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Abstract

Motivation: Advances in sequencing technology continue to deliver increasingly large molecular

sequence datasets that are often heavily partitioned in order to accurately model the underlying

evolutionary processes. In phylogenetic analyses, partitioning strategies involve estimating condi-

tionally independent models of molecular evolution for different genes and different positions

within those genes, requiring a large number of evolutionary parameters that have to be estimated,

leading to an increased computational burden for such analyses. The past two decades have also

seen the rise of multi-core processors, both in the central processing unit (CPU) and Graphics pro-

cessing unit processor markets, enabling massively parallel computations that are not yet fully ex-

ploited by many software packages for multipartite analyses.

Results: We here propose a Markov chain Monte Carlo (MCMC) approach using an adaptive multi-

variate transition kernel to estimate in parallel a large number of parameters, split across

partitioned data, by exploiting multi-core processing. Across several real-world examples, we dem-

onstrate that our approach enables the estimation of these multipartite parameters more efficiently

than standard approaches that typically use a mixture of univariate transition kernels. In one case,

when estimating the relative rate parameter of the non-coding partition in a heterochronous data-

set, MCMC integration efficiency improves by> 14-fold.

Availability and Implementation: Our implementation is part of the BEAST code base, a widely

used open source software package to perform Bayesian phylogenetic inference.

Contact: guy.baele@kuleuven.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Bayesian inference has become increasingly popular in molecular

phylogenetics over the past decades, with Markov chain Monte

Carlo (MCMC) integration revolutionizing the field (Yang and

Rannala, 1997). The basic idea is to construct a Markov chain that

has as its state space the parameters of the statistical model and a

stationary target distribution that is the posterior probability
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distribution of the parameters. Although MCMC has made analysis

of many complex models possible, it is not a panacea, as chains can

fail to converge to the target distribution for a number of reasons,

including poor mechanisms for proposing new states (Huelsenbeck

et al., 2001). In addition, the large number of parameters associated

with increasing model complexity and the amount of sequence data

in modern-day datasets have considerably elevated the computa-

tional demands of Bayesian phylogenetic analyses.

It is generally acknowledged that the choice of an effective pro-

posal distribution for the random walk Metropolis algorithm is es-

sential in order to obtain reasonable results in a limited amount of

time (Haario et al., 2001). This choice concerns both the size and

the spatial orientation of the proposal distribution, which are often

very difficult to choose well since the target density is unknown.

A possible remedy is provided by adaptive algorithms, which use the

history of the chain in order to adequately tune the proposal distri-

bution (Haario et al., 2001). Adaptive MCMC algorithms are typic-

ally used to achieve efficient mixing when sampling from

complicated high-dimensional distributions, by automatically learn-

ing better parameter values of such algorithms while they are run-

ning (Roberts and Rosenthal, 2009). Using computer simulations,

Roberts and Rosenthal (2009) show that adaptive MCMC performs

very well compared to non-adaptive algorithms, even in the case of

high dimensions, in terms of MCMC chain mixing.

While Bayesian inference allows for complex evolutionary

models to be used in phylogenetic inference, recent advances in

sequencing technology are continuously challenging the computa-

tional complexity of phylogenetic analyses. The availability of full

genome data and the frequent use of data partitioning strategies in

Bayesian phylogenetics have resulted in an abundance of param-

eters that need to be estimated. Large protein-coding datasets have

been shown to benefit from being partitioned by gene and by

codon position, for both computational reasons and the increases

in model fit partitioning strategies have to offer (Baele and Lemey,

2013).

While codon-based models explicitly incorporate information

about the genetic code, and as such are arguably among the more

biologically realistic models of the evolution of coding sequences,

the currently available codon models are not necessarily the best

choice for analysing protein-coding datasets. For example, Shapiro

et al. (2006) determined the most appropriate model for alignments

of 177 RNA virus genes and 106 yeast genes, using 11 substitution

models including one codon model and four codon partition (CP)

models. Despite the often-claimed biological realism of codon mod-

els, the authors found that the majority of analysed gene alignments

are best described by CP substitution models that avoid the compu-

tational cost of full codon models, rather than by standard nucleo-

tide models. These results make it clear that CP substitution models

are not only a computationally realistic alternative to standard mod-

els but also may be frequently statistically superior (Shapiro et al.,

2006; Baele and Lemey, 2013).

Whether using full codon models or CP models, the number of

parameters of a typical Bayesian phylogenetic analysis increases

drastically by partitioning strategies, resulting also in a large array

of likelihoods that need to be evaluated simultaneously. However,

the computational resources available to researchers have also

markedly increased, with impressive consistency over a similar

time scale to the advances in sequencing technology. One import-

ant aspect of this is the ubiquitous availability of multi-processor

and multi-core computers, inviting novel parallel algorithms to

make efficient use of these machines (Suchard and Rambaut,

2009).

Many Bayesian phylogenetics software packages, such as BEAST

(Drummond et al., 2012) and MrBayes (Ronquist et al., 2012), do

not fully exploit the inherent parallelism of such multi-core systems

when confronted with partitioned data because they typically up-

date one single parameter at a time (a practice called single-

component Metropolis-Hastings; Gilks et al., 1996). Under such an

update scheme on multi-processor systems, only one of the poten-

tially large collection of (observed) data likelihoods is being modi-

fied at any one time, thereby vastly underusing the computational

power of such hardware. However, updating all the models’ param-

eters at once would lead to multiple data likelihoods being modified

simultaneously, thereby putting to better use the resources offered

by these multi-core systems.

Instead of updating all the parameters one by one, by using low-

dimensional or scalar components (Gilks et al., 1996), we propose

here to use multivariate components to update blocks of parameters,

leading to acceptance or rejection for all of those parameters simul-

taneously. To accomplish this, we exploit an adaptive MCMC ap-

proach based on the study of Roberts and Rosenthal (2009), for

which we provide an implementation in the popular open source

BEAST software package (Drummond et al., 2012), to simultan-

eously estimate a large number of partition-specific parameters.

In this article, we apply such an adaptable variance multivariate nor-

mal (AVMVN) transition kernel to a collection of clock model par-

ameters, speciation model parameters, coalescent model parameters

and partition-specific evolutionary model parameters (which include

substitution model parameters, varying rates across sites parameters

and relative rate parameters). Note that other model parameters,

such as for discrete and continuous trait models and sequence error

models for example, can also be used with our proposed AVMVN

transition kernel. We show that such an AVMVN transition kernel

tremendously increases estimation performance over a standard set

of single-parameter transition kernels. We also provide a new paral-

lel likelihood implementation in BEAST, to be used with the

BEAGLE library (Ayres et al., 2012) and show that this implementa-

tion further increases performance.

2 Materials and methods

2.1 Adaptive MCMC
We consider a version of the adaptive Metropolis (AM) algorithm

discussed by Haario et al. (2001) and Roberts and Rosenthal (2009)

that continuously adapts its d-dimensional proposal distribution to

better match the target distribution. The AM algorithm is based on

the classical random walk Metropolis algorithm (Metropolis et al.,

1953) and an earlier study by Haario et al. (1999) that entertains a

Gaussian proposal distribution centred on the chain’s current state

and with a covariance calculated from a fixed number of previous

states. The AM algorithm generalizes this by computing the covari-

ance of the proposal distribution using all of the previous states.

Importantly, this extension does not lead to an increased computa-

tional cost since one can apply simple recursion formulae to update

the covariances (Haario et al., 2001). An important advantage of

the AM algorithm is that it starts using the cumulating information

from the beginning of the run, ensuring that the search becomes

more effective at an early stage.

Apart from updating the proposal distribution by using currently

available knowledge about the target distribution, the construction

of the AM algorithm is identical to the usual random walk

Metropolis-based chain. Suppose that at iteration n� 1 we have

sampled the states X0;X1; . . . ;Xn�1, where X0 is the initial state.
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Fix the real parameter Cd and integer parameter C0; a candidate point

Y is then sampled from the (asymptotically symmetric) normal pro-

posal distribution, given at iteration n by Qnðx; �Þ ¼ Nðx; ðCdÞ2Id=dÞ
for n � C0, while for n > C0

Qnðx; �Þ ¼ ð1� bÞNðx;Rn=dÞ þ bNðx; ðCdÞ2Id=dÞ; (1)

where Rn is the current empirical estimate of the covariance struc-

ture of the target distribution based on the run so far, Id is the d-di-

mensional identity matrix and b is a small positive constant. The

candidate point Y is accepted with probability

aðXn�1;YÞ ¼ min 1;
pðYÞ

pðXn�1Þ

� �
; (2)

in which case we set Xn ¼ Y, and otherwise Xn ¼ Xn�1, where pð�Þ is

the target distribution, the posterior density given the observed data.

Note that the chosen probability for the acceptance resembles

the familiar acceptance probability of the Metropolis algorithm.

This choice for the acceptance probability is not based on symmetry/

reversibility conditions as these cannot be satisfied, given that the

corresponding stochastic chain is no longer Markovian (Haario

et al., 2001). It is known that adaptive MCMC algorithms will not

always preserve stationarity of pð�Þ (Roberts and Rosenthal, 2009).

However, having proven the ergodicity of adaptive MCMC under

certain conditions (Roberts and Rosenthal, 2007), the authors have

also shown that the AM algorithm above will indeed converge to

pð�Þ and satisfy the Weak Law of Large Numbers, even though it is

not Markovian.

We have implemented the AM algorithm described above in

BEAST (Drummond et al., 2012) through the AVMVN transition

kernel. While Roberts and Rosenthal (2009) fix C0 to equal 2d,

i.e. two times the dimension of the parameter space being updated

by the AM algorithm, phylogenetic models may take a long time

to approach their stationary distributions. As a value of 2d is

likely to be insufficient to provide adequate performance, we ask

BEAST users to specify a value for C0. Further, Roberts and

Rosenthal (2001) show that the proposal Nðx; ð2:38Þ2Rn=dÞ is op-

timal in a particular large-dimensional context, hence their cor-

responding proposal to approximate such a scenario. We do not

follow this approach because we rely on the automatic tuning

approaches present in BEAST (Drummond et al., 2012). We also

do not follow the suggestion of fixing Cd to 0.1 (Roberts and

Rosenthal, 2009), but instead allow BEAST users to specify this

value, with a default of Cd¼1.0. Finally, while Roberts and

Rosenthal (2009) assume b to equal 0.05, we here allow users to

set this value as well.

In addition to our adaptations of the AM algorithm proposed by

Roberts and Rosenthal (2009), we also extend this approach by

allowing BEAST users to make use of the following two additional

arguments/options. First, we suggest determining the covariance Rn

by using only an increasing part of the history (Haario et al., 2001),

for example by forgetting the first n0 samples. This is specifically

useful if the chain starts far away from the target distribution and

collects samples to estimate the variance, which would result in the

variance being very large. We offer guidance on setting values for C0

and n0 in the Discussion and in the Supplementary Materials.

Second, we allow BEAST users to specify an integer n1 > 1, which

results in the covariance being updated every n1
th step only, but in

still using the entire history if one chooses (Haario et al., 2001).

Such a subsampling approach results in a decreased learning rate/

slower adaptation for the AM algorithm, but may economise on

computation time when d is large.

2.2 Transformations
Finally, the AVMVN transition kernel assumes that all d dimensions

of its parameters live on the real line, i.e. x 2 Rd. This rarely holds

in the phylogenetics problems where parameters are often rates on

½0;1Þ or are constrained such that several parameters are

non-negative and always sum to a fixed value. To handle these situ-

ations, the AVMVN transition kernel may act on appropriate trans-

forms of the parameters that expand their ranges onto the real line.

These transforms include the logð�Þ and logitð�Þ functions for univari-

ate parameters that attain strictly positive values and values between

0 and 1, respectively.

For multivariate parameters ðx1; . . . ;xMÞ that are all strictly posi-

tive and constrained to sum to a constant C, such as the relative rate

parameters in a partitioned dataset, we invoke a scaled, multivariate

logistic function (Glonek and McCullagh, 1995) from a transformed

space ð~x1; . . . ; ~xMÞ 2 RM. Specifically, let L ¼
P

j exp ð~xjÞ for

j ¼ 1; . . . ;M, then

xj ¼
C

L
exp ð~xjÞ: (3)

Notably, the transformed space carries one more degree-of-

freedom than the constrained space. To rectify this, we augment the

untransformed space with the extra random variable L. Since our

original target distribution pð�Þ does not depend on L, we are free to

construct an augmented target distribution as the product of the ori-

ginal and any distribution on L we choose, including a point-mass

on a single value, such as C.

After transformation, the AVMVN kernel is not necessary sym-

metric. Minor modifications through a Hastings ratio (Hastings,

1970) become necessary and are straight-forward. For the scaled,

multivariate logistic transform, the Hastings ratio for proposing

ðy1; . . . ; yMÞ given the chain is currently at ðx1; . . . ;xMÞ is

Y
j

yj

xj

� �
: (4)

2.3 Priors
In a recent study, we have shown the importance of using proper

priors (probability distributions that integrate to 1) when perform-

ing Bayesian model selection, which also applies when performing

Bayesian inference through MCMC (Baele et al., 2013). The fre-

quently used constant function, often inaccurately called a uniform

distribution, over an infinite interval is an example of an improper

prior; the use of such priors may lead to a posterior distribution that

does not exist. We use the following priors in our analyses through-

out this article: a pure birth process (Yule, 1924) as the tree prior for

the isochronous dataset, with a diffuse normally distributed prior on

the log growth rate; an exponential growth coalescent model as the

demographic prior for the heterochronous dataset, with a diffuse

normally distributed prior on the log population size and a diffuse

Laplace prior on the growth rate; a diffuse normally distributed

prior on the log transition/transversion parameter of the HKY

model; a diffuse Dirichlet prior on the relative rate parameters of the

different partitions; an exponential prior on (each of) the rate het-

erogeneity parameter(s) (Yang, 1996) and a continuous-time

Markov chain reference prior on the strict molecular clock rate in

the heterochronous dataset (Ferreira and Suchard, 2008).

2.4 Transition kernel weight determination
MCMC sampling in BEAST uses a random-scan of transition ker-

nels, such that each kernel carries a weight that is proportional to its
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selection probability for use at each chain step. We use the following

procedure for determining the weights of the different transition ker-

nels in this article. First, a BEAST XML file for both datasets was

generated using BEAUti, i.e. the user interface accompanying

BEAST. The weights for the tree transition kernels, i.e. all kernels

that operate on the tree topology and/or the node heights, were kept

at their default values. The weights for the remaining parameters

were slightly adjusted to arrive at a baseline scenario where the ef-

fective sample size (ESS; computed using the coda package;

Plummer et al., 2006) for all parameters of interest were fairly simi-

lar when performing inference using the default transition kernels.

For the isochronous carnivores dataset (see Data), this mainly re-

sulted in a reduction of the weight on the transition kernel for the

birth rate of the Yule process. For the heterochronous Ebola virus

dataset (see Data), only the weights on the shape parameters that de-

scribe rate heterogeneity for the different partitions were increased.

We set the weight on each AVMVN transition kernel equal to

the sum of the weights of the separate transition kernels on the cor-

responding parameters. For the carnivores dataset, one transition

kernel was constructed, containing all non-tree related parameters.

The Ebola virus dataset was tested using two multivariate transition

kernels: one for the parameters of the exponential growth coalescent

model and another for the remaining parameters. This is motivated

by performance considerations, as evaluating coalescent likelihoods

is much faster than calculating all the observed data likelihoods.

2.5 Multi-threaded likelihood and load balancing
The development of the BEAGLE library and its corresponding like-

lihood implementations has resulted in large performance increases

of the BEAST package (Suchard and Rambaut, 2009; Ayres et al.,

2012). To perform efficient evaluation of a possibly large collection

of (observed) data likelihoods simultaneously, we have implemented

a new multi-threaded likelihood in BEAST (Drummond et al., 2012)

that significantly reduces the existing overhead when few (observed)

data likelihoods need to be recalculated.

Given that most high-performance computing machines are

equipped with a large number of cores, we also propose an auto-

mated load-balancing algorithm, now available in BEAST

(Drummond et al., 2012), that determines how many additional

data partitions—with associated data likelihoods and shared param-

eters—need to be created to maximize performance on a given

multi-core CPU system. An additional data partition is hence created

when this leads to a faster overall likelihood evaluation, by propos-

ing to further split the partition with the largest number of unique

site patterns. This load-balancing algorithm is available to BEAST/

BEAGLE users through XML specification, with an option to spe-

cify the number of likelihood evaluations that will be averaged in

determining execution time for each combination of partitions.

We provide more detailed information on our load-balancing algo-

rithm in the Supplementary Materials.

2.6 Hardware
All BEAST/BEAGLE calculations were performed on a 24-core (i.e.

2 � 12) Intel Xeon (R) Xeon E5-2680 v3 2.50 GHz system (Haswell

microarchitecture) with Infiniband FDR and a 40-core (i.e. 4 � 10)

Intel Xeon(R) E7-4870 2.40GHz system (Westmere-EX microarchi-

tecture). The former has a Quick Path Interconnect (QPI) speed of 9.6

GT/s and a maximum boost frequency of 3.30 GHz and is equipped

with DDR4 memory running at 2133 MHz, whereas the latter has a

QPI speed of 6.4 GT/s and a maximum boost frequency of 2.80 GHz

and is equipped with DDR3 memory running at 1066 MHz.

2.7 Rescaling procedure
For all our computations, we used CPUs with 64-bit (double) preci-

sion. However, even at double precision, rounding error can still

occur while propagating the partial likelihoods up a large tree

(Suchard and Rambaut, 2009). In anticipation of an under- or over-

flow occurring when computing the likelihood, we have imple-

mented a rescaling procedure—a minor variation of the existing dy-

namic (default) rescaling—in BEAST (Drummond et al., 2012) to

help avoid roundoff, following the suggestion of Yang (2000). Our

rescaling scheme does not compute scaling factors each iteration but

keeps the current ones until an under- of over-flow occurs (or every

N iterations) because finding appropriate scale factors is much more

expensive than actually using them.

2.8 Data
As a first dataset, we analyse the ND5 gene from a collection of 62

mitochondrial genomes from carnivores, previously analysed by

Suchard and Rambaut (2009). This dataset contains 1836 nt columns,

of which approximately 99% consist of a unique site pattern, and is

partitioned according to codon position. As a second dataset, we analy-

se a full genome Ebola virus dataset, consisting of 633 publicly avail-

able genome sampled over the course of the 2013–2016 Ebola virus

disease epidemic in West Africa. This dataset contains 18 998 nt

columns and is partitioned according to codon position, with one add-

itional partition for the intergenic region (which consists of several

non-coding regions interspersed in the genome). For both datasets, we

consider the underlying phylogeny to be unknown and estimate the tree

topology and branch lengths during our Bayesian inference approach.

3 Results

3.1 Isochronous samples
The 62-taxa carnivores dataset consists of a single gene (ND5) that

we partition according to codon position. We assume that each par-

tition evolves at a different relative rate and according to an inde-

pendent HKY model (Hasegawa et al., 1985), with rate variation

among sites in each partition modelled by a discrete gamma distribu-

tion with 4 rate categories (Yang, 1996). Together with the Yule

process prior (Yule, 1924) on the tree, this amounts to 10 param-

eters to be estimated in addition to the phylogeny: three transition/

transversion ratios (j1;j2; j3) - log-transformed, three shape param-

eters to model varying rates across sites (a1; a2; a3) - log-trans-

formed, three relative rates (l1;l2; l3) - scaled logit-transformed,

and a birth rate w - log-transformed - for the Yule process prior.

The default approach in BEAST is to use scale or random walk

transition kernels, 1 on each parameter, which we compare here to

1 AVMVN transition kernel that simultaneously proposes new val-

ues for all 10 parameters. Weights for the default transition kernels

for l1;l2; l3 and j3 were set at 6 and 3, respectively, with the re-

maining non-tree transition kernel weights set at 2 (see Materials

and methods); weights for the tree transition kernels were kept at

their original values at the time of writing (as of BEAST v1.8.4 the

default weights for the transition kernels have been changed). This

leads to a combined weight of 21 for the AVMVN transition kernel;

the tree transition kernels and their weights were kept to their de-

faults. For the AVMVN transition kernel, C0 was set to 1.000, with

n0 set at 500, which leads to slightly better performance compared

to what we consider to be the default values for datasets with a rela-

tively low amount of parameters (C0 ¼ 5:000 and n0 ¼ 2:500).

We evaluate the performance of the different sets of transition

kernels for the carnivores dataset (Fig. 1) on different multi-core
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CPU systems across five independent replicates. We measure the per-

formance under both sets of transition kernels by computing the

total ESS per minute for all of the parameters of interest. While the

more recent Haswell platform has much greater execution speed

than the Westmere platform, which can be attributed to its substan-

tially higher memory bandwidth, the observed performance gains

are very similar across both platforms. We observe a large but vary-

ing increase in performance using our multivariate normal transition

kernel, which performs an equal amount of update operations on all

parameters, over the default transition kernels. This already illus-

trates the power of our approach, but the performance of our pro-

posed AVMVN transition kernel can be further increased by using

our load-balancing algorithm, which determines the optimal amount

of processor cores for the analysis to run on. This algorithm yields a

similar performance on both systems, generating on average 5 and 6

additional partitions/threads, on the Haswell and Westmere systems

respectively, resulting in runs with a total of 8 and 9 partitions/

threads on average.

We observe the lowest performance increase for the birth rate

parameter of the Yule process (w), indicating that this is the most

difficult to estimate efficiently. Mixing may be improved by specify-

ing a separate transition kernel on the birth rate parameter, with its

own tuning parameter and possibly an increased weight. However,

pursuing this is beyond the scope of our goal to compare the per-

formance of default transition kernels and our multivariate transi-

tion kernel.

3.2 Heterochronous samples
The 633-taxa Ebola virus dataset consists of a large coding region,

which we partition according to codon position, and a non-coding

region. We again assume that each partition evolves according to an

HKY model (Hasegawa et al., 1985), impose a discrete gamma dis-

tribution with 4 rate categories (Yang, 1996) on each partition,

allow the codon positions to evolve at different (relative) rates and

assume a strict molecular clock. Together with specifying an expo-

nential growth coalescent prior on the tree, this leads to 15 param-

eters to be estimated: four transition/transversion ratios

(j1; j2;j3; j4) - log-transformed, four shape parameters to model

varying rates across sites (a1; a2; a3; a4) - log-transformed, four rela-

tive rates (l1; l2;l3; l4) - scaled logit-transformed, the strict clock

rate c - log-transformed, an effective population size / - log-trans-

formed - and an exponential growth rate q in the coalescent prior.

To achieve maximal performance for this dataset, we have used

two different AVMVN transition kernels on two disjunct sets of par-

ameters. Weights for the default transition kernels for a1; a2; a3; a4

were increased to 3, while the other transition kernel weights were

kept at their default values, i.e. 3 for the joint update process on

l1;l2; l3; l4, 1 for each of the ji; i 2 1 . . . 4 and 30 for the clock rate

c, population size / and exponential growth rate q in the coalescent

prior. Weights for the tree transition kernels were kept at their ori-

ginal values at the time of writing.

Our first AVMVN transition kernel acts on both parameters of

the exponential growth coalescent model with a weight of 60, which

is the combined weight of the default transition kernels. We are able

to increase this kernel’s performance by setting C0 to 2.000 and

n0 ¼ 1:000, although our proposed default settings (of C0 ¼ 5:000

and n0 ¼ 2:500) offered nearly similar performance in terms of ESS

per time unit. Our second AVMVN transition kernel acts on the re-

maining parameters using its default settings (of C0 ¼ 5:000 and

n0 ¼ 2:500), including the clock rate (of which a proposed change

Fig. 1. Performance comparison on a single gene carnivores dataset, partitioned according to the codon position, across five replicates measured on 24-core and

40-core Xeon systems. The 24-core CPU system, while equipped with fewer processor cores than the 40-core CPU system, has a faster maximum processor fre-

quency and comes equipped with much faster memory, explaining the difference in performance as measured in ESS per time unit. Mixing of all parameters of

interest is compared using the default BEAST transition kernels, our proposed AVMVN transition kernel and our proposed AVMVN transition kernel that takes ad-

vantages of our proposed load-balancing approach to further exploit multi-core parallelism (AVMVNþLB). All update schemes assign an equal weight distribu-

tion between updating continuous parameters and updating the tree. The AVMVN transition kernel, equipped with our load-balancing approach, yields an

increase in performance over the default BEAST transition kernels between 171 and 424%, measured in ESS/minute, on a 24-core CPU system and between 221

and 520%, measured in ESS/minute, on a 40-core CPU system
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also triggers a full recalculation of all observed data likelihoods),

again with a weight set to the sum of the weights of the default tran-

sition kernels on these parameters. Using two separate transition

kernels is a sensible choice given that the coalescent density evalu-

ation takes only a fraction of the time required to calculate any of

the observed data likelihoods. Moreover, this allows assigning dif-

ferent weights to the AVMVN transition kernels and the opti-

mization of a different tuning parameter.

The performance comparison between the transition kernels for

the Ebola virus dataset on different CPU server systems across five

independent replicates is shown in Figure 2. Because of a much

larger dataset size as compared to the carnivores dataset, we meas-

ure the performance under both scenarios by computing the total

ESS per hour for all of the parameters of interest. The observed per-

formance gains are again similar across both platforms, but larger

performance gains are achieved on the 40-core Westmere system

compared to the more recent 24-core Haswell platform. The slower

execution speed of the former translates into additional partitions/

threads being created by the load-balancing algorithm, as informa-

tion between the threads is exchanged less frequently, allowing for

longer periods of time during which the different threads can per-

form concurrent calculations. The load-balancing algorithm gener-

ates on average three additional partitions/threads on top of the four

initial partitions/threads on the Haswell system and on average six

additional partitions/threads on top of the 4 initial partitions/threads

on the Westmere system, which amounts to a total of 7 and 10 parti-

tions/threads on average.

Except for those parameters directly related to estimating the co-

alescent tree, i.e. the clock rate, population size and exponential

growth rate, a considerable increase in performance for the

AVMVN transition kernels over the default transition kernels can

be seen in Figure 2. Whereas we observe a 2- to 3-fold performance

increase for the clock rate, population size and exponential growth

rate parameters, their performance increase clearly lags behind that

of the other parameters. Changing the relative weights of both

AVMVN transition kernels does not yield any further performance

gains, nor does adjusting the kernels’ settings.

4 Discussion

In this article, we present an adaptation of the adaptive MCMC ap-

proach of Roberts and Rosenthal (2009) for use in Bayesian phylo-

genetics. Using this approach, we show that there is a large potential

for performance increase in Bayesian phylogenetic inference, with

parameter estimates exhibiting an up to fourteen-fold increase in

performance. Additionally, our proposed AVMVN transition kernel

is able to operate on a wide variety of model parameters, such as for

example substitution model parameters, (molecular) clock model

parameters and speciation/coalescent model parameters. Obtaining

good mixing for these parameters can be challenging, in particular

in the absence of very strong calibrating information (e.g. temporal

signal in heterogeneously sampled data), and because they are corre-

lated through the tree height, they can also affect mixing of node

height estimates. Our results also uncover other interesting avenues

for research into estimating large coalescent trees, as the parameters

relating to the tree are more difficult to estimate and are shown to

benefit to a lesser extent from our proposed approach. While this

may be due to more complicated population dynamics over time

than can be represented using an exponential growth coalescent

model, as the Ebola virus dataset covers both the growth and the de-

Fig. 2. Performance comparison on a full genome Ebola virus dataset, partitioned according to the codon position, across five replicates measured on 24-core

and 40-core Xeon systems. Mixing of all parameters of interest is compared between the default BEAST transition kernels, the AVMVN transition kernel and the

AVMVN transition kernel that takes advantages of a load-balancing approach to further exploit multi-core parallelism (AVMVNþLB). All update schemes assign

an equal weight distribution between updating continuous parameters and updating the tree. Relative to the default BEAST transition kernels, the performance of

the AVMVN transition kernel, equipped with our load-balancing approach, increases with between 76% and 1057%, measured in ESS/minute, on a 24-core CPU

system and between 134 and 1452% (for l4, the relative rate of the non-coding partition), measured in ESS/hour, on a 40-core CPU system
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cline phase of the epidemic, novel tree transition kernels that navi-

gate through tree space more efficiently can yield faster convergence

and better mixing, particularly when confronted with large topolo-

gies (see e.g. Höhna and Drummond, 2012). Further, correlated par-

ameters such as the root height, the clock rate and population size

for example may benefit from joint estimation, which could be

accommodated by our transition kernel we propose here, but further

research is required to evaluate the performance of such parameter

mixes in our framework. Nonetheless, the novel parallel likelihood

evaluation and load-balancing approach we employ does not depend

exclusively on the AVMVN transition kernel and hence can increase

overall computational performance when evaluating proposed tree

topologies as well.

We have analysed the variance-covariance structure of our pro-

posed AVMVN transition kernels (see Supplementary Materials)

and tested many different computational settings. Our tests on the

datasets analysed in this article show that a C0 setting of 5.000, with

the first n0 ¼ 2:500 samples being discarded, typically yields consist-

ent results that offer a large increase in performance over the default

transition kernels. For datasets where the parameters easily converge

to their posterior distribution, as was the case for the carnivores

dataset in this article, further increases in efficiency (of up to 10%,

but depending on the parameter) can be achieved by lowering those

settings to, for example, C0 ¼ 2:000, with discarding the first

n0 ¼ 1:000 samples. Datasets that contain parameters that do not

converge as easily, such as the molecular clock rate in the Ebola

virus dataset in this paper, benefit from increasing the C0 setting.

Coalescent model parameters, such as the population size and the

growth rate in the exponential growth model applied to the Ebola

virus dataset, on the other hand, also benefit from lowered settings

for C0 and n0.

We have also tested how our proposed AVMVN transition ker-

nel performs on an example dataset with a much larger number of

partitions and corresponding increase in number of parameters (see

Supplementary Materials). We extended the isochronous dataset dis-

cussed in this article to incorporate eight genes, with each gene being

partitioned according to codon position, leading to 24 partitions

that were all equipped with a general time-reversible model (Tavaré,

1986), increasing the total number of parameters to 169. We show

that our AVMVN transition kernel is able to (drastically) improve

ESS values for the vast majority of parameters, but that

computational restraints of multi-core CPU systems prevent a suffi-

ciently fast simultaneous evaluation of all the data likelihoods.

Further, our tests show that a C0 setting of 40.000, with the first n0

¼ 30:000 samples being discarded, typically yields consistent results

that offer a large increase in performance over the default transition

kernels. This shows that additional work is needed to express these

settings as a function of the number of parameters, and perhaps

more importantly, as a function of the information present in each

partition. We propose to tentatively set C0 at 200 times the number

of parameters in the (combined) AVMVN transition kernel(s), with

n0 equal to C0=2.

The results we present in this article are obtained using multi-

core CPU architectures, which still constitute the vast majority of

hardware investments for high-performance computing solutions.

In order to improve computational speed, such a solution is however

limited and not always cost-effective because of storage issues, cool-

ing requirements and maintenance. Figure 3 examines the optimal

number of processor cores that our approach could exploit in order

to reach maximal performance. Whereas computational improve-

ments are easy to come by initially, investing in a multi-core CPU

setup that involves over 12 cores no longer yields additional per-

formance increases. Further, the memory specifications of such a

system may be of critical importance, as the 24-core CPU system we

use holds random-access memory (RAM) with twice the speed - and

hence a much higher memory bandwidth - compared to the 40-core

CPU system. For multi-threaded computations, such as the ones pre-

sented here, an increasing core count puts pressure on the cache cap-

acity and memory bandwidth. Increased memory bandwidth is

therefore essential to move data from the main memory to the cores

fast enough and may be more important than adding additional

cores.

Graphics processing units (GPUs) offer a much less expensive al-

ternative than multi-processor multi-core systems, while being fairly

easy to manage as they fit into many desktop computers. At the first

release of the BEAGLE library (Ayres et al., 2012), GPUs were still

fairly limited in their number of cores and specifically in the amount

of on-board memory, leading to computations often being split onto

multiple GPUs (Suchard and Rambaut, 2009). GPUs now come

equipped with thousands of cores and larger amounts of memory,

enabling them to process and evaluate larger datasets such as those

generated by next-generation sequencing efforts. Combining our

Fig. 3. Performance of the AVMVN transition kernel as a function of the number of cores in a multi-core CPU setup, measured in time to run the analyses per-

formed (in minutes for the carnivores dataset and in hours for the Ebola virus dataset) across five independent replicates. Both CPU systems we evaluate show

the same trend, i.e. the run time decreases systematically when additional cores are used, until a saturation point is reached where creating additional partitions

no longer increases performance due to an associated increase in overhead
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proposed multivariate approach with a GPU’s computing capabil-

ities on datasets containing a large number of partitions hence repre-

sents the next step in our development, given that the higher

memory bandwidth of GPUs will allow for a larger number of parti-

tions to be evaluated simultaneously.

GPUs can achieve extremely high arithmetic intensity if one can

transfer the input data and output results onto and off of the proces-

sors quickly. Using CUDA or OpenCL, it becomes possible for soft-

ware libraries such as BEAGLE to manage concurrency by executing

asynchronous commands in streams, sequences of commands that

execute in order. Different streams may execute their commands

concurrently or out of order with respect to each other. The current

BEAGLE implementation (2.1.2) does not allow yet to make use of

the concurrency capabilities promised by using these CUDA

streams. Allowing for concurrent computation of a much larger col-

lection of partitions/threads in BEAGLE represents an important av-

enue of further development.
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