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Abstract [175 words] 18 

Microbial biosynthetic gene clusters (BGCs) encoding secondary metabolites are thought to impact 19 

a plethora of biologically mediated environmental processes, yet their discovery and functional 20 

characterization in natural microbiomes remains challenging. Here we describe deep long-read 21 

sequencing and assembly of metagenomes from biological soil crusts, a group of soil communities 22 

that are rich in BGCs. Taking advantage of the unusually long assemblies produced by this 23 

approach, we recovered nearly 3,000 BGCs for analysis, including 695 novel, full-length BGCs. 24 

Functional exploration through metatranscriptome analysis of a 3-day wetting experiment 25 

uncovered phylum-specific BGC expression upon activation from dormancy, elucidating distinct 26 

roles and complex phylogenetic and temporal dynamics in wetting processes. For example, a 27 

pronounced increase in BGC transcription occurs at night in cyanobacteria but not in other phyla, 28 

implicating BGCs in nutrient scavenging roles and niche competition. Taken together, our results 29 

demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis 30 

provides a direct view into the functional dynamics of BGCs in environmental processes and 31 

suggests a central role of secondary metabolites in maintaining phylogenetically conserved niches 32 

within biocrusts. 33 

Keywords: Long-read metagenomics, secondary metabolism, metatranscriptomics, biological soil 34 

crust, soil microbiome  35 
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Main [2573 words]  36 

A fundamental challenge in understanding the ecological functions of secondary metabolites (also 37 

known as specialized metabolites or natural products) is that most biosynthetic gene clusters 38 

(BGCs) are harbored by uncultivated microbes and require specific native contexts for activation 1. 39 

The majority of BGCs encoding secondary metabolites are not usually expressed under standard 40 

cultivation conditions in the laboratory 2 and their products have therefore been termed ‘secondary’ 41 

metabolites. A universal feature of BGCs is their modular, co-localized gene architecture 3 and 42 

large size, frequently spanning tens of thousands of base pairs. Bacterial secondary metabolites 43 

play critical ecological roles in mediating communication, antagonistic interactions, nutrient 44 

scavenging, and have historically been a primary source for antibiotic drug development 4; in fact 45 

more than half of registered drugs are based on natural secondary metabolites 5. Additionally, 46 

secondary metabolites have applications in agriculture 6, biomaterials 7, biofuels 8, and cosmetics 9.  47 

Previous work has demonstrated the potential for deep “shotgun” metagenomic sequencing to 48 

directly characterize BGCs from environmental samples 10, 11, but the assembly of full-length BGCs 49 

from short reads is associated with significant limitations 12. Alternative techniques include the use 50 

of clone libraries 1 or innovative sequence-based analyses 13, 14 including the reconstruction of 51 

uncultivated microbes as metagenome-assembled genomes (MAGs; reviewed in 15). However 52 

these approaches typically only give access to dominant members of the community, while often 53 

omitting members of the ‘rare biosphere’ 16. 54 

We also know remarkably little about the transcription of BGCs in nature or how the environment 55 

regulates their production 17 especially in soils. This information is critical in understanding how 56 

often secondary metabolites are produced in natural communities. Biological soil crusts (biocrusts) 57 

are the world’s most extensive biofilms and together cover up to 12% of total soil surface area 18. 58 

Initial studies have suggested that they are rich in secondary metabolites 19. Cyanobacteria 59 

dominate biocrust communities, specifically Microcoleus spp. that drive biocrust establishment by 60 

stabilizing the soil surface, both preventing erosion and improving soil fertility through the release 61 

of photosynthate 20, 21. In contrast to many other types of soil environments, biocrusts are easily 62 

transferable to the laboratory, which allows for controlled interrogation of relevant environmental 63 
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processes such as wetting dynamics. In native environments, rain events suspend microbial 64 

dormancy in biocrust and cause dramatic shifts to community structure and both primary and 65 

secondary metabolite release 22. The secondary metabolites produced by microbes upon wetting 66 

are known to include antimicrobial compounds thought to provide a selective advantage 23, yet the 67 

majority of secondary metabolites encoded in the genomes of biocrust community members 68 

remain unidentified 24. Cyanobacteria are known secondary metabolite producers 3, 25 but most 69 

studies have focused on aquatic cyanobacteria, leaving the secondary metabolites of terrestrial 70 

cyanobacteria largely underexplored 26, 27.  71 

We combined long- and short-read metagenomic sequencing to produce ultra-large assemblies 72 

that enabled BGC discovery. We then mapped time-series metatranscriptomes to gain insight into 73 

the environmental cues governing BGC expression in biocrusts. Our results showed that 74 

thousands of gene clusters could be extracted from assembled long-read metagenomes which 75 

gave insight into the secondary metabolism of both rare and dominant microbial taxa. Coupling 76 

these results to metatranscriptomics indicated that most BGCs were transcribed after a simulated 77 

rain event, and that cyanobacteria dominated secondary metabolism. 78 

 79 

Long-read sequencing permits access to ultra-long gene clusters 80 

Biocrust samples were collected from Moab, UT, USA (Fig. 1a), and transported to the JGI in petri 81 

dishes that maintain the physical structure of the crust. We then extracted and prepared high-82 

molecular-weight DNA was extracted and prepared from intact biocrust samples for both long- and 83 

short-read metagenomic sequencing (Fig. S1). In total, we sequenced eight SMRT cells from three 84 

libraries yielding 156.3 Gb from 36.7 million reads, where half of all sequenced bases were 85 

contained in reads of 5 kb or longer, while the longest read was 167 kb. The average read length 86 

was 3,084 bp while the mean N50 value was 4,070 bp. Both statistics were augmented by the 87 

Sequel II library which comprised 108 Gb of sequence in just 19.1 million reads.  88 

 The 2 short-read Illumina libraries provided an additional 20 Gb of sequence (Table S1). To obtain 89 

an initial phylogenetic profile of the communities under investigation we performed full-length 16S 90 
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rRNA gene analysis using exact sequence variants (ESVs) which showed that Cyanobacteria, and 91 

particularly Microcoleus vaginatus, were dominant biocrust community members, with major 92 

representations of Actinobacteria and Alphaproteobacteria (Fig. 1b) which is generally consistent 93 

with the known community composition of these biocrusts 28. Overall, the biocrust are less complex 94 

than other desert soil communities 29 yet are notably richer in cyanobacteria. 95 

To access biosynthetic gene clusters, we individually assembled the biocrust metagenomes into 96 

contiguous sequences (contigs). Using both Canu 30 and metaFlye 31 we assembled the long-read 97 

(n= 8 SMRT cells, 74,953 contigs, N50 = 18.2 kb) into assemblies that totalled 781 Mb in size, with 98 

half of the sequence present in contigs longer than 20 kb. The longest contig was more than 753 99 

kb in length assembled from the largest long-read metagenome (Table S2). The two short-read 100 

Illumina libraries assembled into ~8 million contigs (3.7 Gb, N50 = 1 kb).  101 

We also co-assembled the metagenomes to access even more BGC diversity than was 102 

permissible from the individual assemblies. We co-assembled the five largest long-read 103 

metagenomes which yielded 1.4 Gb of assembled sequence (Table S2) with the longest contig 104 

exceeding 1.3 Mb in length (N50 = 36 kb). This co-assembly was as large as our hybrid co-105 

assembly of two short-read Illumina libraries and four long-read libraries produced with 106 

metaSPAdes 32 (1.7 Gb, N50 = 2.3 kb). Putative misassemblies identified through MetaQUAST 107 

were identified and removed 33. Overall, the long-read assemblies and co-assemblies produced the 108 

largest number of ultra-long contigs (>50 kb) and were thus most suited for the investigation of full-109 

length biosynthetic gene clusters. Together they gave unprecedented access to the BGCs 110 

encoded by uncultivated microbes including 1,191 BGCs from the long-read co-assembled 111 

metagenome. 112 

Overall, the long-read metagenomes, and particularly their co-assemblies, offered substantially 113 

deeper insight into biocrust secondary metabolism than was possible through short-read 114 

sequencing and assembly (Fig. S2). For example, the Sequel II assembly had 548 BGCs including 115 

174 full-length BGCs (i.e., the BGC was not truncated on either contig edge), while the short-read 116 

assemblies had 359 BGCs between them yet only 9 full-length BGCs.  In total, we predict that 712 117 

BGCs are full-length clusters. 118 
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The single largest BGC was identified in the ultra-large co-assembly and was putatively assigned 119 

to the genus Nostoc. It encodes a novel hybrid transAT-PKS-NRPS of 111 kb length, harboring 6 120 

core biosynthetic genes and 8 additional biosynthetic genes. Manual inspection suggests it is full-121 

length, making it one of the longest BGCs to be identified directly from a soil metagenome (Fig. 122 

S3). Clearly the co-assembly of multiple long-read metagenomes offers access to a deeper 123 

spectrum of BGCs while the diversity of these clusters found here suggests that much secondary 124 

metabolic potential remains unrealized in current databases. Moreover, the use of long-read 125 

sequencing is central to finding novel full-length gene clusters, an issue that precluded the use of 126 

short-read metagenomics previously. 127 

  128 

Thousands of novel gene clusters recovered from biocrust metagenomes 129 

We performed gene cluster identification and annotation for secondary metabolites 34 using all the 130 

de novo metagenome assemblies owing to their high contiguity in assembly and high proportion of 131 

contigs longer than 5 kb (Fig. 1c). This approach recovered 2,988 biosynthetic gene clusters 132 

(BGCs) predicted to produce secondary metabolites from uncultivated biocrust microbes. These 133 

span all major secondary metabolite classes with terpenes, ribosomally synthesized and post-134 

translationally modified peptides (RiPPs) and non-ribosomal peptide synthetases (NRPSs) 135 

particularly well represented. Cyanobacteria were rich in NRPSs and Type 1 polyketide synthases 136 

(PKS) and harbored the most BGCs overall encoding some 1,470 BGCs (Fig. 1d; Table S3). Four 137 

hundred and twenty of these non-redundant BGCs could be assigned to the genus Microcoleus – 138 

the pioneer microbial guild of biocrust 35. Next, we determined the genetic novelty of our BGCs by 139 

evaluating whether previous sequencing efforts had captured the sequence by making queries to 140 

the entire NCBI nt sequence database (accessed December 6, 2019 36). Using thresholds of 75% 141 

sequence identity over 80% of the sequence length 37 we identified 175 BGCs that had been 142 

sequenced previously. Thus ~94% of BGCs had not been sequenced before. This reaffirms that 143 

biocrust are a rich source of BGCs and underscores the potential for long-read metagenomic 144 

sequencing in novel BGCs discovery.  145 
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Of the known clusters, 143 belonged to Cyanobacteria including the late branching genera 146 

Microcoleus, Nostoc, and Oscillatoria. BGCs identified from non-cyanobacterial contigs had 147 

interesting novel elements. For example, Planctomycetes were rich in acyl-amino acids, while 148 

Alphaproteobacteria had unusually high numbers of the dipeptide N-acetylglutaminylglutamine 149 

amides (NAGGN) as well as N-acyl-homoserine lactones that may be involved in quorum sensing 150 

38. Moreover, many terpenes and Type 3 PKS belonged to the dominant heterotrophic phyla 151 

Alphaproteobacteria and Actinobacteria (Fig. 1e). We also found 17 phenazines in our dataset, 152 

some of which may have functions in redox balance during anoxia 39, most of which belonged to 153 

cyanobacteria. 154 

 155 

Constitutive transcription of secondary metabolite gene clusters 156 

Desert biocrust communities are sensitive to rain events, as revealed by dramatic changes in 157 

microbial community structure 28 and core gene expression by DNA microarray 22, 40. To identify 158 

secondary metabolite BGCs involved in these dynamics, we mapped 13 biocrust 159 

metatranscriptomes to our metagenome assemblies. The metatranscriptomes are from a simulated 160 

rain event in the laboratory using intact biocrust from the same site (Moab, UT, USA) 40. They 161 

capture microbial transcription following a wetting event for three diurnal cycles at a resolution of 162 

10 individual timepoints. Like the metagenomic data, 16S rRNA transcript analysis using ESVs 163 

from the metatranscriptomic datasets revealed an abundance of transcripts from Cyanobacteria, 164 

and especially Microcoleus vaginatus at all timepoints (Fig. 2a). We observed a dramatic increase 165 

in 16S rRNA transcript copy numbers across all taxa 15 minutes and 1 hour after wetting possibly 166 

indicating increased microbial growth on substrates released during cell membrane 167 

permeabilization after wetting 41 or simply ribosome synthesis as microbes emerge from dormancy. 168 

The metatranscriptomic data comprised 137 Gb of high-quality sequence in 919 million transcripts 169 

from 13 samples (Tables S1, S2, S4). To calculate secondary metabolite gene transcription after 170 

wetting we mapped the individual read transcripts to each contig containing a BGC using BBMap 42 171 

which leveraged our long contigs to profile transcription for almost 3,000 secondary metabolite 172 
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gene clusters. Remarkably, we found that 395 genes from 240 BGCs were transcribed at all 173 

timepoints (using a threshold of at least five mapped transcripts per gene within a cluster at a 174 

single time point), which represent some 6% of all secondary metabolic genes in our dataset (Fig. 175 

2b). Our results show stark contrast to previous observations that BGC expression in the 176 

laboratory is low wherein most secondary metabolites are not transcribed 2. Their constitutive 177 

expression supports the notion that “secondary” metabolites may play critical (and possibly 178 

essential) roles in communication or niche occupancy in these ecosystems. Given the relatively 179 

high biosynthetic cost of synthesizing secondary metabolites vs. primary metabolites 43 this 180 

suggests that these compounds provide fitness benefits to their hosts across the wetting event. 181 

Next, we investigated how the observed constitutive expression of secondary metabolic genes 182 

compared to the transcription of all other genes, i.e., those not involved in secondary metabolism. 183 

Of these 966,111 ‘non-secondary’ genes, just 43,139 (some ~4.5%) were constitutively transcribed 184 

at all 10 time points. These mapping rates were not artifacts of gene length differences between 185 

primary genes and secondary metabolic gene lengths (Supplementary Results and Fig. S4). We 186 

then focused on core 46 metabolic bacterial genes that we expect to have high constitutive 187 

expression e.g., those encoding DNA-binding or ribosomal subunit proteins (Table S5), and found 188 

that indeed many of these core genes were transcribed at eight or more time points and 18% that 189 

were constitutively transcribed (5 mapped transcripts at all 10 timepoints; Fig. 2b). This same 190 

analysis of secondary metabolic genes showed a more even distribution across the time points 191 

with 6% transcribed at all 10 time points (Fig. 2b). Although lower than for core bacterial genes, 192 

this represents a higher proportion of constitutive transcription for secondary metabolic genes than 193 

was anticipated. 194 

While our results show low level constitutive transcription of many BGCs, the highest level of BGC 195 

transcriptional activity occurred at night, 11.5 hours after the initial wetting event (Fig. S5a). This 196 

enrichment in transcription was mostly underpinned by a surge in transcriptional activity by the 197 

Cyanobacteria (Fig. S5b) which likely corresponds to gene induction at night when they are not 198 

photosynthetically active 40. Strikingly, 80% of cyanobacterial BGC transcription peaked at night 199 

(2,527 of 3,173 genes). This included the significant transcription of two putative siderophore-200 
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producing BGCs (DESeq2: P < 0.05), while their observed rearrangements were presumably 201 

driven by transposases (Fig. 2c, Fig. S8 and Supplementary Results).  202 

We next examined phylogenetic conservation of BGC expression among phyla. Here, we analysed 203 

a subset of biosynthetic genes individually (n=12,470 genes) using t-SNE visualization 44. This 204 

analysis revealed segregation of biosynthetic gene transcription by taxonomy (Fig. 3a). 205 

Cyanobacterial transcription of secondary metabolites was significantly unlike all other phyla 206 

(Pearson’s r > 0.8; adjusted P < 0.05). While Cyanobacteria exhibited the highest level of BGCs 207 

transcription at night, 11.5 hours after wetting, other bacteria (in this case almost exclusively 208 

heterotrophic guilds) showed maximal BGC transcription during the day (Fig. S5). Notably there 209 

was a peak of transcriptional activity 72 hours after wetting (during the day, and the point of dry 210 

down) which was due to the increased transcription of terpenes and Type3 PKSs by abundant 211 

heterotrophic bacteria such as Deltaproteobacteria and Actinobacteria (Fig. S6, S7b). 212 

Given the conserved phylogenetic signal level at the gene level, we also examined phylogenetic 213 

conservation at the cluster level. Here we compare the degrees to which biosynthetic gene clusters 214 

shared similar transcriptional profiles across phyla using a co-occurrence network based on the 215 

average Z-scores of each BGCs transcription (n=2,988). This analysis revealed clustering of 216 

secondary metabolite transcription of entire BGCs by taxonomy. Namely, the bacterial phyla had 217 

distinct temporal signatures of BGC transcription compared to each other over the course of 3 days 218 

(Fig. 3b). Cyanobacterial BGC expression was distinct from all other bacterial groups in the 219 

biocrust (Fig. 3c; P < 0.05). To our knowledge, this is the first such observation of phylum-level 220 

differences in microbial BGC transcription in natural communities. This may reflect conservation of 221 

life history traits especially niche competition strategies. For example cyanobacteria can grow 222 

heterotrophically on diverse dissolved organic components 45 and increased BGC expression may 223 

reflect increased competition with heterotrophs occurring at night. Thus, at night Microcoleus and 224 

other cyanobacteria may produce antibiotics to antagonize heterotrophs competing for dissolved 225 

organic compounds 46. 226 

In addition to antagonism, night-time expression of BGC products can facilitate electron and 227 

nutrient transport. Redox-active secondary metabolites are known to be produced by microbes 228 
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under anoxic conditions 39. For example, Pseudomonas aeruginosa enhances substrate-level 229 

phosphorylation during anoxia through the production of phenazines that facilitate electron 230 

transport 47. Constitutive expression of the siderophore-producing gene clusters in cyanobacteria 231 

may reflect cation import strategies (notably iron scavenging) needed to support photosynthesis 232 

and other metabolic activities (Supplementary Results). 233 

 234 

Conclusion 235 

In this study we show that long-read metagenomic sequencing is a powerful new tool for the 236 

examination of secondary metabolite gene clusters directly from complex environmental samples. 237 

Integration with metatranscriptomics revealed that ~6% of secondary metabolic genes were 238 

constitutively transcribed over 3 days – a higher percentage than other genes. Thus, while 239 

conventionally unexpressed under laboratory conditions, our results show that in situ BGCs appear 240 

to control important life history traits involved in maintaining microbial niches. BGC expression 241 

showed strong phylogenetic conservation where Cyanobacteria, unlike other phyla, exhibited the 242 

highest levels of transcription at night. We speculate that this may reflect the switch from 243 

cyanobacteria serving as primary producers during the day to competing with heterotrophs for 244 

dissolved organics at night.  245 
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Materials and Methods 246 

Biocrust Sample Collection and DNA isolation 247 

Biological soil crust (biocrust) was collected from Green Butte Site near Moab, UT, USA 248 

(38°42’54.1’’N, 109°41’27.0’’W) in 2014 as described previously 22. This field site is part of a long-249 

term ecological research area of scientific interest aimed at exploring climatic changes in arid 250 

regions. We sampled early maturity biocrust (Microcoleus-dominated) by coring directly into the 251 

soil surface with a petri dish (6 cm2 by 1 cm in depth). Samples were maintained in petri dishes in a 252 

dark desiccator in the laboratory until required for DNA isolation. Metagenomic DNA was isolated 253 

using the MoBio Powersoil kit as per the manufacturer’s instructions with a minor modification. We 254 

extracted DNA from 2 g of crust material by dividing the sample into four separate tubes (0.5 g in 255 

each tube). The nucleic acids from each tube were eluted in 50 μl of elution buffer and then pooled 256 

these into a final sample containing 200 μl of elution buffer and DNA.  257 

SMRT Sequencing 258 

We sequenced three SMRT cells on the PacBio RS II Single Molecule, Real-Time (SMRT®) DNA 259 

Sequencing System (Pacific Biosciences, CA, USA) using two different library inserts: 10 kb 260 

AMPure PB library [n=2] and a Low input 3 kb PB library [n=1] using binding kit P6 v2 with 360-261 

minute and 120-minute movies for the respective libraries.  The same libraries were then 262 

sequenced on a PacBio Sequel System (Pacific Biosciences) using Sequel Binding Kit 2.1 with a 263 

combination of 600- and 1200-minute movies.  A third library was made using 10 kb AMPure PB 264 

approach with a Blue Pippin size cutoff of 4.5 kb.  It was sequenced on PacBio Sequel II System 265 

(Pacific Biosciences) using 1.0 template prep kit and a 900-minute movie. 266 

To test how well-suited long-read metagenomes are for BGC recovery, we made use of five 267 

publicly available PacBio SMRT metagenomes including a biogas reactor library sequenced on the 268 

PacBio RS II System with a 2 kb insert length 48, and four metagenomes obtained from Lake Biwa, 269 

Japan that were sequenced on a PacBio Sequel System with a 4 kb insertion length 49. Raw 270 

sequence statistics for each metagenome is provided in Table S1. We analysed the sequencing 271 

effort of the metagenomes using Nonpareil v3.30 50 which relies on read redundancy. We 272 
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performed a similar comparison using publicly-available long-read metagenomes which also 273 

yielded improvements in contig sizes and BGC yield from co-assembled datasets (Supplementary 274 

Material). 275 

Illumina Sequencing 276 

Two unamplified 300 bp Illumina libraries were generated and sequenced 2x150 bp on the HiSeq-277 

2500 1TB platform (Illumina). 278 

Taxonomy 279 

We extracted prokaryotic 16S rRNA genes using SortMeRNA 2.1b 51. These 16S rRNA sequences 280 

were then analysed using DADA2 52 to identify exact sequence variants (ESVs) under default 281 

parameters with the exceptions of truncLen (150) and maxEE (1). The ESVs were then assigned 282 

taxonomy against the entire SILVA 16S rRNA gene reference database 53. The taxonomy of the 283 

identified gene clusters was inferred by BLAST queries 36 against the NCBI nr-database whereby 284 

hits were retained with E-values of less than 1 X 10-10 and bit scores greater than 60. 285 

Assembly 286 

We performed read correction, trimming and assembly for the three RS II SMRT cells with Canu 287 

v1.8 30. Here we included parameters suggested by the developers of Canu for PacBio 288 

metagenomes including an estimated mean genome size of 5 Mb (genomeSize=5m). We also 289 

changed the following parameters from their default values: corMinCoverage=0, 290 

corOutCoverage=all, corMhapSensitivity=high, correctedErrorRate=0.105, 291 

corMaxEvidenceCoverageLocal=10 and corMaxEvidenceCoverageGlobal=10. 292 

The four larger Sequel metagenomes were assembled using metaFlye v2.4.2 under default 293 

settings with an estimated genome size of 5 Mb and the –meta option implemented for 294 

metagenomic sequence data 31. All Illumina sequence data were quality trimmed prior to assembly 295 

using Prinseq-lite v0.20.4 54 with --min_qual_mean set to 20 and -ns_max_n set to 0 which 296 

eliminates low quality reads and ambiguous bases (internal N’s). We assembled the two biocrust 297 

Illumina metagenomes with metaSPAdes v3.13.0 32 as recommended for paired-end short read 298 
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length Illumina libraries 55. We also co-assembled the four Sequel libraries together (termed Flye 299 

co-assembly), and then with the Sequel II library (termed Ultimate co-assembly) using metaFlye. 300 

Finally, we co-assembled the four Sequel libraries with the two Illumina metagenomes using 301 

metaSPAdes. Open reading frames (ORFs) of core metabolic genes were predicted from the 302 

assembled metagenomes using Prodigal 56 and annotated using Prokka 57 in KBase 303 

(https://kbase.us/) 58. All assemblies were quality-checked using MetaQUAST 33 which precluded 304 

the inclusion of misassemblies from our analysis. 305 

Biosynthetic Gene Cluster Analysis 306 

All contigs > 5 kb in length were explored for biosynthetic gene clusters (BGCs) using the 307 

antiSMASH v5.0 web server under strict settings 34. Next, we consolidated and passed all putative 308 

BGCs through BiG-SCAPE v0.0.0r and CORASON in glocal mode to explore the phylogenomic 309 

relationships between the BGCs recovered from the 11 biocrust metagenomic datasets 13. BiG-310 

SCAPE consolidates both antiSMASH and the MiBIG 2.0 database to support initial antiSMASH 311 

predictions and so we included the entire MiBIG 2.0 database in our analysis to place our BGCs 312 

among verified clusters 59. 313 

To determine the genetic novelty of our BGCs we performed homology searches against the NCBI 314 

nt database (downloaded December 6th, 2019) using NCBI blast+ 2.9. We only retained top hits 315 

based on an E-value of 1 X 10-10. BGCs were non-redundant (not sequenced previously and thus 316 

novel) if sequences matched ≤ 80% of the BGC query length and had an average of ≤ 75% 317 

sequence identity against the database. We corroborated the taxonomic assignments using the 318 

Contig Annotation Tool under default settings (CAT, v5.0.4) 60. Chemical structure predictions were 319 

first created by antiSMASH v5.0. 320 

Metatranscriptomic mapping 321 

We made use of metatranscriptomes sequenced from biocrust material collected at the same 322 

sampling site in Moab, Utah that were publicly-available on JGI GOLD 40. The experimental design 323 

tracked the transcriptional responses of biocrust communities over two complete diurnal cycles 324 

following an artificial wetting event in the laboratory with 12 hours of light followed by 12 hours of 325 
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dark (Table S1). The time points at which transcripts were collected include: 0 hours (immediately 326 

before wet-up), 3 min, 15 min, 1 hour, 9 hours, 11.5 hours, and 18 hours after wet up, then 72 327 

hours after wet up (immediately prior to dry down), then 2 hours and 3 days after dry down. The 328 

11.5 hours and 18 hours samples also represent transcriptional activity at night-time while all other 329 

samples captured transcription during the day. 330 

Transcripts were quality-controlled using Prinseq-lite v0.20.4 as described above for the Illumina 331 

data. The metatranscriptomes were then assembled using metaSPAdes. The unassembled 332 

transcripts were then mapped to contigs containing BGCs using bbmap v38.73 42. We used 333 

SAMtools v1.9 61 for file conversion and sorting. Mapped sequences and associated contigs were 334 

then visualized within Geneious 62. We used DESeq2 v1.28.0 63 in the R statistical environment 335 

v3.6.3 to test which genes underwent differential expression by explicitly testing expression against 336 

the control sample (0 hours). Here we tested two environmental treatments, (i) the diurnal cycling 337 

regime (i.e., day to night to day) and, independently, (ii) the influence of wetting and drying. 338 

Transcripts were removed that did not map at the phylum level to the 16S data or that had a 339 

maximum count less than 20 in any sample. The remaining transcript levels were normalized by 340 

the total counts for each sample and then multiplied by the average count across all samples. 341 

Duplicate samples at the 15-minute time point and triplicate samples at the 1-hour timepoint were 342 

averaged, and z-scores of normalized transcript abundance mapped to each biosynthetic gene to 343 

reveal which time points showed highest gene activity. In addition, z-scores were used with t-SNE 344 

(T-distributed Stochastic Neighbor Embedding) to visualize the gene transcription patterns in 345 

ordinance space 44. The t-SNE implementation in sklearn (v 0.23.2) manifold module was used 346 

with the following parameters: 'angle': 0.5, 'early_exaggeration': 12.0, 'init': 'random', 347 

'learning_rate': 200.0, 'method': 'barnes_hut', 'metric': 'euclidean', 'min_grad_norm': 1e-07, 348 

'n_components': 2, 'n_iter': 3000, 'n_iter_without_progress': 300, 'perplexity': 40, 'random_state': 349 

None, 'verbose': 1. 350 
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Figure Captions 520 

 521 

Fig. 1 | Secondary metabolism of biocrust. a, Field sampling location in the Green Butte Site 522 

near Canyonlands National Park (Moab, UT) with the biological soil crust inlay showing the 523 

characteristic green coloration. b, Taxonomic composition of the metagenomes based on exact 524 

sequence variants (ESVs) of 16S rRNA genes across sequencing platforms. Relative abundances 525 

were calculated after assigning taxonomy against the SILVA reference database. c, Left panel 526 

shows the number of Biosynthetic Gene Clusters (BGCs) recovered from each assembly, arranged 527 

from shortest to longest. Right panel shows the cumulative length of BGCs recovered from each 528 

metagenome in Megabases (Mb). d, Taxonomic distribution of BGCs in megabase pairs (Mb) at 529 

the phylum or class level. e, BGCs longer than 5 kb from each major class of secondary 530 

metabolism, colored by putative phylum-level assignments. 531 

 532 

Fig. 2. | Transcription of secondary metabolites. a, Taxonomic composition of the 533 

metagenomes based on exact sequence variants (ESVs) of 16S rRNA transcripts during a soil 534 

wetting experiment. Relative abundances were calculated after assigning taxonomy against the 535 

SILVA reference database. b, Core bacterial gene transcription (n=46 genes including DNA-536 

binding proteins, Large and Small subunit ribosomal proteins) shown in blue compared to 537 

secondary metabolite gene transcription (orange). Genes transcribed at all 10 timepoints 538 

(rightmost point) are thought to experience constitutive expression. The y-axis indicates the 539 

proportion of genes present in each category. c, Putative rearranged siderophore-producing gene 540 

clusters found in the co-assembled metagenomes that show homology. Transcriptional profiles of 541 

gene clusters with differentially expressed genes. Heatmap columns are scaled to the size of the 542 

mapped gene, and row order indicates progression across the experiment from 0 hours (bottom 543 

row) to 3 days after wetting (top row). Predicted chemical structures are shown on the right. 544 

 545 
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Fig. 3. | Phylum specific transcription of secondary metabolites. a, t-SNE visualization of 546 

every individual biosynthetic gene identified. The color of the points indicate the phylum 547 

assignment whilst shapes indicate the BGC class. b, Co-occurrence network based on Pearson 548 

correlations (r > 0.8) among entire BGCs (n=2,988) based on average z-scores at each time point. 549 

Each node is a BGC within a contig that are colored by phylum and shaped by BGC type. Closely 550 

clustered nodes share similar transcriptional profiles. c, Line plot showing 16S rRNA transcript 551 

copy number over time shown by black, dotted lines. Average BGC transcription over time shown 552 

by the colored, solid lines. Cyanobacteria (green) show a unique night-time upregulation of 553 

secondary metabolism. Purple background indicates night-time transcription. 554 
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