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Abstract

Transcranial direct current stimulation (tDCS) is a promising method for altering the function of 

neural systems, cognition, and behavior. Evidence is emerging that it can also influence 

psychiatric symptomatology, including major depression and schizophrenia. However, there are 

many open questions regarding how the method might have such an effect, and uncertainties 

surrounding its influence on neural activity, and human cognition and functioning. In the present 

critical review, we identify key priorities for future research into major depression and 

schizophrenia, including studies of the mechanism(s) of action of tDCS at the neuronal and 

systems levels, the establishment of the cognitive impact of tDCS, as well as investigations of the 

potential clinical efficacy of tDCS. We highlight areas of progress in each of these domains, 

including data which appears to favor an effect of tDCS on neural oscillations rather than spiking, 

and findings that tDCS administration to the prefrontal cortex during task training may be an 

effective way to enhance behavioral performance. Finally, we provide suggestions for further 

empirical study that will elucidate the impact of tDCS on brain and behavior, and may pave the 

way for efficacious clinical treatments for psychiatric disorders.
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Transcranial direct current stimulation is a method of brain stimulation involving passing a 

weak current (1–2mA) across the cortex using at least two electrodes. The method has a 

substantial history1, but has more recently undergone intensive evaluation for use as a tool 

for modulating cognitive function and the symptoms of psychiatric and neurological 

disorders2. tDCS has considerable potential as a treatment due to its relative cost, portability, 

safety and ease of use compared to other methods of neuromodulation3. Side effects, such as 

itching, burning sensation or headache are common but generally mild and without long 

term impact4, 5. Thus tDCS compares favorably with other therapeutic approaches such as 
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antidepressants6 or transcranial magnetic simulation (TMS)3. However, there is still much 

work to be done to determine the full potential of this method as a scientific and clinical 

tool7. As the number of studies has grown exponentially in recent years1, a number of key 

unresolved questions has emerged as high priority research topics that need to be addressed 

for the field to continue to make progress.

In this critical review, we highlight three areas of investigation that we consider to be at the 

top of the research wish list for understanding the use of tDCS in experimental and clinical 

contexts. The first concerns the mechanism of action. The second concerns the establishment 

of the cognitive impact of tDCS and expected effect size, given the variability of the 

available data and ongoing exploration of tDCS parameter space. We then turn to an 

overview of clinical mental health research that has used tDCS. Finally, we suggest 

directions for future study to clarify the neural and behavioral impact of tDCS, and further 

enhance its value as a scientific and clinical tool.

1. Mechanism(s) of action

A key challenge for tDCS research, as with other forms of neuromodulation as well as for 

many pharmacotherapies, is the elucidation of its mechanism of action. Much of the 

information we have about the effects of tDCS on cognition and behavior has been obtained 

in the context of a limited understanding of the neural basis for tDCS effects on brain 

circuitry. This situation places constraints on the kinds of experiments we can design and 

hypotheses that can be tested using this method. Increased understanding of the impact of 

tDCS on neural activity would greatly expand our ability to design and interpret new 

experiments. For example, if it were known that a certain electric field applied to a particular 

region reduced neural activity by 10%, and behavioral output were linearly related to the 

activity in this region, we might expect behavioral output to be reduced by 10% compared 

with baseline. Such a relationship would afford opportunities to calibrate a particular 

protocol to maximize the desired effect, and perform control experiments in cases where the 

resulting data are ambiguous. A better understanding of the underlying mechanisms of 

action would also be greatly informative toward building theoretical models and linking 

findings across different outcome measures, which would enable the field to better connect 

brain to behavior.

1.1. Evidence for indirect, rather than direct, effect on neural spiking

Although this is still an ongoing topic of research, extant data suggests that tDCS is unlikely 

to have a straightforward linear effect on neural firing rates8. An important demonstration of 

this was performed by Voroslakos and colleagues9, who reported the effects of a range of 

administered currents to rodents during the recording of neural spiking and membrane 

potentials, both at the skull and on the scalp (skin). Crucially, no impact on neural spiking or 

membrane potential was observed, unless voltage gradients of around 1mV/mm or higher – 

the equivalent of a dose of about 5–6mA for human tDCS – were used. Such currents are 

generally not used for human tDCS: higher-than-typical currents (greater than 4.5mA) in 

humans have been associated with perceptual abnormalities, consistent with a direct impact 

on neural transmission9. To the extent that the impact of tDCS on behavior is determined 
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primarily by changes in neural firing rates, these findings suggest that lower doses would be 

ineffective. It seems more likely, however, that tDCS impacts network-level neural 

functioning such as oscillatory dynamics, which are critical to cognition and behavior; we 

discuss this in the section below.

1.2. tDCS-induced electric fields

Direct measurements of the electrical field elicited by tDCS in humans have been obtained 

by Huang and colleagues10 (see also11). Intracranial electrode recordings were obtained 

during transcranial (alternating current) stimulation in individuals who were undergoing 

surgical treatment for epilepsy. A key contribution of this study was to provide validation of 

the models which are typically used to estimate the electric fields evoked by tDCS in the 

brain, which are up to 0.4mV/mm for 1mA stimulation and 0.8mV/mm for 2mA stimulation. 

Computational models were able to account for around 75% of the variance in electric field 

recordings10. While at low current strengths tDCS may not have an impact on neural 

spiking, this study demonstrated in human participants that current strengths in the range of 

most human tDCS studies (1–2mA) do have a substantial impact on cortical electric fields. 

Moreover, in vitro studies have observed detectable effects on neural recordings with electric 

fields as weak as 0.2mV/mm12. Specifically, Reato et al.13 reported parametric changes in 

electric fields in response to stimulation in rats, finding a variety of significant relationships 

between field strength and oscillatory power across different metrics.

This study suggests a possible lower bound by which tDCS might be expected to have an 

effect on neural firing properties. This is highly informative regarding understanding of the 

mechanism(s) of action, as it opens the possibility for 1–2mA tDCS to have an impact on a 

range of neural phenomena, including those which may be susceptible to weak currents. Of 

the various potential candidates, Liu and colleagues argue that stochastic and rhythm 

resonance are the most plausible neural mechanisms by which weak modulation of an 

electric field may affect neural information coding14. These effects would emerge from 

small changes in spike predictability and timing, and may exert an effect of cognition via an 

influence on neural (population) coding15. At a cellular level, these changes may arise from 

an impact of tDCS on membrane potentials, and thus spike probability and timing13, 14, 

and/or neural plasticity (i.e. long-term potentiation/depression: LTP/LTD16).

To the extent that tDCS has a modulatory role on neural activity (rather than eliciting spiking 

directly), the nature of the “baseline” neural activity to be modulated is thus crucial. This has 

been articulated within Bikson and colleague’s activity/selectivity hypothesis17. For 

example, a difficult working memory paradigm might elicit increases in theta power18 

compared with a baseline task. The neural state created by this task might be differentially 

susceptible to modulation by tDCS compared with another state, and thus might yield 

different outcomes in behavior. Alternatively, an effect of tDCS on plasticity would naturally 

explain differential effects of tDCS on task training versus performance: tasks trained during 

tDCS would show enhanced performance at test via improved task encoding, but tDCS 

would not influence task performance directly19. Further work examining the effect of weak 

electrical currents focused on testing such hypotheses might provide further insights into 

tDCS’s effect in humans.
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1.3. In vivo measures of neurophysiological impact of tDCS in humans

Given that in vivo studies with animals may only be indirectly applicable to humans, and 

that behavioral measures can reflect a complex variety of factors, human neuroimaging 

studies might play a valuable role in uncovering intervening variables which underlie the 

neural mechanism of tDCS. Techniques such as functional magnetic resonance imaging 

(fMRI), magnetoencephalography (MEG) and electroencephalography (EEG) are well-

suited to examine neural phenomena that may be relevant to tDCS’s mechanism, as these 

methods do not assess neural spiking directly20, 21. Rather, these methods reflect a more 

global measure of the function of a neural region or system.

Regardless of the suggested neural mechanisms relating to oscillations or plasticity 

described above, it is worth noting that anodal and cathodal stimulation influence the 

directions of an induced electrical field rather than simply having an ‘excitatory’ or 

‘inhibitory’ impact on brain function22. Accordingly, direct effects on the blood oxygenation 

level dependent (BOLD) signal, as a proxy of synaptic input to a given brain region21, have 

rarely been reported in response to anodal or cathodal stimulation. In one experiment, tDCS 

administered to the visual cortex had a relatively small but significant impact on visually 

evoked BOLD in this region23, perhaps somewhat obscured by ceiling effects. Local 

decreases in BOLD responses caused by anodal stimulation have also been reported (e.g.24), 

as well as decreases in resting perfusion and associated alterations in BOLD responses 

caused by prefrontal anodal/cathodal stimulation25. By contrast, there is a larger literature on 

changes in oscillatory activity, including changes in whole brain spectral properties at rest 

using EEG26, and more selective changes to gamma oscillations in visual cortex using 

MEG27, 28 (but see29). A number of studies have reported changes to theta oscillations 

during a variety of cognitive tasks following tDCS30–32. We have shown modulation of 

gamma oscillations over frontal cortex using anodal tDCS during a proactive cognitive 

control task33. We discuss studies that have found tDCS-induced changes in neural 

oscillations in more detail in Section 2 below. Given the crucial role that neural oscillations 

play in cognition, both in “local” regional cortical dynamics and in long-distance 

communication across regions in a neural network34–37, the impact of tDCS on neural 

oscillations may make this method uniquely poised to influence cognition (as opposed to 

methods that influence spiking directly such as TMS).

1.4. Importance of montage

One experimental variable that exerts a strong effect on the behavioral or physiological 

impact of tDCS is the arrangement (montage) and the size of the electrodes employed. A 

recent study of Fischer and others addressed several of these complexities38. This study 

involved administering tDCS before evoking motor responses (motor evoked potentials: 

MEPs) using transcranial magnetic stimulation (TMS), and then measuring the magnitude of 

these responses using electromyography (EMG). A crucial manipulation involved the 

montage of electrodes used for tDCS stimulation. Anodal stimulation was applied using a 

conventional montage (i.e. anodal stimulation on the left motor cortex with supraorbital 

cathodal stimulation), which elicited a small increase in excitability. A novel montage was 

also developed, in which bilateral motor cortex received anodal stimulation using an array of 

electrodes, while cathodal stimulation was applied to non-primary motor cortex regions 
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including frontal and parietal regions. This novel montage produced a much larger and long-

lasting increase in excitability. Despite conventional electrical field modeling showing that 

both montages should produce a similar current dose to motor cortex, the novel montage was 

physiologically more efficacious. Recurrent connections within the motor cortex network 

may amplify of the administered dose (see also13), leading to the observed enhancement. 

Overall, the results imply that the global, network-level impact of stimulation needs to be 

considered and not simply its local impact.

This argument is echoed by a recent meta-analysis of the impact of prefrontal cortical-

administered tDCS on cognitive function39. This study examined the impact of 

methodological factors, such as the use of an extra-cranial (e.g. shoulder) cathode. Such 

studies yielded a larger and more consistent effect size than studies using a cranial cathode. 

This finding is compatible with the Fischer study38, insofar as it illustrates the importance of 

cathode location. For example, in studies of prefrontal cortical-targeted stimulation, a 

cathode on the opposite hemisphere of the prefrontal cortex could interfere with the effect of 

the anode (see also40). Likewise, smaller electrodes were also more efficacious, perhaps due 

to a more specific focal impact and less cross-network influence. Recent work has increased 

the range of montage options, such that high-definition (HD) montages are now available in 

addition to traditional anode-cathode pair montages41. HD montages may allow more focal 

stimulation to be administered, although further validation of the impact of different 

montages is necessary. The variety of montages available allows flexibility in future research 

as, depending on the region or network under investigation, it may be possible to implement 

relatively focal or diffuse tDCS as necessary for the intended manipulation.

Different neural regions might respond differently to tDCS, due to functional as well as 

anatomical differences between the regions. For example, recent evidence suggests that 

motion discrimination thresholds can be modulated by both anodal and cathodal stimulation 

via different psychophysiological mechanisms42, 43. Such studies imply that the effect of 

tDCS will be mediated by the manner in which the electric field interacts information 

representation in a particular region and how it subserves a specific psychological process.

1.5. Interim summary

Studies of humans using intracranial electrodes suggest that electrical field intensities 

elicited by tDCS are far below that which would be required to cause spiking. An influence 

of weak currents – within the range realistically administered by tDCS - can be observed on 

the entrainment of oscillations, however13. Moreover, certain montages appear to exert more 

powerful or otherwise different effects than might be easily captured by computational 

models38, suggesting that there might be amplifying effects generated by stimulating in a 

consistent way across a network. These experimental considerations may interact with the 

brain region examined and the type of behavioral output used to measure the effect of tDCS. 

Overall, the complexity of the extant literature seems consistent with the potential 

complexities of the effect of tDCS on neural function (Table 1).
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2. Determining typical cognitive impact

As the number of tDCS studies rises, an important question concerns the typical impact on 

cognition and behavior that can be expected with stimulation. There are several recent 

examples in the literature of an unsatisfactory ratio between meta-analytic estimate of effect 

size and the power of individual studies. Specifically, the relatively modest sample size of 

most studies in the tDCS literature may be problematic, given that estimates of behavioral 

effect sizes are often moderate or small44. Type I and type II error rates are not well 

calibrated if studies are relatively underpowered45. This concern has been identified in 

analyses of the effects of tDCS on cognitive function46, 47, but applies across other domains 

too. This scenario presents a challenge for establishing tDCS parameters that can have 

reliable behavioral impact, mostly because the types of studies that are being routinely 

conducted are often not of a sufficient power to provide adequate evidence against the null 

hypothesis. Nevertheless, as Meron and colleagues point out in their meta-analysis of the 

treatment impact of tDCS48, the low power of many tDCS experiments, given the modest 

meta-analytically derived effect sizes, can be addressed if reasonable and effective steps are 

taken to increase the effect size by eliminating irrelevant sources of variability. Moreover, 

meta-analyses can be hindered by methodological variation in the literature, which either 

restricts their focus, or forces them to combine heterogeneous studies that may not be 

straightforwardly comparable and thus underestimate a true effect size49.

2.1. Influence of PFC stimulation on cognitive control (goal maintenance; adaptive 
control; inhibition)

While studies of the impact of tDCS on sensorimotor systems can provide a valuable 

window into its neurophysiological effect, there is substantial interest in determining tDCS’s 

effect on more complex psychological processes – including cognitive50, 51 and emotional 

domains. Here, we focus particularly on modulation of the prefrontal cortex (PFC). The PFC 

has been the target of considerable experimental investigation, with numerous studies 

demonstrating potentially functionally meaningful modulation of cognitive and emotional 

processes by tDCS. For example, a number of studies have shown that anodal tDCS to 

dorsolateral prefrontal cortex (DLPFC) leads to improved cognitive performance in healthy 

adults52. Moreover, improved performance on working memory tasks53, 54, probabilistic 

learning tasks (for a subset of patients)55, adaptive control tasks30, and attention-vigilance 

tasks53 have all been demonstrated following anodal DLPFC tDCS in patients with 

schizophrenia. A common thread of these disparate tasks is that they all depend, in part, on 

DLPFC-mediated cognitive control functions such as goal maintenance.

Current evidence suggests that tDCS may have a more selective influence than a simple 

boosting of performance on difficult cognitive tasks. Simonsmeier and colleagues performed 

a meta-analysis of 35 studies examining a variety of cognitive tasks involving study and 

recall phases in mathematical and language domains19. The majority (n=29) of these studies 

employed tDCS, while most targeted frontal or parietal cortex. Here, greater effect sizes 

were observed when stimulation was administered before or during the study phase (d=0.71) 

than the performance phase (d=0.21). This pattern suggests that tDCS may assist with 

updating and maintaining aspects of the task representation in relevant neural circuitries 
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(goal maintenance)56, 57, rather than a simple boosting of neural function to improve 

performance during test. Another meta-analysis by Imburgio and Orr39, more focused on the 

frontal lobe, reached a similar conclusion regarding the impact of tDCS on goal 

maintenance-related functions rather than inhibition or switching, as did another meta-

analysis more focused on working memory training58.

Evidence is emerging that links tDCS-related improvement in task performance to neural 

oscillations. For example, Reinhart and colleagues have shown that prefrontal cortex-

directed tDCS enhances behavioral performance on adaptive control tasks30, specifically on-

demand changes in executive processes following increased cognitive demands (e.g. post-

error adjustments in processing), as well as associated neural oscillatory measures in the 

theta frequency band (~4–7 Hz). Building on this finding in a recent study, Reinhart59 used 

high-definition transcranial alternating current stimulation (HD-tACS) to administer in-

phase, anti-phase, and sham stimulation in the theta frequency band to the prefrontal cortex. 

In-phase theta stimulation to the prefrontal cortex synchronized theta oscillations between 

two prefrontal cortical regions, and improved behavioral correlates of adaptive control, 

compared with anti-phase stimulation or sham. In addition to an effect on adaptive control, 

prefrontal cortically-targeted tDCS may also have an impact on proactive control processes, 

which include goal and context maintenance over time. For example, we have recently 

shown an increase in oscillatory activity in the gamma band following anodal prefrontal 

cortical tDCS stimulation compared with sham, as well as a corresponding behavioral 

effect33.

There is also evidence of anatomical selectivity: montages focusing on inferior rather than 

dorsolateral regions of the prefrontal cortex, particularly on the right hemisphere, can 

influence inhibitory function60, 61. Moreover, other domains such as emotion regulation62, 63 

and risk taking64, which may also depend on inhibitory processes, can also be modulated by 

right prefrontal cortical tDCS.

2.2. Interim summary

Evidence is emerging that tDCS can impact executive function in a fairly specific manner, 

both in terms of the impact on behavior and the anatomical selectivity. Moreover, an impact 

of tDCS on neural oscillations, rather than spiking, may reflect the underlying mechanism. It 

may be that the heterogeneity described in the literature is a result of using tDCS to evaluate 

cognitive models without an appropriate mapping onto the underlying neural mechanism, 

and a change of emphasis may assist future studies. For example, working memory models 

which emphasize oscillatory mechanisms of information storage65 may yield clearer 

predictions and better account for the resulting data than those that emphasize neural 

spiking66. Moreover, adapting a network-led rather than region-led approach67 may 

represent a more productive approach (Table 1).
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3. Determining typical clinical impact: findings from tDCS studies of 

psychiatric disorders

3.1 Mood disorders

Observations of modulation of cognition produced by tDCS imply that cognitive or affective 

abnormalities in individuals with psychiatric conditions might be ameliorated by tDCS. 

Perhaps the most extensive work evaluating this proposal has been conducted in major 

depressive disorder (MDD). There have been numerous clinical trials examining the effect of 

tDCS on MDD, which generally have involved repeated sessions of stimulation to the left 

DLPFC17, 68. Such a procedure can yield a modest improvement in symptoms compared to 

sham tDCS68. As the literature grows, it has been possible to identify tDCS parameters and 

aspects of the trial that are associated with clinical efficacy, and there is a suggestion that 

effect sizes are increasing as the relevant parameters are identified. These parameters may 

include stimulation of greater current (trend-level69) for longer periods68. In addition, as 

might be expected, tDCS is unfortunately less effective for treatment-resistant patients17, 68. 

A recent clinical trial performed a controlled comparison of tDCS and sertraline70, finding a 

significant improvement in clinical symptoms compared to sham/placebo using tDCS, but a 

smaller effect size than sertraline. Likewise, a combination of sertraline and tDCS might 

provide quantitatively greater efficacy than tDCS alone71. However, another recent clinical 

trial72 failed to yield a significant effect of anodal tDCS on depression symptoms. This trial 

had a number of interesting features, including 2.5mA stimulation (1–2mA typically 

employed68), data collection across several sites and a relatively substantial placebo (sham) 

effect. Well-powered null trials of this sort are essential for providing further insight into 

relevant parameters which determine treatment magnitude and reliability.

An important question arising from these demonstrations of efficacy is whether tDCS would 

act on the mood-related or cognitive symptoms73 of depression, given that somatic 

symptoms such as weight gain/loss or sleep might be less likely to be directly impacted by 

prefrontal tDCS. Studies which have evaluated whether an impact on cognition or mood 

mediates the antidepressant effect of tDCS reported mixed results, with some finding no 

effect on cognition but some effect on emotion recognition74, and others suggesting a 

potential role for cognitive control75–79. A meta-analysis indicated no effect of cognition 

independent of mood improvement80, suggesting that identifying a specific effect of tDCS 

on cognition is difficult within a clinical trial design given general cognitive improvements 

in patients through a trial. More recent experimental approaches have sought to identify the 

effect of tDCS effect on cognitive processes important for mood regulation to shed further 

light on this question81.

3.2. Schizophrenia

Cognitive dysfunction across a wide variety of difficult cognitive tasks is a core feature of 

schizophrenia, and similar efforts have been made to improve cognitive performance in 

schizophrenia using tDCS. As noted above, cognitive control, including adaptive control, 

proactive control and inhibition have been among those targeted by a number of tDCS 

studies, and these functions are prominent among the cognitive impairments that are 

observed in schizophrenia and related psychotic disorders82. Thus, there have been several 
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studies that examined the impact of tDCS on cognitive control functioning in schizophrenia, 

with some success. For example, Reinhart et al.30 found evidence that mid-frontal 

stimulation improved behavioral and neural oscillatory measures of adaptive control in 

participants with schizophrenia (see also53–55).

Evidence regarding auditory hallucinations is mixed, with some positive findings. For 

example, Mondino et al.83 found an effect of tDCS on auditory verbal hallucinations and 

resting state fronto-temporal connectivity following twice daily stimulation sessions of 20 

minutes at 2 mA, administered with the cathode over the left temporoparietal junction and 

the anode over the left DLPFC. Brunelin et al.84 found an effect on auditory hallucinations 

lasting up to 3 months with a similar stimulation protocol. Although Fitzgerald et al.85 were 

unable to replicate the finding, this may have resulted from the procedure (stimulation once 

rather than twice daily) employed by the authors. The number of stimulations per day is a 

further example of a potentially relevant experimental parameter whose theoretical status is 

uncertain, but requires further examination.

Research on the effect of tDCS on both cognitive and psychotic symptoms in schizophrenia 

is a rapidly growing area of research, but there is not yet a large literature available.

3.3. Interim summary

In terms of the clinical areas discussed, there is some optimism that tDCS may be 

efficacious as a treatment strategy for psychiatric disorders. We have used schizophrenia and 

depression as examples, but note that tDCS may have more general applicability in 

psychiatric disorders (e.g.86). For example, it may alter compulsive behaviors in anxiety 

disorders87 and drug cue-elicited cravings and risk-taking behavior in substance abuse 

disorders88–90. Importantly, tDCS may induce clinically deleterious outcomes91–94, and such 

findings may also assist in defining an effective montage and dose. While identifying 

effective parameters can proceed by empirical, trial-and-error approaches alone, it is likely 

that greater understanding of the underlying mechanism of tDCS might yield wider benefits 

for designing clinical treatments. For example, insights obtained from cognitive 

neuroscience studies, with regard to oscillations and networks already mentioned, might 

impact the design of treatment studies (Table 1).

4. Recommendations for future research and conclusions

While the data we have reviewed reveal important uncertainties around tDCS’s 

neurophysiological mechanism and impact on cognition and behavior (see also95), they also 

reflect a growing confidence in this method. A reliable impact on neural activity and 

behavior, including motor thresholds, prefrontal cortex-related cognition and depression, has 

been described. We provide suggestions for future research that might increase such 

confidence further.

First, there have been recent calls for a sharper distinction between exploratory and 

confirmatory work in experimental neuroscientific and psychological research96. Certainly, 

tDCS research would benefit both from more exploratory work into the influence of the 

many relevant experimental parameters, as well as confirmatory work estimating the effect 
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size of a particular parameter set. The latter might include replications (e.g.97), relatively 

large sample sizes and preregistration (e.g.98) and careful dissemination of inconsistent or 

null effects (e.g.99). Furthermore, it is essential to review current best practices regarding 

tDCS protocol design (e.g.100), which may enable more consistent stimulation to be 

administered across individuals and studies. Finally, given our discussion of plausible tDCS 

mechanisms, it is likely that the behavioral context in which the stimulation is administered 

may be important (i.e. cognitive, emotional, arousal states). Efforts to control these factors 

may be crucial in determining the impact of tDCS.

Second, much of the work into the effects of tDCS in humans has used conventional 

convenience samples68. As the development of tDCS extends to clinical cohorts, modelling 

of individual differences in response to tDCS may become increasingly important. 

Moreover, many clinical cohorts themselves are highly heterogeneous (e.g.101), and 

potential moderators of tDCS efficacy have already been identified, as described above (e.g.
68, 102). Other self-report, behavioral or neuroimaging and electrophysiological measures 

may also provide similar benefit to determining the outcome of tDCS treatment as they can 

do for pharmacotherapy102. A key open question is whether some patients would benefit 

from tDCS over pharmacotherapy or vice versa.

Third, one reason for the complexity of tDCS findings is the potential for compensation by 

other networks. Many neural regions that are often targeted using tDCS, such as the 

prefrontal cortex, are argued to have flexible coding properties103, and therefore may have 

the capacity to adapt in the face of neural interventions104. One strategy to address this 

possibility is to simultaneously alter the function of two or more key nodes in a given 

network (e.g.67), reducing the likelihood for compensation of one node by a second or third. 

The simple empirical prediction is that modulating multiple nodes within a network would 

be more effective in modulating a given behavior than the modulation of a single node. 

Proximal measures of neurophysiology105 such as fMRI or MEG/EEG may have particular 

value in anticipating the potential for compensation by mapping out a network, as well as 

demonstrations of such compensation.

Fourth, in vivo basic science work to clarify neural mechanism and effective parameters will 

provide an essential role in uncovering the mechanism of tDCS. As describe above, such 

experiments have already provided key constraints over the potential neural mechanism of 

tDCS, ruling out several plausible accounts. There have been relatively few studies 

employing in vivo animal models, and such studies offer a unique potential to uncover core 

mechanistic relationships (Figure 1). For example, assumptions about the selective impact of 

tDCS on L5 pyramidal neurons106 could be tested rigorously.

Finally, a central challenge of tDCS research can be summarized in the following way: 

currently, in many areas of tDCS research, there are more parameter settings than there have 

been studies conducted. For example, the number of combinations of montages, current 

amplitude and duration, and timing of dose relative to behavioral or neural data collection, 

as well as other methodological factors (e.g. composition of the participant cohorts) will 

usually surpass the number of studies examining a particular phenomenon. A broadly 

analogous situation presents itself in neuroimaging research, where the number of potential, 
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independent data analysis pipelines is extremely large107. Meta-analyses can provide some 

benefit in terms of defining experimental parameters that might lead to different 

experimental outcomes39. For meta-analyses to be maximally informative, however, there 

first must be a relatively large literature to meta-analyze. The heterogeneity of the emerging 

cognitive and clinical tDCS literatures has presented some challenges for recent meta-

analytical efforts, requiring the combining of a limited amount of available data from studies 

with extremely different parameters (e.g. tDCS montages targeting different cortical 

regions). Computational models may play a crucial role in focusing future tDCS research by 

locating most informative parameters to resolve a particular question. As current flow 

modeling becomes more sophisticated, it might better incorporate neurophysiological 

constraints (e.g. from structural or resting state functional MRI or EEG), or constraints 

obtained from behavioral data (e.g. working memory capacity).

The goal of this critical review was to review the current state of tDCS research, both 

acknowledging areas of progress and identifying key open questions for future research to 

prioritize. tDCS has promise for modulating cognition and the symptoms of psychiatric 

disorders, but much remains to be understood about this method: how it works, and how it 

might be applied to study and/or enhance human cognition and functioning. Available data 

from studies in animals and humans suggests that the current strengths typically 

administered to humans modulate neural activity by way of changes in electrical fields and 

neural oscillations, rather than by eliciting neuronal spiking. Future research efforts to 

further elucidate the mechanism(s) of action can be expected to help shape experimental 

design and the kinds of hypotheses that it will be possible to test. Available data on the 

cognitive and clinical impact of tDCS suggests that while average effect sizes are currently 

moderate, it will become increasingly possible to fine-tune methodological factors and 

theoretical models to better target specific neural circuits and behavior. In summary, while 

there is much work still to be done, there is also an increasing amount of empirically-

supported optimism that these future research directions will develop tDCS not only as a 

tool to examine the neural basis of behavior in translational research, but also as a 

neurobiologically-informed intervention to treat debilitating psychiatric disorders (Figure 1).
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Figure 1: 
A schematic depicting the interactions between mechanistic, cognitive and clinical studies in 

tDCS research that can facilitate the development of mechanistically-informed interventions 

for psychiatric disorders.
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Table 1:

Areas of progress in tDCS research, and questions to be addressed in future studies. References reflect 

examples of relevant investigations or discussions.

Areas of Progress Open Questions

Mechanism(s) of 
Action

• Validated models of in vivo electric field10.
• Neurophysiological effects of tDCS as measured 
by neuroimaging techniques105.

• Precise effect of tDCS on neural information transmission9, 13.
• Differential impact of tDCS on particular neuron types106, with 
implications for function.
• Reliable neurophysiological assays of tDCS’s functional 
effect105.
• Capacity for system-level compensation in response to 
modulation67.

Impact on 
Cognition

• Reproducible impact of tDCS on behavior19, 39.
• Identification of parameter dimensions which 
may impact behavioral outcomes e.g. extracranial 
return electrodes, training versus testing, electrode 
size19, 39.

• Trait-level moderators which may determine impact of tDCS e.g. 
anatomical, functional differences19, 39.
• Precise prediction of all potential permutations of experimental 
variables including timing, dose and montage on cognitive process 
of interest19, 39.

Clinical Impact

• Small but reliable impact of tDCS on clinical 
symptoms68–70.
• Identification of parameter dimensions which 
may impact behavioral outcomes e.g. current dose/
duration, treatment resistance68, 69.

• Trait-level moderators which may determine impact of tDCS e.g. 
behavioral, anatomical, functional differences108, 109.
• Precise prediction of all potential permutations of experimental 
variables including timing, dose and montage on clinical outcome 
of interest68, 69.
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