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Epitaxial growth of
magnetic-oxide thin films 6
J.A. Moyer1, R.V.K. Mangalam1, L.W. Martin2,3
1University of Illinois, Urbana-Champaign, IL, USA; 2University of California,
Berkeley, CA, USA; 3Lawrence Berkeley National Laboratory, Berkeley, CA, USA

6.1 Introduction

Complex oxides represent a vast class of materials encompassing a wide range of
crystal structures and functionalities. Amongst these interesting properties, the study
of ferroic order (namely ferromagnetic, ferroelectric, ferroelastic, and multiferroic
properties) has driven considerable research over the past few decades. Driven by
the development of new synthesis techniques—especially for thin films—the field
of functional oxide materials has experienced unprecedented growth in terms of the
discovery of new materials systems, characterization and understanding of the funda-
mental properties and nature of existing systems, and in the control of properties in
these materials through elegant changes in crystal chemistry (i.e., doping), strain,
and other variables. Throughout this book, many examples of how these aspects can
be applied to complex-oxide materials have been developed. In this chapter, in turn,
we focus on advances in the growth and characterization of magnetic oxide materials
while investigating the structure, properties, and synthesis of modern magnetic
complex-oxide thin films. We will investigate a number of prototypical examples of
materials within this subgroup of ferroic oxides and will delve into the coupling of
epitaxial constraint and magnetic properties and how this diverges from bulk materials.

6.2 Magnetism and major magnetic-oxide systems

6.2.1 Magnetism in oxides

Magnetic materials violate time-reversal symmetry, but are invariant under spatial
inversion; in other words, when magnetic moments are present in a crystal, the anti-
symmetry operator must also be present. The 32 classical crystallographic point groups
do not have the antisymmetry operator and hence cannot fully describe the symmetry
of magnetic crystals. Symmetry analysis reveals 122 total magnetic space groups of
which only 31 can support ferromagnetism (Aizu, 1970; Laughlin, Willard, &
McHenry, 2000). A material is said to be a ferromagnet when there is long-range,
parallel alignment of the atomic moments resulting in a spontaneous net magnetization
even in the absence of an external field. Ferromagnetic materials undergo a phase tran-
sition from a high-temperature phase that does not have macroscopic magnetization
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(atomic moments are randomly aligned resulting in a paramagnetic phase) to a low-
temperature phase that does at the so-called Curie temperature (TC). There are other
types of magnetism including antiferromagnetism (atomic moments are aligned anti-
parallel) and ferrimagnetism (dipoles align anti-parallel, but one subset of dipoles is
larger than the other, resulting in a net moment). The theory of magnetism is a rich field
and beyond the scope of this chapter, but is built upon the idea of quantum mechanical
exchange energy, which causes electrons with parallel spins and therefore parallel
moments to have lower energy than spins with anti-parallel spin. Magnetic materials
find pervasive use in all walks of life, from information technology (storage, sensing.
and communications) to health sciences (e.g., cancer treatment) and beyond.

A history of magnetism is a history of oxide materials. From casual observations in
antiquity (it is said that the Greek philosopher Thales of Miletus, 634e546 BC, is
thought to be the first person to describe magnetism after observing the attraction of
iron by the mineral magnetite) to an enabling force for developing the world (including
navigation, power production, and more), magnetic oxides have played a key role over
the years. For a complete history of magnetism in materials see Verschuur (1993). Of
particular interest for the first few thousand years of the study of magnetism, there was
only one material, which came to be known as lodestone (in old English, “lode” is the
word for lead) or the iron-oxide phase magnetite (Fe3O4). Only after 1819 did a rapid
expansion of our knowledge of magnetic materials occur. Only after the development
of a spin-dependent model for the exchange interaction in 1928 by Heisenberg was it
possible, however, to understand the nature of magnetic oxides that had dominated the
landscape for the previous millennia. From that point on, the understanding of magne-
tism in oxides developed at a feverish pace. Of fundamental importance to this early
work was a series of publications by Lois Néel, who developed the idea of antiferro-
magnetism (Néel, 1932). By the late 1950s, a rapid expansion of technology, espe-
cially high-frequency devices, stimulated rapid research in ferromagnetic oxides,
and Smit and Wijn in their book on ferrites noted that in 1959 the properties of
magnetic oxides were better understood than the properties of metallic ferromagnets
(Smit & Wijn, 1959).

What arose from this work was an understanding that magnetism in oxides is funda-
mentally different from that in metallic, elemental systems. Magnetism in oxides is
generally mediated through indirect exchange (through nonmagnetic anions), which
gives rise to interesting coupling effects, including, for example, superexchange, dou-
ble exchange, and RKKY coupling (named after the work of Ruderman and Kittel
(1954), Kasuya (1956), and Yosida (1957)). Briefly, superexchange gets its name
from the fact that it extends the normally very-short-range exchange interaction to a
longer range (St€ohr & Siegmann, 2006). The idea that exchange could be mediated
by an intermediate, nonmagnetic atom was put forth in 1934 (Kramers, 1934), and
the theory was formally developed by Anderson in 1950 (Anderson, 1950). Superex-
change is an important effect in ionic solids where 3d and 2p orbitals of transition
metal cations (TM) and anions interact, and it describes, through a simple valence-
bonding argument, how antiferromagnetic (AF) ordering occurs. Double exchange,
first proposed by Zener in 1951 (Zener, 1951), describes the magneto-conductive prop-
erties of these mixed-valence compounds and delineates the mechanism for hopping
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of an electron from one site to another through the mediating oxygen atom. Because
the O2� ion has full p-orbitals, the movement from one ion through O2� to another
ion is done in two steps. The electron is thus delocalized over the entire TMeOeTM
group, and the cations are said to be of mixed valence. This is aided by the fact that
spin-flips are not allowed in electron-hopping processes, and thus it is more energet-
ically favorable if the magnetic structure of the two cations is identical; therefore,
ferromagnetic alignment of moments is achieved. Finally, RKKY exchange is not
based on the relationship between bonding and magnetism, but instead is the concept
that a local moment can induce a spin polarization in a surrounding conduction elec-
tron sea. Studies showed that the spin polarization of the conduction electrons oscil-
lates in sign as a function of distance from the localized moment, and this spin
information can be carried over relatively long distances.

6.2.2 Early work on epitaxy of magnetic oxides

Considerable work has been done on magnetic oxide films. Again, complex oxides
exhibit a wide range of physical phenomena due to the interaction of the lattice
with the charge, spin, and orbital degrees of freedom (Dagotto, 2005; Lu, West, &
Wolf, 2010; Tokura & Nagaosa, 2000). More practically, magnetic oxides have
been investigated for their potential in applications such as magnetoresistive random
access memories and spin valves (Coey, Venkatesan, & Xu, 2013; Mallinson, 1993;
Zubko, Gariglio, Gabay, Ghosez, & Triscone, 2011). They possess a wide range of
crystal structures and chemistries (including binary oxides such as MO, MO2, and
M2O3) (Martin, Chu, & Ramesh, 2010). Popular monoxide systems include the dilute
magnetic oxide semiconductors (i.e., transition-metal cation-doped ZnO) (€Ozg€ur et al.,
2005). Binary dioxides such as CrO2 have large spin polarizations and are promising
materials for use in spintronics (Lu et al., 2010; Coey et al., 2013). Binary trivalent
oxides such as Fe2O3 have been investigated for integration in magnetic media
(Mallinson, 1993). Recent advances in thin-film growth have greatly expanded the
number of materials for magnetic devices to include perovskite manganites and spinel
ferrites (Lu et al., 2010; Wolf et al., 2001) and single-phase and composite/two-phase
multiferroics for magnetoelectrics (Catalan & Scott, 2009; Chu et al., 2008; Chu,
Martin, Holcomb, & Ramesh, 2007; Eerenstein, Mathur, & Scott, 2006; Prellier,
Singh, & Murugavel, 2005; Ramesh & Spaldin, 2007; Seidel et al., 2012; Yu,
Chu, & Ramesh, 2012).

6.2.3 Recent advances in thin film epitaxy

Although there is a considerable amount of excellent work on epitaxial magnetic-oxide
thin films, here we focus on a few select systems to highlight the major players and
developments and understanding of magnetism in thin films.

6.2.3.1 Perovskite manganites

The perovskite manganites are represented by the general formula RE1�xAxMnO3

(RE ¼ rare earth metal cation, A ¼ alkaline earth metal cation). Due to strong electron
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correlations that couple the charge, spin, and lattice (Tokura & Nagaosa, 2000), they
can display magnetic, colossal magnetoresistant, half-metallic, and charge-ordering
behaviors (Dagotto, 2003; Jonker & Van Santen, 1950; Rao & Raveau, 1998; Tokura,
2000). La1�xSrxMnO3 with x ¼ 0.3 is the most widely studied perovskite manganite
due to its room-temperature ferromagnetism and metaleinsulator transition (Urushi-
bara et al., 1995). A large availability of perovskite substrates has enabled the under-
standing of the physics behind the complex phenomena of the manganites (Martin
et al., 2010), where epitaxial strain has been utilized to tune their properties
(Haghiri-Gosnet & Renard, 2003; Prellier, Lecoeur, & Mercey, 2001). For example,
the magnetic easy axis of La0.7Sr0.3MnO3 film can be tuned to be along the in-plane
or out-of-plane direction by applying tensile or compressive strain, respectively
(Kwon et al., 1997). In recent years, thickness-dependent studies on La0.7Sr0.3MnO3

films identified the presence of a three-unit cell (w12 Å) dead layer, which is a layer
that exhibits neither metallicity nor ferromagnetism (Figure 6.1) (Huijben et al., 2008).

6.2.3.2 Perovskite nickelates

Research on perovskite nickelates has gone through a recent resurgence due to its
metaleinsulator and AFeparamagnetic phase transitions (Catalan, 2008; María
Luisa, 1997). Nickelates are interesting candidates for many technological applica-
tions (Aydogdu, Ha, Viswanath, & Ramanathan, 2011; Lee et al., 2007; Meijer,
2008; Takagi & Hwang, 2010; Yang, Ko, & Ramanathan, 2011) such as sensors,
electronic switches, and thermochromic coatings. The ideal structure consists of
NiO6

3� octahedra linked at their corners with R3þ cations. The R3þ cations are accom-
modated through rigid rotations of the NiO6

3� octahedra, resulting in a decrease of the
NieOeNi bond angle away from 180�. The electronic and magnetic phase transitions
arise from the sensitivity of the interaction between the Ni-3d and O-2p electrons and
the bond angle (Disa et al., 2013; María Luisa, 1997). By selecting a suitable R3þ

cation or solid solution of rare earths, the metaleinsulator transition temperature
(TMI) can be continuously tuned from 0 K for LaNiO3 to 600 K for LuNiO3 (Alonso,
Martínez-Lope, Casais, Aranda, & Fern�andez-Díaz, 1999; Torrance, Lacorre, Nazzal,
Ansaldo, & Niedermayer, 1992). In addition to temperature, epitaxial strain can also
be used to control the phase transitions. For NdNiO3 films, for instance, TMI increases
(decreases) under tensile (compressive) strain, an effect that is attributed to an in-
crease (decrease) of the NieOeNi bond angle (Conchon et al., 2007; Disa et al.,
2013; Eguchi et al., 2009; Kumar, Choudhary, & Kumar, 2012; Liu et al., 2010;
Novojilov et al., 2000; Tiwari, Jin, & Narayan, 2002). It has alternatively been sug-
gested that tensile in-plane stress may lead to a novel breathing distortion that creates
two unequivalent Ni sites and an increase in TMI (Chakhalian et al., 2011).

6.2.3.3 Perovskite cobaltites and ruthenates

In addition to being promising candidates for ionic conductors and surface catalysts for
the fuel-cell industry (Choi et al., 2012; Han & Yildiz, 2011; Mehta et al., 2009;
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Sharma, Gazquez, Varela, Schmitt, & Leighton, 2011), the cobaltites also have inter-
esting physics associated with their magnetic spins (Sterbinsky et al., 2012). LaCoO3
has been studied intensely over the last 50 years due to two broad transitions in its
magnetic susceptibility (TC w 80 K) and its subsequent nonmetalemetal transition
(T w 500e600 K); the origin of the two magnetic transitions in LaCoO3 is controver-
sial (Klie, Yuan, Tanase, Yang, & Ramasse, 2010). In addition, the ferroelastic
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Figure 6.1 Thickness dependence of the (a) total conductance of La0.7Sr0.3MnO3 films at 10 K
and (b) the coercive fields (HC) and Curie temperatures (TC).
Adapted from Huijben et al. (2008).
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properties of LaCoO3 (Choi et al., 2012; Kleveland et al., 2001; Vullum et al., 2007;
Vullum, Lein, Einarsrud, Grande, & Holmestad, 2008) make it intriguing for studying
the strain coupling of the structural, electronic, ionic, and magnetic properties, where
the strain can be used as a tool to control the ionic activities as predicted by density
functional theory (Han & Yildiz, 2011; Kushima, Yip, & Yildiz, 2010). The ruthen-
ates, such as SrRuO3, are another magnetic oxide system that has a perovskite struc-
ture (Choi, Eom, Rijnders, Rogalla, & Blank, 2001; Eom, 1997; Hong et al., 2005),
and are well studied for their use in magnetic tunnel junctions (MTJs) and as elec-
trodes (Koster et al., 2012).

6.2.3.4 Double perovskites

The double perovskite is a variant of the perovskite structure having a unit cell
doubled in all three directions. This gives rise to two different octahedrally coordi-
nated cations, which form a NaCl-type superlattice (Coey, Viret, & von Moln�ar,
1999). A large spin polarization, close to 100%, in double perovskites like
Sr2FeMoO6 (Kobayashi, Kimura, Sawada, Terakura, & Tokura, 1998) and
Sr2FeReO6 (Kobayashi et al., 1999), makes them interesting for spintronic applica-
tions (Philipp et al., 2001). Recently, metastable Bi2NiMnO6 was synthesized under
high pressure and temperature and measured to be multiferroic, with a ferromagnetic
transition temperature of 140 K and a ferroelectric transition temperature of 485 K
(Azuma et al., 2005). In contrast to the weak ferromagnetism in typical oxide multi-
ferroics, like BiFeO3, Bi2NiMnO6 has a large moment due to ferromagnetically
coupled Ni2þ and Mn4þ spins. A thin film of metastable Bi2NiMnO6 was epitaxially
grown on SrTiO3 substrates with pulsed laser deposition and was reported to have the
rock salt-type arrangement of Ni2þ and Mn4þ cations indicative of a double perov-
skite unit cell (Sakai et al., 2007).

6.2.3.5 Hexagonal oxides

Sufficiently small cationic radii compounds with the general formula ABO3 or
A2BB0O6 may crystallize in a hexagonal rather than the typical perovskite structure
(Manfred, 2005). Researchers have focused on the hexagonal multiferroics
(Cheong & Mostovoy, 2007; Das, Wysocki, Geng, Wu, & Fennie, 2014; Fiebig,
Lottermoser, Frohlich, Goltsev, & Pisarev, 2002; Kimura et al., 2003; Lee et al.,
2008; Lueken, 2008; Van Aken, Palstra, Filippetti, & Spaldin, 2004), that is, the
ferroelectriceAF manganites (RMnO3 with R ¼ Sc, Y, In, Ho, Er, Tm, Yb, Lu),
which can possess four long-range ordered subsystems: a ferroelectric lattice
with TC z 570e990 K, an AF Mn3þ lattice with Néel temperatures of
70e130 K, and two rare-earth sublattices with magnetic ordering temperatures of
w5 K. In contrast to the perovskites, relatively few examples of element substitu-
tion have been reported (Manfred, 2005). Utilizing advances in film growth, re-
searchers reported the observation of nanoscale strain gradients (105e106 per
meter) in ferroelectric HoMnO3 films, resulting in giant flexoelectric effects
(Lee et al., 2011).
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6.2.3.6 Oxide spinels, garnets, and other crystal structures

The spinel ferrites, TMFe2O4 (TM ¼ transition-metal cation), are multivalent oxides
that crystallize in the spinel structure, in which one-third of the cations occupy tetra-
hedral sites (A sites) and two-thirds of the cations occupy octahedral sites (B sites). If
the divalent cations occupy A sites (B sites), the crystal structure is called normal
(inverse) spinel. The parent compound Fe3O4 is fully inverse, CoFe2O4 and NiFe2O4

are predominantly inverse, and MnFe2O4 and ZnFe2O4 are predominantly normal. The
majority of the spinel ferrites are ferrimagnets (ZnFe2O4 is AF), in which the A and B
sites are aligned antiferromagnetically with each other (Figure 6.2), and can possess a
TC much higher than room temperature (e.g., 858 K for Fe3O4) (Slick, 1980). MgO is
the only substrate that is well lattice-matched with the spinel ferrites; however, it pre-
sents two drawbacks. First, Mg2þ cations easily diffuse into the films at temperatures
above 350 �C, which necessitates low growth temperatures (Gao, Kim, & Chambers,
1998). Second, the cubic lattice parameter for MgO is approximately one-half of that
of the ferrites, resulting in the formation of anti-phase boundaries in the films and do-
mains that can be structurally out-of-phase (Margulies et al., 1997). Spinel ferrites can
be grown on other substrates, although they quickly relax, contain many defects, and
typically have rough surfaces. Films grown on perovskite substrates have large lattice
mismatches (w7%) and contain anti-phase boundaries; whereas films grown on
MgAl2O4 also have large lattice mismatches (w5%) but do not have anti-phase

Tetrahedral
site A

Octahedral
sites B

Fe3+

Fe3+Fe2+ SE

DE

Figure 6.2 Model of magnetic interactions in Fe3O4, demonstrating how both superexchange
(SE) and double exchange (DE) interactions give rise to a ferrimagnetic magnetic ordering
between the tetrahedral (A site) and octahedral (B site) sublattices.
From St€ohr and Siegmann, (2006).
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boundaries. Crystallinity and magnetic properties of thin films grown on MgAl2O4 and
SrTiO3 can be improved using buffer layers such as CoCr2O4 in order to alleviate the
majority of the strain (Suzuki et al., 1996). Many other magnetic oxide crystals struc-
tures exist, although, they are not commonly grown as epitaxial thin films; some that
can be grown epitaxially are the spinel chromates (i.e., CoCr2O4) and garnets (i.e.,
Y3Fe5O12).

6.2.3.7 Multiferroics

Multiferroics (Schmid, 1994) are materials that simultaneously possess two or more
of the so-called ferroic-order parameters: ferroelectricity, ferromagnetism, and fer-
roelasticity. They have grown in interest because of the potential for strong coupling
between ferroelectric and ferromagnetic-order parameters, enabling simple control
over the magnetic nature of the material with an electric field. For instance, BiFeO3

is one of the few single-phase multiferroics that simultaneously possesses both mag-
netic and ferroelectric order at and above room temperature. BiFeO3 is a G-type AF
(Kiselev, Ozerov, & Zhdanov, 1963; Teague, Gerson, & James, 1970) with a Néel
temperature of w673 K (Fischer, Polomska, Sosnowska, & Szymanski, 1980)
that, in the bulk, possesses a cycloidal spin structure with a period of w620 Å (Sos-
nowska, Peterlinneumaier, & Steichele, 1982). Additionally, the magnetic moments
are oriented perpendicular to the <111>-polarization direction, and the symmetry
also permits a small canting of the moments in the structure, resulting in a weak
canted ferromagnetic moment of the DzyaloshinskiieMoriya type (Dzyaloshinskii,
1957; Moriya, 1960). Extensive work on thin films of BiFeO3 has been completed
and dramatic changes in the magnetic order are possible with thin-film strain (Hol-
comb et al., 2010; Martin et al., 2010; Martin & Ramesh, 2012; Martin & Schlom,
2012; Sando et al., 2013). Other multiferroics studied as thin films includes the rare-
earth manganites (REMnO3), which depending on the size of the RE ion, take on
either orthorhombic (RE ¼ Dy, Tb, and Gd) (Kimura et al., 2003; Kimura, Lawes,
Goto, Tokura, & Ramirez, 2005) or hexagonal (RE ¼ HoeLu, as well as Y) (Lotter-
moser et al., 2004) structures (Yakel, Forrat, Bertaut, & Koehler, 1963). The
REMn2O5 (RE ¼ rare earth, Y, and Bi) family of materials (Shukla et al., 2009)
has also been investigated in ultrathin layers (Sai, Fennie, & Demkov, 2009), been
used to demonstrate electric field control of exchange-coupled ferromagnets (Skum-
ryev et al., 2011), and been investigated for effects of non-stoichiometry and solubi-
lity limits (Gélard et al., 2011). BiMnO3 has received considerable attention since it
is not a stable phase at 1 atm pressure and thus epitaxial stabilization can be used to
create metastable films of this material (Ohshima, Saya, Nantoh, & Kawai, 2000).
BiMnO3 film has been used as the foundation for a four-state memory concept
(Gajek et al., 2007) and has been shown to exhibit large magnetodielectric effects
(Yang, Lee, Koo, & Jeong, 2007). There are a number of other candidate multiferroic
materials that have been studied as thin films, including BiCrO3 (Hill, Battig, &
Daul, 2002; Kim, Lee, Varela, & Christen, 2006; Murakami et al., 2006), PbVO3

(Kumar et al., 2007; Martin et al., 2007), and Bi2NiMnO6 (Sakai et al., 2007) as
examples.
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6.3 The effects of thin-film epitaxy on magnetism

The greater field of magnetism is rich with thin-film phenomena (Bader, 1990). From
magnetic size effects including diminished magnetization in ultrathin films, decreased
magnetocrystalline anisotropy, and epitaxial strain-induced changes in properties, one
must consider the effects of changing material geometry and the elastic boundary
conditions on the evolution of magnetic properties.

6.3.1 Size effects

6.3.1.1 Magnetic dead layers in La0.7Sr0.3MnO3

Dimensionally confining the thickness of a thin film is a common approach to tune its
properties, but in some magnetic oxides one must be aware of so-called magnetic dead
layers. Combined spin-resolved photoemission spectroscopy, SQUID magnetometry,
and X-ray magnetic circular dichroism studies have shown that there is diminished
magnetism at the surface boundary of La0.7Sr0.3MnO3 films (Park et al., 1998). Further
studies found that the critical thickness for a nonmetallic and nonferromagnetic
La0.7Sr0.3MnO3 layer at the interface with SrTiO3 (001) is three unit cells (w12 Å)
(Figure 6.1) (Huijben et al., 2008). Spectroscopic and scattering studies on
La0.7Sr0.3MnO3/SrTiO3 (001) revealed that the average Mn valence varies from mixed
Mn3þ/Mn4þ to an enriched Mn3þ region near the SrTiO3 interface, resulting in a
compressive lattice distortion along the in-plane axes and a possible electronic recon-
struction in the Mn eg orbital (d3z

2 �r
2) (Lee et al., 2010). This reconstruction may pro-

vide a mechanism for coupling the Mn3þ moments antiferromagnetically along the
surface normal direction, and in turn may lead to an observed reversed magnetic
configuration.

The thickness dependence of magnetism and electrical conductivity in ultrathin
La0.67Sr0.33MnO3 films grown on SrTiO3 (110) substrates differs from those films
grown on SrTiO3 (001). In films grown on SrTiO3 (110), there is a critical thickness
of 10 unit cells below which the conductivity of the films disappears and simulta-
neously TC increases, indicating a ferromagnetically insulating phase at room temper-
ature (Boschker et al., 2012). These samples have a Curie temperature of about 560 K
with a saturation magnetization of 1.2 � 0.2 mB/Mn. The canted AF insulating phase in
these films coincides with the occurrence of a higher-symmetry structural phase with a
different oxygen octahedra rotation pattern. Such a strain-engineered phase is an inter-
esting candidate for an insulating tunneling barrier in room-temperature spin filters.

6.3.1.2 Ultrathin spinel ferrite films

Spinel ferrite thin films grown on MgO and SrTiO3 substrates have magnetic
moments that are significantly reduced from their bulk values and do not saturate
in magnetic fields up to 7 T. This was first observed in Fe3O4/MgO (001) hetero-
structures and was attributed to the presence of anti-phase boundaries (Figure 6.3)
(Margulies et al., 1996, 1997) that give rise to magnetic superexchange interactions
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Figure 6.3 (a) Magnetizationemagnetic field hysteresis loops comparing a single crystal of
Fe3O4 with 1-mm and 50-nm thin films of Fe3O4 grown on MgO (001). The magnetization of the
films is normalized to the bulk value and the measurement is made along the [100] crystal axis.
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From Margulies et al. (1997).
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that do not exist in the spinel structure (Margulies et al., 1997; Celotto, Eerenstein, &
Hibma, 2003). These new superexchange interactions are AF and stronger than the
magnetic exchange interactions that are native to the spinel ferrites (Celotto et al.,
2003), resulting in changes in the spin alignments near the anti-phase boundaries
and a reduced moment. The density of anti-phase boundaries decreases as the film
thickness is increased (Eerenstein, Palstra, Saxena, & Hibma, 2002; Moussy et al.,
2004) and near-bulk magnetic properties are obtained for thick films (Margulies
et al., 1997). The reduction in magnetic moment for other spinels can be more severe,
such as in CoFe2O4, where the moment is reduced by up to 75% (Chambers et al.,
2002; Moyer, Vaz, Arena et al., 2011) due to additional effects, such as its having a
partially inverse spinel crystal structure (Moyer, Vaz, Arena et al., 2011).

Additionally, anomalous increases in the magnetic moments of Fe3O4, CoFe2O4, and
NiFe2O4 films in the ultrathin limit (less than 10 nm) have been observed. The increase
in the moment seems to depend on the growth technique and substrate. Films that are
grown with sputtering or PLD on SrTiO3 (001) substrates can have magnetic moments
well above the bulk moment. For instance, 3-nm NiFe2O4 films have shown magnetic
moments four times the bulk value (Luders et al., 2005). This increase in moment is
attributed to cation disorder produced by the high energetics of the growth technique,
resulting in the crystal structure becoming more normal spinel as the film thickness is
reduced. Smaller enhancements were seen for CoFe2O4 films, with an increase in the
magnetic moment of about 20% for 3.5-nm films (Rigato, Geshev, Skumryev, &
Fontcuberta, 2009). Films grown by MBE on MgO (001) substrates, on the other
hand, do not show increased moments in the same thickness regime. For Fe3O4 and
CoFe2O4 films, there is evidence of superparamagnetic behavior (Moyer, Vaz, Kumah,
Arena, & Henrich, 2012; Voogt et al., 1998). These films have large densities of anti-
phase boundaries and a high density of domains, leading to each domain acting as an
individual paramagnet (Eerenstein, Palstra, Hibma, & Celotto, 2002; Eerenstein,
Hibma, & Celotto, 2004). Unlike films grown with higher-energy growth techniques
on SrTiO3, as described above, there is no change in the cation distribution for these
films as the film thickness decreases (Moyer et al., 2012).

6.3.1.3 Spin polarization of Fe3O4 and appearance of magnetic
dead layer

While magnetic measurements show no evidence of dead layers in ultrathin spinel
ferrite films, spin polarization measurements of Fe3O4 do observe a dead layer at
the surface with a thickness of 5e8 Å (Tobin et al., 2007). This dead layer arises
from a surface reconstruction that occurs on the surface of Fe3O4 (Chambers & Joyce,
1999). Surface-sensitive spin polarization measurements made with ultraviolet photo-
electron spectroscopy averaging over the entire Brillouin zone measure a spin polari-
zation of �30% to �40% (Tobin et al., 2007). Taking into account the magnetic dead
layer results in a bulk spin polarization of�65%, which is close to the predicted�66%
photoelectron spin polarization for Fe3O4. Prior spin-polarized UPS measurements
of Fe3O4 measured a spin polarization of �80% for the (111) surface (Dedkov,
Rudiger, & Guntherodt, 2002) and �55% for the (001) surface (Fonin, Dedkov,
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Pentcheva, Rudiger, & Guntherodt, 2007); these measurements, however, were not
averaged over the entire Brillouin zone and are susceptible to band effects.

6.3.2 Strain effects

6.3.2.1 Strain effects in perovskites

Manganites
The application of epitaxial strain through the choice of substrate is another tool used
to control the structure and properties of oxide materials. In manganite films, epitaxial
strain plays an important role in controlling the magnetic and transport properties. For
fully strained La0.7Sr0.3MnO3/LaAlO3 heterostructures, (110)-oriented films have
strongly enhanced transport properties for thicknesses between 3 and 12 nm compared
to (001)-oriented films (Tebano, Orsini, Di Castro, Medaglia, & Balestrino, 2010).
This effect originates from a reduced tetragonal distortion induced by epitaxy on the
(110)-oriented substrates that quenches the occupational imbalance between the Mn eg
orbitals and reinforces the ferromagnetic double exchange transport mechanism.

The effect of biaxial strain on the transport (Figure 6.4(a)) and magnetic
(Figure 6.4(b)) properties of La0.7Sr0.3MnO3 (001) films was investigated by varying
the biaxial strain from�2.3% toþ3.2% (Adamo et al., 2009). In the case of films with
a small amount of strain (jεxxj � 0:6%; i.e., SrTiO3, (LaAlO3)0.3-(Sr2AlTaO6)0.7
(LSAT), NdGaO3) (Adamo et al., 2009), the low-temperature resistivity values are
comparable to single crystals (Shiozaki, Takenaka, Sawaki, & Sugai, 2001). The
TMI is higher than 390 K for films under small compressive strain (NdGaO3,
εxx ¼ �0.5% and LSAT, εxx ¼ �0.4%), whereas TMI isw370 K for films under small
tensile strains (SrTiO3, εxx ¼ þ0.6%). Further increasing the tensile strain (DyScO3,
εxx ¼ þ1.6%) results in a decrease in TMI and in the case of large compressive strain
(LaAlO3, εxx ¼ �2.3%), the films exhibit insulating behavior over the entire temper-
ature range. Large tensile strains (>2.3%) gave rise to films with relatively high
resistivity.

An analytical model has been proposed to describe the effects of biaxial strain (εxx
and εyy) on the magnetotransport properties of the colossal magnetoresistance (MR)
manganites (Millis, Darling, & Migliori, 1998). In this model, TC depends on two pa-
rameters: (1) the bulk compression εB ¼ 1

3 ð2εxx þ εzzÞ (assuming εxx ¼ εyy), and (2)
the biaxial distortion ε* ¼ 1/2(εzz � εxx), where εxx ¼ (axx � abulk)/abulk and
εzz ¼ (azz�abulk)/abulk are the pseudocubic in-plane and out-of-plane strain, respec-
tively. Uniform compressive (tensile) strain will tend to increase (decrease) the
electron-hopping probability, reducing the effect of the electron-lattice coupling;
therefore, depending on the sign of the strain, the change in TC associated with εB

will be positive or negative, respectively. Conversely, biaxial distortion will only cause
a decrease in TC through an increase in the JahneTeller splitting of the eg electron
levels. The effects of strain on the Curie temperature can then be described by the for-
mula TC (εB,ε*) ¼ TC(0,0)[1 � aεB � bε*2], where a ¼ (1/TC)[(dTC)/(dεB)] and
b ¼ (1/Tc) [(d

2Tc)/(d
2
ε*2)]. The TC behavior of La0.7Sr0.3MnO3 films as a function

of εB and ε* (Figure 6.4(c)) has been reported (Adamo et al., 2009), and the measured
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TC(0,0) ¼ 345 � 9 K, a ¼ 1.55 � 0.01, and b ¼ 1460 � 30 are in good agreement
with theoretical predictions (Millis et al., 1998). Even though there was considerable
disagreement on the values of a and b within the literature on La0.7Sr0.3MnO3 films,
the authors suggested that the difference arises due to measurements on samples
with different thicknesses, which resulted in different and often inhomogeneous strain
conditions due to progressive strain relaxation, and using of a smaller number of sub-
strate materials in comparison with their studies (Millis et al., 1998).

Charge-ordered manganites
The charge-ordered phenomena observed in the manganites are also sensitive to
epitaxial strain. For tensile-strained Pr0.5Ca0.5MnO3/SrTiO3 (001) heterostructures,
the insulator-to-metal transition below 240 K is induced by applying a 7 T magnetic
field (Prellier et al., 2000), which is much lower than the field required in bulk
(w20 T). Electron diffraction studies reveal that films grown on SrTiO3 have signifi-
cantly increased in-plane MneMn distances (a and c parameters) and MneOeMn
angles corresponding to the basic frame of the MnO6 octahedra (roughly parallel to
the substrate). The latter tends toward 180� instead of 150� for the bulk. Consequently,
the in-plane metallic conductivity is considerably favored due to the increase of band-
width. In the case of compressive-strained Pr0.5Ca0.5MnO3/LaAlO3 (001) heterostruc-
tures (Haghiri-Gosnet, Hervieu, Simon, Mercey, & Raveau, 2000), films grow
(101)-oriented and electron diffraction studies reveal a monoclinic distortion. Contrary
to the bulk, where there is an abrupt increase of d101ð¼ d101Þ and a coupled abrupt
decrease of the b parameter at low temperature, the films reveal smooth and small
changes. Based on this, the charge-ordering distortion cannot fully develop at low tem-
perature for compressively strained Pr0.5Ca0.5MnO3 films. As a consequence, the
charge-exchange antiferromagnetism cannot be obtained, and instead, an insulating-
ferromagnetic phase was found with a critical temperature of 240 K.

Nickelates
Stabilization of the perovskite structure with Ni3þ can be difficult, but is readily
achieved in thin films through a combination of the effect of the perovskite substrate
template and the formation of ions with high kinetic energy in the plasma plume during
pulsed laser deposition (Catalan, 2008). Epitaxial strain can have large effects on the
metaleinsulator and magnetic transitions in the nickelates. Compressive strain is
accommodated by the film through either a bigger buckling of the oxygen octahedra
(which would increase TMI) or shrinking the NieO bond distance and therefore a
straightening of the buckling angle (which would decrease TMI). It has been suggested
that compressive strain should decrease TMI since the NieO bond is more compressible
than the ReO distance (Catalan, 2008). It has been observed, however, that TMI can
decrease for both compressive and tensile strain (Catalan, 2008; Catalan, Bowman, &
Gregg, 2000a,b; DeNatale & Kobrin, 1995; Novojilov et al., 2000; Scherwitzl et al.,
2010). In bulk, both external hydrostatic pressure (akin to compressive strain) and nega-
tive internal chemical pressure (analogous to tensile strain) are known to lower the
metaleinsulator transition temperature (Catalan, 2008). In both cases, a straightening
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of the NieOeNi bond angle occurs either by a decrease in the NieO distance under
compressive strain or by an increase in the ReO distance under tensile strain. The abil-
ity to control the metaleinsulator transition in NdNiO3 films with an external electric
field was demonstrated (Figure 6.5) (Scherwitzl et al., 2010), which presents an impor-
tant step toward realizing devices based on electrically controllable phase transitions.

Cobaltites
LaCoO3 is a zero-spin, nonmagnetic material in the bulk, but turns into a ferromagnet
below w80 K in thin-film form (Choi et al., 2012; Sterbinsky et al., 2012). Utilizing
scanning transmission electron microscopy complemented by X-ray and optical
spectroscopy, an unconventional strain relaxation behavior resulting in stripe-like,
lattice-modulated patterns in LaCoO3 thin films under different strain states has
been observed (Choi et al., 2012). This microscopic structural modulation was
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From Scherwitzl et al. (2010).
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reported to strongly couple to the unusual macroscopic ferromagnetic ordering in the
LaCoO3 films, with the formation of ferromagnetically ordered sheets comprising in-
termediate or high-spin Co3þ. LaCoO3 films grown under tensile strain revealed
stripes running perpendicularly to the surface, which increase in frequency as the
tensile strain increased and eventually formed a fairly regular superstructure; these
films exhibit a ferromagnetic transition with TC ¼w80 K. LaCoO3 films grown under
slight compressive strain revealed only a few in-plane stripes and did not show any
discernible magnetic transition or hysteresis loop. The atomic and electronic structures
of LaCoO3 films have also been probed using extended X-ray absorption fine structure
spectroscopy in an attempt to further understand the origin of their ferromagnetism
(Sterbinsky et al., 2012). These studies revealed a large difference between in-plane
and out-of-plane CoeO bond lengths, resulting from the tetragonal distortion in the
highly strained films. Based on X-ray absorption near edge spectroscopy, it was sug-
gested that the structural distortions are strongly coupled to the hybridization between
the atomic orbitals of Co3þ and O2�, but this increased hybridization is not the cause of
ferromagnetism. Instead, the strain-induced distortions of the oxygen octahedra in-
crease the population of eg electrons and concurrently depopulate the t2g electrons
beyond a stabilization threshold for ferromagnetic order.

6.3.2.2 Control of magnetic easy axes through strain

Epitaxial strain can also be used to control a material’s magnetic easy axis.
La0.7Sr0.3MnO3 films grown under compressive and tensile strain possess a magnetic
easy axis out-of-plane or in-the-plane of the film, respectively (Kwon et al., 1997).
Such effects are seen even in more complex materials such as the multiferroic BiFeO3

(Chu et al., 2007; Martin et al., 2008; Martin & Ramesh, 2012), where strain can tune
the nature of the easy axis of magnetization (Holcomb et al., 2010). Through a careful
experimental and theoretical study of photoemission electron microscopy (PEEM)
images and the underlying structure of BiFeO3, the authors reported that epitaxially
strained thin films do not show a degenerate magnetic plane as predicted for bulk,
but instead exhibit the formation of a preferred magnetic axis depending on the nature
of strain ([112] or [110] for compressive and tensile strain, respectively) (Holcomb
et al., 2010). For compressive strain, for example, the easy axis points as far out of
the surface plane as possible while remaining perpendicular to the polarization direc-
tion. Thick films no longer retain this preferred direction, instead showing a variation
in the magnetic direction, consistent with the perpendicular easy plane behavior
observed in bulk (Figure 6.6). These observations enabled a deeper understanding
of the magnetic exchange interactions at an interface between such epitaxial BiFeO3

films and a ferromagnet and aid in the design of next-generation devices (Chu et al.,
2008).

6.3.2.3 Magnetic anisotropy of CoFe2O4

Due to the large cubic magnetocrystalline anisotropy, K1, and magnetostriction, ls,
constants of CoFe2O4, the majority of work on understanding strain effects on the

144 Epitaxial Growth of Complex Metal Oxides



spinel ferrites focuses on this material (Slick, 1980). The large K1 arises from a spin-
orbit stabilized doublet ground state of the d7 electronic configuration of the Co2þ cat-
ions, which is caused by a trigonal crystal field of the Co2þ cations (Dionne, 2009;
Slonczewski, 1958a,b; Tachiki, 1960) and has resulted in CoFe2O4 being included
in a number of strain-driven multiferroic devices (Park et al., 2010; Zavaliche et al.,
2005; Zhang, Deng, Ma, Lin, & Nan, 2008; Zheng et al., 2004). The magnetic anisot-
ropy of CoFe2O4/MgO (001) heterostructures is understood by comparing the relative
strengths of the magnetoelastic and shape anisotropy energy terms. Coherently
strained thin films have an out-of-plane easy axis, as predicted by their large, positive
K1 constant (Chambers et al., 2002; Comes, Gu, Khokhlov, Lu, &Wolf, 2012; Dhakal
et al., 2010; Dorsey, Lubitz, Chrisey, & Horwitz, 1996; Lisfi et al., 2007; Moyer, Vaz,
Arena et al., 2011). As the film thickness increases and the strain is relaxed, the mag-
netocrystalline anisotropy contribution is reduced and shape anisotropy dominates,
resulting in a reorientation of the easy axes from out-of-plane to in-plane (Lisfi
et al., 2007).

The magnetic anisotropy for films grown on SrTiO3 (001) substrates is more
complicated than for films grown on MgO due to the large lattice mismatch between
CoFe2O4 and SrTiO3. X-ray diffraction measurements have shown the strain of
CoFe2O4/SrTiO3 (001) heterostructures to be both compressive (Dhakal et al., 2010;
Rigato et al., 2009; Xie, Cheng, Wessels, & Dravid, 2008) and tensile (Gao et al.,
2009; Moyer, Kumah, Vaz, Arena, & Henrich, 2013); the lattice mismatch suggests
that the strain should be compressive. The tensile strain state has been explained by
noting that the thermal expansion coefficient is larger for CoFe2O4 than for SrTiO3,
and if the strain relaxes fully during growth, upon cooling the CoFe2O4 film will
have a tensile strain (Gao et al., 2009; Moyer et al., 2013). Independent of whether
the strain is compressive or tensile, the magnitude of the strain is larger for films grown
on SrTiO3 than for those grown on MgO. This results in larger magnetic anisotropies,
with the magnetic easy axis being in-plane (out-of-plane) for films with compressive
(tensile) strain. CoFe2O4 thin films have also been grown on MgAl2O4, CoCr2O4-buff-
ered MgAl2O4, and CoCr2O4-buffered SrTiO3 (Suzuki, Hu, van Dover, & Cava,
1999). For (001)-oriented substrates, all films are compressively strained and have
in-plane easy axes, consistent with the magnetoelastic anisotropy determining the
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Figure 6.6 Predicted easy magnetic plane (shown as hexagon) for bulk BiFeO3 for a
polarization lying along the <111> crystal axis.
Adapted from Holcomb et al. (2010).
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easy axes. For films grown on (110)-oriented substrates, the easy axis is along the in-
plane [100] and the hard axis is along the [110] (Suzuki et al., 1999). Further annealing
of films grown on CoCr2O4-buffered MgAl2O4 (110) substrates reorients the easy axis
from the [100] direction to the [110] direction (Hu, Choi, Eom, Harris, & Suzuki,
2000), which is proposed to be due to a reduction in strain energy and a migration
of Co2þ cations from octahedral to tetrahedral sites.

6.3.2.4 Anisotropic magnetoresistance of Fe3O4

Fe3O4 has been used as a model system to understand the effects of epitaxial strain and
anti-phase boundaries on MR. Before discussing the MR of Fe3O4, it is necessary to
discuss the Verwey transition. The Verwey transition (TV w 120 K) (Verwey, 1939)
is a phase transition where the crystal structure changes from cubic to monoclinic
and is accompanied by a charge and orbital ordering that results in an increase in the
resistivity by over two orders of magnitude (Anderson, 1956; Iizumi et al., 1982;
Schrupp et al., 2005). For Fe3O4 (001) films grown on MgO and SrTiO3 and Fe3O4
(111) grown on Al2O3 (0001) substrates, the MR is always negative (Gong, Gupta,
Xiao, Qian, & Dravid, 1997; Ogale et al., 1998), with the MR defined as

MR ¼ rH � r0

r0
: (6.1)

Fe3O4 (001) films have an MR that is fairly constant with temperature and on the
order of a few percent for temperatures above TV, a spike in the MR at TV, and an
MR that increases linearly with decreasing temperature below TV (Gong et al.,
1997; Ogale et al., 1998). The MR of Fe3O4 (111) at temperatures above TV increases
slowly with decreasing temperature, before increasing linearly below the Verwey tran-
sition; there is no sharp spike at TV, however, as there is for Fe3O4 (001) (Ogale et al.,
1998). The difference in the size of the MR above TV between the (001) and (111)
films and the absence of a spike in the MR at TV in the (111) are not understood,
but anisotropies exist in both the magnetostriction and the phononemagnon disper-
sion, which will affect these films differently due to their different strain states (Ogale
et al., 1998). The linear increase in the MR with decreasing temperature below TV has
been attributed to electron transport across anti-phase boundaries (Ziese & Blythe,
2000). MR measurements as a function of magnetic field above TV show linear and
quadratic field dependence for fields applied parallel and perpendicular to the film,
respectively (Figure 6.7). This behavior is in agreement with a model of spin-
polarized electrons hopping between ferromagnetic chains across an AF interface,
demonstrating how anti-phase boundaries dominate the MR (Eerenstein, Palstra, Sax-
ena, et al., 2002).

The MR of Fe3O4 is dependent on both the magnetic field and current directions,
which is known as anisotropic magnetoresistance (AMR). The AMR for currents along
[100] was found to change sign simultaneously with K1 at a temperature of w150 K
(Naftalis et al., 2011; Ziese & Blythe, 2000). In addition, the AMR of Fe3O4 cannot be
fit to a simple one-band model as in La0.7Ca0.3MnO3, signifying that both minority and
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majority electrons contribute to the conduction in Fe3O4; in other words, Fe3O4 is not
fully spin-polarized (Ziese, 2000). Fe3O4/MgO (110) heterostructures show a positive
MR when the current and field are parallel to [001] and a negative MR when they are
parallel to [110 ], in agreement with (001)-oriented films (Sofin, Arora, & Shvets,
2011). The positive MR along [001] is caused by a reduction in the width of the canted
spin structure at anti-phase boundaries in this direction since it is the hard axis
compared to the [110 ] easy axis; at fields above the anisotropy field, the MR becomes
negative.

6.3.2.5 Composite multiferroic structures

One interesting strain effect studied in depth in recent history is the production of
composite (bilayer or nanocomposite) magnetoelectric systems consisting of materials
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with magnetic and ferroelectric/piezoelectric properties. These systems operate by a
strain-mediated magnetoelectric coupling between the ferroelectric and magnetic order
parameters (Zheng et al., 2004). One example is BaTiO3eCoFe2O4 self-assembled
nanostructures that grow epitaxial both in- and out-of-the-plane to produce arrays of
CoFe2O4 nanopillars embedded in a BaTiO3 matrix. Temperature-dependent magnetic
measurements illustrate the coupling between the two order parameters, which is man-
ifested as a change in magnetization at the ferroelectric TC. Thermodynamic analysis
revealed that the magnetoelectric coupling in such a nanostructure can be understood
on the basis of the strong elastic interactions between the two phases. Electric
field-induced magnetization switching was later demonstrated in the composite
BiFeO3eCoFe2O4 system (Figure 6.8) (Zavaliche et al., 2005). Further, the
morphology of self-assembled perovskite-spinel nanostructures can be controlled
simply by selecting single-crystal substrates with different orientations (Zheng et al.,
2006). For BiFeO3eCoFe2O4, (001) substrates result in rectangular-shaped CoFe2O4

nanopillars, whereas (111) substrates result in triangular-shaped BiFeO3 nanopillars.
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6.3.3 Interface/multilayer effects

6.3.3.1 LaMnO3/SrMnO3 superlattices

Advances in the synthesis of complex-oxide heterostructures, with the ability to con-
trol unit cell growth and create atomically sharp interfaces, has enabled researchers to
achieve collective-ordering phenomena in materials through superlattice and bilayer
heterostructures (Catalan et al., 2000b). Superlattices of complex oxides where the
superlattice period is below a characteristic length-scale (Scherwitzl et al., 2010)
can show unusual collective states (Martin et al., 2008). In the manganites, the super-
lattice approach has been utilized to synthesis the ordered analogue of
La0.74Sr0.26MnO3 by fabricating epitaxial superlattices of (LaMnO3)m(SrMnO3)n
that have a constant stoichiometry of n/(m þ n) ¼ 0.26 and a superlattice periodicity
less than the unit cell distance (Slonczewski, 1958a). This general approach has
enabled the study of the effects of strain and cation ordering for a wide range of com-
plex oxides at various doping levels.

In the La1�xSrxMnO3 system, electronic, structural, and magnetic transitions occur
as the doping level, x, is varied. The parent compounds, LaMnO3 and SrMnO3, are
both AF insulators with Mn valence states of 3þ and 4þ, respectively. Between
x ¼ 0.15 and 0.5, charge itinerancy and ferromagnetism are coupled by the double ex-
change mechanism (Slonczewski, 1958b), which enables electrons to move between
neighboring Mn sites when their core t2g spins are aligned in parallel, and forbids
this when they are anti-parallel. With increased Sr content (x > 0.5), superexchange
dominates, and AF order is observed. In addition to altering the Mn valence and mag-
netic structure, the degree of doping changes the local bonding environment owing to
the difference in ionic radii between Sr2þ, La3þ, and Mn3þ/4þ. In the cubic perovskite
structure, Mn3þ is in a 3d4 ðt32ge1gÞ state, with a lone electron in the doubly degenerate
anti-bonding eg orbitals (dx2�y2 and d3z2�r2 ). This degeneracy can be removed through
tetragonal distortions of the MnO6 octahedra. The octahedra can also rotate in a coop-
erative manner in ABO3 perovskite systems when the A-site cation radius is small
enough that t ¼ hA� Oi= ffiffiffi

2
p hB� Oi (hA� Oi and hB� Oi are the A- and B-site

cation-oxygen bond lengths) is less than unity [147]. Distortions or rotations of the
MnO6 octahedra alter the MneOeMn bond angles away from the optimal 180�,
reducing the bandwidth for charge transport, which in turn reduces the TC of
double-exchange-mediated ferromagnets. Thus, variance in cation radii can affect
local bond angles and tip the balance between competing interactions.

Detailed studies carried out on superlattices composed of the LaMnO3 and
SrMnO3 found that (LaMnO3)2n/(SrMnO3)n (1 � n � 5) superlattices undergo a
metaleinsulator transition (Figure 6.9) as a function of n, being metallic for n � 2
and insulating for n � 3 (Bhattacharya et al., 2008). Transport, magnetization, and
polarized neutron reflectivity studies revealed the ferromagnetism to be relatively uni-
form in the metallic state and strongly modulated in the insulating state, being large in
LaMnO3 and suppressed in SrMnO3. This modulation is consistent with a Mott tran-
sition driven by the proximity between the (LaMnO3)/(SrMnO3) interfaces. The insu-
lating state for n � 3 obeys a variable-range hopping model at low temperatures due to
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states at the Fermi level that emerge at the (LaMnO3)/(SrMnO3) interfaces and are
localized by disorder. Cation-ordered (LaMnO3)m/(SrMnO3)2m superlattices reveal
dramatically enhanced Néel temperatures (TN), the highest of any La1�xSrxMnO3 com-
pound, w70 K greater than compositionally equivalent randomly doped La1/3Sr2/
3MnO3 [142, 148]. The AF order is A-type, consisting of in-plane double-exchange-
mediated ferromagnetic sheets coupled antiferromagnetically along the out-of-plane
direction. Through synchrotron X-ray scattering, an in-plane structural modulation
that reduces the charge itinerancy and hence the ordering temperature within the ferro-
magnetic sheets, thereby limiting TN, was noted. This modulation is mitigated and
driven to long wavelengths by cation ordering, enabling the higher TN values of the
superlattices. These results provide insight into how cation-site ordering can enhance
cooperative behavior in oxides through subtle structural phenomena.
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6.3.3.2 Induced ferromagnetism in LaVO3/SrVO3 superlattices

The discovery of electron conduction at the heteroepitaxial interface of the band insu-
lators LaAlO3 and SrTiO3 (Ohtomo & Hwang, 2004) has resulted in the search for
emergent phenomena, such as magnetism, at the interfaces of many other material sys-
tems (Hwang et al., 2012). One system in which room-temperature ferromagnetism
has been observed is in superlattices of the antiferromagnet LaVO3 (TN ¼ 143 K)
and the Pauli paramagnet SrVO3, where one layer of SrVO3 was inserted between
two to six layers of LaVO3 (LaVO3[m]/SrVO3, m ¼ 2e6) (Luders, Sheets, David,
Prellier, & Fresard, 2009). For an even number of LaVO3 layers, the superlattices
are ferromagnetic, whereas for an odd number of LaVO3 layers, the superlattices
are nonmagnetic. The magnetic moment for the m ¼ 6 superlattice is 1.4 mB/V, which
is close to the expected value of 1.5 mB/V for a LaVO3/SrVO3 interface, and decreases
by only 20% as the temperature increases from 10 to 300 K. Multiple theoretical works
have attempted to understand the physics behind the magnetism at this interface,
with agreement that octahedral rotations and changes in the charge carrier density at
the interface play a role (Dang & Millis, 2013a,b; Schuster, Luders, Fresard, &
Schwingenschlogl, 2013). Additionally, there is a predicted alteration of short and
long VeO bond lengths along the c-axis for odd and even layers of LaVO3 (Schuster
et al., 2013). These changes in bond length should give rise to ferromagnetism in an
odd number of LaVO3 layers and no magnetism in an even number of LaVO3 layers.
While the theoretical prediction for when ferromagnetism should occur disagrees with
the experiment, it does predict that there should be changes in the magnetic ordering
based on the number of LaVO3 layers.

6.3.3.3 Exchange bias in spinel ferrites

Exchange bias in oxides was first demonstrated with CoO/Fe3O4 (001) superlattices
grown on NaCl substrates (Terashima & Bando, 1987). By growing CoO/Fe3O4

bilayers on SrTiO3 (001) and Al2O3 (0001) substrates, the surface orientation can
be changed to (001) and (111), respectively (van der Zaag, Ball, Feiner, Wolf, &
van der Heijden, 1996). There was no appreciable difference in the exchange bias be-
tween the two different surface orientations, both showing an exchange bias field of
w3600 Oe at 5 K. The onset temperature for exchange bias, or blocking temperature
(TB), is dependent on the CoO thickness. For CoO layers above 5 nm, TB ¼ 291 K,
which is the Néel temperature of CoO. Below 5 nm, TB decreases sharply and disap-
pears at 0.4 nm. The exchange bias field (HEB) also depends on the thickness of the
CoO, in that it is constant and maximum between 1.6 and 5 nm, before decreasing
with increasing thickness and linearly with temperature. The spin structure at the inter-
face of CoO and Fe3O4 was examined with neutron diffraction studies of CoO/Fe3O4
(001) superlattices grown on MgO (001) (Ijiri et al., 1998). Surprisingly, these
measurements showed that the CoO spins are aligned at a 90� angle to the Fe3O4 spins.
This work demonstrated the need to fully understand the spin alignment of the system
in order to accurately model the exchange bias, as most models up to this time had
assumed collinear spin alignments. Recently, exchange bias has been demonstrated
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in a Fe3O4/BiFeO3 bilayer on SrTiO3 (001) (Qu et al., 2012). A maximum
HEB w 375 Oe was measured for a 5-nm BiFeO3 film at 5 K; HEB decreases
quickly as both the BiFeO3 thickness and temperature increase, disappearing between
200 and 300 K.

6.3.3.4 Exchange bias in La0.7Sr0.3MnO3/BiFeO3

An all-perovskite system that shows unique interface coupling and exchange bias is
La0.7Sr0.3MnO3/BiFeO3. By creating an interface between these two materials, a novel
ferromagnetic state arises in the antiferromagnet BiFeO3 (Yu et al., 2010). Using X-ray
magnetic circular dichroism at the Mn and Fe L2,3 edges, the authors discovered that
the development of this ferromagnetic spin structure is strongly associated with the
onset of a significant exchange bias. Linearly polarized X-ray absorption measure-
ments at the oxygen K edge show that the magnetic state is directly related to an elec-
tronic orbital reconstruction at the interface. The ferromagnetic state gives rise to a
significant exchange bias interaction with La0.7Sr0.3MnO3, and both exhibit the
same temperature dependence. The discovery of correlation between the electronic
orbital structure at the interface and exchange bias suggests the possibility of using
an electric field to control the magnetization of ferromagnets.

By varying the thickness of the individual layers in BiFeO3/La0.7Sr0.3MnO3

heterostructures (Huijben et al., 2013), it was found for thick BiFeO3 layers that the
exchange bias field is inversely proportional to the thickness of the La0.7Sr0.3MnO3
layers, which is in good agreement with previous studies on conventional exchange
bias systems (Nogués & Schuller, 1999). For ultrathin BiFeO3 layers there exists a
critical thickness of 2 nm (5 u.c.), below which the exchange bias cannot exist. As
previous studies have shown that the ferroelectric polarization remains present in
these BiFeO3/La0.7Sr0.3MnO3 heterostructures down to BiFeO3 thicknesses of
only 4 unit cells (Maksymovych et al., 2012), the evolution in the antiferro-
magnet behavior of the BiFeO3 layer determines the interfacial exchange bias coupling.
This was confirmed with linear dichroism X-ray absorption spectroscopy (Figure 6.10),
which revealed a strongly reduced linear dichroism for ultrathin BiFeO3 layers.

6.4 Characterization of magnetic-oxide thin films

Characterization of magnetic-oxide thin films includes a range of techniques. The most
conventional of these build off of typical measurements applied to bulk materials—
including magnetometry (in the form of vibrating sample (VSM) and superconducting
quantum interference device (SQUID) magnetometers) and magnetotransport. For
magnetometry, the only special consideration that needs to be taken is the relative
volume of the magnetic film material as compared to that of the substrate. Because
the vastly different volume between a film (w10�7e10�6 cm3) and substrate
(w10�2 cm3), even a strongly magnetic thin film can be swamped out by the diamagnetic
background of the much larger substrate. Additionally, if the substrate includes magnetic
ions and a resulting paramagnetic signature (as is the case in rare-earth-containing
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compounds), it might be impossible to measure the film accurately. Finally, for small
magnetic moment materials, such approaches might not have the resolution for such
small volumes of material and will not be able to resolve the moment accurately. For
mangetotransport, the biggest practical challenge corresponds to the magnitude of the
resistance of the material. Ultrathin films—even of relative good conductors—can
make accurate and stable measurement of the resistance difficult, give rise to drift and
noise in magnetotransport measurements, and render resistivity, carrier concentrations,
and other values inaccurate.

In such situations, one might need to move to a different probe of magnetic order.
For instance, optical probes of magnetism in thin films, including second harmonic
generation (Fiebig, Pavlov, & Pisarev, 2005) and magneto-optic Kerr effect
(MOKE) (Qiu & Bader, 2000), are easily applied and widely used to sense magnetic
response in thin films. The advantage of these techniques comes from their relative
simplicity, widespread applicability, and the potential for dynamic study under applied
fields. Moving up the scale of complexity, there is growing interest in neutron scat-
tering to probe thin films (Fitzsimmons et al., 2004; Majkrzak, 1996; Saerbeck &
Klose, 2012; Schreyer et al., 2000). Such approaches can provide unprecedented ac-
cess to the nature of magnetic order in materials, but require dedicated time and facil-
ities to accomplish. The last measurement technique we highlight is synchrotron-based
probes, including X-ray magnetic linear dichroism (XMLD), circular dichroism
(XCMD), and PEEM (He, Arenholz, Scholl, Chu, & Ramesh, 2012; St€ohr, Padmore,
Anders, Stammler, & Scheinfein, 1998). Dichroism, or the polarization-dependent ab-
sorption of light, provides a way to sensitively probe magnetic order in materials
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(St€ohr & Siegmann, 2006). XMCD arises from directional spin alignment (as occurs in
ferro- and ferrimagnets) and can be used to measure the size and direction of cation-
specific magnetic moments with circularly polarized X-rays. This effect is usually seen
at the resonance positions of the magnetic elements. XMLD arises from axial spin
alignment (as occurs in ferro-, ferri-, or antiferromagnets) and can be used in the study
of antiferromagnetism with linearly polarized X-rays. The axial spin alignment gives
rise to a charge distribution anisotropy through spineorbital coupling, which results in
a large XMLD effect typically seen in the absorption fine structure of the resonance
peaks of the magnetic elements. Combining XMCD and XMLD measurements and
analysis, PEEM imaging has also been widely applied in the study of ferroic materials
since it provides a way to spatially map out domain structures in these materials with
resolutions as good as 10 nm (Anders et al., 1999).

Modern magnetic thin films, in particular multiferroic materials, can offer chal-
lenges to assess magnetic order. Ultimately one might need to call upon multiple
measurement techniques to accurately assess the nature of magnetic order. For
example, in the candidate multiferroic thin film PbVO3, a combination of SHG and
XMLD was used to determine that the material transitioned from a polar 4 mm state
to a polar, magnetic state between 100 and 130 K (Figure 6.11). SHG was used to
observe a temperature-dependent change in symmetry with the likely onset of a
low-temperature G type (40=m0mm0 symmetry) AF phase that, without the combination
of techniques, would have not been possible to determine.

6.5 Applications of epitaxial magnetic-oxide thin films

6.5.1 Magnetic tunnel junctions

An MTJ consists of two magnetic layers separated by a thin insulating layer. For mag-
netic layers that have large spin polarizations, large resistance changes occur through
the junction when the moments of the magnetic layers switch from a parallel to an anti-
parallel alignment. The first observation of MR in an all-oxide MTJ was for a
La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3 junction, in which an MR of 83% was
observed at 4 K (Figure 6.12) (Lu et al., 1996). Further structural improvements to
the quality of the heterostructure and the addition of a CoO top pinning layer increased
the MR of these MTJs to as high as 1850% at 4 K, corresponding to a spin polarization
of 95%, with the MR persisting up to 280 K (Bowen et al., 2003; Sun, KrusinElbaum,
Duncombe, Gupta, & Laibowitz, 1997; Viret et al., 1997). Junctions with Fe3O4 elec-
trodes separated by MgO have also been fabricated, but they have surprisingly small
MR values of 1.5% at 60 K, potentially due to disorder at the interface or formation of
Fe1�dO (Li, Gupta, Xiao, Qian, & Dravid, 1998). The MR did persist, however, up to
300 K with a value of 0.5%. Lastly, MTJs that use both Fe3O4 and LSMO as the mag-
netic layers have been made with insulating spinel layers, such as CoCr2O4 (Alldredge,
Chopdekar, Nelson-Cheeseman, & Suzuki, 2006; Hu & Suzuki, 2002). The advantage
of using different magnetic materials is that the switching fields of the two layers are
distinctly separated. These junctions have a maximum MR of �25% at 60 K and
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�0.5% at 300 K, with the negative sign coming from the negative spin polarization of
Fe3O4 (Hu & Suzuki, 2002).

6.5.2 Spin injection

The efficient injection of spin-polarized electrons into semiconductors is necessary for
the development of many proposed spintronic devices (Datta & Das, 1990). The
requirements for a material to be a good spin injector are a large spin polarization at
the Fermi energy, a small conductivity mismatch with semiconductors, and the ability
to be grown epitaxially on common semiconductors. Spin-injection experiments with
ferromagnetic metals, such as Fe and Ni, resulted in spin-polarized currents of less than
1% due to a large conductivity mismatch (Schmidt, Ferrand, Molenkamp, Filip, & van
Wees, 2000). The spinel ferrites are promising materials to be used as spin injectors
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since they can meet the three requirements listed above. First principle calculations
have predicted them to have large spin polarizations (Antonov, Harmon, & Yaresko,
2003; Jeng & Guo, 2002; Szotek et al., 2006; Penicaud, Siberchicot, Sommers, &
Kubler, 1992; Zhang & Satpathy, 1991). While Fe3O4 has a conductivity larger
than semiconductors and other ferrites (MFe2O4, M ¼Mn, Co, Zn) are insulating,
alloying Fe3O4 with the insulating ferrites enables the conductivity to be tuned by
over three orders of magnitude (Ishikawa, Tanaka, & Kawai, 2005; Moyer, Vaz,
Negusse, Arena, & Henrich, 2011; Takaobushi et al., 2006; Tripathy, Adeyeye,
Boothroyd, & Piramanayagam, 2007; Venkateshvaran et al., 2009). Recently, progress
has also been made on growing these materials epitaxially on semiconducting sub-
strates. Spinel ferrites have been grown directly on GaAs (Lu et al., 2005, 2004;
Preisler, Brooke, Oldham, & McGill, 2003; Zhang et al., 2011), InAs (Huang et al.,
2011), GaN (Zou et al., 2011), and ZnO (Li, Guo, & Bai, 2011), and on Si by using
Y2O3:ZrO2 (YSZ) (Bachelet et al., 2011), Sc2O3 (Sanchez et al., 2011), and TiN
(Kumar, Pandya, & Chaudhary, 2013) buffer layers. A spin polarization of 28%
was measured for electrons injected from Fe3O4 into ZnO.
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6.5.3 Spin filters

Spin-filter devices filter spin-polarized electrons that tunnel between ferromagnetic and
nonmagnetic metals through a ferromagnetic insulator. This phenomenon is realized
through the different tunneling barrier heights of the insulating magnetic layer
for spin up and spin down electrons. BiMnO3 was the first oxide material that was
used as a spin filter, where a 50% change in the tunneling resistance of an Au/3.5 nm
BiMnO3/1 nm SrTiO3/LSMO/SrTiO3 (001) device was measured at 3 K, correspond-
ing to a spin-filtering efficiency of 22% (Gajek et al., 2005). Since a TC ¼ 105 K for
BiMnO3 eliminates the potential for room temperature spin-filtering, the majority of
recent research has focused on the spinel ferrites. The spin-filter effect has been
observed using CoFe2O4 (Chapline & Wang, 2006; Ramos et al., 2007; Takahashi
et al., 2010), NiFe2O4 (Luders et al., 2006), and MnFe2O4 (Matzen, Moussy, Miao,
&Moodera, 2013) barrier layers, with CoFe2O4 having a measured spin filter efficiency
of �4% at room temperature (Ramos et al., 2007; Takahashi et al., 2010). Recently,
single-domain CoFe2O4 nanojunctions with a cross-section of w5 nm produced a
room temperature spin-filter efficiency of �8% (Figure 6.13) (Matzen et al., 2012).
These spin-filter efficiencies have been determined from evaluating Julli�ere’s formula
(Julliere, 1975) for an MTJ. Measurements of the spin-filter efficiency using supercon-
ducting electrodes, however, result in positive spin-filter efficiencies for CoFe2O4

(Ramos et al., 2008; Rigato et al., 2010), demonstrating how the band alignments be-
tween the electrodes and the spin-filtering materials and the wave-function symmetry of
the bands can result in a change in sign in the spin-filter efficiency (Caffrey, Fritsch,
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Archer, Sanvito, & Ederer, 2013). It has been proposed that an electric field gate could
be used to reversibly change the sign of a spin filter (Caffrey et al., 2013).

6.6 Future of epitaxy of complex-oxide magnets

6.6.1 Frustrated systems

Amagnetic material in which all of the pairwise magnetic interactions cannot be simul-
taneously satisfied is called frustrated. Magnetic frustration is common in bulk mate-
rials, exemplified by the spin ice pyrochlores, such as Dy2Ti2O7 (Bramwell &
Gingras, 2001; Ramirez, Hayashi, Cava, Siddharthan, & Shastry, 1999). Epitaxial
thin films provide a unique opportunity for studying and perturbing magnetic frustra-
tion, since they enable the opportunity to alter both the symmetry of the system through
epitaxial strain and the strength of the magnetic interactions through chemical substitu-
tion. While magnetic frustration exists in many oxide systems—such as spinel ferrites
and chromates (Iwata et al., 2009; Yamamoto, Tanaka, & Kawai, 2001), hexagonal and
perovskite manganites (Fujimura, Takahashi, Yoshimura, & Ashida, 2007; Yang et al.,
2006), and double perovskites (Chakraverty et al., 2011)—due to the lack of suitable
substrates many of the popular bulk magnetically frustrated materials, like the
spin-ice pyrochlores, are just now being investigated as epitaxially strained thin films
(Bovo et al., 2014; Leusink et al., 2014).

6.6.2 Flexomagnetism

The flexoelectric effect results in a shift in a ferroelectric hysteresis loop when a strain
gradient exists throughout a ferroelectric. This has been demonstrated in thin films by
growing a compositionally graded PbZr1�xTixO3, where the strain gradient is created
by coherently straining the compositionally graded film to a substrate (Mangalam,
Karthik, Damodaran, Agar, & Martin, 2013). The free energy equation for magnetic
systems contains an equivalent term for flexomagnetism:

Fflexomagnetism ¼ �nijklHi
vsjk

vxl
; (6.2)

where nijkl is the flexomagnetic tensor (Lukashev & Sabirianov, 2010). Since this
energy term is linear in H, a strain gradient would result in a shift in the magnetic
hysteresis loop. While there has yet to be experimental confirmation of the flex-
omagnetic effect, theory has predicted its occurrence (Lukashev & Sabirianov, 2010),
and epitaxial thin films are a promising avenue for investigating flexomagnetism.

6.6.3 Challenges and summary

Many challenges still exist in the field of epitaxial magnetic oxides, one of which is a
lack of substrates. While many substrates exist for the growth of perovskites, other
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magnetic systems have relatively few options. Developing new substrates that enable
strain-engineered films of spinels, pyrochlores, garnets, etc. will allow for a greater
understanding of how strain affects their magnetic properties. Additionally, the pro-
duction of magnetically inert substrates (by controlling the constituent species or
impurities) is essential.

A second challenge is the ability to make accurate measurements on magnetic
devices. Many devices require thin films with thicknesses of nanometers and areas of
hundreds of microns. The most accurate method to measure magnetism is to use a
SQUIDmagnetometer, but it does not have the sensitivity to measure magnetic devices
with these dimensions. AMOKEmagnetometer canmeasure the magnetic properties of
devices, but it is not inherently quantitative. Making accurate magnetic measurements
on magnetic devices is a challenge, and researchers need to take care when designing
devices in order to accurately report the performance of magnetic devices.

Lastly, there is a lot of interest in nonmagnetic materials and superlattices that
exhibit magnetism in thin film form. The magnitude of this magnetism is often quite
small, on the order of a fraction of a Bohr magneton per cation. In response to reports
about magnetism in HfO2, researchers demonstrated that HfO2 films are nonmagnetic,
but appear to have room temperature ferromagnetism when handled with stainless steel
tweezers (Abraham, Frank, & Guha, 2005). This example highlights the care necessary
to not magnetically contaminate samples when reporting on the emergence of magne-
tism in nonmagnetic bulk systems.

In summary, magnetic oxides are a fascinating class of materials to study for both
their complex physical nature and their potential use in many novel devices. Epitaxial
growth of these materials enables one to control their magnetic properties and spin
structures through application of epitaxial strain, control of film thickness, creation
of superlattices, and coupling with other ferroic-order parameters. While many chal-
lenges still remain, particularly with increasing the temperature limit of these materials
to above room temperature, an incredible amount of knowledge has already been
attained that has enabled the understanding of many novel phenomena, such as mag-
netic dead layers, ferromagnetism at the interface of nonferromagnetic oxides, precise
control of TC, exchange bias, the spin-filter effect, etc. With the continued advances in
thin-film growth technology and the emerging research in systems such as the magne-
toelectric multiferroics, one can only expect numerous new and exciting scientific
discoveries in the field of epitaxial magnetic oxides in the near future.
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