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ABSTRACT OF THE DISSERTATION

A Hybrid EM Algorithm

for Linear Two-Way Interactions

with Missing Data

by

Dale S. Kim

Doctor of Philosophy in Psychology

University of California, Los Angeles, 2021

Professor Steven Paul Reise, Chair

We study an EM algorithm for estimating product-term regression models with missing

data. The study of such problems in the likelihood tradition has thus far been restricted to

an EM algorithm method using full numerical integration. However, under most missing

data patterns, we show that this problem can be solved analytically, and numerical

approximations are only needed under specific conditions. Thus we propose a hybrid

EM algorithm, which uses analytic solutions when available and approximate solutions

only when needed. The theoretical framework of our algorithm is described herein, along

with two numerical experiments using both simulated and real data. We show that our

algorithm confers higher accuracy to the estimation process, relative to the existing full

numerical integration method. We conclude with a discussion of applications, extensions,

and topics of further research.

ii



The dissertation of Dale S. Kim is approved.

Craig K. Enders

Hongjing Lu

Han Du

Steven Paul Reise, Committee Chair

University of California, Los Angeles

2021

iii



Contents

1 Introduction 1

1.1 Model and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Missing Data Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The EM Algorithm for Missing Data . . . . . . . . . . . . . . . . . . . . 6

1.4 Application to Product-Term Regression Models . . . . . . . . . . . . . . 7

2 Missing Data Patterns 9

2.1 Y is Missing, X has Any Missing Data Pattern . . . . . . . . . . . . . . 9

2.2 Y is Observed, X Admits No Fully Missing Products in d(X) . . . . . . 12

2.3 Y is Observed, X Admits Fully Missing Products in d(X) . . . . . . . . 13

2.4 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Empirical Studies 16

3.1 Simulation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 Empirical Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.2 Empirical Mean Square Error . . . . . . . . . . . . . . . . . . . . 20

3.5.3 Coverage Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.4 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Real Data Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iv



4 Discussion 29

4.1 Limitations and Future Extensions . . . . . . . . . . . . . . . . . . . . . 29

4.2 Implications and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 31

Appendices 32

A.1 Sufficient Statistics of the Joint Model . . . . . . . . . . . . . . . . . . . 32

A.2 Maximization of the Q-function . . . . . . . . . . . . . . . . . . . . . . . 33

A.3 Gaussian MGF Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.4 Re-expression of E[Y Xa
jX

b
k|XO] Under MDP 1 . . . . . . . . . . . . . . . 38

A.5 Derivation of P(XM |Y,XO) . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.6 Generating σ2
ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.7 Generating R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.8 Numerical Software Comparison . . . . . . . . . . . . . . . . . . . . . . . 43

References 45

v



List of Figures

1.1 Illustration of Riemann midpoint numerical integration. The error of

approximation is denoted as εa. . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Demonstration of numerical integration computational complexity and

approximation error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Marginal view of bias by n, p, ϕMIS, and ϕMDP3, stratified by method.

Error bars indicate 95% confidence intervals. . . . . . . . . . . . . . . 23

3.2 Marginal view of mean square error by n, p, ϕMIS, and ϕMDP3, stratified

by method. Error bars indicate 95% confidence intervals. . . . . . . . 24

3.3 Marginal view of coverage rate by n, p, ϕMIS, and ϕMDP3, stratified by

method. Error bars indicate 95% confidence intervals. . . . . . . . . . 25

3.4 Marginal view of average time by n, p, ϕMIS, and ϕMDP3, stratified by

method. Error bars indicate 95% confidence intervals. . . . . . . . . . 26

3.5 Boxplots of deviations and square errors of the parameter estimates in

the real data simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.8.1 Histogram of log10 absolute differences. . . . . . . . . . . . . . . . . . 44

vi



List of Tables

2.1 Mosaic table of techniques to obtain E[T (U)|UO] by MDP. . . . . . . 15

3.1 Descriptive linear model of bias as a function of method, n, p, ϕMIS,

ϕMDP3, and Order (control variable), along with their interactions with NI. 23

3.2 Descriptive linear model of mean square error as a function of method,

n, p, ϕMIS, ϕMDP3, and Order (control variable), along with their inter-

actions with NI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Descriptive linear model of coverage rate as a function of method, n, p,

ϕMIS, ϕMDP3, and Order (control variable), along with their interactions

with NI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Descriptive linear model of time as a function of method, n, p, ϕMIS,

ϕMDP3, and Order (control variable), along with their interactions with NI. 26

3.5 Bias and MSE averaged within method and coefficient. . . . . . . . . . 28

A.8.1 Summary mean and quartiles for the absolute and logged absolute

differences between NI and MDMB parameter estimates. . . . . . . . . 44

vii



ACKNOWLEDGMENTS

I would like to express my gratitude to several of the faculty and staff in the

Department of Psychology at UCLA. First, I would like to thank my advisor, Dr. Steven

Reise, for his encouragement, support, and guidance, especially during my first few years.

Your passion for research and contagious sense of humor was a source of endless positive

energy throughout my graduate career. Second, I would like to thank Dr. Peter Bentler,

for his constant support and willingness to discuss research ideas. Thank you very much

for serving as a co-mentor on several of my academic pursuits, as well as your enthusiastic

professional support. Finally, I would like to thank Lisa Lee, for being such an expert

resource in navigating the logistical and bureaucratic intricacies of graduate division

policy and the individually articulated Ph.D. program. I can’t thank you enough for your

assistance and support in technical matters, as well as your friendly ear in personal ones.

I would also like to express my gratitude for my colleagues during my time at the

University of Washington. First, I would like to thank Dr. Kevin King, who served as my

undergraduate research mentor. I would not be where I am today without you taking

an interest in my early development as a researcher. Thank you for continuing to be a

mentor to me in professional matters, as well as being a research colleague and friend.

Second, I would like to thank Dr. Geoffrey Loftus and Dr. Kristine Louie, both of whom

also provided me with many opportunities to nurture my nascent academic career. Finally,

I would like to thank Dr. Connor McCabe, who is a close friend with whom research

is a common interest, among a great many other things. I appreciate you trusting me

enough to go and try to pull off some of my crazy research ideas. Here’s to a great many

successful future endeavors together, both inside and outside academia.

viii



VITA

Education

Ph.D., Statistics September 2019 - June 2022 (Expected)
University of California, Los Angeles, CA

Ph.D., Quantitative Psychology September 2015 - December 2021 (Expected)
Minor: Computational Cognition
University of California, Los Angeles, CA

M.S., Statistics September 2019 - June 2020
University of California, Los Angeles, CA

M.A., Quantitative Psychology September 2015 - June 2019
University of California, Los Angeles, CA

B.S., Psychology January 2011 - June 2014
University of Washington, Seattle, WA

Publications

Kim, D. S. & McCabe, C. M. (In press). The Partial Derivative Framework for Substantive
Regression Effects. Psychological Methods.

McCabe, C. M., Halvorson, M. A., King, K. M., Cao, X., & Kim, D. S., (2021). Interpret-
ing interaction effects in generalized linear models of nonlinear probabilities and counts.
Multivariate Behavioral Research. Advance online publication.
https://doi.org/10.1080/00273171.2020.1868966

Halvorson, M. A., McCabe, C. M., Kim, D. S., Cao, X. & King, K. M. (2021). Making
sense of some odd ratios: A tutorial and improvements to present practices in reporting
and visualizing quantities of interest for binary and count outcome models. Psychology of
Addictive Behaviors. Advance online publication. https://doi.org/10.1037/adb0000669

McCabe, C. J., Kim, D. S. & King, K. M. (2018) Tools and Recommendations for
the Visual Display of Interactions. Advances in Methods and Practices in Psychological
Science, 1(2), 147-165. https://doi.org/10.1177/2515245917746792

King, K. M., Kim, D. S. & McCabe, C. J. (2018) Random responses inflate statisti-
cal estimates in heavily skewed addictions data. Drug and Alcohol Dependence, 183,
102-110. https://doi.org/10.1016/j.drugalcdep.2017.10.033

Kim, D. S., Reise, S. P. & Bentler, P. M. (2018) Identifying Aberrant Data in Struc-
tural Equation Models with IRLS-ADF. Structural Equation Modeling, 24(3), 343-358.
https://doi.org/10.1080/10705511.2017.1379881

ix



Kim, D. S., McCabe, C. J., Yamasaki, B. L., Louie, K. A. & King, K. M. (2018) Detect-
ing Careless Responders with Infrequency Scales Using an Error Balancing Threshold.
Behavior Research Methods, 50(5), 1960-1970. https://doi.org/10.3758/s13428-017-0964-9

Reise, S. P., Kim, D. S., Mansolf, M. & Widaman, K. F. (2016) Is the Bifactor Model
a Better Model or is it Just Better at Modeling Implausible Responses? Application of
Iteratively Reweighted Least Squares to the Rosenberg Self-Esteem Scale. Multivariate
Behavioral Research, 51(6), 818-838. https://doi.org/10.1080/00273171.2016.1243461

x



Chapter 1

Introduction

We consider the problem of missing data in regression models with product-term predictors.

In the psychological sciences, product-term regression models are widely used to test

hypotheses pertaining to interactions (Aiken & West, 1991), moderation (Baron & Kenny,

1986), and/or conditional processes (Hayes, 2018). For example, these hypotheses may

refer to the difference of an effect between two groups, the dependence of an outcome-

predictor relationship on other variables, or the effect of two simultaneous symptoms above

and beyond their constituent effects. A considerable amount of methodological research

has been dedicated to interpreting these models (Dawson, 2014; McCabe, Kim, & King,

2018; Preacher, Curran, & Bauer, 2006), attesting to their importance and popularity.

However, the estimation of product-term regression models is complicated by the issue

of missing data, which is particularly prevalent for data involving human subjects. It can

arise from subject dropout, item non-response, logistical errors, or even serve as designed

aspect of data collection (Graham, 2009; Raghunathan, 2004). If the mechanism of

missing data meets certain conditions, this problem (or design) can be accommodated and

consistent estimates can be obtained. In particular, we consider the situation under which

the missing data mechanism is called ignorable (Schafer, 1997). Colloquially speaking, it

means that the probability of an observation being missing does not depend on its own

would-be realized value, and that the data value generating mechanism is distinct from

the missingness generating mechanism.

Previous literature on this problem can be broadly cast into two categories: correctly
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specified and misspecified characterizations of the joint distribution of the data. For

product term-regression models, incorrect specification generally occurs for the product

terms. The most common type of misspecification is naively assuming the product terms

are jointly Gaussian along with their constituent factors (von Hippel, 2009). This has

also been called the “just another variable” approach (Seaman, Bartlett, & White, 2012)

as it treats the product term simply as another Gaussian random variable. However,

this introduces a contradiction of distributional assumptions, as a product of Gaussians

random variables cannot itself be Gaussian. While some studies have shown that there

may be some conditions under which this method is reasonable (Enders, Baraldi, & Cham,

2014; Seaman et al., 2012), it is not guaranteed to provide unbiased estimates in general

(Bartlett, Seaman, White, & Carpenter, 2015; Lüdtke, Robitzsch, & West, 2019; Zhang &

Wang, 2017).

To address these issues, correctly specified methods have been developed. This

is typically accomplished by a factorizing the joint distribution into a product with

conditional distributions. In this way, it can be easier to correctly specify the constituent

factored distributions, rather than the original joint distribution itself (e.g., Ibrahim, 1990).

Hence, this technique can ensure compatibility between the substantive model of interest,

and the overall joint distribution of the data (J. Liu, Gelman, Hill, Su, & Kropko, 2014).

It has also been called factored regression modeling (Lüdtke et al., 2019), substantive

model compatibility (Bartlett et al., 2015), and model-based handling (Enders, Du, &

Keller, 2020).

The application of this technique however, has been largely focused on multiple

imputation methods with Markov Chain Monte Carlo (MCMC) under a Bayesian paradigm

(Kim, Sugar, & Belin, 2015; Lüdtke, Robitzsch, & West, 2020; Zhang & Wang, 2017).

While MCMC methods are widely applicable, convergence assessment is notoriously

difficult (Brooks & Roberts, 1998; Cowles & Carlin, 1996; Gelman & Rubin, 1996), and

it is known for its slow and inefficient uses of Monte Carlo samples (Gelman & Rubin,

1992; Mossel & Vigoda, 2006). Further, improper applications of MCMC can result in

unreliable and/or biased inferences (Cowles, Roberts, & Rosenthal, 1999; Flegal, Haran, &

2



Figure 1.1: Illustration of Riemann midpoint numerical integration. The error of approximation
is denoted as εa.

Jones, 2008). As such, maintaining the integrity of the procedure requires careful scrutiny

and design.

To avoid such issues, we focus on correctly specified likelihood techniques, for which

research has been scant. Currently, only an EM algorithm using full numerical integration

has been proposed by Lüdtke et al. (2019). While their method is flexible and handles

a variety of non-linear models, numerical integration is known to suffer in accuracy and

computational complexity as the number of dimensions increase (Hinrichs, Novak, Ullrich,

& Woźniakowski, 2014; Simonovits, 2003). Hence, the feasibility of this method is in

question even when the number of variables is moderate. Indeed to date, this method has

only been tested under very optimistic conditions. Specifically, only the simplest version

of the product-term model (two predictors with one product) has been simulated, with

only a single variable exhibiting missingness.

To illustrate this problem, consider the numerical integration example displayed in

Figure 1.1. We numerically integrate an example function: f(x) = 12x2 on the interval

[0, 1] using the Riemann midpoint method. Supposing it is prohibitive to integrate f(x)

analytically, we may instead integrate an approximation to f(x) whose integration is much

easier. The Riemann midpoint method approximates f(x) with a step function, whose

3



Figure 1.2: Demonstration of numerical integration computational complexity and approximation
error.

integral is easily taken by summing the rectangles underneath each step. As illustrated

by this one-dimensional example, the error of approximation (εa) reduces rather quickly

as the number of interpolating steps increase.

A different story arises when we study the multi-dimensional case. Suppose we consider

the multi-dimensional generalization of f(x), by independently adding dimensions (i.e.,

f(x1, . . . , xp) =
∑p

j=1 12x
2
j). The number of steps required to achieve the same amount

of accuracy increases exponentially. In Figure 1.2 (left) we show a contour plot of the

error of approximation plotted against the number of steps. Each contour shows that

exponentially more steps are required in order to achieve any given level of accuracy. For

example, suppose we wanted to achieve a numerical approximation that is within 0.01 of

the true value. We can see in Figure 1.2 (right) that as low as the 4-dimensional case, we

require about two hundred thousand steps, and the 5-dimensional case requires almost

6.5 million.

Needless to say, numerical integration should not be undertaken unless absolutely

necessary, and this is the premise of our proposed research. We propose a hybrid EM

algorithm that obviates much of the required calculations done by numerical integration.

Specifically, we will show that numerical integration is not necessary for most missing

4



data patterns, and demonstrate how to use analytic solutions in their place. These exact

solutions will yield faster and more accurate estimates relative to their approximate

counterparts. Therefore, this research has two main goals: (1) to develop the theoretical

motivation of the hybrid EM algorithm and demonstrate its feasibility, and (2) to empiri-

cally study the speed and accuracy improvements conferred by the hybrid EM algorithm

in practical data scenarios.

1.1 Model and Notation

Let X ∼ Np(µ,Σ) denote a p× 1 random vector of predictor variables. Then formulate

a linear product-term model for a random scalar outcome variable Y as follows:

Y = d(X)Tβ + ε, (1.1)

where ε ∼ N (0, σ2
ε ) is a scalar random variable of error terms, β is a d × 1 vector of

regression coefficients, and d(X) is an d× 1 vector-valued design function as follows:

d(X) =

[
1 XT −−−→

XjXk
T

]T
, (1.2)

where
−−−→
f(X) denotes the vector of all unique permutations of f(X) over the specified

indices. In this case,
−−−→
XjXk is a vector whose elements are comprised of all unique

permutations of XjXk for all j, k ∈ {1, . . . , p} Hence, d(X) is a vector that augments X

with a regression intercept and the product terms.

We note that there are two implicit assumptions with this model for the purposes of

generality. First, we assume that the vector X contains the substantive model predictors

as well as any desired auxiliary variables. Second, it is assumed the substantive model

contains all possible two-way products among the variables in X. To accommodate the

fact that some auxiliary variables or product terms may not be desired in the substantive

model, their β coefficient need only be constrained to zero.
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1.2 Missing Data Assumptions

To recast the data from a predictor-outcome distinction to a missing-observed distinction,

we use the following notation. Denote the an augmented data vector as U =

[
Y XT

]T
,

which can be reordered as
[
UT
O UT

M

]T
, where O is the index set of observed variables

and M is the index set of missing variables. Further, P(U) is parameterized generally

by a vector θ, for which we write Pθ(U). Then, let R ∈ {0, 1}p+1 be a binary random

vector, which indicates whether the elements of U are observed, and has a probability

distribution parameterized by the vector ζ.

We assume that the elements of θ and ζ are distinct, or that the joint space of θ and

ζ is simply their Cartesian product θ × ζ. Further, we assume the data are missing at

random (MAR; Rubin, 1976):

Pζ(R|U) = Pζ(R|UO). (1.3)

Taking MAR in tandem with the distinctness of θ and ζ, we say that the missing data

mechanism is ignorable (Schafer, 1997).

1.3 The EM Algorithm for Missing Data

The EM algorithm is a two-step iterative procedure for obtaining parameter estimates for

models with missing data (Dempster, Laird, & Rubin, 1977). The steps are as follows:

E -Step. For any iteration t, define a Q-function given an intial parameter start value

θ(0):
Qθ(t)(θ) = Eθ(t) [logPθ(U)|UO]

=

∫
uM

logPθ(U)Pθ(t)(uM |uO) duM .
(1.4)

M -Step. Maximize the Q-function with respect to θ and set the result as θ(t+1):

θ(t+1) = argmax
θ

Qθ(t)(θ), (1.5)

6



where integrating with respect to a vector is shorthand for multiple integration with

respect to all elements of the vector (i.e.,
∫
z
f(z) dz =

∫
z1
· · ·
∫
zp
f(z) dzp · · · dz1, for

z ∈ Rp). Hence, this is an iterative procedure that maximizes the expectation of the

complete data log-likelihood, given the observed data. It is known to converge to a local

maximum of the likelihood function under very general conditions (Wu, 1983).

1.4 Application to Product-Term Regression Models

For practical uses, the main task of applying the EM algorithm is setting up the Q-function.

We do so for product-term regression models by characterizing the joint model of the data

as follows:

P(U) = P(Y |X)P(X), (1.6)

where,

P(X) ∼ Np(µ,Σ)

P(Y |X) ∼ N (d(x)Tβ, σ2
ε ).

(1.7)

Since P(U) factorizes into two Gaussian distributions, it can be written in exponential

family form:

P(U ) = exp
[
η(θ)TT (U)− A(θ)

]
, (1.8)

which yields a Q-function of:

Qθ(t)(θ) = Eθ(t) [logPθ(U)|UO]

= Eθ(t)
[
η(θ)TT (U)− A(θ)|UO

]
= η(θ)TEθ(t) [T (U)|UO]− A(θ).

(1.9)

where θ is the vector which contains the unique elements of {β, σ2,µ,Σ}, η(θ) is the

vector of canonical parameters, and A(θ) is the log-partition function. Hence, constructing

the Q-function amounts to deriving E [T (U)|UO] per missing data pattern. It can be

7



shown that T (U) is:

T (U) =
[
Y Y
−→
Xj

T Y 2 Y
−−−→
XjXk

T −→Xj
T −−−→XjXk

T
−→
X2

j
T −−−−−−→XjXkXl

T
−−−−→
X2

jXk
T −−−−−−−−−→XjXkXlXm

T
−−−−−−→
X2

jXkXl
T
−−−−→
X2

jX
2
k
T
]T
,

(1.10)

recalling that
−−−→
f(X) denotes the vector of all unique permutations of f(X) over the specified

indices. For example,
−−−−−−−−→
XjXkXlXm is the vector comprised of all unique permutations of

XjXkXlXm, for all j, k, l,m ∈ {1, . . . p}. The derivation of T (U) has been relegated to

Appendix A.1. Note that these sufficient statistics only apply to product-term regression

models. Different polynomial designs will imply a different T (U ) vector. We also derive

the maximizers of the Q-function in Appendix A.2.
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Chapter 2

Missing Data Patterns

The theoretical motivation of this research is the derivation of analytic Q-functions under

as many missing data patterns as possible. The form of T (U) may appear complex and

the possible missing data patterns for E [T (U)|UO] are combinatorially large. However,

using an appropriate taxonomy, solutions for general classes of missing data patterns can

be obtained and applied easily. The only types of missing data patterns (MDP) that need

to be considered are as follows:

• MDP 1: Y is missing and X has any missingness pattern.

• MDP 2: Y is observed and X is patterned such that no product terms are fully

missing.

• MDP 3: Y is observed and X is patterned such that one or more product terms

are fully missing.

We will provide the methods of calculating E [T (U)|UO] under each of these patterns.

Specifically, we will show that analytic solutions exist for MDP 1 and MDP 2, and

computational methods are only necessary for MDP 3.

2.1 Y is Missing, X has Any Missing Data Pattern

MDP 1 is concerned with the case when Y is missing, and X can take on any missingness

pattern. We will show that all elements of E [T (U)|UO] under this pattern can be

9



calculated by known functions of θ. Hence, the Q-function for this MDP can always be

constructed analytically.

First, we consider the sufficient statistics that are solely a function of X and do not

have a Y term. In Equation 1.10 these are the latter 8 (of 12) entries of T (U ). Note that

these entries are all products of the elements of X (e.g., XjXkXlXm or X2
jX

2
k). Further,

Y is missing in this MDP, so we have UO = XO. Thus, under MDP 1, we can more

generally express the elements of E [T (U)|UO] that only depend on X as:

E

[∏
i∈M

Xai
i

∣∣∣∣∣XO

]
, (2.1)

where ai are non-negative integers.

Our strategy will make use of two key facts. First, Gaussian random vectors are closed

under conditioning, hence XM |XO is itself a Gaussian random vector whose parameters

are functions of µ and Σ. Second, arbitrary product moments of random vectors can

generally be found by appropriately differentiating their moment-generating function

(Keener, 2010). Using the Gaussian moment-generating function in this way will remain a

key tool for the rest of the theoretical development of this algorithm, so we will state the

procedure in the following lemma.

Lemma 1 (Gaussian Product Moments). Let X be a Gaussian random vector distributed

as X ∼ Np(µ,Σ). Then any product moment of the form E[
∏p

i=1X
ai
i ] can be expressed

as a function of µ and Σ.

Proof. This follows from a straightforward use of the Gaussian moment-generating function,

which is:

MX(t) = exp

(
tTµ+

1

2
tTΣt

)
. (2.2)

Then by the moment calculation property, any arbitrary product moment can be calculated

with:
∂a∏p

i=1 ∂t
ai
i

MX(t)|t=0= E

[
p∏
i=1

Xai
i

]
, (2.3)

where a =
∑p

i=1 ai and all ai take non-negative integer values.

10



Some simple didactic applications of the Gaussian moment-generating function have been

included in Appendix A.3

From here, the expectation in the form of Equation 2.1 can be obtained by seeing

that the parameters of XM |XO are:

µc = µM + ΣMOΣ−1O (xO − µO)

Σc = ΣM −ΣMOΣ−1O ΣOM ,

(2.4)

which follows from the well known parameterization of conditioning on Gaussian random

vectors. Then by applying Lemma 1 on XM |XO, we obtain any of its product moments

in terms of µ and Σ. Thus, the latter 8 entries of E [T (U )|UO] can be written in terms

of θ analytically.

Among the remaining 4 sufficient statistics, we turn our attention to Y , Y Xj and

Y XjXk. Notice that we can consider a general expression that encapsulates the expectation

of all three of these statistics by writing them as E[Y Xa
jX

b
k|XO] for a, b ∈ {0, 1}. Then

we can re-write this quantity as:

E[Y Xa
jX

b
k|XO] = E[d(X)TβXa

jX
b
k|XO], (2.5)

which follows from applying the law of total probability and Bayes’ rule (see Appendix

A.4 for an explicit proof). Noting that d(X)Tβ is a linear combination of products of

X, we apply Lemma 1 with the linearity properties of the expectation operator to obtain

E[Y Xa
jX

b
k|XO] in terms of θ. Thus the solution for these expectations can be derived

analytically as well.
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Finally, the remaining expectation is E[Y 2|XO]. This is derived as follows:

E
[
Y 2|XO

]
= E

[
E
[
Y 2
∣∣XM ,XO

]∣∣XO

]
= E

[
Var(Y |X) + E [Y |X]2

∣∣XO

]
= E

[
σ2
ε + (βTd(X))2

∣∣XO

]
= σ2

ε + E
[
βTd(X)d(X)Tβ

∣∣XO

]
= σ2

ε + E

[∑
i,j

βiβj(d(X)d(X)T )ij

∣∣∣∣∣XO

]
,

(2.6)

where (d(X)d(X)T )ij refers to the (i, j)th element of d(X)d(X)T . Once again, since

each entry in the matrix d(X)d(X)T is a linear combination of products of X, we can

apply Lemma 1 and the linearity of expectation to write E [Y 2|XO] in terms of θ. Thus

finally, we have shown that all entries of E[T (U )|UO] can be written as analytic functions

of θ under MDP 1.

2.2 Y is Observed, X Admits No Fully Missing Products in d(X)

MDP 2 considers the scenario where Y is observed and X is patterned such that no

product terms are fully missing. Equivalently, we can say that X is patterned such that

at least one Xj is observed in every product term. In this situation, XM |Y,XO takes

on a multivariate Gaussian distribution, and thus E[T (U )|UO] can be completely solved

analytically. To see why this is the case, let us re-write the analytical model in Equation

1.1 under the assumptions of MDP 2. First, note that we can separate terms by observed

variables and missing variables:

Y = d(X)Tβ + ε

= β0 +

p∑
j=1

βjXj +
∑
j 6=k

βjkXjXk + ε

= β0 +
∑
j∈O

βjXj +
∑
j∈M

βjXj +
∑

(j,k)∈O

βjkXjXk +
∑

j∈M,k∈O

βjkXjXk + ε.

(2.7)
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Then, we can regard all XO as constants and absorb them into the intercept and product-

term coefficients as follows:

β̃0 := β0 +
∑
j∈O

βjXj +
∑

(j,k)∈O

βjkXjXk

β̃j := βj + βjkXk, for k ∈ O.

(2.8)

This allows us to re-write the model only in terms of the missing variables as:

Y = β̃0 +
∑
j∈M

β̃jXj + ε, (2.9)

from which we can write for any fixed m ∈M :

Xm =
Y − β̃0 −

∑
j∈M\m β̃jXj − ε
β̃m

. (2.10)

Thus, any Xm is a linear combination of other Gaussian random variables, therefore

must be Gaussian itself. Hence XM |Y,XO follows a multivariate Gaussian distribu-

tion. The derivation of the exact probability distribution P(XM |Y,XO) can be found in

Appendix A.5.

Since Y is observed in this missing data pattern, E[T (U )|UO] only concerns product

functions of X. Hence, we only need to apply Lemma 1 to obtain these expectations, as

XM |Y,XO is a multivariate Gaussian. Thus, under MDP 2, E[T (U )|UO] can be written

as a function of θ and solved analytically.

2.3 Y is Observed, X Admits Fully Missing Products in d(X)

MDP 3 concerns the case where Y is observed andX is patterned such that product terms

are fully missing. In this situation, the entries of E[T (U)|UO] may be difficult to derive

analytically, or admit no closed-form. This can be seen from the following characterization
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of Xm for m ∈M under MDP 3:

Y = d(X)Tβ + ε

= β0 +

p∑
j=1

βjXj +
∑
j 6=k

βjkXjXk + ε

= β0 + βmXm +
∑
j 6=m

βjXj +
∑
j 6=m

βjmXjXm +
∑

j 6=k 6=m

βjkXjXk + ε

= β0 +

(
βm +

∑
j 6=m

βjmXj

)
Xm +

∑
j 6=m

βjXj +
∑

j 6=k 6=m

βjkXjXk + ε

⇒ Xm =
Y − β0 −

∑
j 6=m βjXj −

∑
j 6=k 6=m βjkXjXk − ε

βm +
∑

j 6=m βjmXj

.

(2.11)

From here we can see that Xm is a sum consisting of Gaussian ratio and product Gaussian

ratio random variables. The moments or moment generation function of such random

variables are difficult to derive and not readily available. Thus, this is the only missing

data pattern for which numerical integration is used to obtain E[T (U )|UO]. That is, we

approximate E[T (U)|UO] with

E[T (U)|UO] =

∫
uM
T (uM ,uO)P(uM |uO) duM∫
uM

P(uM |uO) duM

=
P(uO)
P(uO)

∫
uM
T (uM ,uO)P(uM ,uO) duM∫
uM

P(uMg,uO) duM

≈
∑G

g=1 T (uMg,uO)P(uMg,uO)∑G
g=1 P(uMg,uO)

,

(2.12)

where uMg is the gth grid point over the domain of uM for numerical integration. Note

that the purpose of dividing by 1 =
∫
uM

P(uM |uO) duM is to cancel out P(uO) from the

numerator. This allows us to perform calculations in terms of P(uM ,uO), rather than

P(uM |uO), thus the latter need not be derived.

2.4 Summary of Results

We propose to construct a hybrid EM method that uses the analytic results derived in this

Chapter for MDPs 1 and 2, and numerical integration for MDP 3. A summary of these
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results are displayed in Table 2.1. This table essentially serves as a map that provides us

with the method of calculation for any sufficient statistic’s conditional expectation given

any MDP.

E[T (U)|UO] Y 2 Y Y
−→
Xj

T Y
−−−→
XjXk

T E[
∏p

i=1X
ai
i ]

MDP 1 Eq. 2.6 Eq. 2.5
Lemma 1

MDP 2
Observed

MDP 3 Numerical Integration

Table 2.1: Mosaic table of techniques to obtain E[T (U)|UO] by MDP.
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Chapter 3

Empirical Studies

Given that the hybrid EM algorithm minimizes the use of numerical approximations, we

now investigate the impact this has on data analysis. This was done via two empirical

studies: a traditional simulation study over a variety of conditions, and a smaller scale

simulation study using real data with psychological measures. We compared empirical

parameter bias, empirical mean square error, confidence interval coverage rates, and

computation time between the hybrid EM method and full numerical integration.

3.1 Simulation Conditions

For the traditional simulation study, we sought to study estimator performance over a

variety of realistic settings. These settings were

• Estimation method: hybrid EM (HYB) and full numerical integration (NI).

• Sample size (n): 50, 100, 250, 500, and 1000.

• Number of predictors (p): 3, 5, 10, and 15.

• Proportion of missingness (ϕMIS): 0.10, 0.20, and 0.30.

• Proportion among missing data from MDP 3 (ϕMDP3): 0, 0.05, 0.10, 0.15, 0.20, 0.25,

0.50, 0.75, and 1.

A fully factorial design was used for a total of 2× 5× 4× 3× 9 = 1080 conditions. The

number of simulations per condition was set to 100.
16



3.2 Data Generation

The parameters for X were generated in the following way:

µ ∼ Up(−3, 3)

Σ =DCD,

(3.1)

where D is a diagonal matrix of variances, with the diagonal distributed as Up(1,
√
3)

and C is a constant correlation matrix with a unity diagonal and off-diagonal entries of

0.3. Thus, each Σ is generated from the same underlying correlation matrix, but scaled

accordingly with random variance entries. Once these parameters were drawn, X was

sampled from Np(µ,Σ).

The parameters of the model were generated as follows. First, the number of product-

terms in the model was set to half the number of predictors rounded down, i.e.,
⌊p
2

⌋
.

Therefore the number of design variables in the model was

d = 1 + p+
⌊p
2

⌋
, (3.2)

including the intercept. X variables were chosen at random (uniformly) to form product-

terms in d(X). Then, an adjusted R2 parameter and β vector were simulated using:

R2
a ∼ U1(0.1, 0.5)

β ∼ Ud(−3, 3).
(3.3)

Given a sample of x vectors and a sampled β, we can algebraically solve for a σ2
ε such

that the drawn R2
a is achieved (see Appendix A.6 for details). This allows us to draw

errors terms with ε ∼ N (0, σ2
ε ) and finally calculate the outcome with Y = d(X)Tβ + ε.

Once X and Y were generated, the observed data indicator R was generated under

a MAR mechanism. This was done by randomly selecting a non-product variable in X

(with uniform probability) to serve as an always-observed “missingness anchor” variable

designated Xa, to determine missingness in all other variables. This ensured the MAR
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assumption was always met. Using an intermediate latent propensity variable based on Xa,

we assigned MDPs 1, 2, and 3 such that both ϕMIS and ϕMDP3 were met according to the

simulation condition and MDPs 1 and 2 were divided equally among the remaining missing

cases. The exact mathematical details of this procedure can be found in Appendix A.7.

3.3 Estimation Methods

The EM algorithm outlined in Sections 1.3 and 1.4 was used to estimate the simulated

datasets via the HYB and NI methods. The true model specification that was generated

along with the data was assumed to be known during estimation. The HYB method used

this information to categorize cases according to MDPs 1, 2, and 3 as defined in Chapter 2.

For cases under MDPs 1 and 2, the E -step was calculated analytically according to

the methods described in Sections 2.1 and 2.2, respectively. Numerical integration was

used by the HYB method for cases under MDP 3, and by the NI method for all MDPs.

The minimum number of integration points was set to be as close to 1,000, as possible.

Following the existing mdmb packge (Robitzsch & Lüdtke, 2021) in the R language (R

Core Team, 2021), we used Riemann midpoint numerical integration as exemplified in

Figure 1.1. Confidence intervals were computed via non-parametric bootstrap (Efron &

Tibshirani, 1994) using 1,000 bootstrap samples.

To minimize programming and computational variations between the two methods,

both the HYB and NI methods were programmed using as much overlapping code as

possible. This was done in the R language (R Core Team, 2021), primarily using the Rcpp

(Eddelbuettel & François, 2011) and RcppArmadillo (Eddelbuettel & Sanderson, 2014)

packages, and the Armadillo package (Sanderson & Curtin, 2016) for the C++ language.

We numerically verified the accuracy of the NI method through small-scale simulation

comparisons with the existing mdmb package. These results can be found in Appendix A.8.
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3.4 Performance Metrics

Estimator performance metrics were empirical bias, empirical mean square error (MSE),

95% confidence interval coverage rates, and computation time elapsed. For bias, MSE, and

95% confidence interval coverage rates, their component-wise counterparts were collected

per coefficient per dataset. That is, we collected

Deviation := β̂j − βj

Square Error := (β̂j − βj)2

Coverage := I(L̂Lj ≤ βj ≤ ÛLj),

(3.4)

where L̂Lj and ÛLj are the 2.5% and 97.5% empirical percentiles over the bootstrapped

samples for β̂j and I(·) is the indicator function. The average of these quantities provide

the empirical bias, empirical MSE, and 95% confidence interval coverage rates, respectively.

We analyzed the performance metrics by plotting the marginal means and conducting

descriptive linear regressions of our outcomes as a function of simulation settings: method,

n, p, ϕMIS, and ϕMDP3.

3.5 Results

Marginal plots of empirical bias, empirical MSE, coverage rates and time outcomes are

displayed in Figures 3.1, 3.2, 3.3, and 3.4, respectively. The results of the linear regressions

are displayed in Tables 3.1, 3.2, 3.3, and 3.4, also respectively. For the regressions, method

was indicator coded (HYB = 0,NI = 1) and interacted with all predictors. The order

variable was included as a control (via indicator coding), and is defined as the number of

X variables that serve as the the coefficient’s regressor. This is zero for intercepts, one

for first-order terms (Order1), and two for product-order terms (Order2).
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3.5.1 Empirical Bias

The marginal plot on empirical bias shows that both HYB and NI are generally unbiased

across all conditions. The regression coefficients shows that bias does not vary linearly

with any of the predictors for HYB, and only very small effects may exist for NI, if at all.

Since the maximum likelihood estimates of β are unbiased, the missing data mechanism

is MAR, and all models are guaranteed to be correctly specified, we would expect any

bias to come from the method of estimation. Our results show very little empirical bias

incurred by both methods.

3.5.2 Empirical Mean Square Error

The marginal plots show empirical MSE decreasing with n for both HYB and NI. This is

congruent with maximum likelihood theory, as β̂ is known to be asymptotically consistent.

However, the effect is more pronounced for HYB than NI, with the difference between the

two being smaller at lower n. This is also reflected by the linear regression cofficients.

For p, the MSE increases in a nearly linear fashion, with NI being higher than HYB.

This can be attributed to the fact that both HYB and NI implement numerical integration

in their algorithms, which loses accuracy as the number of variables increase. Further,

the difference between the two methods slightly increases as p increases, which is also

reflected by the descriptive linear regressions. This can be accounted for by the fact that

HYB uses less numerical integration than NI.

Both methods see an increase in MSE as ϕMIS increases in a nearly linear fashion.

The variance of the MLE is well-known to increase with the proportion of missing data,

also known as the missing information principle (Orchard & Woodbury, 1972). Since

MSE is the squared bias plus the variance of the estimate, it follows that MSE would

increase with ϕMIS. Once again, both the marginal plot and descriptive regression shows

that the NI method has a higher rate of increase than HYB. This may be attributable to

the fact that NI requires more numerical integration than HYB as ϕMIS increases.

The marginal plot of ϕMDP3 shows that the MSE of NI is greater than (or equal to)

that of HYB. The MSE of NI was fairly unaffected by changes in ϕMDP3, while the MSE
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of HYB increased with ϕMDP3. The means are identical at ϕMDP3 = 1, reflecting the fact

that both methods use full numerical integration in this condition.

3.5.3 Coverage Rate

The marginal plots show increases in coverage rates toward 0.95 as n increases, with HYB

being close to 0.95 than NI over all n. This is attributable to the fact that bootstrap

approximations become more accurate as the number samples in the original data increase

(Glivenko-Cantelli theorem; Tucker, 1959). However, with p, ϕMIS, and ϕMDP3, we observe

little to no trends, with coverage rates at about 0.93 to 0.94, overall exhibiting slight

under-coverage. Across all three variables, HYB is generally closer to the nominal rate

than NI. The one exception is when ϕMDP3 = 1 as both methods are identical.

3.5.4 Time

Both the marginal plots and regression coefficients show that the time to complete

estimation increases with all four variables n, p, ϕMIS, and ϕMDP3. For the variables n, p,

and ϕMIS, there is very little difference between HYB and NI. For ϕMDP3 however, we see

that HYB is substantially faster than NI at lower ϕMDP3, with the difference between the

two decreasing to zero at ϕMDP3 = 1.

3.5.5 Summary

A high-level summary of the marginal trends is as follows.

• Both methods exhibited very little bias.

• The MSE of HYB was less than or equal to NI across all conditions. The difference

increased with n, p, and ϕMIS, and decreased with ϕMDP3.

• Under most conditions, HYB had coverage rates closer to the nominal rate than NI.

Generally, the difference was within 1%, and both methods slightly under-covered

in all conditions.
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• The time difference between the methods show that HYB is generally faster than

NI, though the difference is small. The exception is when ϕMDP3 = 0, where the

difference is substantial, but shrinks to zero as ϕMDP3 approaches 1.
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Figure 3.1: Marginal view of bias by n, p, ϕMIS, and ϕMDP3, stratified by method. Error bars
indicate 95% confidence intervals.

Coefficient Estimate S. E. t-value p-value

Intercept 6.85× 10−3 7.50× 10−3 9.13× 10−1 ≤0.361
n 1.27× 10−6 4.34× 10−6 2.93× 10−1 ≤0.770
p −1.30× 10−4 3.50× 10−4−3.72× 10−1 ≤0.710

ρMIS −1.24× 10−2 1.85× 10−2−6.72× 10−1 ≤0.502
ρMDP3 1.29× 10−3 4.63× 10−3 2.79× 10−1 ≤0.780
NI −1.03× 10−1 1.06× 10−2−9.70 ≤0.001

NI ×n 3.29× 10−5 6.11× 10−6 5.37 ≤0.001
NI ×p 9.85× 10−3 4.94× 10−4 2.00× 101 ≤0.001

NI ×ρMIS 1.90× 10−1 2.60× 10−2 7.30 ≤0.001
NI ×ρMDP3 −6.58× 10−2 6.53× 10−3−1.01× 101 ≤0.001

Order1 −5.13× 10−3 5.82× 10−3−8.83× 10−1 ≤0.377
Order2 −3.66× 10−3 6.19× 10−3−5.92× 10−1 ≤0.554

NI ×Order1 1.24× 10−2 8.20× 10−3 1.51 ≤0.131
NI ×Order2 2.73× 10−2 8.73× 10−3 3.13 ≤0.002

Table 3.1: Descriptive linear model of bias as a function of method, n, p, ϕMIS, ϕMDP3,
and Order (control variable), along with their interactions with NI.
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Figure 3.2: Marginal view of mean square error by n, p, ϕMIS, and ϕMDP3, stratified by method.
Error bars indicate 95% confidence intervals.

Coefficient Estimate S. E. t-value p-value

Intercept 2.13 3.17× 10−2 6.71× 101 ≤0.001
n −1.67× 10−3 1.83× 10−5−9.12× 101 ≤0.001
p 1.96× 10−1 1.48× 10−3 1.33× 102 ≤0.001

ρMIS 2.70 7.80× 10−2 3.47× 101 ≤0.001
ρMDP3 6.54× 10−1 1.96× 10−2 3.35× 101 ≤0.001
NI 5.95× 10−1 4.47× 10−2 1.33× 101 ≤0.001

NI ×n 5.13× 10−4 2.58× 10−5 1.99× 101 ≤0.001
NI ×p 6.41× 10−2 2.09× 10−3 3.07× 101 ≤0.001

NI ×ρMIS 1.69 1.10× 10−1 1.54× 101 ≤0.001
NI ×ρMDP3 −7.39× 10−1 2.76× 10−2−2.68× 101 ≤0.001

Order1 −3.30 2.46× 10−2−1.34× 102 ≤0.001
Order2 −3.21 2.62× 10−2−1.23× 102 ≤0.001

NI ×Order1 −1.23 3.47× 10−2−3.56× 101 ≤0.001
NI ×Order2 −1.14 3.69× 10−2−3.08× 101 ≤0.001

Table 3.2: Descriptive linear model of mean square error as a function of method, n, p,
ϕMIS, ϕMDP3, and Order (control variable), along with their interactions with NI.
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Figure 3.3: Marginal view of coverage rate by n, p, ϕMIS, and ϕMDP3, stratified by method.
Error bars indicate 95% confidence intervals.

Coefficient Estimate S. E. t-value p-value

Intercept 9.23× 10−1 1.44× 10−3 6.39× 102 ≤0.001
n 1.73× 10−5 8.32× 10−7 2.08× 101 ≤0.001
p 6.78× 10−4 6.72× 10−5 1.01× 101 ≤0.001

ρMIS 2.44× 10−2 3.54× 10−3 6.88 ≤0.001
ρMDP3 −2.22× 10−4 8.90× 10−4−2.50× 10−1 ≤0.803
NI 3.02× 10−3 2.04× 10−3 1.48 ≤0.139

NI ×n −9.16× 10−6 1.18× 10−6−7.78 ≤0.001
NI ×p −6.99× 10−4 9.51× 10−5−7.35 ≤0.001

NI ×ρMIS −3.85× 10−3 5.01× 10−3−7.68× 10−1 ≤0.442
NI ×ρMDP3 7.89× 10−3 1.26× 10−3 6.27 ≤0.001

Order1 −1.03× 10−3 1.12× 10−3−9.20× 10−1 ≤0.357
Order2 −1.98× 10−3 1.19× 10−3−1.66 ≤0.097

NI ×Order1 −8.37× 10−5 1.58× 10−3−5.30× 10−2 ≤0.958
NI ×Order2 7.39× 10−4 1.68× 10−3 4.39× 10−1 ≤0.661

Table 3.3: Descriptive linear model of coverage rate as a function of method, n, p, ϕMIS,
ϕMDP3, and Order (control variable), along with their interactions with NI.
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Figure 3.4: Marginal view of average time by n, p, ϕMIS, and ϕMDP3, stratified by method. Error
bars indicate 95% confidence intervals.

Coefficient Estimate S. E. t-value p-value

Intercept −1.75× 101 5.33× 10−2−3.29× 102 ≤0.001
n 1.42× 10−2 3.08× 10−5 4.62× 102 ≤0.001
p 8.29× 10−1 2.48× 10−3 3.33× 102 ≤0.001

ρMIS 4.44× 101 1.31× 10−1 3.39× 102 ≤0.001
ρMDP3 1.48 3.29× 10−2 4.50× 101 ≤0.001
NI 7.01× 10−1 7.54× 10−2 9.29 ≤0.001

NI ×n 2.51× 10−3 4.35× 10−5 5.78× 101 ≤0.001
NI ×p −1.44× 10−1 3.51× 10−3−4.09× 101 ≤0.001

NI ×ρMIS 9.15× 10−1 1.85× 10−1 4.95 ≤0.001
NI ×ρMDP3 −7.87× 10−1 4.65× 10−2−1.69× 101 ≤0.001

Order1 −1.58× 10−1 4.13× 10−2−3.83 ≤0.001
Order2 −2.08× 10−1 4.40× 10−2−4.74 ≤0.001

NI ×Order1 1.23× 10−1 5.84× 10−2 2.11 ≤0.035
NI ×Order2 1.69× 10−1 6.22× 10−2 2.72 ≤0.007

Table 3.4: Descriptive linear model of time as a function of method, n, p, ϕMIS, ϕMDP3,
and Order (control variable), along with their interactions with NI.
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3.6 Real Data Study

For our second simulation study, datasets were generated by bootstrapping samples using a

real dataset as a basis, where simulated missingness was artificially inserted. We analyzed

measures of psychopathology from the Adolescent Brain Cognitive Development (ABCD)

Study (https://abcdstudy.org). The ABCD is a large, multi-site study, whose data are

publicly available (Volkow et al., 2018), which was approved by the institutional review

boards of the participating sites (Clark et al., 2018). To avoid potential clustering effects

by site and to reduce the sample size to a more realistic scale, one site was selected

randomly with uniform probabity to provide the basis of our data (n = 604).

We considered a linear model of conduct disorder (CD) as a function of attention

deficit hyperactivity disorder (ADHD), depression (DEP), their product-term (ADHD ×

DEP), controlled for by anxiety (ANX) and oppositional defiant disorder (ODD). Previous

work has shown comorbidity among these variables (Angold, Costello, & Erkanli, 1999;

Jensen, Martin, & Cantwell, 1997). Measures were taken using summary scores of the child

behavior checklist (CBCL; Achenbach & Rescorla, 2001). The selected site incidentally

had no missing data on these variables.

For each bootstrapped data set, missingness was inserted using the same MAR

generating procedure as the traditional simulation study. We fixed ϕMIS = 0.3 and

ϕMDP3 = 1/3, which set equal proportions among all MDPs. For performance metrics, we

collected deviation and square error as in Equation 3.4 from the HYB and NI methods.

The least squares estimates of the original non-missing data set was considered as the

true parameters.

Boxplots of the results are displayed in Figure 3.5, and averages are shown in Table 3.5.

On average, the HYB method had biases closer to zero than NI across all parameter

estimates. Likewise, the HYB method also had MSEs closer to zero than NI across all

parameter estimates except for the product-term coefficient, where NI had a marginally

smaller MSE by 3.9× 10−4.
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Figure 3.5: Boxplots of deviations and square errors of the parameter estimates in the real data
simulation.

Bias MSE

Coefficient HYB NI HYB NI

Intercept 0.0074 0.0299 0.0123 0.0131
ADHD 0.0217 0.0974 0.00322 0.0122
DEP 0.0141 0.0603 0.0117 0.0138
ANX 0.0048 0.0293 0.00286 0.00382
OPP −0.0463 −0.184 0.00861 0.0393

ADHD × DEP 0.00161 0.00317 0.000383 0.000344

Means 0.000543 0.00603 0.00651 0.0138

Table 3.5: Bias and MSE averaged within method and coefficient.
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Chapter 4

Discussion

In this research, we sought to improve the EM algorithm for linear models with two-way

product terms by deriving analytic E-steps for large classes of MDPs. These derivations

were used to develop a hybrid approach to the EM algorithm, where analytic E-steps

were used whenever possible and numerical integration was used otherwise. Through two

simulation studies, we showed that the hybrid approach outperformed, or performed as

well as, the existing method of full numerical integration on several performance metrics.

The difference between the two methods diminished as the proportion of missing data

that require numerical integration for the hybrid approach increased (ϕMDP3). Otherwise,

the degree to which the hybrid method out performed full numerical integration grew

with n, p, and ϕMIS.

4.1 Limitations and Future Extensions

The current research focused on regression models with two-way product-terms. While

this is a very common model in the psychological sciences, occasionally higher-power

polynomials and multi-way product-terms are called for. The approach of deriving analytic

E-steps for two-way product term models generalizes in a straightforward manner to all

polynomial forms. Higher powers of predictors are readily accommodated by Lemma 1,

since the Gaussian moment-generating function can be used to obtain any non-negative

integer moment. Arbitrarily large product-terms can also be accommodated, although

more limited due to the nature of MDPs 2 and 3. MDP 2 relies on the fact that any
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missing Xj is linear with respect to all other missing X−j conditional on the observed data.

This holds as long as both factors of any product-term are not missing simultaneously.

For product-terms with more than two factors, the conditional linearity strategy could

only accommodate one factor of the product-term to be missing. Otherwise, the missing

predictor would be conditionally non-linear and numerical integration would be required.

Therefore, as the number of factors in a product-term increases, it becomes less likely that

the conditional linearity strategy can be used, diminishing the advantages of the hybrid

approach.

Other extensions can be made to discrete predictors. Ordinal data can be accommo-

dated using existing methods for estimating polychoric correlations assuming the data are

a result of discretizing Gaussian variables (Olsson, 1979). For nominal data, techniques

from Gaussian mixture models may also be incorporated into estimation. Such extensions

would greatly advance the applicability of the hybrid method as both ordinal and nominal

data are commonly used.

For numerical integration, we focused exclusively on the Riemann midpoint method.

Both the speed and accuracy of numerical integration may be improved via other ap-

proximating functions (e.g., Q. Liu & Pierce, 1994), and/or by adaptive methods (e.g.,

Rabe-Hesketh, Skrondal, & Pickles, 2002). Monte Carlo methods of integration also exist,

including Gibbs and Metropolis-Hasting variants (Levine & Casella, 2001; Wei & Tanner,

1990), which can handle high-dimensions more efficiently. However, these methods require

more samples as the number of EM iterations progress, so that Monte Carlo error does

not interfere with EM convergence assessment (Booth & Hobert, 1999). The investigation

of these issues could lead to improvements in both the hybrid and numerical integration

approaches.

A final area of further research pertain to implementation of standard errors. While

we employed bootstrap standard errors in the current research, other methods exist that

utilize numerical differentiation of either the EM operation (Meng & Rubin, 1991) or

the observed Fisher score function (Jamshidian & Bentler, 1999). While these methods

are able to directly approximate the observed-data Hessian matrix, their computational
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complexity is on the order of the number of parameters squared (Jamshidian & Jennrich,

2000). This makes computation time a practical issue for larger models. Direct analytic

derivation of the observed-data Hessian is also possible, but often deemed too tedious to

undertake (Hartley, 1958). However, this may be feasible with a proper MDP taxonomy,

such as MDPs 1, 2, and 3 described in Chapter 2, or with symbolic computation methods.

4.2 Implications and Conclusions

An interesting application of the hybrid approach pertains to planned missingness designs.

In planned missingness designs, there is a large degree of control over missing data

patterns. The benefits of the hybrid approach can be fully realized if the missing data

patterns are manipulated to completely avoid MDP 3. This can be done by designing a

planned missingness study to contain a block of items to be delivered to all participants

(a non-missing block, e.g., item set X in a 3-form design; Graham, Taylor, Olchowski, &

Cumsille, 2006). Then MDP 3 can be completly avoided by assigning one of the factors of

each product-term to the non-missing data block.

Ultimately, the accuracy of scientifically inferential quantities, such as parameter

estimates and coverage intervals are fundamental aspects for the applied use of any

methodology. Improvements in these areas directly impact the ability to detect effects

accurately. The wide use of product-term regression models and the prevalence of missing

data issues makes our hybrid EM method highly applicable to problems in the psychological

sciences. A final step of this research would be to develop and disseminate a user-friendly

software implementation, allowing accessible use of the hybrid EM method to the end-user

researcher.
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Appendix

A.1 Sufficient Statistics of the Joint Model

In this section we derive the vector of sufficient statistics T (U). Noting that P(U) =

P(Y |X)P(X), and P(Y |X) and P(X) are both exponential family distributions, we can

derive the sufficient statistics in a piecewise manner. It is well known that T (X) =[
XT −−−→

XjXk
T
−→
X2
j
T

]T
since P(X) is Gaussian. Thus, what remains is determining the

entries of T (U ) that are contributed by P(Y |X). Since P(Y |X) is also Gaussian, we can

determine its sufficient statistics by examining the exponential as follows:

P(Y |X) =
1√
2πσ2

exp

(
− 1

2σ2

(
Y − d(X)Tβ

)2)
=

1√
2πσ2

exp

(
− 1

2σ2

(
Y 2 − 2Y d(X)Tβ + βTd(X)d(X)Tβ

))
.

(1)

For which we have Y 2, Y d(X)T , and d(X)d(X)T . Y 2 is self-explanatory and Y d(X)T =[
Y YXT Y

−−−→
XjXk

T

]T
. Then what remains for us to analyze is the d(X)d(X)T term.

By simply checking the elements of this outer product we obtain:

d(X)d(X)T =


1 XT −−−→

XjXk
T

X XXT X
−−−→
XjXk

T

−−−→
XjXk

−−−→
XjXkX

T −−−→
XjXk

−−−→
XjXk

T

 . (2)
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Then we can see that:

vec(
−−−→
XjXkX

T ) = P1

[
−−−−−→
XjXkXl

T
−−−→
X2
jXk

T

]T
vech(

−−−→
XjXk

−−−→
XjXk

T ) = P2

[
−−−−−−−−→
XjXkXlXm

T
−−−−−→
X2
jXkXl

T
−−−→
X2
jX

2
k
T

]T
,

(3)

where vec(·) and vech(·) are the vectorization and half-vectorization functions, respectively.

P1 and P2 are permutation matrices that yields the appropriate ordering. Finally, we

combine the sufficient statistics of P(Y |X) and P(X), we obtain:

T (U) =
[
Y Y
−→
Xj

T Y 2 Y
−−−→
XjXk

T −→Xj
T −−−→XjXk

T
−→
X2

j
T −−−−−−→XjXkXl

T
−−−−→
X2

jXk
T −−−−−−−−−→XjXkXlXm

T
−−−−−−→
X2

jXkXl
T
−−−−→
X2

jX
2
k
T
]T
.

(4)

A.2 Maximization of the Q-function

The Q-function for a sample can be written as follows:

Qθ(t)(θ) =
n∑
i=1

Eθ(t) [logPθ(ui)|uOi]

=
n∑
i=1

Eθ(t) [logPθ(yi|xi) + logPθ(xi)|uOi] .
(5)

Maximizing with respect to β, the relevant terms of the Q-function are:

Qθ(t)(β) = −
1

2σ2
ε

n∑
i=1

Eθ(t)
[
(yi − d(xi)Tβ)2

∣∣uOi]+ c

= − 1

2σ2
ε

n∑
i=1

Eθ(t)
[
βTd(xi)d(xi)

Tβ − 2yid(xi)
Tβ
∣∣uOi]+ c′.

(6)

The first partial derivative is then

∂Qθ(t)(β)

∂β
= − 1

2σ2
ε

n∑
i=1

Eθ(t)
[
2d(xi)d(xi)

Tβ − 2yid(xi)
∣∣uOi] , (7)
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which we set to zero and obtain the first-order condition of

n∑
i=1

Eθ(t)
[
2d(xi)d(xi)

T
∣∣uOi]β =

n∑
i=1

Eθ(t) [2yid(xi)|uOi] . (8)

Thus our estimate of β is

β̂ =

(
n∑
i=1

Eθ(t)
[
d(xi)d(xi)

T
∣∣uOi])−1 n∑

i=1

Eθ(t) [yid(xi)|uOi] . (9)

Maximizing with respect to σ2
ε , we return to Equation 5 and once again collect the

relevant terms as

Qθ(t)(σ
2
ε ) = −

n

2
log(σ2

ε )−
1

2σ2
ε

n∑
i=1

Eθ(t)
[
(yi − d(xi)Tβ)2

∣∣uOi]+ c. (10)

The first partial derivative is then

∂Qθ(t)(σ
2
ε )

∂σ2
ε

= − n

2σ2
ε

+
1

2σ4
ε

n∑
i=1

Eθ(t)
[
(yi − d(xi)Tβ)2

∣∣uOi] , (11)

which yields the first-order condition and estimate of σ2
ε as

n

2σ2
ε

=
1

2σ4
ε

n∑
i=1

Eθ(t)
[
(yi − d(xi)Tβ)2

∣∣uOi]
⇒ σ̂2

ε =

∑n
i=1 Eθ(t)

[
(yi − d(xi)T β̂)2

∣∣∣uOi]
n

.

(12)

To express this quantity strictly in terms of the expected sufficient statistics, we expand

the quadratic term to obtain

σ̂2
ε =

∑n
i=1 Eθ(t)

[
(yi − d(xi)β̂)2

∣∣∣uOi]
n

=

∑n
i=1 Eθ(t) [y2i |uOi]

n
− 2

∑n
i=1 Eθ(t)

[
yid(xi)

T
∣∣uOi]

n
β̂ + β̂T

∑n
i=1 Eθ(t)

[
d(xi)d(xi)

T
∣∣uOi]

n
β̂.

(13)
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For simplicity, let us express β̂ with the following shorthand notation:

A :=
n∑
i=1

Eθ(t)
[
d(xi)d(xi)

T
∣∣uOi]

b :=
n∑
i=1

Eθ(t) [yid(xi)|uOi]

⇒ β̂ = A−1b.

(14)

Re-expressing Equation 13 with these quantities, we have:

σ̂2
ε =

∑n
i=1 Eθ(t) [y2i |uOi]

n
− 2

bT

n
β̂ + β̂T

A

n
β̂

=

∑n
i=1 Eθ(t) [y2i |uOi]

n
− 2

bTA−1b

n
+
bTA−1AA−1b

n

=

∑n
i=1 Eθ(t) [y2i |uOi]

n
− bA

−1b

n

(15)

which finally yields

σ̂2
ε =

∑n
i=1 Eθ(t) [y2i |uOi]

n
−
∑n

i=1 Eθ(t) [yid(xi)|uOi]
(∑n

i=1 Eθ(t)
[
d(xi)d(xi)

T
∣∣uOi])−1

n

×
n∑
i=1

Eθ(t) [yid(xi)|uOi]

(16)

Returning to Equation 5 and collecting the relevant terms for µ we have

Qθ(t)(µ) = −
1

2

n∑
i=1

Eθ(t)
[
(xi − µ)TΣ−1(xi − µ)

∣∣uOi]+ c

= −n
2
µTΣ−1µ+

n∑
i=1

Eθ(t) [xi|uOi]
T Σ−1µ+ c′.

(17)

This yields a first partial derivative of

∂Qθ(t)(µ)

∂µ
= −nΣ−1µ+ Σ−1

n∑
i=1

Eθ(t) [xi|uOi] , (18)
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and thus our first-order condition and estimator for µ is

nΣ−1µ = Σ−1
n∑
i=1

Eθ(t) [xi|uOi]

⇒ µ̂ =

∑n
i=1 Eθ(t) [xi|uOi]

n

(19)

Finally, for Σ, we once again collect the relevant terms from the Q-function as follows:

Qθ(t)(Σ) = −n
2
log |Σ| − 1

2

n∑
i=1

Eθ(t)
[
(xi − µ)TΣ−1(xi − µ)

∣∣uOi]+ c, (20)

which yields a first partial derivative of

∂Qθ(t)(Σ)

∂Σ
= −n

2
Σ−1 +

1

2
Σ−1

(
n∑
i=1

Eθ(t)
[
(xi − µ)(xi − µ)T

∣∣uOi])Σ−1, (21)

where we used the identities of
∂ log |A|
∂A

= A−1 and
∂bTA−1c

∂A
= −

(
A−1cbTA−1

)T for

an invertible matrix A, and vectors b and c. This gives us the first-order condition and

estimator of Σ as

n

2
Σ−1 =

1

2
Σ−1

(
n∑
i=1

Eθ(t)
[
(xi − µ)(xi − µ)T

∣∣uOi])Σ−1

⇒ nΣΣ−1Σ = ΣΣ−1

(
n∑
i=1

Eθ(t)
[
(xi − µ)(xi − µ)T

∣∣uOi])Σ−1Σ

⇒ Σ̂ =

∑n
i=1 Eθ(t)

[
(xi − µ̂)(xi − µ̂)T

∣∣uOi]
n

.

(22)

As with σ̂2
ε this can be written in terms of the sufficient statistics with

Σ̂ =

∑n
i=1 Eθ(t)

[
xix

T
i

∣∣uOi]
n

− µ̂
∑n

i=1 Eθ(t) [xi|uOi]
T

n
−
∑n

i=1 Eθ(t) [xi|uOi] µ̂T

n
+ µ̂µ̂T

=

∑n
i=1 Eθ(t)

[
xix

T
i

∣∣uOi]
n

− µ̂µ̂T .
(23)
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A.3 Gaussian MGF Examples

For didactic purposes, the first, second and second-cross moments of the Gaussian

distribution are derived here using the moment generating function. Let X ∼ Np(µ,Σ).

Then for convenience, define the exponentiated quadratic form as η := tTµ+
1

2
tTΣt, and

write the MGF as MX(t) = exp(η). As a preliminary observeration, using basic vector

calculus, notice that the gradient of η with respect to t is

∇tη = µ+ Σt. (24)

Therefore the partial derivative of η with respect to the jth element of t is

∂η

∂tj
= µj + ΣT

·jt, (25)

where Σ·j is the jth column of Σ. With this in mind, the first, second, and second-cross

partial derivatives of MX(t) are as follows.

∂MX(t)

∂tj
=

[
∂ exp(η)

∂η

] [
∂η

∂tj

]
= exp(η)(µj + ΣT

·jt),

(26)

which follows by the chain rule. We can leverage this result into the second partial

derivative since

∂2MX(t)

∂t2j
=

[
∂

∂tj
exp(η)

]
(µj + ΣT

·jt) + exp(η)

[
∂

∂tj
(µj + ΣT

·jt)

]
= exp(η)(µj + ΣT

·jt)
2 + exp(η)Σjj,

(27)

which follows from the product rule and Σjj is the element of Σ in the jth row and jth

column, or σ2
j . Finally, the second-cross partial derivative is

∂2MX(t)

∂tj∂tk
=

[
∂

∂tk
exp(η)

]
(µj + ΣT

·jt) + exp(η)

[
∂

∂tk
(µj + ΣT

·jt)

]
= exp(η)(µk + ΣT

·kt)(µj + ΣT
·jt) + exp(η)Σjk.

(28)
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From here, the Gaussian moments can be obtained by evaluating all these partial

derivatives at t = 0.

E[Xj] =
∂MX(t)

∂tj

∣∣∣∣
t=0

= exp(0)(µj + ΣT
·j0)

= µj

E[X2
j ] =

∂2MX(t)

∂t2j

∣∣∣∣
t=0

= exp(0)(µj + ΣT
·j0)

2 + exp(0)Σjj

= µ2
j + σ2

j

E[XjXk] =
∂2MX(t)

∂tj∂tk

∣∣∣∣
t=0

= exp(0)(µk + ΣT
·k0)(µj + ΣT

·j0) + exp(0)Σjk

= µjµk + σjk.

(29)

A.4 Re-expression of E[Y Xa
jX

b
k|XO] Under MDP 1

Denote the index set of missing data except j and k as A = M \ {j, k}. Then we can

re-express E[Y Xa
jX

b
k|XO] as follows:

E[Y Xa
jX

b
k|XO] =

∫
y

∫
xj

∫
xk

yxajx
b
kP(y, xj, xk|xO) dxj dxk dy

=

∫
y

∫
xj

∫
xk

yxajx
b
k

∫
xA

P(y, xj, xk,xA|xO) dxA dxj dxk dy

=

∫
y

∫
xj

∫
xk

∫
xA

yxajx
b
kP(y|xj, xk,xA,xO)P(xj, xk,xA|xO) dxA dxj dxk dy

=

∫
xj

∫
xk

∫
xA

E[Y |X]xajx
b
kP(xj, xk,xA|xO) dxA dxj dxk

=

∫
xM

d(X)Tβxajx
b
kP(xM |xO) dxM

= E[d(X)TβXa
jX

b
k|XO],

(30)

where P(xj, xk,xA|xO) = P(xM |xO) since M = A ∪ {j, k}.
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A.5 Derivation of P(XM |Y,XO)

Consider a quadratic form of Equation 1.1:

Y = β0 + β
T
fX +

1

2
XTβsX + ε, (31)

where, without the loss of generality, we assume X is ordered as X =

[
XT

O XT
M

]T
and

βf and βs are defined as

βf :=

[
βTO βTM

]T

βs :=

βOO βOM

βOM βMM

 , (32)

which contain the regression coefficients that correspond to the first-order and product

terms of d(X), respectively. Note that the diagonal entries of βs are zeroes and under

MDP 2 βMM is a zero matrix. We can then re-write the error term as a function of XM

as follows

Y = β0 + β
T
fX +

1

2
XTβsX + ε

= β0 + β
T
OXO + βTMXM +

1

2
XT

OβOOXO +XT
OβOMXM + ε

= β0 + β
T
OXO +

1

2
XT

OβOOXO + (βTM +XT
OβOM)XM + ε

⇒ ε = Y − β0 − βTOXO −
1

2
XT

OβOOXO − (βTM +XT
OβOM)XM

ε = α0 −αT1XM ,

(33)

which follows by defining

α0 := Y − β0 − βTOXO −
1

2
XT

OβOOXO

α1 := βM + βTOMXO.

(34)
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From here, we can proceed with a direct derivation of P(XM |Y,XO) as follows:

P(XM |Y,XO) ∝ P(Y,XM ,XO)

∝ P(Y |XM ,XO)P(XM |XO)

∝ exp

[
−1

2
σ−2ε (α0 −αT1XM)2

]
exp

[
−1

2
(XM − µc)TΣ−1c (XM − µc)

]
∝ exp

[
−1

2
σ−2ε (XT

Mα1α
T
1XM − 2α0α

T
1XM)

]
× exp

[
−1

2
(XT

MΣ−1c XM − 2µTc Σ−1c XM)

]
= exp

[
−1

2
(XT

M(Σ−1c + σ−2ε α1α
T
1 )XM + 2(µTc Σ−1c + σ−2ε α0α

T
1 )XM)

]
= exp

[
−1

2
(XM − b)TA(XM − b)−

1

2
bTAb

]
,

(35)

where we completed the square by using the shorthand notation:

A := Σ−1c + σ−2ε α1α
T
1

b := A−1(Σ−1c µc + σ−2ε α0α1).

(36)

This ultimately implies

P(XM |Y,XO) ∝ exp

[
−1

2
(XM − b)TA(XM − b)

]
⇒ P(XM |Y,XO) ∼ N (b,A−1),

(37)

where A and b are functions of θ as defined in Equation 36. We note that this is the

multivariate generalization to the one-dimensional result found by Kim et al. (2015).
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A.6 Generating σ2ε

Given a sampled x, β, and R2
a, we algebraically solve for σ2

ε in the following manner.

First, note that σ2
ε can be written as a function of R2 by the identity:

R2 =
σ2
Ŷ

σ2
Ŷ
+ σ2

ε

σ2
Ŷ
R2 + σ2

εR
2 = σ2

Ŷ

σ2
εR

2 = σ2
Ŷ
− σ2

Ŷ
R2

σ2
εR

2 = σ2
Ŷ
(1−R2)

σ2
ε =

σ2
Ŷ
(1−R2)

R2
.

(38)

In turn, σ̂2
Ŷ
can be estimated from x and β by the following calculations:

Ŷi = β
Td(xi)

µŶ =
n∑
i=1

Ŷi
n

σ̂2
Ŷ
=

n∑
i=1

(Ŷi − µŶ )2

n− 1
,

(39)

Finally, the conversion between R2 and R2
a was obtained by simply algebraically manipu-

lating the definition R2
a

R2
a = 1− (1−R2)

n− 1

n− d

⇒ R2 = 1− (1−R2
a)
n− d
n− 1

.

(40)

Thus, using x, β, and R2
a, we can generate a σ2

ε parameter and simulate the errors as

ε ∼ N (0, σ2
ε ) to finally obtain outcome with Y = d(X)Tβ + ε.

A.7 Generating R

The first step in generating R was assigning missing data patterns. Recall that the

simulation parameter ϕMIS was the proportion of missing data overall and ϕMDP3 was the

proportion among the missing data assigned to MDP 3. Let us define ϕj as the proportion
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of the overall data assigned to MDP j. We set these quantities as follows:

ϕ1 = ϕ2 :=
1

2
ϕMIS(1− ϕMDP3)

ϕ3 := ϕMISϕMDP3

(41)

That is, ϕ3 is simply determined by ϕMIS and ϕMDP3, and ϕ1 and ϕ2 share the remaining

proportion of missing data is equally. Subsequently, let us define nj as the number of

samples assigned to MDP j. This was calculated as nj = dnϕje, or nϕj rounded up.

Therefore, even if n is small, each MDP is assigned at least one case so long as its

corresponding ϕj > 0.

Once all nj were determined, we randomly (with uniform probability) selected a

non-product variable in X to serve as a “missingness anchor” variable (denoted Xa, with

mean µa and variance σ2
a) to determine the missingness in all other variables. This was

done through an intermediate latent propensity variable, denoted R∗, defined as

R∗ := ζ

(
Xa − µa
σa

)
+
(√

1− ζ2
)
ε0, (42)

where ε0 ∼ N (0, 1). This parameterization sets Cor(R∗, Xa) = ζ, which allows for simple

control over the MAR mechanism. We set ζ = 0.7 for all conditions. Thus given n samples

of Xa, we used Equation 42 to draw n samples of R∗. Then to determine missingness,

the greatest nMIS := n1 + n2 + n3 values of the sample of R∗ were assigned randomly to

MDPs 1, 2, or 3 with uniform probability, such that the total of each MDP was equal to

its corresponding nj.

Once MDPs were assigned, missingness was drawn as follows. First, to guarantee

that the assigned missingness pattern was followed, one Xj (or a product-term pair of

Xj and Xk) had their RXj
set to zero, selected with uniform probability among all MDP

appropriate X variables. Then we set

• MDP 1: RY = 0 and RXj
∼ Bernoulli(0.5), for all j 6= a.

• MDP 2: RY = 1 and RXj
∼ Bernoulli(0.5), for all j 6= a such that Xj is not a factor

of any product-terms in d(X). Then for pairs all (Xj, Xk) that form a product-terms
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in d(X), we draw RXj
sequentially:

– If both RXj
and RXk

have not been drawn yet, then select one with uniform

probability and draw as Bernoulli(0.5).

– If only one RXj
has been set, then RXk

= 1−RXj
.

• MDP 3: RY = 1 and Rj = Rk ∼ Bernoulli(0.5), for all pairs (j 6= a, k 6= a) such

that (Xj, Xk) form a product-term in d(X).

A.8 Numerical Software Comparison

To verify the numerical compatibility of our estimation methods with existing software,

we compared the NI parameter estimates with that of the mdmb R package (Robitzsch

& Lüdtke, 2021). We ran an abbreviated version of the simulation study described in

Section 3.1. The conditions were:

• Sample size (n): 500 and 1000.

• Number of predictors (p): 3 and 5.

• Proportion of missingness (ϕMIS): 0.30.

• Proportion among missing data from MDP 3 (ϕMDP3): 1/3.

The number of simulations was set to 100 per condition, using the data generating

procedure described in Section 3.2. We calculated the absolute differences and logged

absolute differences between individual parameter estimates and summarized them in

Table A.8.1. A histogram of the logged absolute differences are displayed in Figure A.8.1.

The mean absolute difference between the two methods is 0.017± 0.001 indicating the two

methods are similar numerically. Further, the NI method has marginally better parameter

recovery metrics, with an empirical bias of 0.0005, and empirical MSE of 0.0244, compared

to an empirical bias and MSE of -0.0007 and 0.0303, respectively, from MDMB.
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Figure A.8.1: Histogram of log10 absolute differences.

Summary |β̂NI − β̂MDMB| log10|β̂NI − β̂MDMB|

Max. 2.10× 10−1 −0.68
Q3 2.25× 10−2 −1.65

Mean 1.66× 10−2 −2.03
Median 1.15× 10−2 −1.94
Q1 4.69× 10−3 −2.33
Min. 5.19× 10−6 −5.28

Table A.8.1: Summary mean and quartiles for the absolute and logged absolute differences
between NI and MDMB parameter estimates.
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