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Abstract: Pseudomonas aeruginosa is one of the most virulent opportunistic Gram-negative bacterial
pathogens in humans. It causes many acute and chronic infections with morbidity and mortality
rates as high as 40%. P. aeruginosa owes its pathogenic versatility to a large arsenal of cell-associated
and secreted virulence factors which enable this pathogen to colonize various niches within hosts
and protect it from host innate immune defenses. Induction of cytotoxicity in target host cells is a
major virulence strategy for P. aeruginosa during the course of infection. P. aeruginosa has invested
heavily in this strategy, as manifested by a plethora of cytotoxins that can induce various forms of
cell death in target host cells. In this review, we provide an in-depth review of P. aeruginosa cytotoxins
based on their mechanisms of cytotoxicity and the possible consequences of their cytotoxicity on host
immune responses.

Keywords: Pseudomonas aeruginosa; infection; virulence factors; cytotoxins; apoptosis; pyroptosis;
necroptosis; necrosis; innate immunity; inflammatory responses

1. Introduction

Pseudomonas aeruginosa is one of the most versatile and virulent opportunistic bacterial
pathogens described to date [1]. It is a leading cause of bacteremia and sepsis in patients
receiving cancer drugs, the most common cause of nosocomial pneumonia, a frequent
cause of infections in diabetic ulcers, burn wounds, surgical wounds, and corneal ulcers,
and a deadly cause of chronic infection in cystic fibrosis patients [1–11]. Despite aggressive
antibiotic therapy, the fatality rate amongst individuals with P. aeruginosa infections can
reach as high as 40% [1,12–14]. These figures have not improved in decades due to the high
degree of intrinsic and acquired resistance of P. aeruginosa to many antibiotics, as well as
the emergence of multi-drug resistant strains [15–18].

P. aeruginosa derives its versatility to cause infections in a broad host range from the
large array of virulence factors it possesses. We define virulence factors as factors that
are not required for growth in culture media per se. Rather, in their absence, P. aeruginosa
becomes impaired in its ability to colonize and cause infection in a manner that benefits its
survival and/or persistence in vivo. These factors aid the bacterium in colonization and
dissemination within the host, protect it against host immune defenses, and/or exacerbate
epithelial injury to prevent wound healing, thus maintaining P. aeruginosa’s preferred niche,
the wound itself [19–21].

Induction of cytotoxicity in target host cells is a major virulence strategy that P. aerug-
inosa employs during the course of infection. P. aeruginosa has invested heavily in this
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strategy, as manifested by a plethora of cytotoxins that can induce various forms of pro-
grammed cell death in target host cells. Before we categorize these virulence cytotoxins
based on their mechanisms of cytotoxicity and the consequences of their cytotoxicity on
host immune responses, we will briefly discuss major types of programmed cell deaths.

1.1. Apoptosis

In 1965, Lockshin and Williams et al. discovered that during the metamorphosis of
the silkworm, specific cells died [22]. They designated this type of death as “programmed”
because the same cells died each time. In 1972, Kerr et al. observed a specific type of cell
death in human tissues in which the cells exhibited specific morphological characteristics
including chromatin condensation (karyorrhexis), nuclear condensation (pyknosis), and
fragmentation, cellular shrinkage and fragmentation [23]. They coined this cell death
process “Apoptosis,” which means “falling off” like the leaves falling from a tree in autumn.
Today, our knowledge of apoptosis has vastly improved. Apoptosis plays fundamental
roles in development [24], immune system maturation [25], genome maintenance [26],
wound healing [27], protection against autoimmunity and cancer [28,29], and innate im-
mune defenses against pathogens [30]. It has been estimated that out of approximately
37.2 trillion cells in an adult human, 50–70 billion cells (~0.2%) die each day by apopto-
sis [31], highlighting the importance of apoptosis in human physiology and health. As
important as apoptosis is for health, its dysregulation can have dire consequences, leading
to many pathological conditions including but not limited to neurodegenerative diseases,
autoimmune disorders, impaired infection control, and cancer (reviewed in [32,33]).

At the molecular level, apoptosis is mediated by cysteine aspartate proteases (caspases)
which are subdivided into initiator Caspases 2, 8, 9 (mouse and human) and Caspase-
10 (human), as well as effector (a.k.a., executioner) Caspases 3, 6, and 7 (mouse and
human) [34]. Multiple apoptotic programmed cell deaths (PCD) have been described, but
intrinsic (a.k.a., mitochondrial) apoptosis and extrinsic (death receptor-mediated) apoptosis
are the most well-characterized apoptotic PCDs [35–37] and summarized in Figure 1).

Internal stimuli such as DNA damage trigger intrinsic apoptosis by activating the
pro-apoptotic BH3-only subgroup of pro-apoptotic Bcl-2 family proteins (Bim, Bid, Bad, and
Puma), which in turn disrupt interactions between the pro-apoptotic Bcl-2 family proteins
(Bax and/or Bak) and anti-apoptotic Bcl-2 family proteins (Bcl-2 and BCL-xL, BCL-W, MCL1,
and A1/BFL-1), thus freeing Bax and Bak to mobilize to the mitochondrial outer membrane
where their oligomerization is presumed to disrupt the mitochondrial outer membrane,
finally resulting in the release of cytochrome c [38]. Cytosolic cytochrome c then combines
with APAF1 and pro-Caspase-9 to form the “Apoptosome,” which activates the initiator pro-
Caspase-9 into mature caspase-9 via autoproteolysis, in turn activating effector Caspases 3,
6, and 7 (Caspase-3 is the primary effector caspase) that carry out cell death. Endoplasmic
reticulum (ER) and genotoxic stresses can also lead to the activation of the initiator Caspase-
2 through the PIDDosome multicomplex (containing PIDD, CRADD/RAID, and pro-
Caspase-2) which in turn activates Bid into tBid (truncated Bid) by cleavage, initiates
Bax-mediated mitochondrial outer membrane disruption, and eventually leads to Caspase-
9 dependent intrinsic apoptosis [39–41].

Extrinsic apoptosis involves the activation of so-called death receptors (TNFR1, FasR,
DR3, DR4, and DR5) by their cognate external ligands (TNF-α, FasL, TRAIL (Apo2L), and
Apo3L) [37,42]. Depending on the specific receptor and ligand, death receptor/ligand
interaction results in the recruitment of TRADD, FADD, or DAXX adaptor proteins, leading
to the formation of a polymeric activation complex known as DISC (death-inducing sig-
naling complex), which in turn activates initiator Caspases 8 (mouse and human) and/or
10 (human only), subsequently activating the effector Caspases 3, 6, and 7, that carry out
the task of cellular demise. Activated Caspases 8 and 10 can further amplify cell death by
cross-feeding into intrinsic apoptosis via cleavage of Bid into tBid [43,44].
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Figure 1. Apoptosis. The intrinsic (mitochondrial) and the extrinsic (death receptor-mediated)
pathways of apoptotic cell deaths are depicted. These pathways are described in the text.
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Apoptotic PCDs are generally believed to be anti-inflammatory in nature for the fol-
lowing reasons. First, the degradation of cytosolic proteins by activated caspases during
apoptosis reduces the so-called danger-associated molecular pattern molecules (DAMPs)
which are highly pro-inflammatory in nature [45]. Second, DAMPs are not directly re-
leased into the environment during apoptosis, thus, they are not available to activate
pattern recognition receptors (PRRs) and trigger inflammatory responses in neighboring
cells. Rather, they are packaged in membrane-bound apoptotic bodies which are then
rapidly cleared by macrophages via phagocytosis [46,47]. Third, uptake of apoptotic
bodies suppresses inflammation in macrophages by inhibiting the production of inflam-
matory cytokines by anti-inflammatory factors such as TGF-β and prostaglandin E2, thus
transitioning macrophages into so-called M2 anti-inflammatory phenotype [48,49]. The
anti-inflammatory nature of apoptosis is perhaps an important reason why the majority
of cytotoxins produced by pathogens employ this mechanism to induce cell death in their
target host cells. Apoptosis-inducing cytotoxins in P. aeruginosa will be discussed later.

1.2. Pyroptosis

Pyroptosis is a form of inflammatory PCD which involves either Caspase-1-dependent
canonical inflammasomes or non-canonical inflammasomes driven by Caspase-11 (in mice)
or Caspase-4 and Caspase-5 (in humans) [50,51] and summarized in Figure 2. Canonical
inflammasomes are multiprotein oligomeric structures formed by ASC adaptor proteins
bridging the interaction between NLRP1b, NLRP3, NLRC4, AIM2, or Pyrin (canonical
inflammasome subtypes) with pro-Caspase-1 in response to external or internal stim-
uli (e.g., extracellular adenosine triphosphate (ATP), microbial products, or DAMPs), ul-
timately culminating in the activation of Caspase-1 though autocleavage and process-
ing [52,53]. In contrast to Caspase-1, which requires the assembly of the aforementioned
multiprotein inflammasome complexes for its activation, Caspases 11, 4, and 5 do not
require multiprotein complexes for self-processing and activation. Rather, it appears that
their activation results from the direct interaction between their CARD domains with
intracellular LPS through its lipid A moiety [54–56]. Activated Caspases 1, 11, 4, and
5 then drive the cleavage of the pro-pyroptotic factor Gasdermin D (GSDMD), which then
oligomerizes to form pores in the plasma membrane causing cell death [55–57]. It is worth
noting that in contrast to pro-Caspase-1 which is expressed in resting cells, pro-Caspase-11
is not expressed in resting cells and its expression requires priming by LPS which triggers a
signaling pathway involving Toll-like receptor 4 (TLR4)/MyD88/NF-κB [58].

Pyroptotic cell death is highly pro-inflammatory in nature not only because cellular
demise by this mechanism is associated with the release of cellular contents and cytosolic
DAMPs through GSDMD-generated pores in the plasma membrane [55,56], but also be-
cause of the processing and release of pro-inflammatory cytokines IL-1β and IL-18 by active
Caspase-1 [52,53]. Noncanonical Caspases 11, 4, and 5 do not directly process pro-IL-1 and
pro-IL-18 pro-inflammatory cytokines into their active forms (IL-1β and IL-18) by them-
selves, but they do so indirectly via NLRP3 canonical inflammasome subtype activation by
promoting K+ efflux in a manner that is dependent on the TRIF adaptor protein [59–64].

Because of its inflammatory nature, pyroptosis may be viewed as an altruistic form
of cellular sacrifice that is intended to limit infection and spare uninfected neighboring
cells through alert signals and inflammatory mediators (IL-1β, IL-18, and DAMPs). In line
with this notion, CIAS1 7 unit repeat genetic polymorphism in NLRP3 has been associated
with decreased IL-1β levels and increased occurrence of vaginal Candida and Mycoplasma
infections [65,66]. Conversely, in cases where the invading pathogen infects and resides
within host immune leukocytes, pyroptosis may be beneficial to the pathogen. For instance,
polymorphisms in CARD8 (C10X) and NLRP3 (Q705K), both of which are associated with
increased NLRP3 inflammasome activity, have shown significant association with increased
extrapulmonary Mycobacterium tuberculosis infection [67].
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It is worth noting that exuberant inflammasome activity has been associated with
many pathological conditions including several immunological disorders (such as famil-
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ial cold auto-inflammatory syndrome (FCAS), cryopyrin-associated periodic syndromes
(CAPS), Crohn’s disease, and ulcerative colitis [68–72]); neurological disorders (such as, pro-
gressive multiple sclerosis, age-related macular degeneration, Alzheimer’s disease) [73–75];
cardiovascular diseases (such as, atherosclerosis, atrial fibrillation) [76–78], cancer [79–81];
and insulin resistance and type 2 diabetes [82–84].

1.3. Necroptosis

For decades, necrosis was mostly viewed as an “accidental cell death” that occurred
as a result of extreme physicochemical insults such as heat or membrane damage, but this
view began to change with the seminal reports published by Holler et al. [85] and Degterev
et al. [86], in which they described an alternative Caspase-8-independent non-apoptotic
pathway of cell death triggered by Fas ligand (FasL), mediated by Receptor-Interacting
Protein Kinase (RIPK), and inhibited by necrostatin-1. Today, necrotic cell death is divided
into 2 subcategories, namely “necrosis (a.k.a., oncosis)” which is unregulated, instantaneous
accidental cell death as the direct result of massive cellular and/or membrane damage
caused by extreme physicochemical conditions, and “necroptosis” a form of regulated,
protein-based cell death occurring in response to signaling cues and milder physicochemical
conditions [87,88].

Morphologically, necrosis (oncosis) and necroptosis manifest similar features including
loss of plasma membrane integrity, cellular and organelle swelling, and the release of cyto-
plasmic contents into the surrounding environment [89,90]. Mechanistically, necroptosis
is initiated by TNF family receptors [85,86,91,92]; by pattern recognition receptors (PRRs)
including Toll-like receptors (e.g., TLR3 and TLR4), and by cytosolic viral sensory pathways
including retinoic acid-inducible gene-I-like (RIG-I), stimulator of interferon gene (STING),
and DNA-dependent activator of IFN-regulatory factors (DAI) [93–98] and summarized in
Figure 3. Necroptosis is ultimately executed by mixed lineage kinase domain-like (MLKL)
protein, which upon phosphorylation at multiple sites by RIPK3 [99–101], is mobilized to
the plasma membrane through interaction between its exposed N-terminal 4-helix Bundle
(NB) domain with phosphatidylinositol phosphates (PIP) within the inner leaflet of the
plasma membrane, where it carries out cellular demise by homotypic oligomerization and
pore-formation within the plasma membrane in a manner that is assisted by the cytosolic
chaperone Hsp90 (heat shock protein 90kDa) [101–106]. RIPK3 itself is recruited to a pro-
cell death multiprotein cytosolic complex known as “necrosome” via its RIPK homology
interaction motif (RHIM) domain interacting with either RIPK1 (in case of TNF family
receptors [107]), TRIF (in case of TLRs [108,109]), or directly with DAI cytosolic viral sensor
itself through its RHIM domain [96].

It is worth noting that upon recruitment to TNF family receptors (TNFRs), RIPK1
can exist in either “closed” or “open” conformations, which can drastically affect cellular
survival and responses to TNF-α. In the “closed” conformation, RIPK1 is ubiquitinated by
cIAP1/2 at TNFR which keeps RIPK1 locked in association with TNFR and suppresses its
kinase activity [110], allowing for the recruitment of NEMO, IKKα, and IKKβ, collectively
known as IkB kinase complex [111]. These interactions then culminate in NF-kB and
MAPK activation which in turn drive the cell toward “pro-inflammatory” and “survival”
phenotypes, due to NF-kB and MAPK activities, respectively [112–114]. In its kinase
active “open” conformation, RIPK1 is not ubiquitinated and dissociates from TNFR and
recruits and activates RIPK3 in necrosome, which in turn drives the cell toward pro-
inflammatory necroptosis cell death, mediated by MLKL [115,116]. It should further be
noted that necroptosis cannot occur unless extrinsic apoptosis is inhibited because Caspase-
8 in association with cFLIP and FADD (occurring during the extrinsic apoptosis initiation
by death receptors engagement with their ligands as discussed above) can recruit both
RIPK1 and RIPK3 to a complex dubbed as “Ripoptosome” where they are degraded by
Caspase8 [117,118]. Caspase-8 also targets the deubiquitinase cylindromatosis CYLD which
further prevents RIPK1 initiation of necroptosis [119].
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Similar to pyroptosis, necroptotic programmed cell death is also highly pro-inflammatory
in nature because MLKL-mediated pore formation in the plasma membrane leads to the release
of cytoplasmic DAMPs [120]. Moreover, MLKL, RIP1, and/or RIP3 have also been shown to
activate Caspase-1-dependent canonical inflammasomes, (particularly NLRP3 inflammasome
subtype), leading to the processing and release of pro-inflammatory cytokines IL-1β and IL-
18 [121–123]. Because of its pro-inflammatory nature, necroptosis for the most part benefits the
host and is detrimental to invading pathogens. For example, necroptosis has been shown to play
an important role against many invading pathogens including but not limited to, Staphylococcus
aureus, Yersinia pestis, human herpes simplex virus (HSV), and vaccinia virus [124–126].

Ironically, necroptosis can also benefit pathogens in some cases and be detrimental
to the host. For example, necroptosis has been shown to enhance infection in the case of
the Salmonella Typhimurium [127] and S. aureus in the airway lung infection models [128].
As is the case for pyroptosis, exuberant necroptosis can also have dire pathological con-
sequences. Necroptosis has been shown to cause lethal lung damage, while its inhibition
has been demonstrated to protect against lung injury and improve survival in a neonatal
sepsis mouse model [129]. Necroptosis has also been shown to drive Listeria monocyto-
genes septicemia-associated acute hepatic injury, while its inhibition by RIPK1 deletion
protects against this pathology [130]. Necroptosis has been reported to drive systemic
inflammatory response syndrome (SIRS) [131], while necroptosis inhibition by genetic
means (e.g., deletion in RIPK3 gene) or by pharmacological means (RIPK1 inhibition by
necrostatin-1) protects against SIRS [131]. In addition, necroptosis has been implicated in
various inflammatory disorders such as Crohn’s and ulcerative colitis [132,133], rheuma-
toid arthritis [134], multiple sclerosis [135], and chronic obstructive pulmonary disease
(COPD), [136] to name a few.

Having described the main PCD mechanisms implicated in P. aeruginosa cytotoxins,
we now focus on various cytotoxins in P. aeruginosa and their modes of cytotoxicity.

2. Apoptosis-Inducing Cytotoxins in Pseudomonas aeruginosa

P. aeruginosa possesses many cytotoxins that induce various forms of apoptotic pro-
grammed cell death. Although, it is not clear why P. aeruginosa prefers to kill its target
host cells by apoptosis, it can be postulated that apoptosis would benefit P. aeruginosa
during infection in the host because of its anti-inflammatory and immunosuppressive
nature [137–139]. Below, we will discuss the apoptosis-inducing cytotoxins in P. aeruginosa
cytotoxins and their mechanisms of action.

2.1. Toxin A (ToxA)

Toxin A (ToxA)–A.K.A., Exotoxin A (ExoA), or Pseudomonas Exotoxin (PE)—is an
AB toxin secreted by the T2SS [140,141]. AB toxins are composed of A and B components
where the A component encodes the active enzymatic domain and the B component is
responsible for the transport of the A component across the cytoplasmic membrane of
target host cells [142]. Once internalized in host cells, ToxA ADP-ribosylates eukaryotic
elongation factor-2 (eEF-2) resulting in the inhibition of protein synthesis and causing
apoptotic cell death [143]. ToxA-induced apoptosis exhibits features of both intrinsic and
extrinsic apoptosis [144,145]. In mouse embryonic fibroblasts, ToxA induces intrinsic (mi-
tochondrial) apoptosis manifested by rapid degradation of Mcl-1 pro-survival protein
and loss of mitochondrial membrane potential [144]. ToxA-induced apoptosis in this cell
line was shown to be dependent on BAK (not BAX) oligomerization in the mitochondrial
outer membrane, and ToxA-induced apoptosis was completely abolished in cells where
Mcl-1 or Bcl-XL were overexpressed [144]. In human mast cells, ToxA induces extrinsic
apoptosis [145]. ToxA-intoxicated mast cells manifest extrinsic apoptosis features including
activation of initiator Caspase-8 and down-regulation of FLIPs (FLICE-like inhibitory pro-
teins) [145]. Moreover, ToxA-induced apoptosis in this cell line was shown to be dependent
on Caspase-8 and Caspase-3 [145]. ToxA deficient strains were shown to be significantly
less virulent than the wild-type strain in a mouse model of infection [146]. Although
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ToxA-induced apoptosis would be expected to be anti-inflammatory, ToxA impacts on
immune responses have not been directly investigated. In one study involving the keratitis
model of infection, it was shown that ToxA deficient mutant bacteria were rapidly cleared
from the eye, with a reduced sign of inflammation at the site of infection [147]. Whether
reduced inflammatory responses in the eye were due to reduced bacterial burden or the
absence of ToxA remains unknown. Due to its potent cytotoxicity, ToxA has also been
extensively evaluated as a potential anti-cancer immunotoxin therapy [148,149].

2.2. N-3-Oxododecanoyl Homoserine Lactone (C12-HSL)

N-3-oxododecanoyl homoserine lactone (C12-HSL) is a pheromone that functions as
the autoinducer for the Las quorum-sensing in P. aeruginosa [150]. In addition to its role in
the Las quorum-sensing, C12-HSL has been shown to induce various forms of apoptosis,
depending on the cell line studied. For example, exposure to C12-HSL has been shown to
result in the activation of initiator Caspase-8 and the effector Caspase-3 in macrophages and
neutrophils [151]. In Jurkat T lymphocytes, C12-HSL causes mitochondrial outer membrane
damage leading to intrinsic (mitochondrial) apoptosis, mediated by the initiator Caspase-
9 [152]. Overexpression of mitochondrial membrane stabilizer Bcl-2 completely abrogated
C12-HSL-induced apoptosis in Jurkat T lymphocytes [152]. C12-HSL has also been shown
to induce intrinsic apoptosis by downregulating the STAT3 survival/proliferation pathway
in breast carcinoma cells [153]. STAT3 is a known anti-apoptosis transcription factor
that protects against intrinsic apoptosis by increasing the expression of anti-apoptotic
proteins (i.e., Bcl-2 and Bcl-xL) which stabilize the mitochondrial outer membrane [154].
Similarly, C12-HSL causes mitochondrial dysfunction and induces intrinsic apoptosis by
attenuating the expression of PGC-1α and its downstream effector BEAS-2B in primary
lung epithelial cells [155]. PGC-1α is a master regulator of mitochondrial biogenesis
and cellular respiration [156]. Yet, in airway epithelial cells, exposure to C12-HSL has
been shown to lead to both intrinsic apoptosis—manifested by cytochrome c release and
Caspase-9 activation—and extrinsic apoptosis, as shown by Caspase-8 activation [157].
Interestingly, N-butyryl-L-homoserine lactone (C4-HSL), (a closely related autoinducer that
activates the Rhl quorum sensing in P. aeruginosa [150]), lacks the ability to induce apoptosis
likely because of its relatively shorter fatty acid chain [151,152]. Interestingly, at sub-lethal
doses C12-HSL has been shown to dampen NF-κB activation and suppress TNF-α and
IL-12 pro-inflammatory cytokine expression in the RAW264.7 mouse macrophage cell line
by triggering the unfolded protein response (UPR) [158]. In contrast, C12-HSL has also
been shown to induce IL-8 pro-inflammatory cytokine production in human epithelial
and fibroblast cells through the activation of NF-κB and AP-2 [159]. Moreover, C12-HSL
injection into the skin of mice led to the production of inflammatory mediators (IL-1α, IL-6,
and MIP-2) in vivo [160].

2.3. Azurin

Azurin is a cupredoxin-type electron transfer protein that is involved in electron
transfer during denitrification in P. aeruginosa [161]. Azurin has also been shown to induce
apoptosis in J774 macrophages and many cancer cell lines by stabilizing tumor suppressor
p53 and enhancing its activity, which in turn leads to increased levels of ROS and cell
demise [162–164]. Notably, P53 has been shown to induce intrinsic apoptosis, involving
mitochondrial outer membrane damage, cytochrome c release into the cytosol, and activa-
tion of Caspase-9 through the Apoptosome [165]. It also targets the non-receptor tyrosine
kinases (NRTKs) signaling network [166]. Azurin expression has been shown to be elevated
in P. aeruginosa isolates of the lung in CF patients [167]. This finding likely reflects the need
for azurin’s redox function in sustaining P. aeruginosa within the anaerobic or microaerobic
environment in CF airways [167,168]. Whether azurin’s function as a cytotoxin plays any
physiological role for P. aeruginosa in vivo remains to be determined.
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2.4. Pyocyanin

Pyocyanin is another important virulence factor secreted by the T2SS [169–171]. Py-
ocyanin is a water-soluble blue–green, non-fluorescent phenazine-derived pigment metabo-
lite that is capable of oxidizing and reducing molecules and generating reactive oxygen
species (ROS) [172,173]. In the environment, pyocyanin has been shown to have bactericidal
activity against many bacteria, particularly Gram-positive bacteria such as Staphylococcus
aureus [174]. The mechanism underlying pyocyanin-induced cytotoxicity in S. aureus was
shown to involve ROS production [175]. Pyocyanin has also been shown to induce apop-
tosis in neutrophils by mitochondrial damage and increased ROS [176–179]. Pyocyanin
also impacts immune responses in the host. In mammalian hosts, pyocyanin exposure
leads to increased IL-8 via activation of MAPK and NF-kB pathways [180,181]. Despite this
pro-inflammatory effect, which could be counterproductive to pathogenicity, pyocyanin
plays an important virulence function for P. aeruginosa in vivo. Pyocyanin has been shown
to be crucial for P. aeruginosa in establishing chronic infection and in inducing lung damage
in mice [182,183]. Consistent with these reports, pyocyanin is detected in large quantities
in the sputum of cystic fibrosis (CF) patients infected with P. aeruginosa, enough to inhibit
ciliary beating and cause toxicity in the respiratory epithelium in vitro [184].

There are also other apoptosis-inducing cytotoxins that are discussed below under
the categories of membrane-associated cytotoxins and Type III Secretion System (T3SS or
TTSS) Exotoxins.

3. Membrane-Associated Cytotoxins
3.1. Lipopolysaccharide (LPS)

Lipopolysaccharide (LPS) is another cell-bound major virulence factor of P. aerugi-
nosa [185,186]. LPS is found in the outer membrane of the bacterium and is composed of a
hydrophobic domain called Lipid A which is anchored onto a core polysaccharide and a
hydrophilic tail made of O-specific polysaccharide [185]. The O-specific polysaccharide is
variable and is useful for serotyping strains of P. aeruginosa [187]. LPS is an integral part
of the outer membrane of Gram-negative bacteria, providing structural support for the
bacteria, serving as an adhesin, and well as protection from the environment [185,188]. LPS
has also been shown to contribute to P. aeruginosa pathogenesis by facilitating host cell
adhesion through binding to the ganglioside asialo-GM1 found on epithelial cells [189].
LPS recognition by the NLRC4 (a.k.a. IPAF) canonical or Caspase-11 non-canonical in-
flammasomes has also been shown to result in Caspase-1 or Caspase-11-dependent py-
roptotic cell death [190,191]. In addition, LPS has also been shown to induce apoptosis
in A549-transformed lung cells by enhancing ROS production via downregulation of the
anti-apoptotic Sirtuin1 (SIRT1) [192].

As for its impact on inflammatory responses, LPS is massively immunogenic and can
trigger inflammatory responses through TLR4 recognition [193]. LPS-triggered TLR4 sig-
naling results in the production of pro-inflammatory cytokines which also contribute to the
pathology associated with both sepsis and bacteremia [194–196]. In addition, cytoplasmic
recognition of LPS can trigger Caspase-11-dependent pyroptotic cell death which is highly
pro-inflammatory in nature [197]. Given the immunogenicity of LPS, it has been a target
for developing anti P. aeruginosa vaccines; however, there has been limited success thus far
due to the variability of the O-specific polysaccharide [198].

3.2. Flagella

Flagella are membrane associated appendages that perform many virulence functions
for P. aeruginosa. Flagella mediate adhesion to biotic and abiotic surfaces [199,200], mediate
swimming motility [201] and function in biofilm formation and maturation [202,203].
Numerous animal models have shown that motility enhances bacterial dissemination and
virulence in the host. For example, in neonate mice, flagellation has been demonstrated
to enhance virulence in bacteremia and pneumonia models of infection [204]. Similarly,
flagellated strains have been shown to cause more damage and exacerbate burn wounds
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than non-flagellated isogenic strains [205,206]. In addition, P. aeruginosa flagellin recognition
by NLRC4/IPAF inflammasome can trigger Caspas-1 dependent pyroptosis [190].

Having flagella is beneficial in increasing dissemination and enhancing infection; how-
ever, flagella can also be a source of vulnerability for P. aeruginosa, as monomeric flagellin
detection by Toll-like receptor 5 (TLR5) has been shown to trigger robust inflammatory
responses in various immune leukocytes, resulting in diminished bacterial survival in
an acute lung infection model [207,208]. In addition, cytoplasmic flagellin recognition by
Naip5 and Naip6 [209,210] can also lead to activation of NLRC4 canonical inflammasome
which further amplifies inflammatory responses against P. aeruginosa infection [211]. As a
result, P. aeruginosa strains often downregulate the expression of flagellar components after
the establishment of infection and during chronic infection to evade host innate immune
responses [212–214]. Downregulation of immunogenic virulence factors and/or structures
(i.e, flagellum) is a common theme among P. aeruginosa infections, especially in CF patients,
where expression of virulence factors could hinder bacterial survival rather than aid in its
dissemination [215,216].

3.3. Porins

P. aeruginosa also possesses over 20 porins in its outer membrane that serve many
crucial physiological functions essential for virulence including nutrient uptake, adhe-
sion, decreasing permeability to antibiotics, and signaling ([217,218]). For example, OprF,
one of the major porins in the P. aeruginosa outer membrane, has been shown to be re-
quired for full virulence of P. aeruginosa [219]. Deletion in the oprF gene impairs many
virulence-associated functions including colonization, quorum sensing (QS), and secretion
through the T3SS [219]. In addition to these virulence functions, purified porins have also
been shown to induce intrinsic apoptosis in epithelial target host cells, as manifested by
reductions in the bcl-2 gene expression [220].

As crucial as they are to the pathophysiology of P. aeruginosa, porin recognition by
pattern recognition receptors (PRRs) can also lead to the production of pro-inflammatory
cytokines, inflammatory responses, and complement activation, thus interfering with
P. aeruginosa’s ability to colonize and cause infection [221,222]. Interestingly, adoptive
transfer of dendritic cells immunized with wild-type or recombinant OprF ex vivo has been
shown to be protective against P. aeruginosa lung infection in mice [223].

3.4. Rhamnolipids

P. aeruginosa can produce about 30 different congeners of surface-active rhamno-
lipids, which are glycolipid biosurfactants composed of mono- or di-rhamnose linked to
3-hydroxy-fatty acids of different lengths [224–226]. Rhamnolipids have been detected in
large quantities (range: 8–65 µg/mL) in the sputum of CF patients, and their presence has
been associated with CF lung pathology [227,228]. Because of their high potential for use
in various biotechnological applications P. aeruginosa rhamnolipids have been investigated
extensively [226,229,230].

Rhamnolipids play several important virulence functions for P. aeruginosa. First,
rhamnolipid-expressing P. aeruginosa strains, as well as purified rhamnolipids, have been
shown to compromise the barrier function of human respiratory epithelium by disrupting
the tight junctions, thus facilitating the paracellular invasion by P. aeruginosa [231]. Second,
exposure to rhamnolipids has been shown to interfere with ciliary beating and mucocil-
iary clearance of P. aeruginosa in tracheal rings of guinea pig animal models [227]. Third,
rhamnolipids have also been shown to aid P. aeruginosa in swarming motility [232]; in
turn, swarming motility has been demonstrated to regulate the expression of virulence
genes and antibiotic resistance in P. aeruginosa [233]. Forth, rhamnolipids have also been
demonstrated to play a role in structural biofilm development and in maintaining chan-
nels between multicellular structures in biofilms [234,235]. Fifth, rhamnolipids appear
to modulate P. aeruginosa membrane composition by reducing LPS and porin membrane
proteins [236], thus potentially contributing to their well-known intrinsic resistance towards
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antibiotics [237]. Rhamnolipids can also induce cytotoxicity in target epithelial cells. MCF7
breast cancer cells intoxicated with mono- and di-rhamnolipids from P. aeruginosa undergo
apoptotic cell death, manifested by nuclear condensation and fragmentation, p53 activation,
mitochondrial damage, and appearance of sub-G1 (apoptotic) subpopulations [238,239].
Rhamnolipids have been shown to cause potent necrotic cell death in human and murine
neutrophils and macrophages [240,241].

As is the case for many virulence factors and virulence structures in P. aeruginosa,
rhamnolipids can both trigger and combat host innate immune responses. For instance,
rhamnolipids are required for the expression of flagellin-induced psoriasin (S100A7) an-
timicrobial peptides and chemokines in human skin [242]. In this context, the production
of rhamnolipids may be detrimental to P. aeruginosa pathogenesis in vivo. In contrast,
rhamnolipids have been shown to cause potent necrotic cell death in humans and murine
neutrophils and macrophages, therefore protecting P. aeruginosa against clearance in the
lungs [240,241].

4. Type III Secretion System (T3SS or TTSS) Exotoxins

T3SS is a highly conserved virulence structure that is found in several other important
pathogenic Gram-negative bacteria, including P. aeruginosa [243–245]. T3SS arguably plays
the most significant role in the pathogenesis of T3SS-expressing P. aeruginosa and without
it, T3SS-expressing P. aeruginosa becomes severely attenuated in its ability to cause infec-
tion [243,246,247]. Six effector proteins, referred to as exotoxins (Exo) have been shown
to be secreted through the T3SS of P. aeruginosa but only four of these effector proteins
(ExoS, ExoU, ExoY, and ExoT) have been demonstrated to possess virulence functions,
including cytotoxicity [243,248]. Due to the narrow channel of the needle complex, the
effector proteins must be secreted in their unfolded state [249], and because of this, they
all require specific chaperones which can help maintain the effector toxins in an unfolded
state while in the bacterial cytosol and during translocation and can also aid targeting the
effector to the T3SS apparatus [250–252]. In addition, all exotoxins require host cofactors
for their activation within the host cell [253–255]. The dependence of activity on host cofac-
tors ensures that P. aeruginosa is protected from the harmful activities of these virulence
factors. We will now discuss the T3SS and its effector proteins with demonstrated virulence
functions including cytotoxicity.

4.1. T3SS Apparatus

A growing body of data has demonstrated that insertion of the T3SS apparatus of
Gram-negative pathogens, including P. aeruginosa in the host plasma membrane results
in cell death [256–258]. It is assumed that the damage caused by the T3SS pore-forming
activity is the cause of passive necrotic cell death due to trauma and membrane leak-
age. However, the T3SS-induced necrosis has been shown to be completely blocked by
ExoT [259], suggesting that the T3SS-induced cell death is a form of programmed cell death
and not accidental necrosis, occurring as a consequence of T3SS-induced massive trauma to
the membrane. Similarly, the T3SS in Yersinia has also been shown to cause pore formation
and induce cytotoxicity in target host cells and the Yersinia T3SS-induced cytotoxicity was
also shown to be blocked by YopE effector toxin [257], which is a homolog of the GAP
domain of ExoT [260,261]. Two recent reports have indicated that the cell death induced
by the T3SS of P. aeruginosa is pyroptosis [262,263]. As discussed above, pyroptosis is
mediated by Caspases 1 and 11 (in mice) and 4 and 5 (in human), which are inhibited by the
pancaspase inhibitor z-VAD. However, the T3SS-induced cytotoxicity was not appreciably
affected by z-VAD [259], suggesting that T3SS-induced cytotoxicity is not pyroptosis. Given
that the T3SS-induced cytotoxicity is completely abrogated by a toxin (ExoT) that induces
potent apoptosis (discussed below) suggests that the T3SS-induced cytotoxicity is necrop-
tosis because it is prevented under apoptotic conditions, as discussed above. Whether
necroptosis and/or pyroptosis is the underlying mechanism of T3SS-induced cytotoxicity
remains to be further investigated.
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As for the impact of the T3SS on the host’s innate immune responses, this virulence
structure is perhaps the most prominent trigger of inflammatory responses in the host
during infection. Various inflammasome subtypes (e.g., NLRP3 and/or NLRC4) have
been implicated in the recognition of and in responses to T3SS and P. aeruginosa infec-
tion, although NLRC4 canonical inflammasome appears to be the primary mode of T3SS
recognition in BMDMs and in host tissues [19,190,264–267]. There also appears to be some
contradictory reports regarding the impact of T3SS-triggered inflammatory responses on
the outcome of infection, in that the same inflammasome (NLRC4) has been shown to be
either crucial in P. aeruginosa clearance, thus benefiting the host; or paradoxically facilitat-
ing bacterial colonization and enhancing P. aeruginosa pathogenesis, thus benefiting the
pathogen. For example, Franchi et al. demonstrated that recognition of T3SS-expressing
P. aeruginosa by NLRC4 inflammasome triggers the production of IL-1β in intestinal phago-
cytes that are crucial in limiting P. aeruginosa gastric infections [268]. Similarly, NLRC4 was
found to contribute to the recognition and clearance of T3SS-expressing P. aeruginosa in a
wound model [19], and in a cystic fibrosis (CF) lung model of infection [269]. In contrast,
Faur et al. demonstrated that Nlrc4-deficient mice showed enhanced bacterial clearance and
decreased lung injury contributing to increased animal survival following pleural infection
with a T3SS-expressing P. aeruginosa strain [270]. These reports suggest that specific organs
and/or sites within a host may have evolved distinct mechanism(s) to detect and respond
to T3SS and its effectors during P. aeruginosa infection.

4.2. ExoS

ExoS is a bifunctional protein consisting of an N-terminal GTPase Activating Protein
(GAP) domain and a C-terminal ADP-ribosyltransferase (ADPRT) domain that is directly
translocated into host cytoplasm through the T3SS [271] using SpcS chaperone protein [272].
Upstream of the GAP domain is a membrane localization domain (MLD) which targets the
toxin to the mammalian cytoplasmic membrane [273]. Deletion of the MLD was found to
not affect ExoS translocation; however, ADP-ribosylation of Ras, a known target of ExoS,
was lost, thus demonstrating the importance of this sequence in mediating ExoS interaction
with some of its targets [274].

The GAP domain of ExoS targets RhoA, Rac1, and CDC42 [275,276]. These small Ras-
like GTPases are active when bound to GTP and inactive when bound to GDP [277]. ExoS
inactivates RhoA, Rac1, and Cdc42 through allosteric interaction of a conserved arginine-
finger in its GAP domain with the aforementioned GTPases, stimulating them to hydrolyze
their bound GTP to GDP [275–278]. These small GTPases play important roles in coordi-
nating and maintaining the actin cytoskeleton; thus, inactivating their signaling affects
processes, such as cell migration and cell division and leads to cell rounding [279,280].

The ADPRT domain of ExoS has many targets in mammalian cells and requires the
host 14-3-3 protein as the cofactor for its activity within host cells [254,281]. Targets include
Ras, Rab and Rho family of proteins, as well as ezrin, radixin, meosin, vimentin, and
cychlophilin A [282]. ADP ribosylation of these proteins by ExoS/ADPRT can lead to
disruption of the cytoskeleton, endocytosis, and cell–cell binding, as well as inhibition of
DNA synthesis and ultimately apoptotic cell death [279,282–285].

ExoS-intoxicated cells display signs of both Caspase-9 dependent intrinsic apoptosis
and death receptor-mediated Caspase-8 dependent extrinsic apoptosis and both domains
of ExoS contribute to ExoS-induced apoptosis [285–289]. Intoxication with ExoS/GAP has
been shown to lead to enrichment of Bax and Bim into the mitochondrial outer membrane;
disruption of mitochondrial membrane and release of cytochrome c into the cytosol; and
activation of initiator Caspase-9 and executioner Caspase-3 caspases, leading to intrin-
sic/mitochondrial apoptosis in target host cell [285]. ExoS/ADPRT intoxication has been
shown to result in the activation of initiator Caspase-8 in a manner that is dependent on the
FADD adaptor protein, although ExoS-induced apoptosis was independent of Fas death
receptor and Caspase-8 activities [290].
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As for ExoS’s impact on host immune responses, ExoS has been shown to either
dampen or trigger immune responses during infection. Intoxication of PBMCs, monocytes,
and T cells, with ExoS, or recombinant ExoS (rExoS), strongly induced transcription of
pro-inflammatory cytokines and chemokines, namely, IL-1α, IL-1β, IL-6, IL-8, MIP-1α,
MIP-1β, MCP-1, RANTES [291,292]. The same group further showed that the induction
of pro-inflammatory cytokines in ExoS-treated monocytes was due to the activation of
TLR4 signaling by the ExoS/GAP domain and TLR2 signaling by ExoS/ADPRT domain
activities [293]. Adding to the confusion in the field, Galle et al. reported that ExoS
dampened Caspase-1 mediated IL-1β production in macrophages in a manner that was
dependent on its ADPRT domain activity [294]. More recently, it was reported that ExoS had
no impact on inflammatory responses in a wound model for infection with P. aeruginosa,
although ExoS was required for full colonization of bacteria in the wound [19]. These
discrepancies are likely due to technical differences in these studies.

4.3. ExoT

ExoT is the only T3SS effector that is expressed in all T3SS-expressing P. aeruginosa clini-
cal strains [295], indicating a more fundamental role for this virulence factor in P. aeruginosa
pathogenesis. The importance of ExoT to P. aeruginosa pathogenesis is further highlighted
by the observation that it is actively targeted for degradation by host defenses in epithelial
cells. ExoT becomes complexed with Crk and a Crk binding partner Cbl-b, an E3 ubiquitin
ligase [296]. As a result, ExoT becomes polyubiquitinated and is targeted for proteasomal
degradation. In their study, Balachandran et al. showed that mice lacking Cbl-b were
significantly more susceptible to infection by strains expressing ExoT.

ExoT shares 76% protein homology with ExoS and possesses an N-terminal GAP
domain and a C-terminal ADPRT domain [271,297,298]. ExoT also contains sequence
homology with the MLD of ExoS, although this sequence has not been experimentally
mapped [282]. Nevertheless, support for ExoT MLD is demonstrated by similar intracellular
fractionation patterns between ExoS and ExoT [278] as well as experiments showing how
ADPRT domain switching in ExoS and ExoT maintains their substrate specificities in both
chimeras [299].

Similar to ExoS/GAP, the ExoT/GAP domain also targets RhoA, Rac1, and
CDC42 [279,280]. In contrast to the ExoS/ADPRT domain, the ADPRT domain of ExoT
targets only three non-overlapping substrates; namely, CrkI and CrklI isoforms of Crk
adapter protein and phosphoglycerate kinase 1 (PGK1) glycolytic enzyme [300]. Similar to
ExoS, the ADPRT domain of ExoT also requires the host 14-3-3 protein as the cofactor for
its activity [254]. ExoT has been shown to inhibit bacterial phagocytosis by macrophages,
cell migration, and cause cell rounding in a manner that is primarily dependent on its GAP
domain activity, although the ADPRT domain also contributes [21,298,300–302]. ExoT also
exerts potent anti-proliferative effects in its target host cells [303]. The GAP domain of ExoT
has been shown to inhibit cell division in epithelial cells by inhibiting the early stage of
cytokinesis at the cleavage furrowing step, likely through its inhibitory effect on RhoA;
whereas the ADPRT domain blocks the late stage of cytokinesis at the abscission step by
targeting CrkI [303]. In addition, both domains of ExoT have been shown to cause cell cycle
arrest in G1 interphase in melanoma cells by dampening the expression of G1/S checkpoint
proteins ERK1/2, cyclin D1, and cyclin E1 [304].

ExoT is also a potent inducer of apoptotic cell death in its target hosts and both do-
mains contribute to this virulence activity [259,305]. The ExoT/ADPRT was shown to be
necessary and sufficient to induce anoikis apoptosis by transforming Crk adaptor protein
into a cytotoxin which interfered with the integrin survival signaling by destabilizing the
focal adhesion sites through persistent activation of the anoikis mediator, p38β [306]. The
ExoT/GAP was shown to be necessary and sufficient to induce intrinsic/mitochondrial
apoptosis by activating the initiator Caspase-9 and the effector Caspase-3 through upregu-
lation of the expression and subcellular mobilization of Bax, Bid, and Bim—pro-apoptotic
Bcl2 family of proteins—into mitochondrial outer membrane [307]. Interestingly, the
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ExoT/ADPRT-induced anoikis apoptosis has faster kinetics occurring within 5.5 ± 1.3 h,
whereas the ExoT/GAP-induced mitochondrial apoptosis shows slower kinetics occurring
within 16.2 ± 1.3 h in intoxicated cells [306,307].

It is important to note that while pre-treatment with the pancaspase inhibitor z-VAD ef-
fectively protects eukaryotic cells from ExoT-induced apoptosis, it does not protect the host
cells from ExoT-induced disruption of actin cytoskeleton [307], ExoT-induced focal adhe-
sion site disassembly [306], or ExoT-mediated anti-proliferative effects on cytokinesis [303],
or ExoT-mediated induction of G1 cell cycle arrest in target host cells [304], indicating that
ExoT-induced apoptosis can be uncoupled from ExoT’s other virulence functions.

As for ExoT’s impact on host immune responses, Mohamed et al. recently demonstrated
that ExoT inhibits IL-1β and IL-18 pro-inflammatory cytokines production in primary
macrophages by inhibiting the phosphorylation cascade through Abl→PKCδ→NLRC4 by
targeting CrkII, which they further showed to be required for Abl transactivation and NLRC4
canonical inflammasome activation in response to T3SS and P. aeruginosa infection [19]. They
corroborated these in vitro data in an animal model of wound infection, showing that
recognition of T3SS leads to the phosphorylation cascade through Abl→PKCδ→NLRC4,
culminating in the activation of NLRC4 inflammasome in response to P. aeruginosa infection.
Interestingly, they showed that in the wound infection model, ExoT was the primary anti-
inflammatory agent for P. aeruginosa, and other T3SS effector proteins (ExoU and ExoS) had
no impact on inflammatory responses in wound tissues [19].

4.4. ExoU

ExoU is a potent inducer of rapid necrotic cytotoxicity in target eukaryotic host
cells [243,255,308,309]. ExoU has a patatin-like domain that contains phospholipase A2
activity and can target phospholipids, lysophospholipids, and neutral lipids [255,308,310].
ExoU utilizes the chaperone protein called SpcU for secretion through the T3SS [311]. ExoU
also requires host DNAJC5 chaperone and ubiquitin as the cofactor for its activity within
the target host cell [253–255,312–314]. The MLD (membrane localization domain) of ExoU
has been mapped to residues 550–687 in its C-terminal domain [315]. This allows ExoU to
target the plasma membrane where it can carry out its phospholipase activity [316].

The necrotic nature of ExoU-induced cytotoxicity would suggest a pro-inflammatory
consequence for this toxin in the host environment. Consistent with this notion, excessive
inflammatory responses due to ExoU-induced endothelial barrier disruption have been
shown to culminate in the acute respiratory distress syndrome (ARDs) in a pneumonia
animal model of infection [317]. Intriguingly, ExoU has also been shown to function as an
anti-inflammatory agent for P. aeruginosa. In a pneumonia model of infection, ExoU was
shown to create a localized immunosuppressed zone in the vicinity of bacteria by directly
killing phagocytic leukocytes (neutrophils and macrophages), albeit there were more
inflammatory mediators in the lungs of mice infected with ExoU-expressing P. aeruginosa
strain [318,319]. In another report, ExoU was shown to dampen IL-1β pro-inflammatory
cytokine production by inhibiting Caspase-1-dependent NLRC4 (a.k.a., IPAF) activation
in macrophages [320]. In the same report, ExoU was shown to reduce serum IL-1β and
enhance bacterial fitness in a systemic model of infection in mice. To add to the confusion,
in a wound model of infection in mice, it was recently demonstrated that ExoU had no
impact on pro-inflammatory cytokines production and inflammatory leukocyte responses
in a murine wound model of infection [19].

4.5. ExoY

ExoY is an adenylyl and guanylyl cyclase that shares sequence homology with Borde-
tella pertussis CyaA and Bacillus anthracis edema factor [321,322]. In a recent study, ExoY
was detected in 93% of clinical isolates in critically ill pneumonia patients who tested
positive for P. aeruginosa, and its presence was associated with end-organ dysfunction
in this patient cohort [323]. ExoY requires binding to filamentous actin (F-actin) for its
activity [324]. The primary activity of ExoY on mammalian cells appears to be as an edema
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factor, increasing vascular permeability [322,325]. However, ExoY possesses other virulence
activities including disruption of actin cytoskeleton [321,326], inhibition of phagocytic up-
take by the host immune system [327], and inhibition of endothelial repair after injury [328].
ExoY drives vascular permeability through its adenylyl cyclase activity which causes Tau
hyperphosphorylation and insolubility [322].

In one report, ExoY was also shown to induce cell lysis in Madin–Darby canine kidney
(MDCK) epithelial cells, as determined by the release of lactate dehydrogenase (LDH) into
the culture supernatant [329]. In another report, infection with ExoY-expressing P. aeruginosa
was associated with increased apoptosis in the lung of infected mice [330]. However, in
a recent report, ExoY was found to cause an accumulation of active Caspase-7 without
causing cell death in pulmonary microvascular endothelial cells (PMVECs). Whether or
not ExoY is a bona fide cytotoxin requires further investigation.

As for ExoY’s impact on host immune responses, Kloth et al. recently reported that
infection with ExoY-expressing P. aeruginosa was associated with elevated levels of pro-
inflammatory cytokines in the sera and the bronchoalveolar lavage fluids (BALFs) and
increased infiltration of neutrophilic granulocytes in the perivascular space in an acute
airway infection model in mice [330]. Interestingly, these effects were also observed when
ExoY was catalytically inactive, suggesting that at least initial inflammatory responses to
ExoY are independent of its catalytic activity. Since in these studies, the control infections
with the ExoY-deficient and the T3SS mutant strains were not included, it remains unclear
whether these pro-inflammatory responses in host tissue were directed at ExoY or whether
they were in response to the functional T3SS which itself is a potent inducer of inflammatory
responses [19].

5. Other Pore-Forming Cytotoxins

We discussed the T3SS-mediated pore-forming cytotoxicity above. Here, we discuss
other known pore-forming cytotoxins in P. aeruginosa.

5.1. CTX

CTX is a cytotoxin contained within the øCTX pro-phage in lysogenized P. aeruginosa
bacterial strains such as PA158 [331,332]. CTX is expressed as a pro-cytotoxin of 286 amino
acids, with both its activation and secretion requiring the removal of 20 amino acids from its
C-terminus [333]. CTX has been shown to cause cytotoxicity in leukocytes through its pore-
forming activity [332,334]. CTX inactivation has been demonstrated to result in reduced
virulence in a systemic infection model in leukopenic mice, indicating that it is required
for full P. aeruginosa pathogenesis in this model [335]. The impact of CTX cytotoxicity on
immune responses has not been directly investigated. However, given that killing by pore
formation would result in the release of DAMPs [336], CTX-mediated cytotoxicity is likely
pro-inflammatory in nature.

5.2. Exolysin (ExlA)

Phylogenetic analyses based on whole-genome sequencing of various P. aeruginosa
strains have recently revealed a new clade (PA7-like clade) of highly cytotoxic P. aerugi-
nosa strains that lack the genes for the T3SS and its effectors [337–339]. The cytotoxicity
associated with the PA7-like clade is attributed to ExolysinA (ExlA) cytotoxin which
causes potent cytotoxicity in eukaryotic cells by pore formation [339,340]. ExlA export
across the P. aeruginosa membrane is dependent on an outer membrane protein, ExlB,
and together ExlA and ExlB define a new active two-partner secretion (TPS) system in
P. aeruginosa [339,340]. ExlA/B-expressing P. aeruginosa strains are highly virulent in mice,
causing lung hemorrhage and septicemia in a manner that is dependent on the ExlA/B
expression [339]. ExlA was also found to be essential for bacterial dissemination to the
liver and spleen [339]. These strains have also been known to cause necrotic lesions in
pneumocytes and endothelial cells, resulting in alveolo-vascular barrier breakdown in
mice [341]. Interestingly, exposure to ExlA results in Caspase-1/Caspase-11–dependent cy-
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totoxicity in BMDMs [342], suggesting that pyroptosis may be the underlying mechanism
of ExlA-induced cytotoxicity [51]. However, the same group also reported that ExlA-
induced cytotoxicity in BMDMs is also blocked by RIP1 kinase inhibitors, necrostatin-1,
and necrostatin-5 [342], suggesting that necroptosis may also be involved [343,344]. Clearly,
more work is needed to elucidate the mechanisms underlying ExlA-induced cytotoxicity in
various cell lines and in vivo.

Regardless, ExlA cytotoxicity has been shown to be highly inflammatory in nature.
ExlA has been demonstrated to promote the maturation of IL-1β through the NLRP3
inflammasome leading to alveolar tissue damage and inflammation in the lungs of mice
infected with ExlA-expressing P. aeruginosa [341]. The authors further showed that defi-
ciency in Caspase-1/11 protected against alveolar tissue damage and improve survival
in infected mice, by partially reducing the inflammatory environment. Interestingly, the
bacterial burden was significantly lower in the lungs of Capase-1/11 knockout mice as
compared to wild-type mice, indicating that Caspase-1/11 function may enhance bacterial
fitness in this environment and at this time point. Even more surprisingly, the levels of
IL-1β and IL-18 were similarly elevated in the lungs of wild-type and Caspase-1/11 knock-
out mice infected with ExlA-proficient strain, suggesting an inflammasome-independent
mechanism for IL-1β and IL-18 processing and activation under these conditions. It is
worth noting that despite higher initial inoculum, the infection titers of the ExlA-expressing
P. aeruginosa strain were 3–4 log order lower than the T3SS-expressing P. aeruginosa strain
that was used in these studies, suggesting a fitness disadvantage for the PA7-like clade in
the mammalian host.

6. Cytotoxins as Potential Therapeutic Targets

Pseudomonas aeruginosa infections are very difficult to treat because this pathogen
has evolved a plethora of intrinsic and acquired resistance mechanisms to current antibi-
otics [345–350]. Since P. aeruginosa cytotoxins play crucial roles in its pathogenesis in vivo,
targeting these toxins, (as novel strategies to reduce P. aeruginosa virulence and render
this pathogen incapable of causing the disease), has been gaining momentum. For exam-
ple, T3SS and its effectors play a pivotal role in P. aeruginosa pathogenesis and without
it, P. aeruginosa becomes avirulent and cannot cause disease [20,243,246]. In a recent re-
port, the T3SS inhibitors (salicylidene acylhydrazide INP0341 and of hydroxyquinoline
INP1750) were shown to reduce cell death and inflammasome activation by clinical isolates
expressing T3SS toxins [351]. INP0341 has also been shown to prevent corneal infection by
P. aeruginosa in an experimental model of murine keratitis [352]. Other strategies to block
the T3SS (e.g., anti-PcrV antibody, phenylacetic acid), or inhibit its effectors, (e.g., ExoU
inhibition by Phospholipase A2 inhibitors or ExoS inhibition by small molecules), have also
been shown to protect eukaryotic cells and tissues from cytotoxicity and P. aeruginosa infec-
tion [255,353–355]. Similarly, inhibitors of quorum sensing, rhamnolipids, and pyocyanin
have also shown promising results in protecting against cellular cytotoxicity and tissue
damage during P. aeruginosa infection [240,356,357]. Clinical trials are needed to evaluate
these strategies as viable therapeutics for P. aeruginosa infections.

7. Concluding Remarks

P. aeruginosa is a highly successful bacterial pathogen capable of infecting numerous
hosts, as diverse as plants and mammals [358–360]. The induction of cell death in target
host cells appears to be a major virulence strategy that is fundamental to P. aeruginosa
pathogenesis during infection, as manifested by many virulence factors that serve this
purpose for P. aeruginosa, as discussed in this review and summarized in Table 1. It is
unlikely that P. aeruginosa evolved all these cytotoxins as redundant means to merely kill its
target host cells without consideration for the consequences associated with their different
modes of cytotoxicity on the host immune system. It is more likely that depending on
host and environmental factors, P. aeruginosa may prefer to use a subset of these virulence
cytotoxins to fulfill its needs. For example, early after infection where bacteria numbers are



Cells 2023, 12, 195 18 of 33

few, P. aeruginosa is vulnerable, thus it may prefer to deploy apoptotic-inducing cytotoxins
as a way to remain stealth, given the anti-inflammatory nature of apoptosis. However,
the caveat with apoptotic cell deaths may be the slower kinetics of cell death due to the
dependence of apoptosis on the elaborate protein-based complexes mediating this form
of cell death as discussed above. Conversely, as the bacteria numbers increase during
infection, it is inevitable for the host to recognize and mount effective immune responses
against P. aeruginosa. Under such conditions, P. aeruginosa may prefer to use potent and
fast-acting necrotic and pore-forming toxins, such as ExoU, to eliminate the threat posed
by host immune phagocytic leukocytes. In addition, it remains unclear which mode of
cytotoxicity may prevail in response to these cytotoxins. For example, apoptosis and
necroptosis are mutually exclusive, as discussed above, so the mode of cytotoxicity may
depend on the level of the competing cytotoxins and their kinetics of cytotoxicity. Moreover,
other chemical and/or physical factors, (e.g., aerobic vs. anaerobic environment, tissue
vs. blood, presence or absence of cofactors, pH, etc.), may also influence the choice of
cytotoxins for P. aeruginosa. Clearly, more work is needed to tease out these possibilities.

Table 1. Summary of the cytotoxic in P. aeruginosa strains and their mode of cytotoxicity and impacts
on immune responses.

Toxin Function Toxin Type Host Target Cytotoxicity Type Host Immune
Impact

ToxA ADP-ribosylation
[140,141] AB Toxin [140,141] eEF-2 [143] Intrinsic and extrinsic

apoptosis [144,145]
Anti-inflammatory
[147]

C12-HSL
Autoinducer for the
Rhl qourum-sensing
[150]

Apoptotic cytotoxin
[153,155]

Dampens expression
of STAT3 and
BEAS-2B [153,155]

Intrinsic and extrinsic
apoptosis [151–153]

- Pro-inflammatory
[159,160]
- Anti-inflammatory
[158]

Azurin
Cuperedoxin protein;
Redox modulation
[161]

Apoptotic cytotoxin
[162–164,166]

p53 and non-receptor
tyrosine kinases
(NRTKs)
[162–164,166]

Intrinsic apoptosis
[162–166] Unknown

Pyocyanin

- Pigment molecule
[169–171]
- Redox modulation
[172,173]

Apoptotic cytotoxin
[176–179]

Causes
mitochondrial
dysfunction
[176–179]

ROS and intrinsic
apoptosis features
[176–179]

Pro-inflammatory
[180,181]

Lipopolysaccharide
(LPS)

Cell wall stabilization
and adhesin [185,188]

Pyroptotic cytotoxin
and possibly
apoptosis [190–192]

- TLR4, Caspase-11,
and SIRT1 [190–192]

- Pyroptotic cell
death via Caspases 1
and 11 [190,191]
- ROS-induced
apoptosis [192]

Highly
pro-inflammatory
via several
mechanisms
[193–197]

Flagella Motility, biofilm [201] Membrane
disruption [199,200]

- TLR5 [207,208]
- Naip5 and Naip 6
[209,210]

Pyroptotic cell death
via Caspase-1
inflammasome [190].

Highly
pro-inflammatory
via several
mechanisms
[207–211]

Porins
Nutrient uptake;
adhesin; signaling
[217,218]

Causes
mytochondrial
dysfunction [220]

Dampens expression
of BCL-2 [220]

Intrinsic apoptosis
[220]

Pro-inflammatory
via activation of
PRRs [221,222]

Rhamnolipids

Glycolipid
biosurfactants;
involved in
swarming motility,
biofilm development,
membrane
composition, and
antibiotic resistance
[232,234–237]

- Apoptotic cytotoxin
[238,239]
- Necrotic cytotoxin
[240,241]

Mitochondrial outer
membrane and p53
[238,239].

- Features of intrinsic
apoptosis [238,239]
- Necrotic cell death
feature as well
[240,241]

- Pro-inflammatory
[240–242]

T3SS

Translocation
machinery essential
for P.aeruginosa
pathogenesis
[243,246,247]

- Pyroptotic [262,263]
- Potentially
necroptotic [181–184]

Host membrane
[256–258]

- Pyroptosis [262,263]
- Necroptosis
[181–184]

Pro-inflammatory
[19,188–194]
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Table 1. Cont.

Toxin Function Toxin Type Host Target Cytotoxicity Type Host Immune
Impact

ExoS

Bifunctional exotoxin
(GAP/ADPRT) toxin
involved in many
virulence functions
[271,275–280]

Apoptotic cytotoxin
[285,290]

GAP: RhoA, Rac1,
CDC42 [278,284]
ADPRT: Ras, Rab,
Rho, Ezrin, Radixin,
Meosin, Vimentin,
Cyclophilin A
[279,282–285]

GAP: Intrinsic and
extrinsic apoptosis
[285]
ADPRT: Features of
extrinsic apoptosis
[290]

- Pro-inflammatory
[291–293]
- Anti-inflammatory
[294]
- No effect on
immune responses
in wound tissues
[19]

ExoT

Bifunctional exotoxin
(GAP/ADPRT) toxin
involved in many
virulence functions
[21,298,300–304]

Apoptotic cytotoxin
[259,305–307]

GAP: RhoA, Rac1,
CDC42 [279,280]
ADPRT: CrkI, CrkII,
PGK1 [300]

GAP: Intrinsic
apoptosis
[259,305,307]
ADPRT: Anoikis
apoptosis [306]

Anti-inflammatory
by blocking NLRC4
inflammasome [19]

ExoU

Patatin-like
phospholipase
Exotoxin
[255,308,310]

Necrotic cytotoxin
[255,308,309,361]

Phospholipids,
lysophospholipids,
neutral lipids
[255,308,310]

Necrosis
[180,233–235]

- Pro-inflammatory
due to necrosis
[317–319]
- Anti-inflammatory
[320]
- Local immunosup-
pressant due to
killing leukocytes
[318,319]
- No effect on
immune responses
in wound tissues
[19]

ExoY

Adenylyl and
guanylyl cyclase
Exotoxin involves in
several virulence
functions
[321,322,325,327,328]

Exotoxin Filamentous actin
and Tau [322,324]

Cell lysis [255],
apoptosis [256]

- Pro-inflammatory
[330]
- No effect on
immune responses
in wound tissues
[19]

CTX øCTX pro-phage
cytotoxin [331,332]

Pore-forming
cytotoxin [332,334]

Host membrane
[332,334] Cell lysis [258,260]

Unknown but likely
pro-inflammatory
due to release of
DAMPs [336]

ExlA

AB cytotoxin
required for
pathogenesis of
PA7-like clade of P.
aeruginosa strains
[339]

Pore-forming
[339,340]

Host membrane
translocation
mediated by ExlB
[339,340]

- Pyroptosis,
mediated by
Caspase-1/11 [342]
- Necroptosis,
mediated by RIP1
kinase [342]

Highly
pro-inflammatory
[341]

It is worth noting that the impacts of some of the cytotoxins on host immune responses
were at times confusing (in that they had been implicated in both pro-inflammatory or
anti-inflammatory responses), or not congruent with the nature of the cell death induced by
these toxins as discussed above and summarized in Table 1. These seeming discrepancies
may be due to differences in experimental procedures that in most studies primarily were
reliant on in vitro cell culture-based assays. Or, they may reflect the possibility that specific
sites within a host may have evolved different mechanism(s) to detect and/or respond to
P. aeruginosa and its cytotoxins during infection. It is therefore prudent to assess immune
responses in appropriate in vivo models as a way to evaluate the net impact of P. aeruginosa
cytotoxins on host immune responses.
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