⊙ and 6× 104 L⊙. The luminosity of the K03
object is 1.5 × 104 L⊙, and given the uncertainties we would chalk
this down as agreement between the two analyses. The dynami-
cal mass within half-light radius of dispersion supported systems
can be estimated to about 20% accuracy using the line-of-sight
velocity dispersions and the half-light radius (Walker et al. 2009a;
Wolf et al. 2010). Assuming that the ratio ofr1/2/rtidal of the objects
is the same as that of Ursa Minor, we findM1/2 = 6× 105 M⊙, and
M1/2 = 5×106 M⊙ for the cold and velocity offset object. From this
M/L(r1/2) ≈ 30 M⊙/L⊙ and M/L(r1/2) ≈ 175 M⊙/L⊙ for the cold
and velocity offset objects. If we use this same estimator to find the
velocity dispersions assuming the objects are relaxed systems with
only stellar components andM/L = 2 (as in K03), we estimate a
velocity dispersion ofσ = 1.0 km s−1 for both the cold and veloc-
ity offset objects. This differs from the velocity dispersion found
through our object detection method by 4σ and 6.6σ for the cold
and velocity offset objects, respectively. Note that the estimator for
M1/2 assumes that the system is dynamical equilibrium, which may
not be the case here. If our current results hold up with the addition
of more data, then either these objects have highly inflated velocity
dispersions due to the influence of motion in binary stellar systems
or tidal disruption, or these objects really do have a much larger
mass than inferred from their luminosities. In the latter case, we
would have found a satellite of Ursa Minor, the first detection of a
satellite of a satellite galaxy. We discuss each of these possibilities
briefly below.

Contribution of binary orbital motion to the line-of-
sight velocities can inflate the observed line-of-sight velocities
of stars (Aaronson & Olszewski 1987; Hargreaves et al. 1996;
Olszewski et al. 1996; Minor et al. 2010; McConnachie & Côt´e
2010). A galaxy with a lower intrinsic velocity dispersion has a
higher chance of having its observed dispersion inflated. A dSph
with a velocity dispersion between 4 and 10 km s−1 is highly un-
likely to be inflated by more than 30% (Minor et al. 2010) (for an
application of this method see Simon et al. (2011); Martinezet al.
(2011)). The objects we have found have observed velocity dis-
persions in this range. Assuming both objects are inflated by
30%, their actual intrinsic velocity dispersion would be between
2.5−3.3 km s−1 and 7.1 km s−1 respectively, for the cold and veloc-
ity offset objects. These velocity dispersions are still much higher
than 1 km s−1 (that is expected for a relaxed stellar system, i.e. a
globular cluster). It is unlikely that binary orbital motion alone can
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account for the large velocity dispersions inferred from this data
set for both secondary populations. With multi-epoch data,we will
be able test this hypothesis directly as was done for Segue 1 dSph
(Martinez et al. 2011).

To assess the effect of tidal disruption from Ursa Minor we cal-
culate the Jacobi Radius,rJ, and comparerJ to the mean tidal radius
estimated from our three-component analysis. To calculatethe Ja-
cobi radius, we consider both an NFW (Navarro et al. 1997) anda
pseudo-isothermal (cored) profile for the halo of Ursa Minor. To set
the NFW density profile of Ursa Minor, we pick NFW scale radius
rs = 1 kpc and estimate the density normalizationρs using M1/2

values from Wolf et al. (2010) for a NFW profile. We find that if the
actual distance of the center of the objects is equal to the projected
distance from the center of Ursa Minor, thenrJ < rt. If the objects
are further than about 1 kpc away, thenrJ > rt with the NFW pro-
file. The situation for a pseudo-isothermal profile (1/(r2 + r2

0)) with
r0 = 300 pc is similar, withrJ > rt if the objects are further than
about 1-2 kpc from the center of Ursa Minor. TherJ estimates in-
dicate that tides from Ursa Minor could have an effect on these ob-
jects even if they are protected by their own dark matter halos. The
survival of globular cluster sized objects in dSphs has far-reaching
implications for the density profile of the host halo (Kleynaet al.
2003; Goerdt et al. 2006; Strigari et al. 2006; Cowsik et al. 2009;
Lora et al. 2012). The objects we find are more extended and mas-
sive than the globular cluster sized objects considered in such work
in the past. Thus these constraints will have to re-evaluated.

Generically, the estimated high dispersions of these objects
and their survival are facts at odds with each other. The age of
Ursa Minor (∼ 12 Gyr) is much longer than the crossing time for
stars inside Ursa Minor of∼ 150 Myr (assuming a typical veloc-
ity of 10km s−1). The crossing times for the stars in the cold and
velocity offset object are∼ 50 Myr. These objects have had time
to make multiple orbits around Ursa Minor and it is hard to see
how they could have survived given the short crossing times unless
they have been recently captured by Ursa Minor and are now the
process of tidal disrupted (which would account for the inflated ve-
locity dispersion). However, this is not a likely scenario since Ursa
Minor probably fell into the Milky Way early, between 8-11 Gyr
(Rocha et al. 2011), and capturing a large object after that is un-
likely. It is more reasonable to assume that these objects have sur-
vived for long because they were protected by a dark matter halo of
their own. The reality is probably more complicated: these objects
may have their own dark matter halos and at the same time are be-
ing tidally disrupted. These implications are intimately tied to the
dark matter halo of Ursa Minor and pinning down the properties of
these objects would help to decipher if the dark matter halo of Ursa
Minor has a cusp or a core.

5 CONCLUSION

We have presented a method for finding multiple localized
kinematically-distinct populations (stellar substructure) in line-of-
sight velocity data. In the the nearby dwarf spheroidal galaxy Ursa
Minor, we have found two secondary populations: “cold” and “ve-
locity offset (vo)” objects. The estimated velocity dispersions are
σcold = 4.25±0.75km s−1 andσvo = 9.25±1.25km s−1, and the es-
timated mean velocities arevcold = −246.25± 1.0 km s−1 andvvo =

−258.0± 1.5 km s−1. They are located at (0.25+0.04
−0.06,−0.07+0.03

−0.07) kpc
(cold object) and (−0.24± 0.09, 0.23± 0.02) kpc (velocity offset
object) with respect to the center of Ursa Minor. The location of
the cold object matches that found earlier by Kleyna et al. (2003),

but our results reveal that the velocity dispersion of this cold ob-
ject could be large with a mean value close to 4 km s−1. To assess
the significance of our detections, we employed the Bayes Factor
and information criteriaDKL and DIC supplemented with the anal-
ysis of mock data sets with secondary populations, null hypothesis
mock data sets and scrambled data sets. The two secondary objects
have> 98.5% C.L. in all the model selection tests employed.

If the velocity dispersions are as large as our Bayesian analy-
sis seems to indicate, then these objects are likely undergoing tidal
disruption or are embedded in a dark matter halo. The two pos-
sibilities are not exclusive of each other. If these objectsare dark
matter dominated, this would be the first detection of a satellite of
a satellite galaxy.

As emphasized by Kleyna et al. (2003) the presence of local-
ized substructure has important implications for inner density pro-
file of the dark matter halo of Ursa Minor. The shape of the inner
profile (cusp or core) has important implications for the properties
of the dark matter particle with cold dark matter model predicting
a cuspy inner density profile. If the stellar substructure ishosted by
its own dark matter halo, then it has further implications for dark
matter models since this would likely be the smallest bound dark
matter structure discovered.
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