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FORWARD

This report describes a computer system built by the author
in 1968-69. During the summer of 1971 additional experiments were
run of this system.and the following document was then prepared.
It constitutes the substantive portions of the author's dissertation
submitted to the University of Michigan.y

Although this research is described from the viewboint of theory
%ormation pertinent to data analysis, it may also be construed as a -
beginning attempt to understand some of the prob1ems inherent in

systems capable of forming a structural model of the world.
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CHAPTER ONE

Intreoduction

The interaction between the disciplines of data
analysis and computer science has usually revolved around
the use of computers to perform complex and lengthy numeric
computations, As non-numeric uses of computers steadily
develop, 4 more encompassing concept ofnldata analysis
emerges, This concept has much the character of a two-sided
coin, On one side we find the traditional view in which
data analysis primarily concerns techniques of paradigm or
theory verification. On the obverse we find the view in
which data analysis involves the more ambitious notion of

theory formation,

Little research has been directed toward the use of the
computer for automatic theory formatiop, at least partially
because there is little agreement as to the meanings of the
term "theory" and such related concepts as "model" and
"structure", lHowever, advances Iin such areas as question
answering systems, theorem-proving systems and computational
semantics are providing some new and interesting paradigms
for theory formation and its uses as well as a more general
understanding of the related abstract concepts, The notion

of capturing man's knowledpe 1in terms of discrete




theories and models becomes more appealing as theory-based

question answering systems become more powerful,

In this thesis we explore some of the problems
surrounding automatic theory formation, In particular, we
describe a symbiotic man-machine system (called "the
Monkey's Uncle" (1)) which is capable of forming a limited

class of theories and discovering the structure of certain

collections of "facts'".

There are at least two prior studies which 1llustrate
the notions of 'theory" and "structure'" within the context
of automatic theory formation, Amarel (2) has made an
extensive study of automatic theory formation as apnplied to
the problem of finding the structure of a special <class of
transformations defined on a lattice X. These
transformations were mappings from X%X onte the given
lattice X. The task for his theory formation system was
then to take some examples of a particular transformation T
(i.e. triples of the form <a,b,e> such that T(a,b) = ¢) and
produce a program which would compute the transformation for
the entire X%*X set, The resultinpg program mav be considered
an intensional representation of the transformation, whereas

the examples would be elements from 1its extensional

representation, Amarel considered the movement from




extensional to intensional representations as a pivotal
challenge for theory formation,. We shall see later that
this notion captures some of the properties we wish to

.consider in a more general treatment of theory formation.

The other prime example of theory formation is Simon
and Kotovsky's (3) model of sequence extrapolation., This
classic study is concerned with discovering the pattern of
an initial segment of some given infinite sequence so as to
permit the generation of sequence elements successive to the
sample. The data operated on by their system is the
initially given segment and a set of successor functionsg
the *theory" which it unfolds 1is that rule which most
"simply" penerates the entire sequence., This rule specifies
a periodicity for the sequence and reveals how neighboring
elements are related in terms of the given successor
functions, Discovering such a rule is essentially
determining the structural properties of the initial

segment,

In the above studies, and especially in Simon and
Kotovsky's, the problems of abstraction, generalization and
theory formation are closely interwoven; any svstem which
attempts to construct a representafion of the structure of a

domain of data by having access to only part of the data




domain must face the | problems of induction and
generalization. One of the reasons "the Monkey's Uncle" is
a symbiotic system is precisely because we wish td leave
open te the wuser the choice of deciding what "rules" are
simplest and hence most general. The object for our system
is te reveal as many rqles‘ as possible,. The wuser then
decides which rules reflect the structural properties he is

most interested in.

We must formulate a consistent representation for our
"data" or Yobservations" which will handle a wide varietv of
situations and vyet be not so general as to prohibit the
efficient application of <combinatorial methods, A schema
which abpears to meet thesé criteria is to view a data itemn
or fact as being é triple of the form (x, R, y) where x and
y are objects from the domain under consideration and R is a
binary relation connecting them, Examples of data which fit
this framework are wplentiful, R, for example, may be
considered an attribute, X an object and y a value, as in:
(car, Color, fed); or, R might be directly interpreted as a
binary relation such as (chair, Right{of), tables), (Max,
Father(of), John), (Henry, Likes, Mary), (wheel, Part (of),

truck) and so on.

Triples are also capable of representing complex




"facts" which are composed of simpler entities, For
example, a representation of: "John believes Mary likes Bob™
is the complex triple: (John, Believes, (Mary, Likes, Bob)).
Although permitting facts to be embedded inside other facts
would enhance the generality of our system,  we have
purposely refrained from this practice. By so doing we have
guaranteed that the arpguments of a relation may be viewed as
objects which have no finer structure.  This permits a
-simple representation of the data as a directed graph whose
nodes denote only the objects or arpguments of a relation.
The directed arcs connecting the nodes are tagged with the
names of the relations pertaining between the respective
nodes. Sueh a directed graph provides an efficient
representation for -combinatorial search procedures which
discover all the possible  paths between any two objects.
Such searches are fundamental to our approach to theory

formation,

Before launching into a discussion of our theory
formation system, we wish to give an examnple which will show

how and why such a svstem might be used,.

Suppose we are presented with the collection of data
shown in Table 14 which consists of thirty-two facts about

the three relations R, L, and A defined over a domain of six




objects. The task before us is to discover as much of the
struéture underlying these facts aé. possible. Ideally, we
would like to find sufficient regularities in this data to
allow an extremely compact charagterization of the original
domain. In the final analysis, this compact representation

will constitute our theorv.

TABLE 1A
Extensional Definitions of the Relations

(b, R, a) (e, R, £) (e, L, ¢)
{c, R, a) (a, L, b) (e, L, d)
(Cs -Rg b) (a, L, C) (b, A, eK)
(c, Ry e) (a, L, d) (e, A, b)
(d, R, a) (a, L, e) (b, A, b)
(d, R, b) (a, L, f) (e, A, e)
(d, R, c) (b, L, ¢) (d, A, f)
(d, R, e) (b, L, d) (£, A, d)
(£, R, a) (b, L, e) (d, A, d)
(f, R, b) (e, L, d) (f, A, )
(f, R, ¢) (c, L, f) {(a, A, a)
(b, A, b) {c, A, c) (d, A, d)
(e, A, e) (fF, A, f)

The triples contained in Table 1A <can be used to
construct the directed graph shown in Figure 1.1. Toward
finding some regularities in this network we mipght first
geparate this graph into thres sub-graphs, each pertaining
to one of the given relations, This factoring 1is

represented in Fipgure 1.2. Examining each graph by itself

we can discover, by exhaustive and tedious inspection, that:
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FIGURE 1.2 _
Decomposition of Data Graph




1) R is transitive, anti-symmetric and anti-reflexive
.2} L is transitive, anti-symmetric and anti-relexive
3) A is transitive, symmetric and reflexive,

Knowing just the above we could drastically simplify
the data by omitting triples which could be reconstructed
given rules 1, 2 and 3 and some basic set of triples, There
are still other types of regularities to be investigated,
however, For exémple, we might wonder if any one of these
relations could be completely defined in terms of the
others,. If so, then the triples constituting that relation
could be eliminated and tﬁe final model need only specify
how this relation could be reconstructed in terms of its

defining relations.

We begin our search by looking for nrelationshiops
between the factored sub-graphs. A comparison between the
subgfaphs for R and L reveals a striking similarity.
Relation R is the converse of relation L. In other words,

(x, R, yv) is true if and only if (y, L, x) is true,

z

4y R = %L (where ®* means converse),

There still remain unexplored repularities in the
interactions among these relations, These are the most
~difficult and tedious to detect because, unlike rule &

above, these repgularities need not occur over all the
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triples of a given relation and, unlike ©rules 1-3, the
entire directed graph must he considered. It is doubtful
that without wmechanical assistance all of the following

patterns or regularities would be detected:

For all x,y,z:
5) (x, R, y) and (y, A, z) => (x,
6) (%, A, y) and (y, R, z) => (x,

R,

R,
7) (x, L, y) and (y, A, 2) => (%, L, y)
8) (x, A, y) and (y, L, z) => (x, L,

With the regularities expressed in rules 1-8 we can now
produce the drastic simplification of this data represented

by the directed graph of Figure 1.3.

FIGURE 1.3
Kernei of Data Graph

The five triples underlying this granph, in conjunction with
the above eight ©rules, constitute our theorvy, Any fact

contained in Table 14 not explicitly mentioned in our theory




may be inferred by formulating these rules as axioms in a

predicate logic and then utilizing a theorem~-proving system,

We have thus simplified the original- data sufficiently
that the semantics of these three relations can probably be
guessed., The relation R means "Ripht of", L means "Left of"
and A means "At", These meanings might have been suspected
from the arrangement of the nodes in Figures 1.1 and 1,2,
If the nodes in these graphs had been randomly arranged, the
fesulting diagrams would probably have been confusing enough
to obscure this interpretation. In Figure 1.3, however, the
directed graph is so simple that any arrangement would still

suggest that these relations denote some type of ordering.

Although this example is based on very simple data, it
affords a feeling for the amount of searching, guessing and
matching that is involved in unfolding Jjust these simple
patterns. In this thesis we want to examine how computers

can be used to facilitate these tasks.

It might be worth noting that t%e notion of "theory"
sketched out in this discussion has a strict logical
counterpart, The above eight repularities may bhe considered
as axioms involving individual wvariables, whereas the

selected trinles (renresenting the core of the comnressed

data) are axioms involving individual constants, The




extensions of the relations as defined by Table 1A then
represent a logical or semantic " model for the axiomatic

theory.

When we commenced this project it was our idealized and
naive poal to construct an automatic theory formation svstem
which could examine a massive collection of data and
automatically formulate a theory in the form of a set of
axioms for a question answering system. As anyone who has
constructed a qgestion answering system can testify, such an
axiom formation system would be a tremendous aid. Likewise,
however, the same people will oprobably testify to the

hopelessness of the task.

What follows, then, is an attempt to formulate a
precise set of goals for a symbiotic theory formation
~system: These goals are discussed at length in Chapter Twoj
in Chapter_Three we present the general framework for a
system which can achieve them, Chapter Four deals with the
detaills of our system's implementationi chapter ULIive
contains various examples of it in operation., In Chapter
Six we describe some combinatorial techniques which help to
identify those relations of a data base which are most
fundamental. The rélations thus isolated represent a "core"

of the initial data. It is our hone that the resulting




representation will be so simple (as is Figure 1,3 above)
that the wuser will be able to discover frbm it .the
underlying semantics of his data. In Chapter Seven, wWe
exhibit a simplified question-answering system which is
capable of utilizing the rules or patterns discovered b? our
main system and which, in addition, provides a means of
checking the coumpleteness of our derived theories. In the
final chapter of this thesis we will discuss the possibility.
of using our symbiotic theory formation system to detect and
correct errors in the data,

" Although we present our research from the viewpoint of
theory formation, much of this research is relevant to the
far-reaching goal of a system which can invent (or select)
its own inferenciﬂg procedures and thus capitalize on
"special" properties of the given universe, In fact, we are
greatly indebted to Robert K., Lindsay who, for reasons more
closely tied to the above goal, conceived of the central
problem discussed in this thesis, We believe that his
insightful delineation of this class of problems was
critical in our construction of an inductive system that can
perform useful tasks, However, this 1is certainly Just a

First step toward the more ambitious goal mentioned above.




(1)

(2)

(3)
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FOOTNOTES

S0 called because the system spends much of its time climbing
up and down trees; and because it produced its first note-
worthy result during an exploration of the "Uncle" relation.

S. Amarel, "On the Automatic Formation of a Computer Program
which Represents a Theory," Self-Organizing Systems (Wash-
ington, D.C.: Spartan Books, 1962}.

H, A. Simon and K, Kotovsky, "Human Acquiéition of Concepts
for Sequential Patterns," Psychological Review, LXX (No. 6
1963), pp. 534-5u46.




CHAPTER TWO

. Boals for a Theory Formation System

In this chapter we will delineate four quite different
tgsks and discuss the motivation behind each,. These tasks
will include the discovery Qf intensional definitions and
the selection of the relations most fundamental to these;
the discovery of rules of inference and the differentiatipn
of objects In the data space according to properties

revealed by the forepgoing.

As mentioned earlier, the data for our system is
presented in the form of binary relations. A ginary
lrelation R on a _universe D of objects 1is extensionally
defined by specifying a subset of 2«tuples from D%D, A
particular "fact" or element of our data is a tripnle of the
form (%, R, y) where the 2-tuple {x,y) is contained in the
extension of R, The data file thus consists of a list of

facts which ©represents a set of observations about some

1

yoprld",

Discovery of Intensional Definitions

A relation can also be described intensionally without
exnlicit reference to its extension, This can be done by

stating its logical properties or by specifying how it can
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be defined in terms of some set of relations. In this
manner, we move from .extensional definitions of our
relations to intensional ones. The "lopgical combinations"
conprising these intensional definitions will rely on the

logical operators: composition, disjunction and converse,

Def: The Composition of R1 and R2, denoted by "R1/R2"
is defined:

For all x and y:
E(x,R1/R2,y) iff (F2)((x,R1,z) A (z,R2,y))]

Def: The Disjunction of R1 and R2, denoted by "R1i V R2H4
is defined:

For all x and v:
[(x,R1 V R2,y) iff ((x,Ri,y) or (x,R2,y))].

Def: the Converse of R, denoted %R, is defined:

For all x and y:
[(x,®R,y) iff (y,R,x)].

Def: A relation Ri is intensionally defined with
respect to some given set of relations
Ri1,R2,...4Rn by specifying how it can be
constructed out of R1,R2,,..,Rn using only the
logical operators of composition, disjunction and
converse,

.

In order to aid the appreciation of the concept of

intensional definition we will mention two aspects of such

definitions,. First, intensional definitions are a certain
type of specification of the interrelationships among
" relations. In fact, such definitions assert that these

interrelationships are precisely characterizable by another




relation, Secondly, an intensiongl definition can be a
recursive or circular definition in-that the given relation
mipght interact with other relations so as to yield a logical
definition of 1itself, We can, for example, define the

"Parent™ relation as:
Parent = Spouse/Parent

i.e., % is the parent of y if there exists a z such that x

is the spouse of z and z is the parent of vy.

The set of definitions for all the relations on a
domain may indirectly form circular definitions even if no
relation is defined in terms of itself,. This is often the
case with natural language dictionaries, where a chain of
definitions may eventually 1lead one back to the original
word in question (this is not to imply that such definitions
do not convey information)._ Some exanples involving binary

relations mighf he:

‘ Example 1:
Def: Cousin = Offspring/Uncle
Def: Uncle = Parent/Cousin

Example 2:
Def: Uncle = Hushand/Aunt
Def: Aunt = Mother/Cousin
Def: Cousin = Offsprinpg/Uncle

We now define the first of our four tasks.
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Task #1: Given the extensions of several binary
relations over some universe D, discover
all the intensional definitions of each
relation in terms of the given
collection of relations.
If we can discover all of the interrelationships among
these relations which are expressible as intensional

definitions, we are a long way toward representing the

logical structure of the data hase.

This point can be enhanced by vrealizing that a
particular relation often has many intensional definitions,
all of which must be equivalent in some sense since the
extensions of each of these definitions are identical., The
user, however, must decide if the definitions are logically
eguivalent, Of the many structural relationships presented
to him by the system, some will represent important logical
properties of the underlying universe from which the data
was drawn while others will merely reflect idiosyncracies of
the data sample, Suppose that our system has unfolded, for
some given sample, two definitions of fhe term "Uncle™. One
of these asserts that an wuncle is a parent of a cousin,
while the other asserts that an uncle is either the brother
of a parent or the husband of a sisfer of a parent, For the
given sample, the extensions of these two definitions must

3

concur, We see, however, that the first definition requires




that all uncles be parents. It is up to the user to decide
whether this reflects a valid str;ctural property of the
data universe or whether it merely stems from an
idiosyncracy of the sample data, If the latter is the case,
enlargement- of the sample will probably disprove the

definition.

Apart from revealing some of the interplay among the
various relations, the discovery of intensional definitions
for a given relation «can allow a significant reduction in
storage space requirements. This is because the extension
of a relation will often involve large tables of information
while its intensional definition will rarely require more
than a few symbols, of course, since dintensional
definitions do not «contain references to objects, the
original collection of facts about relations between objects
cannot be entirely replaced by a collection of intensional
definitions. This leads us to the problem of deciding which
relations should be répresented intensionally and which
should be maintained extensionally, It seems reasonable
that some of the relations are apt to be more basic than
others, If the correct choice is made, a greater
compression of the ‘data can be achieved. In fact, many of

the virtues of such systems as LEAP (1) and TRAMP (2) are

derived from this kind of data compression,
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Discovery of "Atomic!" Relations

Our second task is to decide which relations are so
basic they might be justifiably called atomic. Since our
system doesn't know the meanings of the relations, atomicity
cannot be ‘based on real-world semantics and. must Dbe
characterized solely in terms of the logical or syntactic
properties of the particular binary relations. Still, any
abstract definition of atomicity mus% fulfili our intuitive
expectations. The following recursive definition adequately

formalizes the notion:

Def: Relative to a specified set of intensional
definitions, a set of relations R generates a
particular relation Ri if either:

i) The set R contains all the defining relations
in an intensional definition of Ri

or ii) The set R can generate all of Ri's defining
relations.

Def: A subset R' of R is an atomic set of relations
relative to a specified set of intensional
definitions if R' can generate all relations in R

and if, for any other set R" which does likewise,
IR*{<IR"|.

In  other words, R' constitutes an atomic set of
relations if R' can generate R and if any other set which
does likewise has a number of elements which is preater than

or equal to the number of elements in R'.
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Atomic sets are, therefore, the smallest sets from
which all of the remaining elements can be defined. They
are not unique, and, in fact, are critically dependent on
the set of 4intensional definitions. Finding the smallest
possible set of atomic relations reguires first knowing all
possible ways each relation can be defined in terms of the

others,
We can now formally state our second task.

Task #2: Given a collection of relations and
intensional definitons for each relation
in the <collection, determine the atomic
relations,

Discovering the atomic relations for a data base allows
us more than just the opportunity to compress our data by
eliminating the extensions of all the non-atomi¢ terms,
Once we know which terms are atomic we.can afford to delve
more deeply into the interactioﬁs among just these terms,
To make future combinatorial searches more efficient, we can
also simplify the original data graph by eliminating all

links pertaining to nen-atomic terms.

The additional regularities we would like to discover
are of two types. First, we hope to isolate patterns that

might hold over only parts of the extensions of particular
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relations. These patterns often 1lead us to interesting
conclusions about our relations, If a relation Ri is
transitive, for example, then part of its extension is equal

to the entire extension of the composite relation "Ri/Ri™,

Secondiy, we want to examine all poséible pairwvise,
triplewise etec. interactions among these relations. There
are several reasons for this. Sunpose we discover that both
Rl and R2 are transitive relations aﬁd suppése we know that
R3 (a non-atomic relation) can be defined as "R3 = R1/R2",
If we wish to know whether or not R3 is transitive we can,
of course, directly inspect R3 for that property. Even if
R3's extension were no longer available, however, we could
still answer our question if we <confirmed that the pairwise

interaction: "R1/R2 = R2/R1" existed (3).

Discovery of Inference Rules

Another reason for studyiﬁg all possible n-wisge
interactions concerns the discovery of rules of inference,
Finding such rules is of extreme Iinterest since, as the name
of these rules suggests, they permit us to infer additional
facts from those already known, For example, suppose we

know the following two facts:

Fact 1: (Napoleon, Command, French Army)
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Note that Ri is permitted to occur in the left hand side of

the rule,

From a logical point of view, this restriction amounts
to requiring that our rules of inference involve only

universal quantifiers.

Discovery of Predicates

The above three tasks have all involved'finding various
types of interrelationships among the given relations, No
mention has been made about the 6bjects on which these
relations are extensionally defined,. It s=seems that any
interesting theory formation system ought to be able to use
the relational structure it has discovered to establish

certain structural properties of the objects themselves,

This task is fundamentally different from the previous
tasks because it requires the invention éf descriptive terms
for the objects. The prior tasks worked entirely within the
framework of the given relations, finding relationships that
could be expressed in terms of already defined concepts.
Here, hoﬁever, concepts in the form of predicates must be

invented,.

We are interested in the evolution of several types of

descriptions for the obijects. The simplest descriptions
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will be unary predicates wﬂich assert that an object either
has a particular property or that it doesn't. The more
complex descriptions will assert that some attribute ‘of an
object has one of a set of possible values., If that set has
but two values then, of course, these two  types of
déscriptions coincide. The critical idea in the generation
of such predicatgs and attributes is the realization that
they implicitly specify groupings of the objects. More
precisely, both wunary predicates and attributes defiﬁe
partitions on the object space. What we must do 1is to
somehow use the structure discovered in +the above three
tasks to difect the formation of partition classes on the

~object space. This operation is, in fact, our last task:

Task #4: Determine partitions on the object snace
which reveal interesting properties
about the objects,.

In this chapter we have set forth four quite disparate
problems whiph - We expect our symbiotic theory formation
syétem to solve, All of these tasks involve, in one way or
another, the isolation or discovery of the structural
properties of a pgiven data set, The first task concerns
unfolding those simple interrelationships which 1lead to

intensional definitions, The second task is to select the
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most fundamental relationships and thereby provide a limited
field upon wbich to focus more exhaustive inspection. The
third task 1is to discover Interrelationships amoﬁg the
relations which qualify as rules of inference. The last
task is the creation of new relations - which often take the
férm of unary predicates - which reveal gqualities of the
objects themselves. The result of these four tasks should

be a clearer understanding of the structure of our data.
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FOOTNOTES

(1) Jerome A. Feldman and P. D. Rovner, "An Algol-Based Associative
Language," Communications of the ACM, XIII (August, 1969),
439-1449,

(2) William L. Ash and E. H. Sibley, "TRAMP: An Interactive Associ-
ative Processor with Deductive Capabilities," Proceedings ACM
Nat'l. Conference (August, 1968).

(3) Theorem: If R1, R2 are transitive then R1/R2 is transitive if
R1/R2 = R2/R1.




CHAPTER THREL

An Approach to Theory Formation

We have designed and implemented two quite different
systems intended for the type of theory formation described
in. the previous chapters, ‘We now describe some of the
theoretical problems involved in their construction and the
techniques we havelused in their solutions., In this chapter
we will concentrate on the theory formation system called
"the Monkey's - Uncle', relegating to Appendix 1 the
description of a pr£or system which proceded from a purely
algebraic formulation of the task. This prior system groved
to be overly sensitive to errors in the data. In additien,
the algebraic approach became less tenable when the amount

of data was Increased.

The primary purpose of "the Monkey's Uncle" is to
discover in a given data set interrelationships or patterns
which can be expressed as intensional definitions of its
extensionally defined relations, To illustrate how a
pattern could be translated into an intensional definition
we consider the following simple case which consists of two
subgraphs (see Figure 3,1) from a hypothetical data graph.
The arcs of the subgraphs are labelled according to the

mnemonics listed in Table 24,
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FIGURE 3.1
Data Graphs

. Fred@/m\%w
/ \\P\MMM——”;F//IV/ \
==
oy AR




- 30 -

FIGURE 3.1 (cont.)
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TABLE 3A
Mnemonics for Relations

G = Grandfather GF = Grandmother

PM = Father PF = Mother

MM = Husband MF = Wife

4 = Brother SF = Sister

UM = Uncle PN = Parent

: (neuter)
TABLE 3B
Labelled Path Sequences

(FRED GHM BOB) (MAX GM JANE) (FRED GM CATHY)
PM-PF PM-PM PM~PM
PM=-UM MM=PF-PH PH-UM
MM-PF~PF PM=MM~-PF MM=-PF-PM
PM-SM-PF P¥=SF~-PM MM~PF~UM
MM-PF-UM PH=SF~MM~PF PM=-SF=UM
PM-SF-UNM M=PFr=-SF-PM PM=-SF~PHM
PM~SM~-UM MM=PF-MM~-PF PM=SM~FM

MM-PF-SF-UM
MM-PF-S5M-PF
MM-PF-GM-UM
PM-SF-SM-UM
PM~-SM-5SF-UHM

MM~PF-SF=-MM=~-PF

(MAX GM KIM)

PM~-SM-SF-UM-
MM=-PF-SF-UHY
MH-PF-SF-PM
MM-PF~SM~-PM
MM=-PF-5SM-UM

PM-SM~-ST~UM PM-PF PM-SF-SM-PHM
PM~SM~-SM-PF PM-UM PM~SF-SM=-UM
MM-PF-SF-SM-UM MM~PF-PF PH-SM=-GF~PHM
MM-PF-SM-SF-UM PM-SM-PF . PM-SM~-SF~-UHM
PM-5r-UNM MM-PF-SF-SM=-FM
MM-PP-UM MM~PF-SF-5H~-UM

MM~PF~SH-PF
MM-PF~SF-UM

MM~PF~SM-SF-PM
MM=-PF~-SM-SF~UM

Note that the second letter of each mnemonic represents

the sex = Male, F = Female, N = Neuter) and the
first represents the generic category (G = Grandparent,
M = Mate, z  Sibling, ete.). This notation was

conceived by R, K.

Lindsay (personal communication).
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In order to understand the erucial idea behind this
example, we must first’ recall the definition for the
composition of two binary relations. The definition first
asserts that if R1 = R2/R3 then for any (x,vy) contained in
the extension of Ri fhere exists an obiject = suchrthat (x,2)
is contained in R2 and (z,y) is contained in R3. Restated
in terms of the directed graph representation of our data,

this means that, if R1 = R2/R3, then for every arc:

S

there 1s a path which has the form:

R2 R3

R1

In addition, the definition asserts that, 1f Rl =

R2/R3, then for all =z such that (u,z) is contained in R2 and
(z,w) 1is ~contained in R3, (u,w) must be contained in R1.

Reinterpreted, this means that for every path of the form:
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R2 R3

there must also exist a simple arc from u to w labelled R1.

Returning to our example, we want to examine how the
intensional definitions of M"Grandfather™ ("GM") might be
discovered. Toward this goal, we sélect a fact, say (Fred,
GM, Cathy) and search out all possible paths that bridge
. this fact but which do not involve loops, For each path
discovered we record only the labels on its <component arcs
and not the nodes it passes through, For this particular
2-tuple these 1labelled path sequences ‘(hence forth to be

called LPS's) are listed in Table %R under (Fred, GM, Cathy).

It is possible that some of these  twenty LPS's
represent valid compositional definitions for the relation
n"GMn, In order to discover if a particular LPS does so, we
must verify that every occurrence of this pattern in our
data graph bridges a 2-tuple contained in the extension of
the "Grandfather" relatién. Since this verification is a

costly operation (requiring a pattern search over the entire
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data space as contrasted with an anchored search from the
2-tuples of "GH"), it makes sense to gather supporting
evidence from other "Grandfather" examples., Hence, we might
consider all the paths bridging another example of
Grandfatherhood - i.e. (Max, GM, Jane). An} LPS that
reflects a valid compositional definition must be 1in both
sets of path labels, We therefore form the intersect of

these two sets and find:

. PM/PH

(Fred, GM, Cathy) and (Max, GM, Jane) => PM/SF/PM

' MM/PF/FM
MM/PF/SF/PM,
This new set is much smaller (four vs, twenty), due to the
elimination of such LPS's as "PM-UM", A close examination
of the associated conjecture: "GM = PM/UM" illustrates the

two ways a conjectured definition might fail,.

First, the wvalidity of this definition rests on

finding, for every example (x,y) of Grandfatherhood, a son
(i.e. a "z") who is an uncle of the particular child ("y").
This could happen if every coﬁple had at least two sons, a
case which would probably reflect an idiosyncracy of the
sample data. However, if the data base contained examples
extracted from the followiﬁg sample family structure (see

Figure 3,2), then Fred would not only bhe the grandfather of
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FIGURE 3.2
Hypothetical Family Tree

Bob but would also be the grandfather of x, which is clearly
false.  In other words, "PM/UM" is an over-general
conjecture in that it generates examples outside of GM's
extension, At the same time, i1t 1is under-general since
there are examples of Grandfatherhood which cannot be made

to fit PM-UM patterns.

Let us now delineate two - strategies to help in
discovering valid compositional definitions:

Strategy #1: Intersect all available lists of LPS's so as
to maximize +the chance of eliminating any
under-general conjectures,

Strategy #2: Test the remaining LPS patterns to see if any

of these patterns are over-general.

Strategy #1 has certain complications, as mav be seen when a
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third list of LPS's | (i.e. all paths bridging
(Max, GM, Kim)) 1is intersected with the other two lists,
This intersection 1is null, indicatiné that there is no LPS
pattern in common with all three lists. Translated into the
logic of relations, this means that the relation "GM" has no
intensional definition consisting solely of the compositions
of other relations defined on "this data base (note the
absence of the neuter relation "Parent" in the data graph).
- Examining this graﬁh Wwe see that a disjunctive definition is
required because Max has both a daughter and son who
function as mother and father for Kim and Jane respectively.
Also, Strategy #1 must be revised to yield something besides

"null®" in these situations.

Revised Strategy #1:
Intersect the list of LPS's until either all the.
lists are intersected or until a null intersection
iz formed, In the latter case, 7restart the
process with the last list encountered and proceed
from there (thus forming another disjunct of the
definition).

A close look at the application of the revised strategy
in this example shows nof only that a disjunctive definition
is required but that the order in which we iﬁtersect the
various lists of LPS'S affects the outcome, For example, if

‘we first form the pairwise intersection’ of the LPS lists




- 37 =

belonging to (Max, GM, Jane) and (Fred, GM, Cathv) and then
form the pairwise Intersection of those belonging to (Max,
GM, Kim) and (Fred, GM, ‘Bob) we arrive at the possible
definitions shown in Example 1, ~The first disjunct comes
from intersecting the first pair of 1lists and the second

disjunct comes from intersecting the second pair of lists,

EXAMPLE 1
((MAX,JANE)A(FRED,CATHY)) ( (MAX,KIM)A(FRED,BOB))
PM/PF
? PH/PY PM/ UM
GM = PM/SF/PM y PM/SM/PF
MM/ PF/PM PM/SF/UM
MM/PF/SF/PM MM/PF/PF
MM/PF/SM/PF
EXAMPLE 2
(((MAX,KIM)A(FRED,CATHY))A(FRED,BOB)) (MAX,JANE)
PM/PM
PM/MH/PF
2 PM/UM PM/SF/PM
GM = PM/SF/UM v MM/PF/PM
MM/PF/UM MM/PF/MM/PF
MM/PF/SF/PM
PM/SF/MM/PF

MM/PF/SF/MF/PF
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Suppose we hgd,. instead, intersected <the LPS lists
belonging to (Max, GM, Kim) with those belonging to (Fréd,
“GM, Cathv) and then intersected the resultant list with that
of (Fred, GM, Bob). We then discover that this new,
non-void list has no LPS patterns in common with those of
(Max, GM, Jane). Under this ordering we generate the

definitions shown in Example 2,

Although the definitions helonging to both examples are
consistent with the given data, the definitions of the first
example are préfevable; at least some of them are
universallv consistent in that they can never generate a
counter-example to Grandfatherhood, no matter how much we
enlarge the data space, In the'second example, nene of the
compositional definitions of the First disiunct are

universallv consistent.

To illustrate more Ffully how the end result of list
intersection depends critically upon the order in whiech the
pairwise intersections are performed, we have created a more
realistic example. Using the simple- familvy tree shown iﬁ
Figure 3.3, we generated all the extensions of American
kinship terms, This data was then input to our system and
we created the LP3 1lists for all the examples of the

"Parent" relation. For this data there are sixteen (x,vy)
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2-tuples in the Parent relation. There are, therefore,
fifteen factorial orderings of their associated LPS lists.
0f these possible ordefings, we randomly generated
twgnty—three and proceded to execute Strategy #1 with each.
Figure 3,4 summarizes the frequency ofl occurrence of the
resulting disjunctive definitions according to the number of
disjuncts they contained, Table 3C lists the intensional
definitions produced by: a) the first of our randomly
selected orderings and then by: b} the Moptimal" ordering of
the lists, This "optimal" ordering was the only one of the
twenty three that producea only tﬁo disjuncts, The first of
the randomly selected orderings lead to a definition involving
three disjuncts.

TABLE3L (Part A)
Conjectural Definitions

GN/NM

GN/NF -
GN/CN/NM
GN/CN/NF
SN/UM GN/OM/SN
SN/SN/UM GN/NM/SN
SN/ON/GF GN/NM/SM
? SN/OM/GF GN/SM/NF
PN = MN/SN/UHM v SN/UM/CH GN/ON/SN
SN/UM/SN GN/OF /SN
SN/ON/GN GN/NF/SN
SN/ON/GHM GN/NF/SM
SN/OM/GN GN/SN/NF
SN/OM/GM GN/SN/NM
GN/SF/NM
MN/GN/NM

JMN/GN/NF
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TABLE 3C (Part B)

7 P
PN = PF/SN
MN/PM
ME/PM
PF/OF/PM
MN/PM/SN
MF/PM/SN

PM
PM/SN
MN/PF

v MM /PF
PM/OF/PF
MN/PF /SN
MN/PF /SN

FIGURE 3.3
Hypothetical Family Tree
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FIGURE 3.4
Frequency Distribution of Disjunctive Definitions
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An examination of these two sets of conjectural

definitions revealed that the ordering which lead to the
fewest number of disjuncts consisted of grouping all the
parents who were fémale together and then grouping all
parents who wWere males together (remember that the system
héd no knowledge of unary predicates such as Male and
Female), The grouping that produced the initial sét of

conjectural definitions was:
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Group 1:
(7 PN _10)
(3 PN 8) (7 PN 11) Leading to MN/SN/UM
(3 PN 9) (7 PN 12) (see Figure 3.3)
Group 2:
) (6 PN 10)
(4 PN B) (6 PN 11) Leading to SN/UM,
(4 PN 9) (6 PN 12) (see Figure 3.3)
Group 3¢
(1 PN &) (2 PN 4)
(1 PN 5) (2 PN 5) Leading to GN/NM,
(1 PN 6) (2 PN 8) '

(see Figure 3.3)

Obviously, it is very difficult to abstract any apparent

structure from this clustering.

This example sugpests that whenever a relation is
encountered that requires a disjunctive definition, we
should probably search for the definition which involves the
.fewest number of disjuncts, Qur experience has so strongly
supported this belief that the current version of "the

Monkey's Uncle" operates on a basic minimality principle:

Principle:
Always attempt to discover a disjunctive
definition that involves the fewest number of
disjuncts,

The . application of this principle has produced a

particularly interesting side effect in that the disjunctive

definition selected under it reflects a particular

etc,

etc., -
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clustering of the examples. We will illustrate in a later
chapter how these clusterings can be suppestive of hitherto
unknown relations which, when postulated, lead to a much

simplified theory of the data,

On Checking for Over-Generality

The result of applying Stratepy #1 to a data base is a
collection of conjectural definitions for the particular
relation R under study, A property of any such conjectural
definition is:

P1: (x)(y) [(x,y) element of R =>
(x,y) element of Conjectural Definitionl].
The problem of over-generality lies in verifying the

converse of this property:

P2: (xj(y) [(x,y) €¢lement of
Conjectural Definition => (x,y) element of R].
At first glance, the verification seems straight-forward:
simply compute the extension of the conjectural definition
and test for its inclusion in the extension of R, If it is
included, then the conjectural definition has been verified.
The problem of efficiently performing this coﬁputatioh is

the concern of associative memory processors like TRAMP and,




- 44 -

as such, will not be discussed here., Such verification is

possible, but it is expensive for large data bases.

We were primarily interested in developing heuristic
technigues that could be used to efficiently detect
over-general conjectures, After these are eliminated, of
course, the wuser has the option of appl&ing exhaustive
techniques to the few remaining definitions so as to remove

any doubt about their validity.

Qur heuristic procedures are based on the concept of
"the inverse image of x with respect to a binary relation R"
informally defined as the set of all y's such that the range
of x (i.e. R(x)) overlaps the rénge of y.
Def: The inverse image of x with respect to a binary
relation R, denoted IR{(x), is:
IR(x) = (y| there exists some z such that:
(x,z) Element of R and (y,z) Element of R):
Inverse images do not form equivalence relations bn the
domain of the giﬁen relation, If R is represented by the
following directed graph, then the collection of inverse
images is exhibited in Table 3D. From these we see that

inverse image sets form a cover but not a partition,
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TABLE 3D
Hypothetical Relation -

0@3—_______________-_*

b@ IR(x)
IR(a) = a,b,c

¢ IR(b) = a,b,c
IR(e) = a,b,c,d,e
IR(d) =-¢c,d,e
IR(e) = c,d,e

@

In a similar manner, we can define the inverse image of
®x wWith respect to a conjectural definition of R since,
clearly, the extension of a conjectural definition can be
computed if the extensions of the relations occurring in

that definition are known.

Our heuristic procedure picks an object x in the domain
of the relation R being defined and computes both IR(x) and
I"Def"(x). It then checks to see if‘I“Def"(x) is contained
in IR(x). If not, it rejects the "Def"; otherwise it
chooses a new % and repeats this procedure until the domain
of R has been exhausted., A faster but less complete version
of this heuristic is to choose only x's which have not

occurred in any of the previously computed inverse images,
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These checks are only heuristic since they do not take into
consideration the 1local connections within each inverse
image class. This difficulty 1is 1illustrated below as we
note that the relations R and R! would be claimed equivalent
according to this check,. Nevertheless, the type of global
structure captured appears to be significant, For example,
the inverse image of a brother is the set of his other
brothers, as contrasted with the set of his siblings., This
property 1s precisely what 1is needed to eliminate such

over-general conjectures as "SM = SN",

A more realistic understanding of the power and
limitations of this heuristic may be seen from a data base
analyzed by this system. The data reflect the family tree

shown in Figure 3.5 below,
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The definitions for the binary relation "Niece' were-

first explored. Table 3E lists the conjectural definitions
resulting from the execution of Strategy #1. These

definitions were then subjected to the above heuristic check
which resulted in the definitions given in Table %F of the
original thirty-two intensional defini?ions twenty-three
were rejected by our check and the lremaining definitions
were all correct,  The definitions for "Uncle" were then
explored with the results similarly detailed in Tables 3G and
3H. This time, the heuristic failed to detect that 8 of the
remaining definitions were over-general {(Table3] contains
the 1list of conjectural definitions which survived the
exhaustive check). For example, the definition "Uncle =
-Husband/Aunt/Cousin" (i.e., MM/UF/CN) passes the test since
no notice is taken of the fact that this would imply that-

one's father is also one's uncle,

The need for developing an heuristic for speeding up
the verification of conjectured definitions is better
appreciated when we understand the complex interactions
between the generation of‘ conjectures and their subsequent
verification, In faect, there 1is a constant- cycling of
information between these two phases, Suppose the first set
of definitions conjectured were subsequently disproved,

Then all the paths in the data graph that Iead to these
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FIGURE 3.5
Family Tree Underlying Data Base
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TABLE 3E

Conjectured Definitions of "Niece"
Prior to Heuristic Check

Cousin/Daughter
Cousin/Offspring
Cousin/Daughter/Spouse

. Cousin/Cousin/Daughter
Cousin/Cousin/0ffspring
Offspring/Uncle/Offspring
Offspring/Uncle/Daughter
. Daughter/Uncle/0ffspring
Dauphter/Uncle/Daughter
Offspring/Aunt/O0ffspring
Offspring/Aunt/Daughter
Daughter/Aunt/Offspring
Daughter/Aunt/Daughter
Cousin/Cousin/Nephew
Cousin/Offspring/Spouse
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TABLE 3 F .

Conjectured.Definitions of "Niece"
Remaining After Heuristic Check

Daughter/Aunt/Daughter
Daughter/Aunt/Offspring
baughter/Uncle/Daughter
Daughter/Uncle/Offspring

TABLE 3G

Conjectured Definitions of "“Uncle™®
Prior to Heuristic Check

Spouse/Aunt

Husband/Aunt
Brother-in-Law/Parent
Parent/Cousin

Father/Cousin
Spouse/Aunt/Cousin
Husband/Aunt/Cousin
Spouse/Sister-in-Law/Mother
Husband/Sister-in~Law/Mother
Spouse/Sister-in-Law/Aunt
Husband/Sister-in-Law/Aunt
Spouse/Sister-in-Law/Parent
Husband/Sister-in-Law/Parent
Spouse/Parent/Cousin
Spouse/Mother/Cousin
Husband/Parent/Cousin
Husband/Mother/Cousin
Brother-in-Law/Aunt/Cousin

Brother~in-Law/Sister-in-Law/Aunt

Brother=-in-Law/Parent/Cousin
Brother-in-Law/Spouse/Parent

Brother-in~-Law/Brother-in-Law/Aunt

Parent/Cousin/Cousin
Father/Cousin/Cousin
Parent/Offspring/Aunt
Parent/Daughter/Aunt
Father/Offspring/Aunt
Father/Daughter/Aunt
Parent/Niece/Parent
Father/Niece/Parent
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TABLE %H

Conjectured Definitions of "Uncle®
Remaining After Heuristic Check

Spouse/Aunt
Husband/Aunt
Brother~in-Law/Parent
Father/Cousin
Spouse/Aunt/Cousin
Husband/Aunt/Cousin
Spouse/Sister-in-Law/Mother
Husband/Sister-in-Law/Mother
Spouse/Sister-in-Law/Aunt
Husband/Sister~in-Law/Aunt
Spouse/Sister~in-Law/Parent
Husband/Sister-in-Law/Parent
Spouse/HMother/Cousin

- Husband/Parent/Cousin
Husband/Mother/Cousin
Brother-in=-Law/Aunt/Cousin
Brother-in-Law/Sister~in~Law/Aunt
Brother-in-lLaw/Parent/Cousin
Brother-in-Law/Spouse/Parent
Brother~in-Law/Brother-in-Law/Aunt
Father/Cousin/Cousin
Father/Offspring/Aunt
Father/Daughter/Aunt




- 51 -

TABLE 371

Conjectured Definitions of "Uncle"
Remaining After Exhaustive Check

Spouse/Aunt

Husband/Aunt
Brother=-in~-Law/Parent
Father/Cousin
Spouse/Sister-in-Law/Mother
Husband/Sister-in-Law/Mother
Spouse/Sister~in-Law/Parent
Husband/Sister-in-Law/Parent
Spouse/HMother/Cousin
Husband/Parent/Cousin
Husband/Mether/Cousin
Brother-in-Law/Spouse/Parent
Father/Offspring/Aunt
Father/Daughter/Aunt
Father/Niece/Parent

conjectures would have to be temporarily "removed" and a new

set of conjectures would have to be invented. These would

then hawve to be checked, and so on.

Our experiments have revealed that, for most of our
test data, this‘process is often repeated a dozen timesl
before a set of conjectures are formed which can not be
disproved within the data itself, Consequently, our system

must typically verify many more conjectures than appear in

the final output,.




CHAPTER FOUR

A Description of "the Monkey's Uncle"

In this chapter we will discuss some of the
implementation details of "the Monkey's Uncle',
Justification for some of the design philoesephy will also be
presented in the light of certain experimental results that

have been obtained.

A unifving characteristie of the tasks described in the
,previoﬁs chapter ié their reliance on lenghty non-numeric
computations. Because we were Interested in a practical
system, one on which we could afford to run a great many
experiments, we decided to explore the use of small
computers which could do symbol manipulation reasonably
.cheaply, A 18-k, +two DEC-Tape PDP~9 was our choice of the
available machinery. Since we anticipated large amounts of
data and heavy .reliance on list processing, we sought a
language which was slanted toward list processing but which
would enable us to efficiently build arbitrary data
structures and easi;y pack data intoe them, Such a language,
called L6, existed on the IBM 7090, Using it as a
prototype, an L6/9 intevﬁreter (1) was built which provided

several extensions to circumvent some of the sneed problems

asscociated with interpreters (2).
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He waﬁted an interactive system which would enable the
user to monitor the progress of the compufation and, most
importantly, would allow him to modify his data base quickly
and conveniently., One of our goals was a system which would
facilitate tentative modifications of +the data and then
reveal the consequences of these modifications - both
locally (as pertaining to the particular relation modified)
and globally (as pertaining to the entire set of definitions
for all the relations). We hoped that, thus equipped, the
user would be able to Mplay" with his data in a way which
would enable him to Fet a feeling for existent

interdependencies.

The current version of '"the Monkey's Uncle" occupies
about six thousand words of core. On initlalization, it
first requests the user to load a file containing the names
of the relations to be considered in the data base., It then
requests the data file to be 1oéded (in which each item is
of the form: M"Relation (¥) = X1,X2,.,.,Xn"), FEach item is
processed by adjoining each of its n 2«tuples to.a labelled
directed graph. When all the input data are processed, the
extensions of each relation are computed, packed into tables
and stored on DEC tape. The system then requests the name
of the particular relation to be explored and inquires as to

whether or not:
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1) Recursive definitions are to be allowed,

2) The extension of the relation is to be nrinted,

3) Any check for overgenerality should be made, and,
if se, whether an.exhaustive check should be made
following the heuristic check,

4) Any intensional definitions should be discarded
automatically (which might be the case if the user
were interested in disjunctive definitions and

alreadv knew an all-encomnassing compositional
definition),

5) Only disjoint disjunctive definitions are to be
penerated (a disjunctive definition for R is

disjoint if everv 2-tuple of R is contained in one
and only one of the disjuncts of the definition),

Lastly, it requests the number of data samples of the
particular relation that should be considered thus
permitting the user to examine only a portion of his data.
In addition to these requests, there are numerous console

switches that can be activated to permit closer examination

of the system's activities.

Conjecture Generation

After responses are made to the above requests, the
system enters the conjecture pgeneration phase, A 2«tuple is
selécted from the extension of the specified relatién R and
the labelled path sequences (LPS's) of all +the directed

paths bridging this 2-tuple are collected onto a special
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list - henceforth to be called a P-list. Béfore another
2-tuple is considered, each path on the current P;list is
merged into a structufe called the INT-list, For any given
LPS on the current P-list, either it does or doesn't already
occur on the INT structure, In the latter case, it is added
to the INT structure along with information specifving which

2-tuple generated it,

In order to fully understand what happens in the former
case we must examine the INT structure itself. Fach element
of this structure has two fields, The first field consists
of a binary n-tuple, or template, the ith bit of which
denotes the ith 2-tuple of R's extension., The second field
is a storage cell where an LPS can be saved, In +the case
where we have an LPS on the P-list that already exists on
the INT structure, we locate it on the INT structure and

then set to one the template bit corresponding to the

current 2-tuple,

After the desired subset of R's extension has been
processed, the systém starfs to conétruct its conjectures hy
attempting to locate the LPS's which are in the intersection
of -all the P-lists, Such LPS's can Dbe .immediately
determined by simply scanning the INT structure for those

.elements whose n-tuples are all ones, If there exist no




- such n-tuples, then, for that relation, there are no
discoverable intensional definitions which involve only
. compositions. In other words, if a. definition is to be

found it will necessarily involve several disjunctive terms.

The problem of finding a disjunctive definition is
approachable through the INT structure without having to
directly intersect P«lists. Recalling how the bits of each
template are determined, we see that, in fact, each
_occurrence of a pafticular template specifies an LPS that is

contained in all the P-lists which correspond to bits set to

onea.

A disjunctive definition is ~constructed by simply
choosing a set of templates whose union covers the n;tuple
‘of all ones - i.e., all of the 2-tuples of R under
consideration. Each disjunct of the definitions corresponds
to one of the selected templateé;- To convert a particular
template into all the LPS's which are associated with it, we

scan the INT structure for elements whose first field equals

that template, For any such eleﬁent, its second field
contains an associated LPS, Each LPS is 1linked to one
template. This template, however, mneed not be uniquely
associated with this LPS, Consequently, the INT structure

must be exhaustively scanned for all elements whose template
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field equals the given template, In this manner, all LPS's
associated with the template are found,. The problem of
finding the simplest disjunctive definition now resembles a
classical covering problem in which we must select the
smallest number of n-tuples whose union covers the n=-tuple
of all ones - 1.e,, all the 2-tuples of R under
consideration, Viewing each n-tuple as a tehplate, the
above may be restated in terms of finding a minimal numﬁer

of templates whose union covers the identity template.

Thus, the central problem of finding the simplest
disjunctive definition is reduced to finding a minimal set
of templates whose union is the identity template and then
constructing the LPS's from them, In general, this problem
has no good algorithmic solution for it réquires an
exhuastive search of a tree of all possible combinations of
templates, What follows is a descripfion of a heuristic
technique for restricting this searéh, which has yielded

excellent results on our experimental data,

Initially we define a "Goal™ templafe and set all of
its bits to "one", We then scan the INT structure to see Lf
any' of its templates covers the Goal template, If we find
any, we are finished. If there 4is no such template, we

search for the template with +the mwaximum number. of ones,.
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When this is determined, all +templates which have that
number of ones are located and pushed onte a stack, For
each template on the stack, a subgoal template 1s created
which represents the bits that remain to be covered 1If that
particular template were to be added to the set of templates
constituting the solution. A look ahead procedure is then
called that takes each subgoal template and computes the
number of ones that could be covered on the next iteration
if this subgoal template were to he made a goal template. A
maximum number is then computed over the set of all the
subgoals (at this level), All subgoal templates which,
under one step look-ahead, did not achieve this maximum are
eliminated from further consideration. Control 1is then
passed to a supervisor which <c¢ould permit a variety of
strategies to be invoked, fur current strategy simply
determines whether the next iteration of this process will
find a total covér (by testing to see whether the computed
maximum equals the remaining number of bits to be covered),
If it wiil, then, in turn, each subgoal is raised to goal

status and the whole process is repeated., If the cover will
not be completed on the next .pass, all the subgoals are
erased except the last subgoal which is raised to goal
status. The process 1s then repeated, In summary, this

strategy prunes all branches off the subgoal tree except one




until it discovers that the next depth in the treerwill
yield a solution (i.e. that the union of all the templates
along the chain from the initial node to the terminal node
will form a cover). In this latter case, all the branches

stemming from the next to last node are preserved,

FIGURE 4.1
Subgoal Tree .

Root

@

In Figure 4.1 each node denotes a particular template
and the wunion of all templates along any path from the root
te the terminal noae formg the identity template. When the
desired tree is completed, special routines are executed
which derive from the tree a list of disjunctive definitions
by conve;%ing each template intQ the LPS's underlying it,
The set of LPS's associated with a selected template

constitute all of the compositional alternatives for that
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disjunct,

Advantages and Disadvahtages of +the Y“INT" Structure

The INT data structure enables us to cdmple{ely aveoid
having to worry about the order in which we perform pairwise
intersections of P-lists. This is, in part, due to each
template specifying precisely what P-lists each LPS is
éontained in., However, this solution has inherent in it a
space time trade-off in that it requires the storage of
every LPS encountered, In éimply intersecting the P-1lists,
only two P-lists need be explicit at any one time. These
are then intersected leaving only the resultant list to be
kept. If the data;graph is highly interconnected, each
P-list will be large since it-represents all possible paths
from x to y. If each p-list has few LPS's in common with
any other, then the INT structure will grow approximately as
n times the size of the average P-list, If the data graovh
is to represent a larpe amount of data, the IN? structure
could become unreasonably large. On the other hand, it
seems intuitively plausible that interesting data (or, at
least, any data to which one might want to apply this
svstem) is at least locally structured in the sense that
there are apt to be clusters of 2-tuples which have many of

the same kinds of interconnections. In this case, the
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chance of not finding a particular LPS already on thé INT
structure should decrease as more and more LPS's are added
to that structure, If se, the growth rate of the INT

structure should approach some asymptotic value,

To ekplore this critical hypothésis, we constructed a
data file of approximately six hundred facts from a
hypothetical family tree,  The growth behavior of the INT
structure ﬁas recérded over seven different relations in the
data base, Figure 4,2 illustrates how its growth levels off

as more 2-tuples are considered,

The template approach achieves vet another advantage
over the direct intersection of P-lists. The search for
*disjoint disjunctive definitions proceeds by First selecting
the best templaté {as defined above). Then, when the next
level goal template 1is determined (by complementing the
union of the preceding selected templates), only those LPS's
are considered whose associafed templates are subsets of the
current goal template, To check the proner containment of

one binary pattern in. another is extremely efficient in most

machines.

Conjecture Verification

On finishinpg the conjecture peneration nphase, the

system enters the verification phase. As mentioned earlier,




- 62 -

conjecture verification can occur with various degrees of
completeness . ranging from no verification  at all to
exhaustive checks., The computations involved are all of the

sort:

Given the set S of individuals, compute the
resulting set R(S) for some given relation R or
its converse.

FIGURE 4,2
Growth Rates
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For example, to compute the inverse image of x with respect
to the compositional definition R1/R2/R3, we must compute

the following sets:

S1 = Ri(x)

§2 = R2(S1)
§3 = R3(52)
S4 = ®R3(S3)
S5 = #*R2({Su)
S6 = *R1(S5)

where S6 is the desired set,

The techniques used involve linear searches of tables
which contain all of the 2-tuples of the given relation,
Since the system has always been extremely core-bound, more
sophisticated techniques involving any form of redundant
coding were considered infeasible, Our explicit concerns in
conjecture verification have focused oprimarily on useful

heuristics rather than on clever data structures.

Interactive phase

When a'set of coniectures is finally discovered which
satisfies the criteria established by the wuser, the system
enters the "Direct" (Interactive) mode. Among other things,
this enables the user to examine either rejected coniectures
(a capability which is especially important if no

satisfactory definitions have been obtained) or the final
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answers, In either case, interactive examination of these

structures enables the user to print out only that

information relevant to his cuyrrent interests or hvpotheses,

After the user has satisfied his curiosity about the
ocutput, he can enter a second Interactive phase., This phase

allows him to:

1) Block any definitions from further consideration
2) Delete any triples from the data graph
and 3) Insert new triples in the data graph.
In addition, the |user c&n invoke a display procedure which
requests a 2-tuple and a compositional definition., It then
reconstitutes the exact path underlying the definition and
prints out tﬂe intermediate nodes of this path., In this way
the wuser can discover the persons (or objects) which
functioned as the intermediate nodes for aﬁy particular LPS.
The use of this procedure may best be unaerstood by means of

an example, Suppose, for example, that one discovered the

following definition for "GM" (Grandfather):

GM = PM/PN V PM/MN/PN

(Father/Parent or Father/Spouse/Parent)'

and that only one 2-tuple (perhaps, <a,b>) required the




- 65 -

second disiunet i,e., was not covered by the first disjunct,
This definition could then be collapsed into one diéjunct by
finding the "2z" such that (a, PM, z) and (z, MN/PN, b) and

by then adding the fact (z, PN, b) to the data base.

Modification of the data base is, of <course,
potentially disasterous and should not be contemplatgd
unlesé there 1is supporting evidence for such a change.
However, if we bélieve in Occam's razor, coﬁvincing evidence
is often forthcoming since (as will be discussed later) a
few small changes' can drastically simplify the intensional

definitions for the entire collection of relations.

In this chapter we have tried to convey some of the

considerations wunderlying the design of M"the Monkey's
Uncle', We have viewed the system as if it were broken into
three distinct phases - namely conjecture generation,

conjecture verifiéation, and interactive inspection and
modification, In reality, the first two phases are quite
intertwinea; each'calling on the other when necessary. The
actual coding of this system has proceded from a modular
point of wview in that a large collection of fairly
indeﬁendeﬁt combinatorial routines were constructed, Using
these vroutines as building blocks, a wide variety of

approaches to this problem have been experimented with,

culminating in the current version of "the Monkey's Uncle'.




(1)

(2)
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FOOTNOTES

An interpreter - was decided wupon because of the
absolute premium on core memory. An estimated
factor of ten in core efficiency was achieved over
compiled <code. The interpreter occupies 1680
words including I/0 handlers.

Mr., Peter Headly implemented this lanpuage on the
PDP"g »
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Exploring the Behavior of 'the Monkey's Uncle"

This chapter is to illustrate how "the Monkey's Uncle®
can be used to probe all the Iinterrelationships of a given
relation; to generate intensional definitions for a 'set of
relationsy to find "Rules §f Inferencef and finally to

discover clusters of objects on which the ©relations are

defined,

Since the output of this system is lengthy and complex,
we shall detail the actual output generated in the
exploration of only a single relation. For the remaining
examples we will wuse a condensed representation gf the

'output and relegate the actual output to appendices.

All of the examples considered in this chapter are
based on data selected from our kinship system (with the
single exception of the absence of divorce). Our hope in so
doing 1is that the reader will more easlily wunderstand
processes within the system in terms of the results which it
produces, This will be especially true in understanding the
significance of various situations underlying the discovery
of the rules of inference in several of our examples,
Althoupgh this data domain 1is well understood and quite

structured, the application of our system to this data will
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produce some distinguishing results. As far as our system
"knows", this data might_have been generated from a totally
foreign culture., The analysis it provides is actually quite
different from that produced by an anthropologist., An
anthropologist would endeavor to analyze this foreign
culture's kinship terminology relative to his set §f atomic

terms (i.e., in terms of biological parents and spouses),

Our system makes no presupposition about anyone else's
primitive relations. it attempts to unfold a theory
entirely within the framework of that culture with
absolutely né biases «concerning the importance of the
underlying biological family tree, We emphasize that "the
Monkey's Uncle' is dedicated to finding recursive abstract
theories, all of the terms of which are either 1) primitives
of the data, 2) defined with ©respect to other terms or 3)

‘defined with respect to themselves,

An Iliustration of "the Monkey's Uncle"

’

The first set of examples was obtained by analyzing the
data file 1listed 1in Appendix 4. This file contains 580
(x,R,y) facts involving thirty-two kinship relations defined
en a domain of forty-five individuals. To help the reader
in understanding this maze‘of facts, we include in Figure

5.1 a family tree representation of this data (which, of
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FIGURE 5.1
A Complicated Family Fore
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course, woﬁld be unknown te the system until it had
discovered a theory based on the relations coincidental with
Parent and Spouse), Each individual in the tree is assigned
a number which serves as his name in the extensional
definitions of the given relations. Fach relation in this
file is designated by a two;letter mnemonic of the sort
previously described,. A complete list of these mnemonics
may be found in Appendix 3.

The following two pages are an annotated version of the
first part of the output from the analysis of the "Uncle"
("UM") vrelation, The wunderlined pafts are typed by the
user, The first two messages request that input data be
loaded into the high speed paper tape reader. The next line
indicates that this data has been digested (i.e. that a
labelled directed graph has been constructed) and requests
the name of the relation to be euplored. This is followed
by a series of self—explanatofy questions which ends with a
request for the number of samples to' be considered in this
pass, Since we had specified that the extensions be
printed, the next few 1lines are the sixteen 2-tuples
constituting the subset of the M"UM" extension that is
investigated (1). The order of this printed set of 2-tuples
is used to generate a template in which there is a one to

one correspondence between each hit of the template and each
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FIGURE 5.2 {(cont.)

YXX
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2-tuple (i.e. the first 2-tuple : <39,54>, corresponds to

the high order bit of the template, the 2-tuple to the

second highest order bit, and so on). Any definitions for

"UM" must at least account for each "one" bit of this

template,
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After tﬁe eriteria defined by the user's responses to
the first five questions are satisfied, the system enters
the "Direct" mode. Typing "LIST T" causes the goal template
to be typed out, followed by the templates which covered the
maximuﬁ number of 2-tuples (the general form of the data
Structure pointed to by "T" 1is shown in Figure §.3), Ve
discover that this template equals the goal template, which
signifies that a set of definitions has been generated which
réquire only compositions (that 1is, definitions consisting
of single disjuncts). The list of definitions associated
with the given template is pointed to by the last entry on

line "031580" which, when interpreted, reveals the list:

LM/MN/PN Brother~in-Law/Spouse/Parent

MM/ LF/PN Husband/Sister-in-Law/Parent

MN/LF/PN Spouse/Sister-in~Law/Parent
UM = LM/ PN i,e. Uncle = Brother-in-Law/Parent

MM/UF Husband/Aunt

MN/UF Spouse/Aunt

Note that each of these terms constitutes a valid definition
of Uncle and that none of them are disjunctive. This may be
contrasted with the standard definition of Uncle:

"Brother/Parent V Husband/Sister/Parent" - which involves

two disjuncts,
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Reflections on the First Set of Discovered Definitions

We will consider the meaning and implications of these
definitions so as +to illustrate several facets of this type
of system. 0f particular interest is its discovery of the
"Brother-in-Law/Parent" definition which is, in some sense,
simpler than the standard definition. The validity of the
definition can be understood by examining the four cases in

which Brother-in-Law-~hood arises:

Case 1: Case 2:

ST AT
Ny O | N oy B

Case 3: " Case 4:

)
z

* Squares denote indivduals of unspecified sex.
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Iq all four —cases, x is the Uncle of y. Ve
note that Brother-in-Law/Father | (as distinect from
Brother-in-Law/Parent) was not generated as a definition.
This definition is consistent witﬂ cases 1, 2 and 3 but
fails in case 4 (and for <31,38> in the data set =~ see
Figure 5,1), In other words, "LM/PN" is a universally valid

definition of Unecle whereas "LM/PMY is not.

Next, we consider the definition Hlncle
Husband/Aunt', . This definition is surely not universally
valid since there exist uncles who are bachelors. However,
scanning our data we discover that in fact every uncle in
our data sample is married. Consequently, the generation of
this definition reveals this additional piece of structural
information about this particular data set. Our system has
no way of knowing if, in fact, this finding reflects the
true state of affairs or whether it is merely an
idiosyncracy of the data sample, In either case, the
idgntification of this kind of structural property in the
data is important, Closely associated with the
"Husband/Aunt" definition 1is the definition "Uncle =
Spouse/Aunt™. Anyone familiar with the marital conventions
of our culture understands that "Spouse/Aunt" is logicaliy
equivalent to "Husband/Aunt'", We will later see how the

co-occurrence of definitions which have terms in common will
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enable us to create rules of inference which can be used to

establish logical equivalences,

A similar co-occurrence is noted in two of the three
remaining definitions, i,e,, "MM/LF/PN" and "MN/LF/PN". At
first pglance one might expect that "MM/LF/PN"- is iogically
equivalent to "“"LM/PN"; however, the co-occurrence of these
two definitions is again a reflection of the fact that for

this particular data sample every Uncle is married,

Digping Beneath the First Set of Discovered Definitions

Since, in our example, the system discovers a set of
compositional definitions covering all the designated
2-tuplesy, it has no reason to search for disjunctive
definitions whose disjuncts necessarily cover only some of
the 2-tuples, However, if the user wishes to explore all
the possible logical interrelationships of the data, he must
consider patterns in the data that do not uniformly hold
over the entire extension of a given relation. To force
this kind . of exploration, the user causes the system to

auvtomatically reject all compositional definitions.

For this and other reasons, whenever the user exits

from "Direct" mode (by typing an "#"), the system will ask
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the user whether or not he wishes to hlock any definitions,
By listing all the compositional definitions, the user thus
causes the system to recycle until definitions satisfying
this restriction have ©been found. We performed the above
operation (see Figure 5,2) and discovered that at least one
definition had been discovered whose first disjunct covered
only the 2-tuples corresponding to "376676" (i.e. Whose
first disjunct covers all 2-tuples except the 8th and 11th),
The definitions found at this juncture are summarized below,

We have associated with each disjunct the template covered

by ito
Uncle =
Husband/Sister-in-Law/Father
"376676" Spouse/Sister-in-Law/Father

v

Spouse/Sister/Father
Spouse/Sibling/Father
Hushand/Sister/Parent
. ‘ Husband/Brother/Parent
Brother-in-Law/Sister/Father
Brother-in-Law/Brother/Father
Son-in-Law/Father-in-Law/Mother
Son-in-Law/Father/Father
Son~-in-Law/Parent/Father
Son=-in-Law/Vother-in-Law/Hether
"oouuQon Son~in-Law/Mother/Father
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On Digging Still Deeper

Since we had required all disjunctive definitions to be
disieint and since the first disjunct covered fourteen
2-tuples, the second disjﬁnct must cover exactly two (the
template unaerlying the first set of disjuncts is "376676"
while the template for the second is "00O4uoO0O"), A more
"balanced" definition might be obtained by blocking the
first +two definitions, since they accounted for so much of
the data, An. additional reason we wanted to Dblock these

definitions was, as the reader probably realizes, our desire

to ascertain 1f and when we would '"discover" the structure
we knew was there - i.,e.y the standard definition of
"Unele", On doing this we find that there exist two

alternative sets of disjunctive definitions and that the
first disjuncts of both of these sets covers the same number

of 2-tupnles (see Figure 5.4 below).

This example manifests a somewhat interesting
situation. We note that the template associated with the
second disjunct in alternative two is a proper subset of the
template associated with the the first disjunect of
alternative one, We note also that the reverse is true with

respect to the terms contained in these two disjuncts -

i+e.y, the set of compositional terms forming the first
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FIGURE 5.4
Discovered Definitions

ALTERNATIVE 1:
Ungle =

Brother/Parent
"376036" Brother/Spouse/Parent

v

Husband/Sister/Parent
Husbhband/Sibling/Parent
"op17yn Spouse/Sister/Parent
Brother-in-Law/Sister/Aunt

ALTERNATIVE 2:
Uncle =

Brother-in-Law/Husband/Mother
Brother-in-Law/Husband/Parent
Brother-in-Law/Spouse/Mother

"301776" Brother-in-~Law/Father

v

Sibling/Father
Brother/Father
Sibling/Father/Sibling
Brother/Father/Sibling
Sibling/Spouse/Hother
Sibling/Spouse/Parent
Brother/Husband/Mother
Brother/Spouse/Mother
Brother/Husband/Parent
Brother/Husband/Mother
Sibling/Father-in-Law/Spouse
"o7600" Brother/Father-in-Law/Spouse
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disjunct in alternative one is a subset of the set of terms

under the second disjunct in alternative two.

At first, this phenomenon might seem somewhat
‘paradoxical, since one might expect that the greater the
number of - examples taken into <consideration {i.e., the
larger the template), the greater the variety of the
conjectured definitions, Howevef, let us consider this

specific situation

from a slightly different point of view: the 076000 template
generates (2) a subgraph of the graph generated by the
376036 template, This subgraph possesses fewer structural
constraints and hence is apt to have more compositiohal
definitions since this subgraph possesses fewer
"counter-examples" for the conjectured definitions. In
other wWords, there is a trade-off between more LPS's and a
greater chance of encountering a counter-example to a
particular LPS. For example, those definitions not
contained in disjuncts underlying the "376036" template
reflect structural idiosyncracies of that subgraph which are
invalidated when the subgraph 1is expanded. In fact, the
only definitions which are invariant under such expansion

are "SM/PN" and " SM/MN/PN", Both of these are universally

valid and represent the following situation:
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| Loy

ST |

PN PN

e

We will argue later that even definitions which can be
invalidated by enlargement of the data space may be used to

help generate "rules of inference',.

The process of discovering definitions for a given

relation, then blocking these definitions and attempting to

.discover additional definitions can g0 on until all
definitions  have been found. Discovery of all the
definitions for "iUncle' on this particular data base

required six 1iterations of this process, starting from
one-disjunct definitions and ending up with three disjuncts

in the definitions, Table % summarizes all the definitions

unfolded. , The complete output for this analysis is
reproduced in Appendix 5, The set of definitions most
nearlv resembling the "expected" definitions for "Uncle' are

those in alternative one above, with the single excention of
"Brother-in-Law/Sister/Auntt, Despite the complexity of

this data base, there are no examples of an uncle who is a
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TABLE 5A

Definitiens of Uncle

Arranged in Order of Output

(1) MN/UF
MM/UF
LM/PN
UM = MN/LF/PN
MM/LE/PN
L¥/MN/PN
(2) LM/SF/PM
LM/SH/PHM
MM/SN/PM
UM = MN/LF/PM ' UN/SN/PM
MM/LF/PM MN/SF/PM
. EX¥/XM/PF
EM/PU/PM
EW/PN/PM
EM/XF/PF
EM/PF/PHM
(3) SM/PM
XM/ KM/ CN
XM/LM/CH
LM/PH SHM/PM/SH
UM = LM/ M¥N/PF v SM/UN/PE
LM/MM/PN . SM/MM/PN
LM/MM/PF SH/MM/PF
SN/ MM/ MY
SM/ XM/ MH
(u)
MN/SF/PN
UM = SM/PN \ MM/SH/PN
SM/MN/PH MU/SF/PN
LM/SF/UF
(5)
MM/SF/PF
UM = MM/LF/PF v MM/SH/PF
MN/LF/PF MM/ST/PF




(7)

UM

(6)

UM =

SM/PF
OM/XM/PH
OM/PM/PF
OM/XF/PM
OM/PN/PF
OM/PF/PF
SM/MN/PY

"SM/MF/PN

SM/MF/PH

féther and whose

such an example,

LM/PF

PM/OM/UF
PH/NM/PY
PM/NM/PN
PM/NM/PF
LM/ MN/PH
L¥/MF/PN
LM/MF/PH
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SN/PH

SM/P¥

XM/LM/CH
SN/PM/GN
SM/PM/SH
SN/MN/PF
SN/MM/PN
SHM/MN/PF
SM/MM/PN
SM/MM/PTF
SN/XM/MN
SM/XM/HN

wife has two sisters.

the definition

would have been rejected,

an

"uncle'

above analysis of the

illustrate that

to his own child,

a collection

TABLE BA(cont.)

SM/PF

OM/XM/PH
oM/ PM/PF
O/ XF/PY
OM/PN/PF
OM/PF/PF
SM/MN/PH
SH/MF/PN
SM/MF/PH

MN/SF/PHN
MM/SHN/PN
MM/SE/PHN
LM/SF/UF

IJf there had been

"Brother-in-Law/Sister/Aunth™

"Uncle™

cof data

relation

often

since sald person would have been

helps to

contains a

surprising number of structural relationships which are apt

to pgo undetected.

If these relationships are universally

valid then they should be understood before axiomatization
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of the data (such as for a Qquestion-answering system) is

attempted.

A Shallow but Broad Application

Using the same data file as in the above example, we
shall summarize the results of applying this system to each
relation in turn; We shall, however, limit ourselves to
only one cycle for each relation., That is, rather than seek
out all possible intensional definitions for a particular
relation, we will .settle for the first set of definitions
discovered. What follows in Table 5B is a summary of.these
discovered definitions. Those definitions which wé feel
reflect idiosyncracies of the data sample have been starred.
Again, we wish to stress that what constitutes an
idiosyncracy in the initial data base is often determinable
by examining a larger data sample. This is one of the
reasons why we have chosen a set of relations whose
structure and meaning are well understood. In this case one
cén easily 'detect tﬁe idiosyncratic structures that emerge
and can then infer what the artificial constraints in the
initial data sample were that lead to the formation of these
particular definitions. Being made aware of these
constraints 1is often valuable in determining how to select

your next data sample.
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TABLE 5B

OM/MN/SF
OM/MM/SN
OM/MM/STF

OF/LM
CF/MN/LY
OF/MF/LM

PM/MN
MN/XF
MM/ XF
PM/OMN/XF
PM/OM/XF
PH/ SN/ MY
MM/PF/MN
MM/PN/MN
MM/ PF/MN

CN

{*

1t

)

MM/ST /MY
MM/SN/MN
MN/SFE/MN

MF/SH/MN
MF/SN/MN
MN/SM/MN

ON/UM

ON/UF

ON/MN/UF
ON/MM/UF
ON/MN/UM
ON/MF/UM
ON/SN/PHN
ON/LM/PN
ON/LF/PN

Summary of Discovered Definitions

Y MM/ SN
MN/SF
MF/SM
v MF/SHN
MN/SM
OM/LF
OM/MN/LF
OM/MM/LF
OF/SM
OF/MN/SM
OF/MF/SN
OF/MF/SH
(%)
(%)
PF/MN
KN/ XM
MF/ XM
PFP/SH/MN
XF = MP/PM/MN

MM/STF

MFP/PN/ MY
MM/PM/MN
PF/PM/ XM
PE/ON/ XM
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TABLE BB (cont.)

ON/ON OF/ON
DN = ON/MN/ON DF = OF/MN/ON
ON/ON/MN OF/ON/MN
ON/SN/ON (%) OF/SN/ON (%)
LM¥/PN
MM/UF
MN/UF
UM = MN/LF/PN ' Ur = LF/PN
MM/LF/PN . . LF/MN/PN
LM/MN/PN
PM . PF
PN = MN/PF v MN/PHM
MM/PF ' MF/PM
ON = OM v OF
OM/MN OF/M¥HN
XM/PN
PM/PN
MN/GF PF/PN
MM/ GN MH/GM
MM/ GF . GF = MF/GN
XM/MH/PN ME/GM
PM/MN/PN XF/PN
PM/ON/GN XF/EF/GH
PM/ON/GF
PM/OM/GN
PM/O¥/GF
GM = PM/SN/PN
MM/PF/PH
MM/PN/PN :
MM/PF/PHN _ PN/PN
MN/XF/PN GN = PN/M¥MN/PH
MM/ XE/PN PN/SN/PN
XM/EF/GN MN/PN/PN

XM/EF/GF
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TABLE 5B (cont.)

MN/OF

MM/ON

MM/OF MN/OM

MN/OT/MN MF/ON

MM/ ON/MN MF/OM

MM/ OF/MN MN/OM/MN
EM = MN/SF/ON EF = MFP/ON/MN

MN/SF/OM MF/OM/MN

MM/SN/ON MN/SM/ON

MM/SN/OM MF/SN/ON

MM/SF/ON . . MF/SM/ON

MM/SF/OM

PM/ON/OF

Discovering Recursive Definitions

The above set of definitions has been generated under
the constraint that the relation being defined is not

allowed to appear in its own definition. This restriction

is established by responding "NOM to the query:
WRECURSIVE?", There are, however, reasons to permit
non—trivial_(i.é., R = R) recursive dgfinitions. These can
be appreciated by remembering that definitions are

conjectured on the basis of finding paths that bridge groups
of 2-tuples, Since only paths containing no loops 4are
permitted, any path underlying a recursive definition
necessarily involves a different aspect (2-tunle) of the

given relation than the one currently being bridged.
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Otherwise, the recursive definition would involve a loop on

either the first or second node of the 2-tuple (see below),

N

x \ R]/@y

However, both of these cases are blocked. A situation in
which non-looping recursive definitions exist is exemplified

by the Parent relation:
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In this case we have "PN = MN/PN", For (x, PN, z) we use
the path through (y, PN, z) and vice versa. This kind of
recursive definition is of interest since it involves a
special kind of redundancy. One portion of the given
relation, used in conjunction with other relations, overlaps
another portion of +the given relation, As such, these
definitions - if  known -~ «could be used in a different
setting to fill out missing parts of the extension of the
‘given vrelation (3), and hence are intimately related to

inference rules,

A situation quite similar to the above arises with the
discovery of a transitive relation in that a relation R is
transitive if R/R is a subset of R, Not every 2-tuple in R
is required +to be bridged by R/R, but any R/R must bridge
some 2-tuple of R, If we allow recursive, non-disjoint,
disjunctive definitions, then one disjunct can be R/R. Some
examples of recursive definitions obtained on the same data
base are listed below. We will see later how these
particular definitions funection as inference rules,

1) PN = MN/PN
2) PN PN/SN V FPM V PF

3) ON ON/MN
4) ON SHN/ON V ON/MM V ON/MF

o on
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Discovering Rules of Inference

Using the examples of this and preceding chapters we
shall now consider techniques for discovering rules of
inference., - We will concern ourselves only with inferential
rules of a very restricted form. These rules will be either
of the form:

1) R1/R2/.../Rn => R
(where R itself could be one of these Ri's)

or of the form:

:>!R

(R1/R2/.../Rn) | l
Rj Ri RS

2) |
Ri

In the latter case, the relations under the vertical
bar denote a required context before this rule can be
applied. The similarity of these rules to context free and
gcontext sensitive grammars 1s not accidental. Indeed, in
Chapter 7 we- discuss how we can utilize these kinds of
rQles, in connection with a «context free (or context

sensitive) parser, to construct a question-answering system.

Considering rules of form 1 we understand them to mean:

For any % and v [(x,y) element of R1/R2/,../Rn =>
(x,y) element of RI.
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The discovery of such rules would appear to be
straight-forward. We need merely locate a sequence of
relations whose compositional extension is contained within
the extension of R, The problem, however, lies not in
finding such sequences but in finding "useful" sequences,
Although we have no way of making this distinction precise,
we vrealized that there were several ways to use the
structure of the relations themselves: in isolating

potentially "useful" rules.

One of the most apparent ways to generate such rules of
inference would be to discover definitions for a particular
relation which turn out to be under-general when their
defining subspace is enlarged {(see Figure 5.4 - template
07600 - 376036). Such definitions are ©rules of inference
because any conjectured definition is always checked for
inconsistency (i.e., over-generality) over the entire data
file and not over just the <current subspace, In other
words, any definition constructed over a subspace of the
data is always checked to see if 1t <c¢ontains any 2-tuples
that are not in the extension of the pgiven relation as
defined over the entire space, Discovering under-general
definitions is easily achieved by isclating a subset of the
data and then discovering intensional definitions on this

subset. We then note which of these definitions bhecome
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invalidated as the subset is enlarged. The key problem is
finding ways that the structure of a relation can, itself,

delimit "interesting" subsets of its own extensions,

Determining Subspaces for the Discovery of Inference Rules

One way in whiech the structure of a relation can induce
a natural partition on its extension is by possessing a
disjunctive definition. This, of course, splits thé
relation's exteﬁsion into groups of 2-tuples covered by the
particular disjunctive terms, For example, the definition
for Parent, mentioned earlier in this chapter, was:

PN = PM v PF
MM/PF MF/PM

The set of 2-tuples covered by the first disjunct are all
the examples of Parents who are also husbands -~ or who are
also males (nofe that in this context a male and a husband
fqnction equivalently). This division defines a subspace in

which PM coincides with PN and thus leads to the rules:

PM => PN Father => Parent
MM/PF => PN Husband/Mother => Parent

Similarly, with the other disjunct, we have:
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PF => PN ) Mother => Parent
MF/PM => PN , " Wife/Father => Parent

Another way to utilize the structure of the relations
in lisolating subspaces stems from the co-occurrence of
compositional sequences in a disjunct. Reconsidering the

definition of Brother-in-Law:

MM/SF/HN MM/SF
LM = . SM/MN v MM/ SN/ MN v MM/SN
MN/SF/MN MM/SF

we examine the last disjunet which asserts that:

1) MM/SF = MM/SN
2) MM/SF = MN/SF
3) MM/SN = MN/SF

Line 1 suggests that in the "context" of "MM" the relations

"SF" and "SH" function equivalently, or we could say that:

L) SF =>» SN
5) SN => §F,
when conditioned on the left with "MM", Clearly, the notion
of 'Ycontext" is quite important fo;, although the rule
"SF => SH"Y could be independently discovered from the
.definition "SN = SP V SM"{ and hence would always' be true,

the »rule M"SN => SF" 1is, 1in general, Ffalse. Using the
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expanded form of this rule (i.e, (x, SN, y) => (x, SF, y))
we see that .the rule is true whenever x is a female. One
way to guarantee x's femininity is to require that x be in
the range of the '"Husbhand" relation. In other words, the
Husband relation delimits a subset of the domain of "SF" and

NSHNM, When restricted to this subdomain, these relations

coincide,

A considerably more subtle example of the powers of
contextual <constraints is manifested in two definitions for

"Nephew!" that emerged from some data:

Brother/Niece
Son/Parent/Niece

a) Nephew
b) Nephew

n

The rule of inference which follows from this is:

Son/Parent| => Brother
Niece
At first glance, the right-hand contextual relation (Niece)
seems quite unnecessary, for certainly a son of a parent is
a brother, However, in exploring the "Son" relation with
"the Monkey's Uncle" no such rule emerges, Since the path
seeking process underlying the ;onstruction of LPS's forbids
loops, the possibility of the "Son of a Parent" being

himself is necessarily prevented, However, in checking the
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over-gencrality of this definition, the entire extension of
"Son/Parent",- which would include such‘ cases of
self-looping, is computed. This explains why the above rule
did not survive when "Son" was explored, However, in the
context of "Niece", it does survive because the reflexive
(self-looping) cases of "Son/Parent" arve necessarily male

and hence fall outside this context!

The use of ‘Mcontext" is more general than mefe
delimitation of the domains or ranges of relations. This
can best be appreciated from an algebraic veiwpoint. From
this vantage we see that two compositional definitions are
‘equivalent if the boolean multiplication of their adjacency
matrices are equal. Equation 1 above asserts that A(HMM) x
A(Sr) is equal to A(MM) x A(SN) (where A(R) means the
adjacency matrix of R). Since all possible compositions of
a set of relations forms a semigroup whicﬁ need not have the
cancellability property, we should not expect that A(SF) =
A(SN) would necessarily follow from A(MN) x A(SF) = A(MN) x
A(SN)., However, fwo distinct matrices can be made

equivalent by either pre-multiplying them by a given matrix

- its left Mcontext"- or by post-multiplving them by a
matrix - its right Mcontext!, Rules of inference which
utilize "context" in this vay can be quite

counter-intuitive. The following example illustrates this,
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In the Uncle definitions, (previously mentioned in this

chapter) we found that "Uncle = Brother-in-Law/Parent" and
"Uncle = Husband/Sister-in-Law/Parent", At first glance we
might think that: "Husband/Sister-in-Law => Brother-in-Law',

Considering - Figure 5,5, we realize that although (y, LF, z)

is true, {(x, LM, =z) is not! However, the correct rule of

inference requires:

Husband/Sister-in-Law| =>» Brother~in-Law
Parent

a right contegt of "Parent", Given the situation shown
below in Figure 5,6, we see that if 2z is a parent to gq then
in faet z must be a spouse to w. Hence =x would be a
brother—inwlaw to w. In other words the right hand context
of MYParent" forces the existence - of w simply by asserting
the existence of q.

We have illustrated various ways that both context free
and context sensitive rules of inference can be found, We
will return to this subiject in Chapter 7 where we describe a
syétem which can wutilize either type of rule, although, as
of this writing, no systematic exploration of +the more

\
compliﬁated context sensitive rules has transpired,.

Instead, wWe have attended mainly to the context free rules

~which result from recursive definitions.
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PIGURE 5.5
One Possibility

B A[__I
] /A

LF

FIGURE 5,6
Another Possibility
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Discovering Predicates and Attributes

Lastly, we shall consider examples of how partitions on
the domain of objects can be induced by our system, The
principle technique relates- to the occurrence of minimal
disjunctive definitions. We can easily get partitions on
D*D from these, Unfortunately, we wish partitions on D,
Let us consider, for example, four such definitions that

have emerged from this data base. They are:

Son V Daughter
Brother V Sister
Husband V Wife
Father V Mother

1) Offspring
2) Sibling
3) Spouse

) Parent

o onon

Each definition, in turn, induces a partition on a subset of
D#*D, These partitions have the interesting property of
allowing the partition on the extension to be trivially
collapsed onto a partition on their domains, More
precisely, suppose T is a partition on D*#D,  Fach of the
above patterns has the properfy that a new partition T' on D

can be defined by:
x T' x' iff there exists a z s.t. (x,z) T (x',z)

Although each of these partitions can be trivially reduced
to a partition on their respective domains, we might wonder

why they are of interest. °~ A further examination of these
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four partitions (T'1, T'2, T'3, T'4) reveals that they can
be combined inte one partition covering nearly all of D.
The partition that emerges on "most of"™ D 1s the one
underlying the property of gender, If such a property were
invented for this data, it could 1lead to a significant
simplification of many of the context-sensitive rules of

inference,.

Not only disjoint disjunctive definitions 1lead to
interesting partitions, An example of a non-disjoint

definition that we have already considered is:
Uncle = Husband/Aunt or Brother-in-Law/Father

By considering the 2~tuples that hold for the second
disjunct but not for the first, we can construct a partition
for the property of being a bachelor. However, unless this
partition was consiétent with several other, we would have

ne particular reason for singleing it out.

In this chapter we have illustrated the functioning of
"the Monkey's Uncle"™ over a fairly large collection of data.
We have tried to show how various facets of the system can

lead teo many unexpected results.

Since all of these examples have stemmed from kinship

systems, we include in Appendix 2 a series of examples which
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bear little similarity to this kind of data base. For example, we

illustrate how "the Monkey's Uncle" characterized legal chess moves

when given examples of such moves. We also explore how the system

can be applied to state transition systems thus discovering how one

transition, action or "verb" might be defined in terms of other

actions.

In fact this system is quite general; however, to appre-

ciate its "discovery power™" we chose domains whose semantics are

especially familiar to the reader.

(1)

(2)

(3)

FPOOTNOTES

"The Monkey's Uncle™ restricts the number of
2-tuples under investigation for any one relation
to thirty-five. Of course, the relation can have
a much larger extension, but at any one time the
system will use, at most, thirty-five 2-tuples in
the construction of its conjectures,

The subgraph generated by a template is determined
as follows. Consider all the 2~tuples
corresponding to the "ones" of the template., For
each such 2-tuple, form all the directed paths
from its first component to its second. The
desired subgraph is the wunion of these directed
paths for all the specified 2-tuples. In Appendix
1 we discuss the algebraic significance to the

subgraphs,

This observation leads to certain complications:
the discovery of such recursive definitions
depends on the entire extension being present.
Hence, this concept of redundancy is useful when
extending these definitions to cover an expanded
set of data or when data is purposely deleted from
the original sample after the definition is
discovered.




CHAPTER SIX

Identifying the Atomic Relationg

Until now we have been primarily concerned with the
discovery of various tvpes of interrelationships. In this
chapter, we discuss how those interrelationships which take
the form of intensional definitions can be used +to identify
the relations in the data base which are so fundamental that
they might be called atomie, Our definition of atomicity
revolves around the concept of "generators". This concent

is in turn based on the set of intensional definitions for

the given c¢ollection of relations,

As discussed nreviously, the selection of atomic terms
is predicated on finding a minimal set of relations which
generates the remaining relations, Before presenting an

algorithm for finding minimal generating sets, we want to

look at a particular example, In this example we will see
the critical role that ecircular definitioms nplavy in
determining atomic sets, We will then develop a

representation which accents circularity and establish some
new theorems which concern the use of this representation,
We will then discuss some.heuristic procedures based on this
representation and describe an interactive system which

enables the wuser to selectively wuse these heuristics in

determining atomic sets,.
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Supnose we consider the followinpg set of six relations
along with their intensional definitions, Given these
definitions, we can determine a set of pgenerators for each

relation by noting the relations used in its definitions:

RCLATION INTENSIONAL DEFINITION GENLRATOR SET
R1 = R2/R3 V R2/R6 [R2,R3,R6]
R2 = R4 /R5/RY [Rt4,R5]

R3 = R1/R2/R6 V R2/R1 [R1,R2,R6]
R4 = R2/R3 [(R2,R3]
RS = R4/R1/Ru ' [R1,RY]
R6 = R1/R2/Ru {R1,R2,R4]

Anv relation which can be intensionally defined has, a

priori, a set of generators which consists of its defining

relations.

The concept of a generating set can be naturally
exténded. For example, if we know that the set: [RQ,R3,R6]
"generates" R1 wé can then ask whether the enlarged set
consisting of R1 and R2, R3, R6 can generate any additional
relations, In this particular case we note that the set
[RQ,ﬁS,RGj not only generates R1 but Ri as well, We thus

consider +the set [R1,R2,R3,R4,R6] which in turn generates

R5, In other words, by knowing just R2, R3, and R6 we can
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‘construct Ri and Rq and, bv. knowing these relations, we can
then construct RS, Anothef way to view the above 1is to
consider the set [R2,R3,R6] as directlv generatineg R1 and R4
and indirectly pgenerating RS, In sneaking of what a set

generates, we will mean Dboth what the set directly and

indirectly generates,.

e might inquire if R1 has a smaller generating set
than [R2,R3,R67. To answer this question we must determine
what relations are needed to generate R2, R3 and RG,
Examining the intensional definitionas for these three

relations we find:

[R4,R5] GENERATES COR2
[R1,R2,R6] GENLRATES R3
[R1,R2,Ru4) GENERATES R6

The various wavs that R1 can be generated is represented by

the tree:

R4
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If we replace the relation R3 by 1its penerators we

discover another set of generators for R1, namely
[R1,R2,R6]. Note that R1 now aonears in its own generating
set, This reappearance is - due to the circularity of the
intensional definitions. What this means is that if R1 is

to be penerated then R3 must he explicitly nresent sihce
generation of R3 requires exnlicit knowledge of R1. In
other words, if some subset of [R1,R2,R3,R4,R5,R6] is going
to gsenerate all the remaining relatlons then either R1 or R3

must be present in that penerating set.

Once the concept of a generating set is understood the
notion of atomicity foilows closely. As described in
Chapter 3, given a set of vrelations R along with an
intensional definition for each, then any R', a sqbset cof R,
is a set of atomic relations if R' generates R and if R' has
the least number of elements of any generating set. It
follows immediately that if R' 1is anm étomic set then no
proper subset of R' can generate R, R', however, need not
be unique since set inclusion defines a partial ordering on
the set of all generating sets and the atomic sets are
simply the minimal elements under this ordering. In yvet a
more profound way, "atomic sets need not be unique, Note
that atomic sets are necessarily based on the‘intensional
definitions of the relations, If a particular relation has

several intensional definitions, then the atomic set may




- 106 -

varv accordingly, For examnle, 1f we define "Uncle!" in
terms of "Cousin" and "Cousin" in terms of "Uncle", then
either "Uncle" or "Cousin" must appear among the atomic

relations,

There is a straight-forward way to determine the atomic
sets of relations: given the set R of relations, form all

possible subsets of R and see which of these generate all

the other relations in R, We then choose those generating

subsets with the fewest numbers of relations in them.

There are 2n possible subsets of a set with n elements.
In order to determine‘ whether or not a given subset
generates all of R we might have to "exnand" (see example
below) that set n times., Therefore, the unper bound on this
computation grows as nx2" for a set of n relations, Of
course, one would test all the subsets of k elements before
considering subsets of k+1 elements and hence, if there
alwavys existed a small generating set, this approach might

be feasible, even if inelegant.

Let wus consider this ©process as applied to the

relations in Table A, lWe note that no singleton set could
possibly generate R and, of all the fifteen two element

subsets of R, only three could possibly genefate R, Thevy

are: [R4,R53, [R2,R3] and [R1,R4]., WHe must first compute

+
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what each of these subsets can generate:

[R4,R5] => [R2,R4,R5] => [R2,R4,R5]
[R2,R3] => [R2,R3,R41 => [R2,R3,R4]
[R1,R47 => [R1,R4,R5] => [R1,R2,R4,R5] =»

TR1,R2,R4 ,R5,R67 =>
[R1,R2,R3,R4,R5,R67 = R

The set [R1,R4] generates the entire set R and is +the only
subset 0of two elements to do so, Rl and RY therefore

comprise a unique atomic set for R,

Because of the combinatorial properties of this problem

a representation was sought which might lead to a good
heuristic solution. Clearly, we would like to factor the
problem in such a way as to permit the determinafion'of the
mportance of each relation, by itself, in generating R,

Since the phenomenon of circularity pléys a large role in
determining which relations must be in‘ generating sets, we

sought a representation which would make these circularities

exnlicit,

A directed graph can be constructed which captures the
required information, He define this pgraoh as follows: let
each relation be a node and define its predecessors to be

those relations (nodes) that directly penerate that relation




- 108 ~

{node). For the six relations mentioned earlier we thus

derive the following directed granh:

Intuitively, we may think of these dirvected graphs in
the following manner. A given node is "tripgpered" either by
being explicitly named as a member of a proposed generating
set or by' having ail of its immediate predecessors
"triggered". To compute what a set of relations (nodes)
generates, simply trigger the initial nodes and compute what
other nodes are consequently tripggered. In other words, let

R' be the initial set of nodes. Examine +the relative

comnlement of R!' and see which nodes in this complement have
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all their predecessors in R', Cxnand R' to include these

nodes and

then iterate this process until R' ceases to grow.

If the resulting set includes all the nodes, that is, if

every node has Dbeen trigpered, then the original R!

generates

all of R,

A good approach to the problem of finding a minimal

generating set for R would be to decompose this problem into

that of finding subsets of R such that:

1)
2)

and 3a)

or 3b}

Let

These subsets are pairwise disjoint,
Their union equals the set R

Tither the wunion of all of their minimal
generating sets is also a minimal generating set
for R :

The union of some of their minimal generating sets
is a minimal generating set for R (and the sets
comprising this union can be easily selected),

us now examine why the directed graph

representation aids wus in finding +these subsets. Towards

this end

establish

Def:

we introduce some praph-theoretic concepts and

some new theorems,

A strong component of a directed graph consists of
a set of nodes, SC, such that for any two distinct
nodes % and vy which are elements of 8C there
exists a directed path from x to v and also from y
to x.
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Def: Given a directed sranh G, a relation T can be
defined on the vertices of G such that:

* Ty <=> x and v are in the same strong
comnonent,
A well known theorem in eranh theorv asserts that T 1is an
equivalence relation and hence induces a partition on the
vertices of the given directed granh, In addition, this
relation enables us to define a new graph:

Def: A condensation graph G' is formed from a directed
graph G as follows:

Let G = (V,E) and G' = (V',E'). Then V' = the
partition classes of V with respect to T and
(x',y') 1is an element of L' if there exists x
and y such that x T x', v T y' and (x,y) is an
element of E.
In other words, the condensation graph of G is formed by
collansing each strong component of G onto a reoresentative
node from that component, The successors of this node are

the nodes (strong components) whose immediate predecessors

are contained in the given strong component,

A condensation graph is necessarilv acyclic since, if
it contained a cycle, the distinet nodes constituting that
cycle would form a strong component and hence would have

been collapsed onto one node by T.

An example will help clarify the above concepts:
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S;O-

Strong Comnonents

s5co = [1]
s¢1 = [a b c]
SC2 = [d e ¢g]
5c3 = [f] \
5C4 = [h] @ SC4
Since G' 1is acyclic it represents a partial order
whose minimal elements are the nodes of 6' with in-degree

Zero.

Theorem: A set of nodes capable of pgenerating G must have
at least one node in each of the minimal strong
components of G,

Informal Since each minimal strong component has no
Proof: predecessors, no other nodes could cause it to be
triggered,
Since any node of in-depree one 1s necessarily

triggered whenever 1its predecessor node is triggered, we

can collapse each of these nodes onto its predecessor. If
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this reduction is nerformed on G‘the onlv effect it has on
Gt is to cellanse all nodes representine strong comnonents
of sinpleton elements in G onto their resvective
pre@ecessors (excent for ginimal elements that have no
predecessors, which we define as rehaininp unaffected)., Let
us call this reduced version of G': G¥,

We develon the above terminolopv because we will show -
that the elements of 6% are precisely the Dartitionlclasses
of R whose minimal generating sets have the desired
proverties. Before we formalize the above statement we need
one key theorem which  reveals the c¢ritical connection

between circular definitions and strong components.

Theorem: Given a directed graph 6 = (M, E), which has at
least two nodes and has exactly one strong
component, then: a set of nodes N, &€ N generates
G if and only if every elementarv cycle in G has
at least one node in N .,

Procof:

(1£)

Let NO contain at least one node from every elementary cycle in G and let
Nl-be the set nodes generated from BO. We assume N1 ¢'N and then derive
a contradiction: Since Nl is properly contained in N there exists an

' 1 . . . . .
n,€ N - N". Since n lies in N which by assumption is a strong component
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of at least two nodes, then n  must have at least one predecessor--call
. 1 ,

it no_q which must also be in N - N” for otherwise n would have been

generated, Since the graph, by assumption, consists of only one strong

component, the identical aféument can be repeated indefinitely yielding a

sequence nw, n all of which are contained in N - Nl. However,

9o1 M_gr e
s 1., , f PP
since the set N - N is necessarily finite, this infinite sequence must

involve a cycle, but this contradicts the hypbthesiB that every cycle

must have at least one node in NO.

(Only if)
Given any set NO'WE can partition the set of elements generated by NO as
follows: Consider the sequence of disjoint sets NO, Nl, NZ’ cre Nk such

i
1 is directly generated by U N, -- i,e. for any node in
j=0 .

'Ni+1 all of its predecessors are contained in 6 N, and for no smaller i
. i=0

is this true. This sequence can be extended until some Nk is reached whicﬁ

that the set N,
i+

is empty. We assume that NO generates N and that_ there exists some cycle’

C in G which is disjoint from N Since NO genevates G we can construct

0‘
k

a generating sequence NO’ Nl’ ces s Nk such that U N, = N, This means
. j=0

that there exists a smallest number i = 1 such that Ni A C # @ but that

i-1 ‘
U N, AC=@g., Letne CA Ni. $ince n e N, all n's predecessors must
3=0 ' ,
i-1 .
be contained in U Nj’ but at least one of n's predecessors, say n%*, is

contained in C. This means that there exists Nk’ k < i, such that n* ¢ Nk

and hence N, A C # ¢ which contradicts the hypothesis that Ni was the

k

first set to intersect C. . .
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From the. above theorem we see that a minimal
generating set for a given strong component will be the
smallest set of nodes which covers all the cycles of that

compenent.

We have thus described a technique for finding a
minimal set of generators for a strong component. Forming
the wunion of +these minimal sets for all the strong
compénents provides us a set of generators for the entire
graph, Howeve?, this resulting set is‘ not necessarily
minimal, for we have not taken into consideration possible
interactions bétween these streong components, More

precisely, we wonder If pgenerating all the nodes in one

strong component could effect any of its =successor
components, An example will 1illustrate how, 1in fact,
"trigpering" one component can lead to another component

being triggered:

G - Reduced G a%
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Trom 0% ye proceed to find minimal penerating sets., Since
there is one strong component - {al - with in-degree of
zero, we first choose it, and, since it consists of‘oniy
cne node from G, we necessarily choose that node, We note

that, on triggering the chosen node, no other nodes in the

reduced G are fired, We therefore examine the successor
component of [a] which is [e,d]. Either ¢ or d can
generate this entire component. Suppose we choose c, We

observe that ¢, of course, triggers d and that d can, in

fact, trigger both f and g. In other words, generating

[c,d] indirectly generates [f,g]. This example shows that
there can be a positive interaction between strong
components, To take advantage of this interaction, simply

start with those strong components with in-degree zero and

work downward via each component's successor components,

In other words, the original problem has now heen
decomposed into finding minimal generating elements for the
strong components of the reduced G. This factoring is

significant since:

N N; '
2 > Z? ' Where ZNi=N

Nevertheless, the problem of finding the minimal set of

nodes that covers all the elementary cycles in a strong

k

component of k nodes still grows as 27, This would have
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been discéuraging except for the fact tha£ we can invoke a
heuristic for finding a minimal cover which, although
simplistiec for a peneral minimal covering problem, is quite
reasonable for the oripginal problem, In other words, we
feel we have found a revpresentation for the original
problem which transforms it into a new space where a

relatively poor heuristic on this new space becomes

relatively powerful on the original space,

Our heuristic procedure 1s as follows. Consider all
“elementary cycles.of length k. Determine a covering set
for these cycles by first choosing the node in common with
the pgreatest number of them, then discard the cvecles iIin
common with the chosen node and choose the most common node
again until all cyecles of length k have been covered, . Add
‘the selected nodes to the-generating set and then remove
them from the graph., Test to see if the resulting graph is
acyclic. If it is not, +then increase kX by 1 and repeat
until the graph becomes acycliec, If, at any time, there is
more than one node in common with the greatest number of
cycles, cérry all choices along wuntil the tie can be

resolved,

Example: Consider the directed graoh underlying the
original example in this chapter, It is a strong component

which cannot be reduced (i.e., it has no nodes of in-degree

¥
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1), There are no cycles of length one but there are three
cycles of length two, We next determine which node has the
freatest number of cvcles passing through it - i.e., noae
1. We eliminate all cveles inveolving this node and choose
the next most common node, Hodes 2 and 4 both have one

cvcle 1n common -~ a tie, He therefore have two potential

generating sets:
f1,2] and [1,47.

We +therefore rémove nodes 1 and 2 and find that the graph
is still cyclic, This means that the set [1,2] would
necessarily require at least one more node, On the other
hand, removing nodes 1 and 4 removes all cvcles and hence
[1,4] is conjectured as a minimal generating set. This

example is given detailed consideration in Appendix 8,

There are, of course, numerous variations to the above
heuristiec, One of theée would be to count all ‘the
elementary ecyecles (as contrasted with only elementary
cycles of length k) passing through a given node ana then
remove the node with the largest .number, We would then

repeat this process until that component becomes acycliec,

Instead of constructing a non-interactive ovrogram to
ascertain minimal (or nearly minimal) generating sets we

decided to extend our symbiotic system so as to enable the
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Y

user to invoke additional combinatorial routiqes to help
him 1isclate these sets, ‘Such a system should allow the
user to experiment with different heuristic approaches to
the particular problem at hand and to select the techniques
best fitted to the structure of his problem space. Ffor
example, he might first try countineg all the elementary
cycles passing through each node, If one node had vastly
more elementary cycles than other nodeg, he might simplv
remove that node, If, however, all the nodes had about the
~same number of elementary cvcles passing through them, then
he might revert to counting elementary cvcles of particular
lengths,

Since there was no need for intimate interaction
between the systeé for generating intensional definitions
"and the one for ascertaining the minimal generating sets
(and since the PDP-9 was no longer available) the following
package of functions was coded in Stanford LISP 1,6 for the
PDP-10, These routines were designed to wutilize the
interactive nature of this version of LISP and to enable
the wuser to quickly synthesize a particular strategy.
Appendix 7 contains a typical session with this package as

applied to the above example, What follows here is a brief

description of this system,
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L]

ECYC qonsists of a collection 14 LISP functions which
ﬁan be invoked as direct or indirect procedures, Most of
these procedures utilize the array features of LISP 1.6 to
heln gain speed in "markine" and "unharking" nodes in the

granh, The package consists of five grouns of routines,

The first group aids the wuser in bullding an array
structure to represent the directed granh, These routines
eXpect the graph to be presented as S-expressions: (R1 (R2
R3 .,.) R2 ( ... ) ..o Rn (... 1)) where the sublist
" following each Ri is either a list of predecessors or
successors, | These routines, then, transform this
S-expression into a LISP array -~ the form used by most of
the other functions, The second groun of functions
displays local information (in-degrees, out-degrees, etc.)
"about the graph so that the user can have some independent
verification of +the inputted granh structure, The third
group allows +the user to modify'the graph on a temporary
basis., He can "block" any node or list of nodes of a graph
and thus implicitly define a new subgraph. This
modification is meant to be tempbrary and the user can
efficiently restore the graph to its original form or any
priqr form, In addition, the user can define and.name a
new permanent subgraph, The fourth class of functions

enables the usenr to execute several tests on both
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1

implicitly and explicitly defined subgraphs, 0f special
interest are two predicates which test if a subpgraph is

cyclic or if two nodes are direétly connected,

The last group of functions performs most of the
combinatorial work, Here, we have functions which 1)
compute all the strong components of a granh, 2) determine
the number of elementary «cycles passing through a given
node and 3) display all the eleﬁentary cycles, Additional
functions compute pnly elementary cyeles of a fixed length

and determine how many of these pass through a given node,

Combining these functions in various ways enables one
to quickly compose either complex direct commands or new
programs., Apain, our philosophy ‘has been to construct a
set of tools to enable the user to more effectively explore

his data or, in this case, his collection of intensional

definitions.




CHAPTER SEVEN

A Simple Question-Answerer

The previous six chanter$ have concerned techniques for
adduéing from a network of interconnected facts certain
structural properties theretofore unknown ahbout those facts,
In this chapter we will again concentrate on this kind of
network but with a different end in mind. If we can form
abstractions by examining paths in a network aéd thus
formulate a theory about the data represented by ~the
network, then by utilizing that theory we should be ablg to
make certain predictions. Such predictions might, for

instance, suggest missing or deleted links in the network on

which the theory is based.

For example, suppose "the Monkey's Uncle" has
discovered (as part of its theory about some given data) the
rule: "a husbhand of a parent is a father™, If a new set of
facts is then encountered such as:

(Jack, Husband, Judy)

(Judy, Parent, Jim)
then a simple prediction could be that Jack is the father of
Jim. = This kind of prediction is of special interest to us
since it ©parallels the tasks performed by deductive

question-answering systems,
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The primarv goals of this chapter are to explore more
fully the nature of these predictions and to show how tﬂe
type of theory created by "the Monkey's Uncle"™ can be
utilized by a question-answering system, To satisfy these
goals we have constructed a speecial purpose

question-answering system,

The approach we have taken in the design of this systeﬁ
is quite unorthodox. It differs significanfly from both the
highly popular general purpose question-answering systems
which utilize ‘prédicate calculus representations of their
theories and from the relational compiler approach
underlving the TRAMP system, Following the inner workings
~of this system will not only ﬁrovide substantial insight
into the kind of structure "the Monkey's Uncle" is good at
capturing but also elucidate some of the fundamental

problems of question-answering systems.

Foundations

In the following sections we will concentrate on how
our question-answering system performs deductions., We will
outline a series of examples, each of which becomes
progressively more complicated, and show how our system

handles each case. Through these examples the reader will
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he able to understand the subtle differences and

similarities Detween intensional definitions and rules of

inference (both of which are produced by "the Monkey's
Uncle), In addition, the problems surrcounding
"possibility" questions (i,e,. Can x be vy's R?) will be

explored,

The basic theory behind our system 4is relatively
straightforward, Suppose that we are given a network of
facts and a particular relation, such as grandparent (GN),

whose semantic meaning is expressed by the intensional

definition:
(xy GN, y) iff (x, PN/PN, y)

(i.e., x is the grandfather of y if and only if x is the
parent of a parent of y),. In terms of the framework.
established in the first five chapters (and supposing that
the data base is complete in the sense that all possible
facts are explicit), there must be for any particular fact
(%, GN, y), by definition, a labeled path sequence (LPS) of
the form PN-PN which bridges that particular triple.
Likewise, as noted earlier, everv LPS bridging the fact
(x, GN, ¥) need not necessarily coincide with the meaning of
"Grandparent”. For example, some LPS's might imply concepts

more general than "Grandparent" (as would the path
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Parent-Uncle), Still others might be underpeneral and fail

to capture all the possible variations inherent in the

meaning of "Grandparent", We recall that one of the
principle tasks of "the Monkey's Uncle'" is to sift out all
such LPS's, leaving behind only those whose meaning

coincides with that of the given relation.

By appiying "the Monkey's Uncle" to each relation
contained in a 'given network, definitions and/or rules of
inference are discovered which preserve the meaning of the
particular relation under study. For example, in studying
"Parent", the recursive rule that the spouse of a parent is

a parent was discovered (i,e., MN/PN => PN),

Since this rule preserves the mweaning of "Parent",
applying it to the simple LPS "PN-PH" generates the new LPS
"PN-MN-PN" which must also mean "Grandparent". Applying all
the applicable recursive rules to a definition of
~"Grandparent" generates a potentiallv infinite collection
of LPS's, each of which implies the concept of "Grandparent"
(see Table TA for further expansion).

To determine if a particular person 1s the grandparent
of another person, we could enumerate all the LPS's bridging
these two people and determine if any one of these labeled

path sequences were contained in the potentially infinite




TABLE 7A
Sentences Equivalent to "Grandparent!
Partial List of Sentences Inference Rules Which, When
Meaning "Grandparent" Inverted, Can Be Used to
Generate the Lanpuage
GN
PN - PN
PN - MN ~ PN 1} PN/PN => GN
MH - PN - PN 2) PN/MN => PN
MN - PN - MN - PN 3) YN/PN => PN
PN ~ SN -~ PN 4) PN/SN => PN
PN ~ SN - SN -~ PN 5) SN/SN => SN
PN - ON - PN - PN . 6) ,ON/PMN => SN

set of LPS's generated from the definition of "Grandparent".

This potentially infinite set of LPS's might be viewed
as a language in which each senténce (LPS) has the same
meaning: that of the stafting state (i.e, vrelation) from
which all of these sentences were generated. The rules of
inference may likewise be viewed as a grammar characterizing
that language. Determining whether or not a particular
sentence (LPS) 1s contained in this lanpuage 1is preciseiy
the kind of task which is performed by a recognition parser,.
In other words, suppose we have a collection of context free
grammar rules which «c¢an’ be applied to the intensional
definition of a given relation and thus generate all the
sentences which have the same ‘“meaning"™ as that relation,

These rules can be inverted and used to recognize whether or
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not a particular piven sentence has the meaning of that

relation.

The barest sketech of a question-answering strategy thus
emerges: to determine if a particular (x, v) is contained in
a given relation R, first isolate an LPS which starts at x
and terminates at v. Then parse this sentence (LPS) to see

if it can be reduced to the relation R.

’

Admittedly, the above exposition has glossed over
numerous logical problems, but before delving into these we
think it is important to provide an intuitive explanation of
the <connections between tgis approach to question-answering
and language recognition. In fact, we have often bheen
struck by the numerous similarities between the problems
inherent in achieving natural language deep structures and
those which surround deductive question-answering systems.‘
Even at the most superficial level,_ a transformational
parser attempts to establish the equlvalence of two
disparate surface strings by mapping hoth of these strings
onto the same deep structure and thus éhowing that these two
surface strings have, in essence, the same meaning, We will
soon See that the behavior of our system mimics, to some
extent, . that of a transformational parser. Our.rules are,

of course, only context free (or 1Iin some cases context
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sensitive) but nevertheless the appnlication of these rules
may be understooed as transforming part of the data base

network,

He now proceed to discuss the details of our

question-answering system.

The Data Base

The data base for this system is similar to the data
base used by "the Monkev's Uncle" (i,e. (x, R, y) trinles)
except that now, of course, the data base will be sparse or

missing numerous "facts" (if the base contained all possible

facts about the given "world" then no deductive capability
whatever would be required of our question-answering
system), The data base can contain both atomic and

non-atomic relations.

Crucial to our system is that for any (x, R, y) triple
stored inl the déta base, its cqnvefse must also be
explicitly stored, This requirement is satisfied by our
STORE routine which determines the converse of each relation
and Buildé the appropriately labeled backwards 1ink. This
reciprocity assures us that whenever we wish to prove that a

particular (x, R, y) fact is implicitly contained in the
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base we need only search along directed paths from x to v in

order to eobhtain all "relevant!" information,

The result of such a search is an LPS, or a sentence,
connecting x to y. As with "the Monkev's Uncle", the search
algorithm returns only paths which do not involve loops.
The importance of not allowing loops 1is crucial, It
provides us with the basic tool for handling axioms or rules
that would otherwise require an exﬁlicit statement of
inequality within the rule., For example, sunpose we had the
émall set of facts:

1) <(Jack, Brother, John)

2) (John, Brother, Jim)
and we asked the question: "Is Jimn Jack's brother?",
Calling our search routine would produce the sentence:
"Brother-Brother" which linked Jack to Jim and our task
would be to detefmine if this sentence imnlied "Brother",
At first glance, this sentence would trivially seem to imply
"Brother" since Brotherhood is a transitive relation (i.,e.
- Brother/Brother => Brother). However, this rule is not
precisely true since Brotherhood is only "almost" transitive
and what we really mean is‘that:

(x)(y) 3z [(%, Brother, z) & (z, Brother, y) & xfly) =>
{(x, Brother, y).
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In other words, we must cexplicitly check to see that x and vy
are not equal before wé nerform the reduction of
"Brother-Brother => Brother", Because our search algorithm
¢ .
does mot permit loops, the c¢heck is implicit in the
generation of a sentence and therefore alleviates us from
having to check for this property (we will later see that
there are some additional problems with "equality" that are
not so easily disposed of)., Note that "the Monkey's Uncle™
discovers rules of inference consistent onlv with this

interpretation, i,e., when it unfolds the rule "SN/SN => SN"

the inequality of the deomain and range elements is assumed,

Rules of Inference

The rules of inference for this svstem are of the-form
éenerated by "the Monkey's Uncle" -~ +that is to sav, any
rule may be viewed as a context free (another more
experimental wversion of this s?stem also allows context
sensitive) phrase structure rewrite rule., Of noteworthy
importance is that our system needs only inference rules
interrelating the Matomic" relations and for the remaining
relations it needs only their intensional defipitions
(multiple definitions are ecasily handled and, in some cases,

can increase the system's efficiency). Table 7B illustrates

some of these rules,
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TABLE 7B

Partial List of Kinship Axioms

PM => PN OM/PN => SM
FF => PN SM/SN => SM
oM => ON OM/MN => OM
oF => ON SM/OH => OM
SM => SN PM/ON => MM
SF => SN MM/PN => PM
MM => MN PM/SN => PM
MF => MN OF/PN = ST
ON/PBN > SN SF/SN => SF
SH/SN => SN "OF/MN =>"0OF
ON/MN => ON SF/ON => QF
SN/ON => ON PF/ON => MF
PHN/ON => MN MF/PN => PF
MN/PN => PN PF/SN =»> PF
PN/SN => PN

let us consider an application of these rules. Suppose
we wish to determine if x is the cousin of v, Our first
step is to search the data base for a directed path from x

to v. In so doing, suppose we discover the following path:

MN
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which translates into the sentence:
ON MN ON MN PN SN MN PN
(Offspring Spouse Offspring Spouse Par Sib Spouse Par)

We must attempt to reduce this sentence to determine if it implies the

cousin relation. Retrieving the intensional definition  of cousin
(ON 8N PN = CN) we adjoin it to the axiom list (see Table 7B) as
(ON SN PN => CN). We can now parse this sentence as  shown below.

Singe the sentence.can be reduced to "CN" it implies that x and y are
indeed cousins. To help in understanding the semantics of this

example we provide a family tree consistent with this path.

OFFSPR  SPOUSE  OFFSPR SPOUSE PA SPOUSE PAR

OFFSPR OFFSPR
SIB

/ PAR
SIB /////////////

COUSIN
/,f—MNaqa
[0
?%” Ji“
Ml Czb/ , \Q‘A A/:_m.k
- - \

Cﬂj .,___,m.__ PN
\ /
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Examining dJust the application of the‘first rule, we
see that rewriting "ON MN" as "ON'" is tantamount to
specifying an implicit new link between x and z, i.e., if x
isrthe oéfqnﬁng of p and p is the spouse of z, then x mnust
also be the offsprinpg of z, This fact is true regardless of
whether or not (x, Offsoring, z) is explieitly contained in

the data. Pictorially we therefore have:

In the diagram above, the dashed lines are implicit

(ad@ed) links and the dotted lines from these imnlicit links
define which links caused their generation (1), Note that a

"complete" data base would have all these impliecit links

represented as actual facts.

This example seems more complicated than it really is,

Note that every arc underlying the 1initial sentence 1is an
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atomic relation, This means that the segtence is already
tailored to ceoincide with the rules of inference; Surely it
is possible for a path to be gpenerated which involves a
non-atomic relation. What will hapnen - in such a case? If
the rules of inference do not include a reduction of the

given non-atomic relation, then that part of the sentence

must be irreducible,

Again, suppose we are tryving to determine if x is the

cousin of y and, in searching our data base, we discover:

SN
ng/,’ﬂ \\ﬁﬁi\\“ (x, Siblin
. £y 2)
CN”#Q% (z, Cousin, v)

Since a sibling of a cousin is a cousin, one might expect

that 1f our rules of inference are complete, they should

contaln the rule:
SN CN => CN.

However, we have agrged earlier that knowing the definitions
of non-atomic relations in terms of the atomic relations
(which are characterized b& the rules of inference) should
free us from having to spell out all the rules of inference

governing all possible interactions among the relations.

.
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In the previous example we used the definition:
CN = OMN/SN/PHN
to arrive at the rule:
ON SN PN => CHN.

Since defintions actuallv represent two-way implications, we
know that i1if x is the cousin of y there must exist at least
two other people {(i.e., pq and by, which are not necessarily

referenced in the data base) forming a hypothetical path:
ON-(Py)-SN (P, )-PN.

In other words, given the path "SN~-CN" this path can be
mythically expanded into: "SN-ON-SN-PN", which reflects the

following situation:

P\ S N Pz

oN " P

oL

N
Y
Since this expanded path now involves, by definition, only

atomic terms the rules of inference should be directly

applicable. In fact, the following parse exists:
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snk\\\\ oy SN PN
og\\\\\\\ 4{iii////////// r
eN

thus. showing that a sibling of a cousin is in fact a cousin
and moreover without ever requiring an explicit rule which

states:
SN CN => CN.

In terms of the above network, this parse represents

the following implicit links (dashed lines):

This method of analysis circumvents some of the
limitations of question-answering systems which are forced

to bind all of their existential variables in a given rule
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of inference to exnlicit data. For example, in the TRAMP
system, even with the inference rule "SN/ON => ON", the
above reduction could not be‘achieved unless the data hase
explicitly mentioned pi; Unfortunately, the prohlems
inherent in not knowing the identity of the person through
which these hypothetical paths pass are not so easily
solved. The following set of examples sheds considerable
light upon the nature of these problems and provides-us with

an introduction to questions which refer to npossible states

of the world,.

The Handling of "Can" Questions

A characteristic of all the above examples is that each
question has a unique answer, i.e., there is no uncertainty
as to whether the sibling of a cousin is a cousin, 1If,

however, we pose the question:
"ls a cousin of a cousin a cousin?t

a slightly different situation is encountered, A cousin of
a cousin might be a cousin, but then again might not be.
Additional information about the particular case 1is clearly

required. 1n other words, the rule:

CN/CN => CN
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-leads sometimes to incorrect conclusions and therefore does
not qualify as an inference rule, Expanding each occurrence
of ecousin by its definition indicates where the uncertainty

resides. The expanded path of CHN-CN is:
ON-SN-PN-ON-SN-PN

which cannot be parsed any further than:

Pﬂ\\\ ///9N
MN

Suppose we make explicit +the existentially quantified

ON SN, SN PN

persons that occur in the definition of cousin, i.e.:

X ON-(p; )=8N=-(p,y)=PN-(p,)-ON-(p,)-SN-(p )-PN y

(p2 MN Py )

This reduction makes the assumption that persons Py and
p, are distinect and therefore the inference rule asserts
that they are married.  However, we have no guarantee that
this assertion is correct since a parent of an offspring
would be a spouse only if no loops had been permitted in the

generation of this sentence. In this particular case, the

i
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-exXpanded sentence was not penerated by an e¢xplicit
traversal of the data graph. Thus, although the original

sentence was generated under this restriction, the mechanism
which grants such a guarantee has not been invoked on the
expanded sentence, A moment's reflection reveals that when
a cousin of a cousin is still a cousin, a loop is involﬁed;
p2 equals p4 and PHN-ON reduces t? the identity. An example
taken from Lindsay (2) better illustrates this problem,

Suppose we encounter the path:

X | y

ON

Aunt uﬁ\\\\ﬂh<}’/////, Offspring

Z

Can x be the sister of z?

The underlying structure of these two examples can best

be understood by considering "possible states of the world",

Given the two facts:

(x, Aunt, y) )
(v, Offspring, z)

there are four possibilities consistent with these facts as

shown below:
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(MF\‘\@/_SN\’\ STATES
x Pi ('P‘z ?Y 1) x # p}
N ON v #opy
7
MF SN
o N %Y
X Py fﬁ\ou 2) x # py
PN VTP
Z
SF_ - '
6/ \\i)Pz ?Y
* (
3) x = Py
PN ON y # p,
z
SF ' '
g Y
X B | l{.) X = D]
ON v = p2
F’N\%
z

Given no additional information, we have no way of -
deciding which state (1,...,4) reflects the actual
situation, Expressed differently, our data base certainly
contains explicit references to x and v, but might contain
no information about the existentially quantified persons Py
and Py Lacking this information, it 1is impossible to

determine if y equals p2 or if x equals p].
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Nevertheless, there clearly exists a state in which the
éunt of an offspring is a sister (i.,e. state 4); a similar
analysis holds for the a cousin of a cousin., What we would
like is some natural way to handle these possible states in
case no further information 1is forthcoming. We emphasize
that this problem occurs only upon encounterihg a path which
inVOives a non-atomic relation for whiech there is no available

additional information.

One possible approach to this problem might be to
construct a purposely ambiguous grammar (a set of inference
rules) which would give multivnle parsings of a sentence with
each parse reflecting a possible state of the world, This
has been achieved bv augmenting the grammar to incorporate
the possibility of loops, Whenever & path is expanded a .
special flapg "F" 1s placed around the inserted definition,

For example, the expansion of CN-CN is:
ON SN PN F OM SN PN

The augmented grammar contains rules of the form:

MN F MN => I Married (I is the Identity Relatj_on)
PN F ON =» 1
PM F ON => I #ale
PF F ON => I Female
F => Off

(This last rule permits the flag to be turned off so
that the initial set of Inference rules may be applied)
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The application of any of these rules introduces an implicit
loop in the derived data graph and thereby allows wus to
implicitly cover all the possible <consequences of a

@

particular sentence,

An examnle will help to clarify how these augmented
rules introduce implicit loops. Let us reconsider the
problem of determing if an aunt of an offspring can be a

sister. The initial data path was:

AV

afﬁ) ON or UF=-O0N.
Iy

Expanding this path we encounter the following two

sequences:

Sentence 1: MF SN PN T ON
Sentence 2: SF PN F ON
Restricting our attention to the latter sentence, we find
two possible reductions. These are listed on the next page
along with the data paths consistent with them,
The- only basic question that remains unexplored is how
to derive conclusions which are certain but which involve

sentences containing non-primitives, Tor example, suppose
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=> State 4 _
(I functions as both left
///// {;\\\\\\\\and right identity)
ON
of
MN => State 3
71
/ /
| i pid
O "L
[ |
BN A




"we encounter a data
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path:

Is x the uncle of z? The expansion of this path is:

PM F ON SN PN,

Because of the flag F we now find +that there are two

possible parses,

One of these reduces the sentence to "SM

PN"™ and then to "Uncle"; the other reduces first to "MM SH

PN'" and then to "Uncle',




- 144 -

UM
S

M
Imale \
SN
M

PH F ON

Off/

MM

N

Since both parses reduce to Uncle, and since one involves
using the flag and the other does not, we are assured that

in either case this sentence implies the "Uncle" relation,

The Question-Answerer

The above sections have highlighted some of the more
interesting aspects of this approach to cuestion-answering.

We now provide a brief description of our system which consists
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of five basie blocks of LISP procedures, The first of these
parses an input statement, determining whether it is a fact
or a question, If the statement is a fact, it stores the
statement and its converse in the dynamically grown data
graph. If the statement is a question, the first block
formats it as an (x, R, v) +triple and passes it on to the
second block, This block is responsible for searching the
‘data graph and thus constructing all possible LPS's that

bridge the {x, v) 2-tuple mentioned in the statement.

After each LPS is penerated, a check is made to see if
it contains any non-atomic relations. If it does, it is
pushed on a hold list and the search is «continued for
another LPS, Whenever an LPS is encoutered which consists
solely of atomic relations, that LPS is immediately passed
to the theorem-prover (parser). If the theorem-prover fails
to reduce this sentence to the desired relation, contreol is
passed back to the search routine whiph picks up where it
left off, If a successful reduction is performed, control
is immediately returned to the top level with the

appronriate response,

If the searching block has discovered all possible

LPS's and no successful reduction has occurred for LPS's
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invelving oﬁly atﬁmic terms, the third block 1is entered
which bepins processing the above-mentioned hold stack.
Fach of these LPS's is, 1in turn, vponped off this stack,
expanded (note that 1f the non-atomic relation has a
disjunctive defintion, then a sentence is created for each

disiunct) and nassed to the theorem-nrover,

Theorem-Proving

Several different parsers have been experimented with,

such as Wood's context-sensitive parser and a straight
substitution parser. There is an cobvious trade-off between
parsers which are designed to stop after the first

successful parse and those designed to find all parses. The
‘latter is ideal if a particular sentence has no appropriate

final reduction, We hope to soon be able to experiment with

Earley's parser

Summary

We have outlined above a qﬁestion—answering system
which complements 'the Monkey's Uncle'" -- one which is
capable of using the theories produced by the latter, We
have discussed in some detail the philosophy behind our

question-answerer so as to expose some of the more subtle
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aspects of the kind of theory "the Monkev's Uncle! can
generate, Although we do not pretend that the apppoach>to
deduction wunfolded above is suitable for - truly general
purpose question-answering systems, we bhelieve that new
avenues for achieving special +types of deduction should be
explored., We hope that this treatment of qugstion-answering
will at least lead to a greater appreciation of the
similarity between grammars and inference rules on the one

hand, and parsers and theorem-provers on the other,
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FOOTNOTES

(1) Notation originally suggested by Martin Kay (personal communi-
cation}, '

(2) Robert K. Lindsay, "Inferential Memory as the Basis of Machines
Which Understand Natural Language," in Computers and Thought,
edited by Edward Fiegenbaum and Julian Feldman (New York:
McGraw-Hi11,1963 ), 217-33,.




CHAPTER EIGHT

Conclusiocn

In this thesis we have explored various techniques for
abstracting structural information from a network of facts,
We have concentrated our discussion on a symbiotic system
("the Monkey's Uncle") which formulates structural rules
about the data in the form of intensional definitions of the
binary relations constituting the data or inférence rules
which express interactions among these relations. We have
explored a facet of induction, Of course the movement from
particulars to generalities 1is immensely more complex and
varied than is captured by " the Monkey's Uncle'.
Nevertheless we hope this system 1is a first step in
investigating techniques which can discover representations

of the structure underlying a domain of data,

Chapter Seven deviated significantly from its
predecessors, In Chapter Seven we discussed a problem
closely related to the converse of our initial problem,
There we moved from inductiﬁn to deduction in that we were

primarily concerned with - utilizing rules produced hy "the

Mohkey’s Uncle" to deduce additional information, One of
our tasks was to make explicit the implicit data. But what
is meant by implicit data? Considering implicit data

- 149 -




presunposes that we have in mind some structural properties
of the data or "world" from which the data was sampled, The
discovery of these oproperties was, of course, the central

task .of our thesis.

Contrasting the problems of induction and deduction
naturally leads to an intriguing issue,. "The Monkey's
Uncle" functions under the assumption that all possible data
is contained in the given data network. It searches for
redundancies in this data fhat can be expressed as specific
rules, To find these redundancies it expects all the data
to be present. What happens if there is some missing data?
For example, suppose we are examining varicus cases of

grandparent in which we expect to find +the path "PN-PN"

bridging each example. However because of (possibly) an

oversight, we encounter one example in which the only path

is "PN-MN-PN" (i.e. parent-spouse-parent)., [Note that all
the previous examples which had "PN-PN" -would also have had
"PN-MN-PN" which would eventually lead to the inference rule
"MN/PN => PN",] Because of the absence of the "PN-PN" path
"the Monkey's Uncle'", unless instructed to the contrary,
vwould ascribe significance to 1ts absence and thus
conjecture a definition of grandparent to be: "GN = "PN/PN V

PN/MN/PN" and, in addition, would reject the above inference

rule, If there were just a few missing segments of data one




might e#pect that statistical techniques could be employed
to isolate such cases (and thus another aspect of induction
appears}. We, however, have been skeptical of such an
approach and have purposely designed our system so that the
user decides whether or not particular omissions are

sipnificant.

Further Research:

1) Throughout _this thesis we have concentrated on
structural rather than statisitcal aspects of our data. In
coping with missing data we are interested in techniques
which can confirm or disconfirm any alterations the user
imposes on the data base. Towards solving this problem we
conjecture the following phenomena will occur (having great
faith on Occam's razor). Suppose, instead of trying to
verify a particular alteration in terms of statistical
" properties of that particular relation, we consider the
global consequences of the alternative in terms of the
entire collection of intensional definitions,. If the
extension of an atomic vrelation 1s incorrect then we
conjecture those definitions  wutilizing the particular
relation will be inordinately complex, Theréfore, any
changes in the atomic 1relations which result in a drastic

simplification in all the definitions inveolving those
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relations are probably correct. For examnle, in the above
"grandparent™ example, the addition of one Ffact to the
extension of U"pPN" would significantly simplify the
intensional defintion for "grandparent", We would like +to
explore this possibility by taking a comnlete data base and
randomly deleting 2-tuples from the extension of relations

that are known, ahead of time, to be atomic,

2) Our research has pointed out the 1inadequacies of an
algebraic approach to theory formation, We would 1like to
explore mérging the two approaches in a completely
interactive system, Towards this end we are contemplating
rewriting "the Monkey's Uncle" in.LISP for the PDP-10. Once
in LISP, experimenting with new hypothesis formation and
verification strategies would be pgreatly facilitated., In
additien we woulé be in Vposition to merge the algebraic
_approach (which requires a reasonably large core) with the

list processing approach underlying "the Monkey's Uncle",

Our experience with using small cbmputers for this kind
of research has been quite disappointing. Although L&/9
proved to .be an excellent language for small computers, the
lack of appropriate peripherals- for quickly editing -and
recompiling programs became a significant drawback to

extensive experimentation with new strategies,




APPENDIX 1

Towards An Algebraic Anproach to Theorv Formation

Introduction

Given a collection ~ of binary relations
R = ERJ, e s RS defined on some universe U, the séarch
for intensional definitions of one relation in terms of
other relations in R can be characterized algebraically,
Recalling that an intensional definition whichr'is defined
with respect to composition (for this discussion we will
only considér this «c¢lass of intehsional- definitions) is
defined as:

R; R,/ ees /R if and only if ¥x,y
T2, 5 eees M[(xR y) <= >((xR z,) A (z R, a)A...A(zMRin

It is clear that the composition operator "/" is equivalent .

to boolean multiplication of the respective adjacency
matrices of the given relations. More precisely, if R, =

R,/R,, then letting M,, M, and M, denote the adjacency

matrices of R, R, and R, respectively, we note that:

M= HZE H;

where ‘@' is defined over n x n boolean matrices as:

rd

A}
A.: BGC <=> A;j = ]:{l B'mf\ ij. *
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Fxarinine the composition enarator on bLinarvy relations,
one  can easilvy  verifv that the comnosition of tuwe hinary
relations is =till a binarv relation and that the onrerator
ia assnciatiﬁe. fore ranerallvy, eiven the collaction P of
binarv relations, one can define a éemiﬂroun 3g senerated by
R as the closure {under comnosition) of R, In other words,
bv  forming all nossible comnositional seacuences made from
relations in R, the resulting structure is a sermiproun,
Likewise, one can define the serisroun fq whose elements are
the Dboolean adiacencvy matrices corresnonding +o binarvy
relations of Sy. The lsemigrouns Sg and Sy are trivially
isomornhic with resnect to the manning M; <=> Rj and
therefore ve are free to discuss either, with our
ohservations nertainine to hoth structures. However, as we
will see later, Sy is a marticularlv easv structure to

generate with a binarv comnuter.

.
J=ie

nit

7

Intensional def: ons of the relations in P are
directlv derivable from the semiproun Sy. Consider a
renresentation of Sg bv its Cavlev multinlication table

which specifies for any two elements R®,, Ry€ Sz a third

element Ry (not necessarily distinct) suech that:
Rw = Ru®Ry,

Sunnose R, 1is one of the relations in R bhut P,, Ry, are not
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contained iﬁ R. In such ‘cases we locate two terms whose
product is R, and similarly for R,. Since Sz 1s penerated
by R, eventually every rglation in 8z can be traced back to
the sequencé of relations in R that penerated it, In other
words, gpiven R, = R, %*R,, we find the sequence of relations
that generated R, and then those that generated Ry« Since

]

R,= R,®*R,, comnosing these two sequences together gives us

a defining sequence for R, which is specified entirely in

‘terms of the generating relations, i.e.,

if Ry = R;l* ves "R;K Ry, eR
Ry, = R ¥ ... #Ry Rj, €R
= ;& % & % %
then RLU' Ri’]. ---. RK RJ!_ ..o RJh.

Since R, by hypothesis was in R, we have unfolded an
intensional defiﬁition of one relation in R in terms of the
other relations in R, 0f course, R, might occur on the
right-hand side of the equals sign, in which case the
definition is recursive. |

Growing the semigroup leads to - other advantages. For

example, we have discussed in Chapter 6 .the search for

"atomic" relations which translate under the above

representation into a search for a minimal sct of generators
for Sg. What is advantageous about this representation is

that although we might disc¢over some subset R' of R that can
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generate S , we might also discover a still smaller set X
(i.e., fx] <« |R*}) that can also gsenerate S, ﬁhere ¥ ia not
a suhset of R, In +this case a "new" relation or set of
relations (derivahle from R} will have heen discovered that
more "economicallv" exnlains the data, The diécéverv of
such new relaticns which are external +o the orirsinal
relations constituting the data base wouid bel a nowerful
axtension to our svsten,

Refore discussing in more detail +the algebraic
formulation of thid aspect of theory Fformation, we will
exnlore some of its conputational advantares and

disadvantages,

Comnutational Advantages

Central to the formation of 8; is the seneration of the
closure of the collection of hinarvy relations P, thig task

ideallvy suited far digital conmmuters since the

e
A

fundamental onerations in formine closure are

1) Performing a honlean multinlication of  two
addiacency matrices;

2} Deterninineg i{ the resultince nroduct matrix has
alraoady occurred,

The first oneration s fFacilitatead L the Fact that in




Forming the closure nF "= g”ua"z, -.-,Dqg a1l

nultinlications can he of the Faprm:

bl
P * R,
]

i e "'D:‘ + P,

where Rjy € R but not necessarilv Ry,

e can renresent each row of P _as a bit-nacked hinary
vord (or words) and for each relation R; in R we can
renresent its columns as a bit-packed binarv wvord (or
words), Yith this reﬁresentation, sach 1,1 entrv in the
nrodiet matrix Is computed bv  "AMDM"ine the ith word of R_-
with the Jjth word of R. - an extremelvy fast oneration. In
addition, since everv required multinlication onlv has %, ,
+++3Ry  as a nossible right-hand element, onlv these need ke
converted and stored in their column renresentation. In
other words, the resulting nroduct ﬁatrices need never he
converted to column form,

The identification of whether or not the resulting
oroduct matrix is unique reguires, in nrincinle; checking
this new matrix against all the ones that have alreadyv been
menerated, This check, however, can be performed bv a-hash

coding technique which erenerates an index into a hash table

directly from the n ®x n matrixz stored as a seouence of
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bit-packed words, If the product is unique, theﬁ it g;ets
stored in the hash table along with two pointers identifving
what its immediate generators were, These npointers
facilitate the recursive Peconstructién of the seauence of
multiplications which were used in generating this element

of the semigroup in terms of the given generators.

Disadvantages

The primary disadvantage of this approach 1is ~the
combinatorial explosion underlying the generation of the
semigroup, For example, if the generating relations for the

semigroup ars reorcsented as o % @ matrices, then Lhe number

. h
of matrices making up the semigroup can be as many as 2%

kthis is, of course, the worst case). What is clearly
needed 1is a way to selgct @ sub-universe of the given
universe; restrict the generating relation to this
sub-universe (i,e, reduce the n x n matrices to m x m,
where m << n); and somehow utilize the structure of this
semigroup: to discover the sought-~after -definitions, etec,

The following sections "will describe how this " can be

achieved,

Selecting a Sub-Universe

In order to manifest the problems inherent in selecting




a sub-~universe on which +to generate the semigroun, we

consider the following example, Let us suppose that our
original universe U = ga,b,c,d,e,f,gg and that we have three

relations defined on U represented by the following

matrices:

(\41 f?: 1 !\)‘2-’1—(,: I Mjcb =
My = (M- My =AM 1 M3 =AM, -1
=] M2¥=1 Ma%’j

Among the various relators in a presentation of the
semigroup S, generated by these three relations is the
relator: ¥, = M oM , Because S, and Sy are isomorphic, this.
relator may be translated directly into an intensional
definition of R; as Ry = R,/R,. Let us. now define a

1

sub-universe U' of U as being the set Ea,b,d,e,f,c% and

restrict the three matrices on U to Q’. Relative to these
new matrices, M; » M; ) M;' we can again generate a new
seﬁigroup, say Sy. However we can directly verify that on
the semigroun S, the relator My=MoM, is no longer

satisfied, +thus destroying our chance of discovering the

intensional definition of Ry
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Sincerwe desire. to use-S, to discover the intensional
definitions of the generating relations of Sy Wwe would like
every relator on S, to hold (under the natural mapping) on
Sw' .In other words, we want Sp- tc be a homomorph of_SR.

That is to sav if

l"[fr) = }Ja(Rii*'..‘ f‘"‘Rih) = h (R,i)* . ,l‘*iu(R;n)

R = - = Ri, #...% R

1 A
In the above example, restricting R to fhat particular U!
and using these restricted relations to renerate the
semigroup S s caused at least one relator of S, to be
" unsatisfied on Sy Clearly the mapping h: R, => Riflixr
‘could not therefore be a homomorphism Ffrom Sq to SR"

We are interested' in determining an algorithm for
selecting a U' such that the mapping h: Ry => Ry is
extendable to a homomorphism from SR to S,-. Towards this
end we coﬁsider the collection R to be repreéented ‘as a
labelled directed graph 6 constructed so that if (x,y) € R;
then there is an arc from x to y labelled R;., Given an edge
{(x,y) in G we can define a subgraph G! generated by this

- edge as the subpraph consisting of all directed paths

(incluaing non-simple paths) from x to y. Relative to GLH




ve can fFurther defipe a relation 7T anc

Xy

hef: T = {(x',v’) I %' precedea v!' on some nath in ?&y}

Sinde ot

q xy

consists of hoth simnle and non-sinnle naths, Tey

is nnt a nartial ordering hkacausce tha anpti~sguymnmetrico
nronarty CAnT he violated, T”y anect fiea a suhset of the
carteqgian nroduct 1} w If, Ye can define the restriction of
2, to T : ’

; to Xy as:

et Ry, < E (7 y) | (xTydeR; ¢ (xiyde xr}

Tn terms of these definitions we mav now TfTormulate the

Following theorem:

Theoren: Given a collection of hinarv relations R and a Tyy
as defined above, then '

J

Ry lTxy * R[TW = (R, * RJ)‘-’;Y where Ri e R

Proof:
Sumnnose (U. v Y &e {’ R -r . Ten there exists =z
A A ' .T- I ] ]

Tyt this imnlies

suech that (u,=z) e!ﬂlnyand (z,v) = ?JLﬁy
that {(u,v) e Ty (bw definition of Tyy ) and is therefore in
@i *Hﬂ Lﬂy . Mow sunnose that (n,v) & E%!:Fb)lﬂw which
imnlies that 1) (u,v) = Txy and 2) there exists a z such
that (u,z) € R; and (z,v) € Py, 7?0 show that (u,v) &

Tﬁlﬂyﬁejﬁlmw we need only show that (u,z) and (z,v) are

*
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r

contained in "
xy

P Lee]

Since (a,v) & "xy W oMUSt nrocede voon

anma directod nath From u o v, Since N' consistas of all

A

noqc}hle directed naths from x te v 2and since u  nrecedes v
on some directed nath for x,v then ' must also consist of
211 directed naths from n to v. “he math fu,z)-(z,v) is one
such math and theraefore these 2-tunles ars in Tx/.i

Decausc T xy is defined with res?nct to mnaths  of

arbitrarv  length in G6', this oproof can be immediatelv

veneralized to establish the following corollary:

Corollarv: Given a collection of binary relations R and
w then

Qince anv element: of £ can be written {(bhv definition) as
.80Me Senuence --

uﬁRs‘_* Rix%"‘-- *"’R;n we S,

the above corollarv nrovides the link between homomornhisms
and the T}Y 's as follows,
Theorem: Given a semigroun S, penerated from a collection

of binarv relations R under comnosition and a
mapping:

th : Ri - RiLﬁy

then hyy is a homomorphism from Sp=> Bp, where 8§,
is the semigroun renerated hv restricting each
relation in R to Txy.




ailiaon

R T

oy

fne of the virtues of definine Txy in the abave Fashion
is that once 7 has heen constructed (i,e. renrasented hv an

L5

arnronriate data structure) the ceneration of narticular

Txy'“ i3 extremelv fast, It is of no surnrise that certain
choices of x,v lead to an hy, which so drasticallv collanses
Sg that mnearly "evervthineg" holds  on its hemomorrh. For
such cases the homomornh is of liftle value, Ye have

investiprated certain theuristics which enable us to reiect
some T,y hefore comnuting its allied homorornh but we delav

renortine on them without further exnerimental data.




LPPENDIY 2
Generalized fpplicatiorns of "the !onkey's Uncle™

In this appendix we will explore the applicability of
"the lMonkey's Uncle" to some different types of data and
examine the range of theories obtainable from it. The first
experiment deals with a state transition system which models
a collection of actions defined on some ideal "world". An
action may be thought of as a "verb™ or an operator which,
when applied, causes a change Iin the current state of the
N"yorld”, | The theorv we are interested in discovering
concerns how a particular action {(verb) can ke defined in
terms of other actions (verbs) which are alreadv known to
the svsten, Viewing these actions as operators, our théory
should also indicate such properties as whether or not these
actions commute. Finally, by discovering all the ways
actions can be defined, we can find some minimal set of
actions from which. all the others can be derived, Although
these actions and states of the world are abstract; this
paradigm lis- cufrently being = used in psychological
experiments where the states of the world are represented as
graphic configurations and the actions are "levers" that
causé the (computer generated) graphie configuration to
transform its current state,- This psychological study
concerns how subjects obtain and fepresent the structure of

this "ideal"™ world as an example of a complex concept
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formation task.

The remaining experiments (i.ef 2,3,4) concerﬁ.the
discovery of the rules of chess moves, These experiments
start with simple beoards and progress up to the official
eifght-hv-eipght hoard, Some of these experiments presented
severe memory strains te the existing syvstem which was
designed to run in a 16 ¥ machine, including the
interpreter. Consequently, these expefiments not only show
seme of the generality of this kind of system but also
indicate some ways to collapse or sémple data without

destroying the chance of finding the sought-after structure.

Lxperiment #1

Task: Given a state space and a c¢ollection of unary
operators or "actions“ which map a given state onto a new
state, determine the structure of these actions, In
particular, discover how any particular action can be

synthesized out of other actions,

Discussion: For this experiment we consider a domain of six

states - i.,e., €1, $2, ... , &6 and a collection of five
actions -~ i,e., Al, A2, ... , A5, Each action is
represented extensionally by specifying explicitly how it

maps each state onto the other states, The table below

presents this information.
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A B C

S1  => §2 51 = S $1 => 83
§2 => S3 52 = 55 $2  => 51
53 => §1 33 =»  §6. §3 => §2
Su > S6 Sy > 51 Sy =»  §5
$5  =» Su S5 => §2 S5 => §6
S6 => S5 S => §3 S6  => 84
D 13
€1 =»> S6 S1 => 85
S2  =» Su S0 > S6
S3 => £5 $3 = o ’
cu => g2 Sh => S3
85 => ©2 $5  =» 81
56 => €1 S6  => §2

"The MYMonkey's Uncle" ‘can be directly applied to this
data and with its help we can investigate how any given
action can be synthesized out of the compositions of other
actions. e summarize below the results of the first pass

of "the Monkey's Uncle" over the data:

A = F#p = D*E = e = B#%D
B = A%D = LA = n#C = CHE
e z ASA = LD = DB = B*E
D = pHE = L#C = 0% B = B¥A
E = X3 = ET = c®D = B%C

£ brief glance at this table reveals several interesting
results. First, we note that every action has four possible
definitions consisting of +the compesitions of two other

actions. In fact, since each definition for a given action
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differs from each other definition 1in terms of +the first
relation and the second velation, we can verify that:
For anvy twe distinct actions Al and £j there
necessarilv exists a third action such that:

Al = Aj%Ak and AI%AK' = Aj.

With respect to the definitions selected below, we can

draw a "generator" graph for this system:

C

#
A = C%C V////’
B = (C%®FL
C o= A%A A *D
D = E%C
E = C%D

B . T E

"

and determire that, with fespect to these definitions, two
actions (C and F) form a basis from which the remaining
three actions can be derived. It is clear from the total
set of definitions that these actions do not commute, i.e.,

that the order of their application matters,

Experiment #2

Task: Given an N x N chess board, define extensionally the

following set of local and global topological relations:

E
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Local Pelations Global Relations
JE => Just Last EE => Last

JW => Just Ulest WW => West

JS => Just South . . 88 =» South

JN => Just Horth HN => HNerth

PU =» Positive Diagonal

Running "Up"
Pl => Positive Diagonal

Punning "Down"
MU => Megative Diagonal
BPunning "Up"
D => MNegative Tiagonal
Punning "Down",
Our task 1is to discover how the global relations can be
intensionally defined in terms of +the local relations and
themselves - (i.e., recursive definitions are to be
allowed). Also we would like to see what c¢lues can be found
concerning the existence of such wunary predicates as
"interior" and "exterior" points on this space.

The table below summarizes the results of this

exploration on a four-by-four board.

Summary of Results

WW = JS/WW/JN V JIN/WW/JS {(Non~disjoint)
JW/UW

W = JW v WW/WW (Disjoint)
WH/TW

CE = JS/FE/JN ¥V JN/ELE/JS (Lon-disjoint)




NI

NHM

PD

PY

HU

ND

3]

JE OV
JE/S58 /00
JE v

JW/LE/JE

JE ¥

JE/JN
J¥/JE

JW/Jd8s

JE/JS
JS/JE

JW/JH
JH/JIW
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JL/ET

FE/TE

FL/JE

VoOJgH/SS /T

[V dp i oY
e

T TN

Vv JE/NN/JW

JN/NHN
HN/NE
NH/JN

[4p INa]
jep Mo

)

W

(hisjoint)

{(Disjoint)

(Disjofnt)

PD/FPD

JE/PD/JN
JE/JN/PD
PD/JE/JIN
PD/JN/JE
JN/JE/PD
JN/PD/JE

PU/PU

JU/PU/JS
JW/JES/PU
PU/TW/JS
PU/JIS/JVW
JS/JW/PU
JS/PU/JIV

NU/Ntu

JE/NU/JS
JE/JS/NU
NU/JE/JS
NU/JS/JE
JS/JE/NU
JS/NU/JE

ND/ND

JW/HD/JN
JW/JIN/HND
HD/JW/JN
ND/JN/JW

JN/JW/ND
JN/HD/JW

(lon-disioint)

(Hon-disjoint)




In terms of the iiast, MWest, Horth ard Scouth relations, wve
sought both disjoint and non-disjoint definitions. .As can
be seen in the following, each kind of definition generates
important information for abstracting the above-mentioned
unary predicates., For example, by considering the following
two definitions for WW (and by knowing what these relations
mean, which is of course unknown to our system) we can see

that:
Mon-disioint Def.: WW = JS/WUW/IN V JIN/UW/IS

For anv (x,v) which is contained in the first disjunct and

not in the second, it must represent two points along the

"southern" border. Likewise, those 2~-tuples valid in the
second disjunct and not in the first lie along the
"northern" border, Clearly those 2-tuples valid in both

disjuncts are interior points relative to these two Dorders.

The disjoint definition for WW is:

JW/WW
Disjoint Def.: WW = JW ¥V WW/WW
WW/JIW
which communicates the additional information that JW
commutes with WW, It further specifies that WW is

transitive and that the 2-tuples in WW that don't have a

"hridpe' i.e. the 2-tuple (x,y) has a bridge if
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(x,y)edW =31z | (x,z)eWd & (z,y)e WU

are exactlv these of JW.
Loocking at the definition Ffor diagohals, we likeowise
note that thev are all transitive, In addition, these

definitions reveal the commutative nature of certain subsets

of the logal relations., Tor example:
JE/JIN = JN/JE ‘
JHW/JS = JS/JW
JE/JS = JS§/JE
JU/JIN = JN/JIW

The actual form of the data 2-tuples is derived from

the following numeration of the four-by-four chess board:

14 9 8 15
3 2 12 5
& 11 10 4

16 7 1 13

To illustrate how the user can benefit from additional
information generated by the system, we include a copv of
the first page of output and show how he can note additional
regularities. By taking the tvwo templates (see line ¥):

037763770 => JN/UW/JS

343617474 => JS/WW/JIN

and forming their logical difference, etc., we can detect an

invariance over those 2-tuples in the intersection and
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4k WELCOME TOQ THE®

PLEASE LOAD THE RELATION NAMES
§oW LOAD YOUR DATA FILE

TYPE I¥ RELATION TO BE EXPLORED
wy

RECURSIVE 7 YES

PRINT 2-TUPLEST YES

WHAT DEGREZ OF VERIFICATION IS DESIRED? C

ANY DEFINITIOANS 10 BE BLOCKED? N
‘DISJOINT 24

. # OF SAMPLES? 35

TOTAL # OF SANMPLES ONLY = 824

«@16,013> <016,801> <016,0087> <@14,015>
<pll,Aga> <Gli,e10> <d16,e24> <00Y,015>
«GD7,00]> <BE6,004> <026,810> <6CE,E11>

t Forl - -
'<Bp2 085> «202,012> <B81,e13>

MOMKEY'S UNCLEF#%%

/ Ectension Table

<p14,008> <014,089> <B12,085>
<@pS,8C8> <0B8,B15> <BB7,013>
<g63,365> <0B3,012> <683,2C2>

7

XX R o '
<CRITERIA SATISIFIED....EXANINE soLuTION>  The i it of Hhe femplate

LIST T .
'935555:47j§45 377777 71740068 600000

Lorresponds 4o fqe oH z-
in the axtension. +°.L,{eq_ Z *”f'rc

4

©34645:474635 B3T763 770000 BI5045 <o Line X

‘8346351 446200

- -

343617 774888 834061

340817
B34001: 474085

35845T
@35845: 475051

-

JSAWW/IN

JN/WW/JS

*
LEAVING EXAMINE MODE

NOW AMY DEFINTIONS TO BE BLOCKED? YES
ERASE CURRENT LIST2HO

NEW DEFINITIONS HOW

t JS/WW/JN

L1 JHAWMZSS

4
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those in the symmetric difference,. The following

significant pattern emerges:

Symmetric Difference Intersection
All 2-tuples whose first £1]1 2-tuples whose first
component is 16,14,6,9,2,1 compoenent is 12,11,10,8,7,3

Since the first component seems to determine which disjunct

the 2-tuple will fall into, we might focus our attention on

what domain elements are missing from the first component of

the WW 2-tuple:
Missing 2-tuples
Any ?-tuple whose first component is

4.5,13 or 15,

Evidently, these points constitute the "western'" border.

Experiment #3

~Task: Given a five-by-five chess board which is defined by
specifying‘the comﬁlete extensions of JE,JW,JS% and JN and on
which is specified all the moves of a particular chess
piece, determine the rules for the moves of the Eiven piece.
Thesé rules are to be expressed either in terms of the

above-mentioned local velations or may be recursive rules

defining a legal move in terms of itself and the local
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relations.

Niscussion: The following rules were discovered:

1) Knight = Jw/Jan/38 v JR/IN/IN OV
JE/JE/JY VO IW/JW/IR Y
JW/IW/JI8 v JW/JS/JS Vv
JE/J8/J8 VvV JE/JE/JS
We see that the svstem discovered an eight term disjunctive
definition of a Knight's move. For any particular term it

also found all of its logical equivalents. For example, for

the first term abgve, it unfolded:
JW/JH/JIN = IN/JIW/JH = JN/JIN/JW

In each case, we simply chose the first term.
2) Bishop = JS/BI/JN V. JN/BI/JS V X

This definition is the first example of a recursive

definition. It states that & Bishop's move is either of the

form:

a) Move Jjust south, then make a Bishop's move and
then move just north
or b} Move just north, then make a Bishop's move and
then move Jjust south.
Any move following these rules will be a legal Bishop's

move, whereas a recursive rule referencing a diagenal

generates counter-examples - e,g., JE/JN/BI covers some
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moves but would permit others that are illepal., The need
for two disjunctive terms emerges because of the southern
and northern boundaries.

There is, however, one gliteh to the above, which is
represented by the trailing "X" in the definition, When we
first ran this case, the system returned saying that there
was no satisfactory recursive definition simnce four cases
(2-tuples) remained "unexplained”, The system idehtified
these cases and then proceeded to ”explain" the reméining
cases. These four cases were the two extreme poinfs on each
diagonal. In such situations a Bishop may move just south
but not just north, or else vice versa.

3) Pook = JS/P¥/JH V  JE/RK/JW V

JN/RK/JS V. JW/RK/JE
This recursive rule amounts to saying that a Rook's move 1is
either of the form:
a) Move just south, then make a Kook's move and then

move just north

or b) Hove just east, then make a Rook's move and then
move just west

or c) love just north, then make a Rook's move and then
move just south '

or d) HMHove just west, then make a Rook's move and then
move just east

4) King = JS 'V JN 'V JE V JW V¥
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J5/JdE 0V JS/JW ¥V JH/JE V. JIN/JM

fs with the Knight's moves, the system generated an eight

term disjoint disiunctive definition.

5)Y OQueen and Pawn.

The Pawn coincides with two of the local prelations and anv
experiments involving it were postponed until the more
difficult eight-by-eight case was considered, The Queen, on
the other hand, produced an immediate problem. Simply
storing the explicit possible moves for a Queen surpassed
storage allocation for the relevant segment of +the program,
Consequently, we deferred exploratioﬁ of this piece until
the full eight-by-eight Ease, at which time sampling
techniques were invoked for all the pieces. O0Of course, the

process of discovering recursive definitions of a chess move

is especially sensitive to incomplete extensional
representations of the pleces, By studying the smaller
board configurations it was possible to store the complete

extensions of the chess pleces (excent for the above

mentioned case).

Experiment {4
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DRI U

Task: Determine a wav to select a subset of the extension of
each piece's move so that all pieces can be represented in
core simultaneously, Then search for . definitions of the

moves which are represented in terms of the local and global

relations and the moves of the other pieces,

Discugssion: The need to develop such sampling techniques is

apparent from the fact that representing all of the moves of
all the pieces on even a four-by-four board used so much of
the available lmemory'that the system often ran out of space
during the hypothesis evaluation phase. On an
eight-by-eight board, the situation was, of course,
completely hopeless.
fs mentioned in the prior experiment, the search for

recursive definitiens must, in @general, be limited *to
complete representations - of the data. However, the
situation for non-recursive rules 1is quite different. In

seeking such rules there are two basic problems to consider.

Problem #1: Hypothesis Generation: It is clear that the

generation of LPS's that involved the relation itself would
often be foiled by an incomplete representation of its
extension, For non-recursive LPS's we need only those
2-tuples of the other relation that bridge the existing

2-tuples of the given relation., This property is achievable
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for the chess data if we construct our data base according

to the following algorithm:

1) Include the compléte extensions of the local
topological relations;

2) Include the complete extension of all the chess
moves and plobal relations but where the domains
of the pieces and global relations are restricted
to some small representative subset of the board,

In other words, the end position of anv move is free te fall

within anv sauare on the entire board so long as the origin

of the move lies within this subset.

Froblem #2: tvpothesis Verification: Once some potential
rules are discovered, then hypothesis verification
determines if these rules generate any 'non-moves'", Since

only a partial representation of the moves is present, this
check could be disasterous, Since a King's move might be
"move Jjust east and then move Jjust nofth", verification
would proceed by examining every such m;ve to see if it were
contained in the list of King's moves, and of course, in the
above scheme not all samples chosen from the extension would
be. One circumvention of this difficulty might be simpnly to
turn. off +the verification n©phase (e.nj, ask for "No"
verification). We might think we could pget away with this
if our data base were sparse enough. However, our data,

being generated by +the above scheme, is very "dense"
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wherever it exiasts, .In anv event, eliminating verification
léads, for example, to such statements as "a Bishop's move
is identical to a Cueen's move",

There does exist a partial verification scheme which we.
can emplov, Suppose P = £ V B where A,B are compositional
sequences. By restricting the verification phase on A and‘B
to tﬁose elements in R'ts domain, the over-general
definitions on ‘this data base are weeded out without
disturbing the correct ones, With this technique
(selectable by meéns of an internal switch in the system) we

obtain the following results:
Summary of Pesults (1)

Bishop = XU ¥V PU V NR V PD

(i.e., up and down positive and negative diagonals)

Pook = EE ¥V WW Vv §§8 VvV NM
(easterly or westerlyv or southerly or northerly)

King = ,JS V JN V JE V JW V
JS/JE ¥V JS/dW V JN/JE V JN/JW

Knight = JW/JN/JN V JE/JN/JN 'V
JE/JE/JN V. JW/JW/JIN ¥V
JWw/Jw/ds v JW/Js/Js v
JE/JS/JSs V. JE/JE/JS

Queen = Bishop or Rook

Pawn = J& V JN




(1)
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lFoctnotes

These results were obtained by using the
complete extensions of JE, JW, JN and JS and
restricting all the relations (i.e., NU, PU,
ND, FDH, WW, LE, S8, WW) and the chess moves to
a sub-domain consisting of four squares on the
board. LFven with a sub-domain this small the
available memory was so limited that adding
eight Pawn moves caused the system to exceed
memory capacity. Conseaouently, the first four
chess pieces were run without the Pawn moves

heing stored.




APPENDIX 3

Mnemonics of American Kinship Terms

PH
PT
PN

oM
OF
ON

SM
33
SN

MM
MP
MN

GM
GF
GN

D¥
DF
DN

UM
UFr

N
NF

164¢)
3

LM
LF

EM
EF

XM
XF

Father
Mother
Parent

Son
Daughter
Offspring

Brother
Sister
Sibling

Husband
Wife
Spouse

Grandfather
Grandmother
Grandparent

Grandson
Granddaughter
Grandchild

Uncle
Aunt

Nephew
Niece

Cousin
Cousin

Brother-in-Law
Sister-in-Law

Son-in-Law
Daughter~in-Law

Father-in-Law
Mother-in-Law
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Traditional Definitions

of

American Kinshin Terms

Parent
Offspring
Sibling
Spouse
Grandfather
Grandmother
Grandparent
Grandson
Granddaughter
Grandchild

Unecle
Aunt

Nephew
Niece

Cousin

Brother-in-Law

Sister~in-Law

Son-in-Law

Paughter-in-Law

ihonomn

i n i

1E o 1 0

1l

Father V Mother
Son V Daughter
Brother V Sister

Husband V Wife

" Father/Parent

Mother/Parent
Parent/Parent

Son/0ffspring
Daughter/0Offspring
Offspring/Offspring

Brother/Parent
Sister/Parent

Son/Sibling
Daughter/Sibling

Of fspring/Sibling/Parent

Brother/(Husband V Wife) V
Husband/Sister V :

'Husband/Sister/Wife v

Husband/Sister/Husband

Sister/(Husband or Wife) V
Husband/Sister V
Husband/Sister/Wife V
Husband/Sister/Husband

Husband/Daughter
Wife/Son




Father-in-Law = Father/Spouse
Mother-in-Law Mother/Spouse
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Extensional Definitions
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CH
cH
CN
CH
CN
CN
CN
cN
CN
XM
XM
XM
XM
XM
XH
XM
XM
XF
XT
XF
XT
XF
XT
XT
Py
PN
PN
PH
PN
PN
PN
PN
PN
PH
PN
PN
PH
PN
PN
PN
PN
PN
PN
Pl
PH
. PN
P
PH

L T | L (O | I T T TR TH t R VR | | L L O L T | O | T I T T T TR R TR TR || L L S T T O VT T T N P TN T B N ¢

38339:50
63153186
32;33
32333
624
32333
38:;398:50
6324
15;163524
37
310312
35334

17

11

30
53355352
1435

11

17 .
310312
35334
53355352
1445
30337
15316

24

1543186
32333

24

3sh
32;33
38339:50
54

6

12;20
18319

6

5;9;11
54

12;20
18319
31;36
539511
334
31336
38;39;50
54
3833950
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P
PM
PM
PM
P M
PM
PH
PM
PM
PI
PF

- PF

PF
PF
PF
Pr
PF
L
PF
PF
GHN
GH
GN
GN
GN
GN
GH
GN
GN
GH
GN
GN
GHM
GM
GM
GM
GM
GY
GF
GF
GF
GF
GT
GF
ON
ON
ON
OH

(21)
(20)
(15)
(24)
(19)

It
L L L L | e e T T O PO T T L I | O O [ O I T [ I R 1 LU T A A | SO T T N O T AT (R PR { B

32,33
31;36
123520

24

183189
15316
539311

6

3b

334

31;36
18319

6

32333
559311
12320
38339350
24

5y

153186
18319

54
63153164524
6

24

18319

6
3233333833950
3233333833950
2y

54
6315516424
6

24

18319
6315516324
54
32433:;38339350
18519
32333338339;550
B

54
6315316324
24

21422

9410

11312

15317
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ON (5) = 7;8 ' ur (14) =6

ON (50) = 36337 UF (30) = 383;39:50
O (&) = 132 ur (11) = 6315316
ON (39) = 36337 : UF (55) = 5u

ON (33) = 30331 UF (53) = 54

ON (38) = 40341 UF (37) = 3233

on (12) = 21322 ur (9) = B32H4

ON (11) = 7;:8 ur (20) = 2u

ON (186) = 9310 NM (28) = 53932031034
ON (18) = 15317 MM (38) = 3130

on (9) = 78 NM (39) = 31;30

ON (3) = 132 NM (33) = 36337

ON (54) = 50352 . NM (18) = 16

oM (6) = 435 HM (15) = 531134312
ON (38) = 36337 NM (19) = 16

ON (32) = 30331 NF (32) = 36337

ON (31) = uoj;u1 NF (6) = 33;9311;14310312
oM (33) = 30331 HF (16) = 5;1134312
oM (39) = 36337 NF (54) = 383;393533;55
oM (12) = 21322 HF (50) = 31330

oM (15) = 8310 EM (12) = 738

OM (18) = 15317 EM (52) = 36337

oM (5) = 738 EM (10) = 738

oM (3) = 132 EM (5) = 132

OM (31) = 4041 EF (55) = 36337

oM (38) = 36337 . EF (1u4) = 142

OM (19) = 15317 EF (11) = 21322

‘OM (24) = 11312 EF (17) = 9310

OM (36) = 4O341 EF (u) = 7:8

OF (9) = 738 EF (53) = 36337

OF (50) = 36337 . EF (30) = u0;u1

OF (32) = 30;31 EF (37) = uogjui

OF (5) = 435 EF (34) = 30;31

OF (54) = 50;52 MH (1) = 2

OF (16) = 9310 MN (35) = 32

OF (20) = 21322 MN (39) = 55

OF (11) = 78 My (30) = 31

OF (4) = 132 , ' MH (12) = 11

UM (39) = 54 MN (5) = 4

UM (12) = 6315316 MN (10) = 9

UM (31) = 38339350 ' MN (22) = 21

UM (5) = 15;16324 uN (2) = 1

UM (3) = 6 MN (8) = 7

UM (38) = 51 MN (33) = 3y

UM (10) = 6324 MN (40) = 41

UM (36) = 32333 MN (4) = 5

UE (4) = 15316324 ‘MN (55) = 39

UF (16) = 18319 MN (11) = 12




Hu
N
MN
MH
MN
MN
MU
MN
MN
MH
MN
MH
MN
MN
MK
YN
MN
MY
MM
MM
MY
MH
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MH
MF
MF
MF
MF
MF
MFP
MF
MF
MF
MF
MF
MF
MF
MF
MT

(1)

(7)

(3)

(17)
(14)
(38)
(52)
(32)
(15)
(3)

(21)
(53)
(50)
(3u)
(37)
(36)
(31)
(5)

(35)
(52)
(31)
(u1)
(22)
(39)
(15)
(8)

(10)
(3)

(33)
(2)

(38)
(36)
(12)
(32)
(55)
(9)

(50)
(14}
(34)
(21)
()

(30)
(53)
(17)
(40)
(1)

(11)
(37)
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40

10

i5

53
50
35
17
14
22
38
52
33
36
37
30

32

50
30
40
21
55
17

14
34

53
37
11
35
39
10
52

33
22

31
38
15
b1

12
36
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MF

. SH

SH
sH
SH
SN
SN
SN
SN
SN
SH
SH
SN
SN
SH
SN
SN
SN
SH
SM
SH
SM
SM
SM
sM
SM
SM
SH
sH
SM
SF
SF
SF
SF
ST
sFP
S5F
LM
LY
LM
LH
LY
LM
LM
LH
LM
LM
LM

(7)

(%)

(38)
(12)
(4)

(32)
(18)
(31)
(186)
(121)
(50)
(9)

(20)
(39)
{(3)

(33)
(1¢9)
(36)
(15)
(12)
(38)
(18)
(5)

(36)
(15)
(33)
(39)
(31)
(3)

(19)
(50)
(20)
(w)

(32)
(11)
(16)
(9)

(5)

(36)
(10)
(12)
(33)
(3)

(38)
(39)
(35)
(31}
(52)

LU L L | [ T T | I £ N T I £ SO C O S TR TR O [ R L | R 1] I T T [ T T | T S | N B S R S (N TS TR TR T H a1 B n

8
9311
39350
20

3

33

19

36

15
539
38:39
5311
12
38350
4

32

18

31

16

20
39350
19
9511
31

16

32
38450
36

4

18
38339
12

3

a3
539
15
5311
10351233314
30
531131234
5393;1034
35

5
55352
53352
34333
37
38339353355
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39;504555352

LF (53) =
LT (17) = 16 _

LF (55) = 38350353352

LF (50) = 53355

LF (11) = 43;10:20

LF (16) = 17

LF (30) = 36337
LE (4) = 1439311310512

LF (14) = u35

LF (20) = 11

LF (34) = 32335

LF (9) = H312

LF (37) = 30:31 ’
LF (32) = 3y )
DN (15) = 7:8

DN (50) = uosu1

DN (54) = 36337

DN (19) = 9310

DN (39) = 40341

DN (16) = 78 .

DN (6) = 1323738

DN (32) = hOj;41

DN (24) = 738321322

DN (18) = 9310

DN (33) = 40341

DN (38) = 40341

DF (16) = 738

DF (54) = 36337

DF (50) = 40341

DF (6) = 1;2;7;8

DF (32) = 40341




APPENDIX 6

An Example of Some of the Functions in ECYCf
As Applied to the Graph in Chapter Six
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hab

NIL

. v L)
Load 3mpﬁ-€rm Aiste Tl S NETWERK Tl
omseZel evbaion - o be caffed
$(RUILDPRED NET WETWRX)  ojyeye  C 1 CREse A

NODES WITH ZERO PREDECESSORS ARE: NIL
NODES WITH ZERO SUCCESSORS ARE: NIL

e print Al "NET” émtuLL Lutzims 5K
* (PRINTPRED NET) e predecesson of oact neda
PREDECESSOR GRAPH IS: : aE

Rl :  (R2 R3 R&)
R2 t (R4 RS) :
RA 1 (R2 R3) : . , , o
“R6 1 (R1 RZ RA) -
R3 1 (RI RZ R6)
RS ¢t (Rl R4} ‘F
NIL p———— - CET " shineti o Feams &
* CPRINTSUC NET) ftfiif;;iﬂ-;%eacff;f:
SUCCESSOR GRAPH 1Ss :
RS :  (R2)
R3 : (R4 RD) - ,
R6 t  (R3 RID : _ -
R4 ¢ (RS R6 R2) : : o
R2 1 (R3 R6 R4 RI)
R1 t (RS R3 R6) 4 ofolom ihes
+(ORDER (ECYCLE NETH "% aldia cadu).
CCRS 15) (R6 17) (R1 21 (R4 21) (R3 22) (RZ 23))
_*(MAPC (FUNCTIQN PRINT) (LECYCLE NET)) = -
: 2 ) ot -
(RS RZ R3 RA) . Kiet -s-f&'m““ET'{':“j

(RS R2 K3 R4 RS RI} QYJAsAm
- (R5 R2 R3 RI) :

(RS R2 R6 R3 R4)
(R5 R2 RG R3 RI)
(RS R2 RS RI}

(RS R2 RG6 Rl R3 R4}

. (R5 R2 R4)

(R5 HZ R4 RS R3 RI1) :
(RS R2 R4 RS RI) N

(RS R2 R1)
(R5 R2 Rl R} R4)

(R> R2 R! R& R3 R4)

"(R3 RA RG)

(R3> R4 RG RI)
(R> R4 R2)
(R3 RAR2 Ré)
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R3 R4 RZ R RI).
(R3 R4 RZ RI) . .
(R3 R4 R2 Rl RS)

(R3 R1)

(R3 Rl R&) . :
(R& RI) : J 0% T 3 S S ,_.a,,..!
(R4 R2) S ,Ewsf{ 2. *f

NIL "

+{SETY C2 (LECYCLEL NET 2))

e of elortuty cols
CCR3 RIY (RG RID (R4 R2)) Fard He o ”{ urtatg coles
« CINVERT C20 LMJH\ "lonL .‘.Lsf "‘7“0‘5

CCR2 1) (R4 1) (R ) (Ri 2) (R3 1))

*{BLOCK @CR1Y NET)

“Te black woda,
NIL RL - “HET
* (CYCLIXNX\CtU

CCYCLIC NET) -g\'rm .J;h‘h blocked '

L Thuen”
- o c?.,hsf
*C(INVERT (DELETE (R1) C2)) ‘_’maﬂdﬁ?%

C(RZ 1) (Ra 1))

%(BLOCK ®(R2) NET) ey
At4his avd' b

NIL*" %2 s

*({CYCLIC HET) u«.\zﬂakuvtc.?l-
T e

*(UNBLOCK @(R2) NED

News bloxk node RH i
NIL r s :

«(BLOCK ®(R4) mfn

NIL bé:ﬁr:a‘.mr&rzsa

*(CYCLIC r.lE.'T) L YR g

NIL Pust Ha Fucrasses He
*(PRINTSUC NET)#* M&M&haaxﬁki

SUCCESSDR GRAPH IS:

RS ¢ . (R2)
R3 t (R4 RI)

RE : (R RI} gy [

R4t gy e blecked

R2 §  (R3 R6 R4 RI) LeeRL ¢ RA

RI ""Q"é ) """“Mji

ML= ptrlced :
::IL ’ NERxmaﬂ-}h%M-juf
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