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Genetic and Proteomic Evidence for Roles of Drosophila
SUMO in Cell Cycle Control, Ras Signaling, and Early
Pattern Formation
Minghua Nie1, Yongming Xie1, Joseph A. Loo1,2, Albert J. Courey1*

1 Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America, 2 Department of Biological Chemistry,

David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America

Abstract

SUMO is a protein modifier that is vital for multicellular development. Here we present the first system-wide analysis,
combining multiple approaches, to correlate the sumoylated proteome (SUMO-ome) in a multicellular organism with the
developmental roles of SUMO. Using mass-spectrometry-based protein identification, we found over 140 largely novel
SUMO conjugates in the early Drosophila embryo. Enriched functional groups include proteins involved in Ras signaling, cell
cycle, and pattern formation. In support of the functional significance of these findings, sumo germline clone embryos
exhibited phenotypes indicative of defects in these same three processes. Our cell culture and immunolocalization studies
further substantiate roles for SUMO in Ras signaling and cell cycle regulation. For example, we found that SUMO is required
for efficient Ras-mediated MAP kinase activation upstream or at the level of Ras activation. We further found that SUMO is
dynamically localized during mitosis to the condensed chromosomes, and later also to the midbody. Polo kinase, a SUMO
substrate found in our screen, partially colocalizes with SUMO at both sites. These studies show that SUMO coordinates
multiple regulatory processes during oogenesis and early embryogenesis. In addition, our database of sumoylated proteins
provides a valuable resource for those studying the roles of SUMO in development.
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Introduction

Post-translational protein modification adds layers of complexity

to macromolecular function. One way of modifying proteins is by

joining the ubiquitin family proteins to lysine residues, generating

branched proteins [1]. One such ubiquitin-like protein, SUMO

(small ubiquitin-related modifier), displays remarkable versatility in

modulating target protein function. Many proteins are targeted for

covalent modification by SUMO, which consequently modulates

many cellular processes [2–4].

Genetic analysis has revealed essential roles for SUMO in the

survival and development of organisms ranging in complexity from

yeast to mammals [2–4]. In S. cerevisiae, mutations in genes encoding

SUMO pathway enzymes are lethal [5–7], while mutations in the

corresponding genes in S. pombe severely impair growth [8–10].

Deletion of genes encoding enzymes required for SUMO

conjugation in C. elegans leads to embryonic lethality [11], while

reduction of the SUMO conjugating enzyme levels in Drosophila,

zebrafish, and mouse results in developmental defects [12–14].

The Drosophila melanogaster genome encodes a single form of

SUMO (herein referred to as Drosophila SUMO, but also known as

Drosophila Smt3), which shares 52% and 73% sequence identity

with human SUMO-1 and SUMO-2, respectively [15]. Drosophila

and human SUMO family proteins are at least partially

interchangeable, demonstrating a high level of SUMO pathway

conservation between evolutionarily distant organisms [16]. To

date, only a few Drosophila proteins, such as the transcription

factors Dorsal [17,18], Tramtrack [16], Vestigial [19], SoxNeuro

[20], and Medea [21]; the gypsy insulator interacting proteins

Mod(mdg4) and CP190 [22]; as well as the bi-functional tRNA

charging enzyme glutamylprolyl-tRNA synthetase (EPRS, [23])

are known to be sumoylated. SUMO appears to have diverse roles

in the Drosophila life cycle, including the regulation of transcription

and the modulation of the immune response [18,20].

While SUMO is present throughout development, early Drosophila

embryos contain particularly high concentrations of maternally

contributed SUMO and the enzymes required for SUMO

conjugation [16,24,25], suggesting that sumoylation may play

particularly critical roles at this stage of fly development. Previous

global analyses of SUMO substrates in S. cerevisiae and mammalian

cultured cells have produced extensive lists of novel sumoylation

targets [26–35]. To date, however, there are no published studies that

document the spectrum of sumoylated proteins in a specific

developmental setting in a multicellular organism.

To broaden our understanding of the function of sumoylation in

early Drosophila development, we performed a mass spectrometry-

based global identification of sumoylation targets in early embryos,

and found over 140 direct sumoylation targets. Among the

identified SUMO target proteins are players in many processes

essential to embryonic development, including proteins involved in
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Ras signaling, cell cycle control, and embryonic patterning. To

determine the functional significance of the identified sumoylated

proteins, we carried out genetic, cell culture and immunolocali-

zation studies, obtaining evidence for roles of SUMO in these

same three processes. Thus, the proteomic, genetic, and cellular

studies presented here all converge to suggest that SUMO

coordinates key aspects of early metazoan development.

Results

Isolation, identification, and categorization of early
embryonic SUMO conjugates

To determine the early embryonic SUMO-ome (catalog of

sumoylated proteins), we adopted a scheme that involved a two-

step affinity purification strategy using SUMO tagged at its N-

terminus with both (His)6 and FLAG tags, followed by liquid

chromatography-tandem mass spectrometry (LC-MS/MS)-based

protein identification of trypsin-digested proteins (Figure 1A). We

initially attempted to express tagged SUMO using modified sumo

genomic clones, but were unsuccessful presumably due to the need

for unknown distant cis-regulatory modules to direct sumo

expression. We therefore turned to the Gal4-UAS system [36],

and drove ubiquitous maternal expression of tagged SUMO at

levels slightly lower than that of endogenous SUMO (Figure S1).

Tagged SUMO rescues the lethality resulting from sumo mutations

(data not shown) demonstrating the functionality of the tagged

protein.

In other organisms and cultured cells, heat shock is known to

enhance global sumoylation [34,37]. We observed a similar

phenomenon in early embryos (Figure S1). Since the SUMO

conjugates were in low abundance even when very large amount

of starting materials (five grams of fly embryos) were used, we

promoted SUMO conjugation with heat treatment at 37uC. As a

control, wild-type Oregon-R (Ore-R) embryos lacking tagged

SUMO were collected and processed under identical conditions.

While the use of heat shock could raise a concern about the

possibility of skewing the protein pool, our pilot study in which

proteins were isolated from heat-shocked and non-heat-shocked

samples revealed similar SDS-PAGE profiles (Figure S2). Further-

more, analysis by LC-MS/MS revealed a largely overlapping set

of proteins from heat-shocked and non-heat-shocked embryos

(supporting document S1 and Table S3). The observed differences

were largely quantitative rather than qualitative (Table S3)–more

peptides were identified from the majority of the proteins in the

heat-shocked than in the non-heat-shocked samples, leading to

higher confidence protein identification. Moreover, the consisten-

cy between our phenotypic analysis (see below) and our proteomic

data further increases our confidence in the biological relevance of

our SUMO-ome.

In the first step of the two-step affinity purification, the (His)6 tag

was bound to nickel-coupled agarose under strongly denaturing

conditions (containing 1% CHAPS, 8 M urea) in order to

solubilize proteins from all cellular compartments, suppress

SUMO isopeptidases, and ensure that the purified proteins are

directly conjugated to SUMO. To achieve a higher degree of

purification, second affinity chromatography step employing anti-

FLAG antibodies was carried out. Sypro Ruby staining of a gel

with proteins purified from embryos containing dual-tagged

SUMO and from negative control embryos, demonstrated very

few proteins in the control sample (Figure 1A). The SDS-PAGE

gel lanes containing the control and experimental samples were

each cut into 20 equal-size slices (Figure 1A), followed by in-gel

tryptic digestion and subsequent analysis by LC-MS/MS.

LC-MS/MS data were analyzed using Mascot (Matrix Science)

to search the database of known Drosophila protein sequences. For

proteins represented by four or fewer peptides, we manually

inspected the mass spectra to confirm the protein identifications.

SUMO tryptic peptides were detected in every gel slice from the

sample prepared from embryos expressing tagged-SUMO, and in

none of the gel slices from the sample prepared from control Ore-

R embryos. A total of 144 proteins (corresponding to 142 genes)

were uniquely found in the sample from embryos expressing

tagged-SUMO (Table S1). In addition to a large number of novel

sumoylation substrates identified, this list includes nearly all

previously validated Drosophila SUMO conjugates that are present

at this developmental stage (e.g., Dorsal, Mod(mdg4), CaMKII,

EPRS), as well as proteins that are orthologous to well-

characterized SUMO substrates found in other organisms (e.g.,

PCNA, CtBP, Topoisomerase I and II), thus adding to our

confidence in the authenticity of our SUMO-omic database.

In a separate study, tagged SUMO conjugates were isolated under

native conditions in a single-step anti-FLAG immunopurification,

and over 300 gene products were identified (Table S2). This set

includes a large fraction of the proteins (,60%) identified in the two-

step purification procedure (marked by ‘‘*’’ in Table S1). The native

purification also appears to have isolated a number of proteins that

interact with the SUMO conjugates identified in the two-step

purification carried out under denaturing conditions, as well as

proteins that were later demonstrated to be authentic SUMO

conjugation targets by independent validation methods (see below).

We used a SUMO conjugation site prediction algorithm,

SUMOsp [38], to analyze the proteins identified in the one- and

two-step purifications (Table 1). While the proteins in the entire

Drosophila proteome contain an average of 0.76 consensus SUMO

conjugation sites per protein, the proteins from the two-step

purification average 1.46 consensus sites per protein, and the

proteins from the one-step purification average 1.06 consensus sites

per protein. These differences are highly statistically significant

(Table 1). The lower number of sites in the proteins from the one-

step purification relative to the two-step purification further

supports the idea that the one-step purification yielded a mixture

of direct SUMO conjugation targets and their interacting partners.

We used the Generic Gene Ontology (GO) Term finder tool

(http://go.princeton.edu/cgi-bin/GOTermMapper) to search for

overrepresented GO categories in the SUMO substrate list when

compared to the entire fly proteome. Using the hypergeometric

distribution analysis, we calculated the probability that the

proportion of SUMO substrates mapped to a given category

could occur by random chance, given the fraction of all fly

proteins that map to that category (Table S4, S5). This analysis

helped us to distinguish several enriched functional groups of

SUMO conjugates (Table 2). We also analyzed the enrichment of

biological process GO terms in our SUMO proteome when

compared to the early Drosophila embryonic proteome (2 hr AEL

embryo [39,40]) (Table S6). Many of the same categories that are

enriched in comparison to the entire Drosophila proteome are also

significantly enriched in comparison to the early embryonic

proteome.

Inspection of the list of sumoylated proteins also suggests that

protein complexes, such as the oskar mRNP, multi-aminoacyl-tRNA

synthetase complex, a PCNA-containing protein complex, and the

ribosome, often contain multiple sumoylated proteins (Table 3).

Validation of SUMO conjugates found through global MS
analysis

Using a bacterial sumoylation assay we validated a number of

the proteins in the enriched groups as SUMO conjugation targets

SUMO in Drosophila Development
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(Figure 1B). For this assay, we generated E. coli expressing the four

Drosophila polypeptides essential for SUMO conjugation (SAE1,

SAE2, Ubc9, and SUMO) as well as a GST-tagged candidate

SUMO substrate. The detection of SUMO conjugates in this

system is facilitated by the lack of an absolute requirement for E3-

type ligases in sumoylation [41,42] as well as by the absence of

SUMO deconjugating enzymes in bacteria. While bacterial

sumoylation systems may not completely recapitulate the specific-

ity of sumoylation in vivo, they have been repeatedly validated as a

useful approach for confirming sumoylation targets [43–46].

Our bacterial sumoylation system includes several improve-

ments over the existing bacterial systems. We use a single vector

(QSUMO) to encode all four polypeptides required for sumoylation,

thereby reducing variation in expression levels. In addition, we

Figure 1. A fly SUMO-ome: characterization and validation. A) Scheme for identifying Drosophila embryonic SUMO conjugates. SUMO
conjugates were isolated by tandem affinity purification from transgenic fly embryos expressing (His)6-FLAG-SUMO. The initial purification step (Ni-
NTA chromatography) was performed under denaturing conditions. To maximize the chance of detecting low abundance proteins in the complex
protein mixture, the affinity-purified proteins were separated by SDS-PAGE, and the lane was cut into 20 evenly divided gel slices. Tryptic peptides
extracted from each gel slice were analyzed by LC-MS/MS. B) A bacterial sumoylation assay. The QSUMO vector, which encodes the mature form of
SUMO (SUMOGG) along with SAE1, SAE2, and Ubc9 expressed from separate T7/lac promoters, was used in combination with a vector expressing a
GST-tagged candidate substrate. As a negative control, QDGG, which expresses a conjugation defective form of SUMO (SUMODGG), was used in place
of QSUMO. C) Bacterial sumoylation assays were used to validate proteins identified in the proteomic screen as sumoylation substrates. GST-tagged
candidate SUMO conjugates were expressed in BL21 cells co-transformed with QSUMO or QDGG vectors, purified using glutathione beads, and
immunoblotted using antibodies against GST, SUMO, or poly-His (to detect 6xHis-tagged SUMO). GST by itself was not sumoylated in this assay. Black
arrows point to the bands representing sumoylated proteins, and open arrow points to a non-specific reacting band. D) The eIF4E protein was
purified from Drosophila S2 cells stably expressing FLAG-(His)6- tagged eIF4E using Ni-NTA beads under denaturing conditions. The resulting proteins
were probed with anti-FLAG antibody in a Western blot. The cells were treated with SUMO or control YFP dsRNA for 3 days prior to cell lysis. In the
control sample, the bands representing the sumoylated species (black arrows) have intensities that are 8.1% (top) and 12.9% (bottom) of the intensity
of the band representing unmodified eIF4E (,40 kDa), whereas in the SUMO knockdown sample, they are reduced to 1.8% (top) and 3.5% (bottom).
Quantitation was performed using Quantity One 4.3.0 (BioRad).
doi:10.1371/journal.pone.0005905.g001

SUMO in Drosophila Development
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Table 1. Predicted SUMO consensus sites.

Dataset Number of Proteins Number of Sites* Sites per Protein Site per aa (61000) p-value#

Two-step purification 144 210 1.46 2.17 1.48e-06

One-step purification 247 262 1.06 2.03 2.82e-04

Drosophila proteome 32182 24886 0.77 1.58 -

*Proteins from the two-step or one-step purification protocols, or total Drosophila melanogaster proteins (as annotated in the UniProtKB database) were analyzed using
the SUMOsp program to yield the total number of SUMO conjugation sites that match the canonical yKxE/D consensus motif for each dataset.

#p-values were calculated using the hypergeometric distribution to compare the number of predicted sites per amino acid in the databases of purified proteins to the
number of sites per amino acid in the Drosophila proteome.

doi:10.1371/journal.pone.0005905.t001

Table 2. Enriched functional groups of sumoylation substrates.

Cell Cycle Process

Asp, Awd*, Cup*, Young arrest, Hsp83*, Polo*{, Pumillio, Topoisomerase 2*, Valois, Pp1-87B*, Cdc2c*, PP2A catalytic subunit (Microtubule star)*{, aTub67C*, 14-3-3 f*,
PCNA*{, RFC2*{, Twinstar*, Pitslre, Rpn2*, Klp10A*, Brat, (RFC1)#

Embryonic Pattern Formation

Bicoid, Caudal, Dorsal, Hunchback, Hsp83*, Osa, Pumillio, Retained

Maternal mRNA Regulation

Pumilio, Cup*, Brat, Smaug, Bicoid, Tsunagi, Mago Nashi*, Hrb27C*, NACa, Hel25E*, Valois, Me31b*, (Vasa, eIF4E{, Squid{)#

Ras1 signaling pathway

PP2A 65kD subunit A*, PP2A catalytic subunit (Microtubule Star)*{, 14-3-3 e*, 14-3-3 f*{, Hsp83*, (PP2A regulatory subunit Twins, Ras1{, ERK-A, Phyllopod)#

Epigenetic regulation

Osa, Pho, Su(Var)3-7*, Mod(mdg4), H2Av*, Nlp*, Caf1*, CtBP*, (H2B, Rpd3, Groucho, Mi-2, HP1)#

Nucleocytoplasmic transport

Exportin-1*, Importin-a re-exporter*, Importin b*, Importin-a*

*These proteins were identified through both the two-step purification and the single-step purification.
#Proteins in parenthesis were identified through the one-step purification only, and therefore may not be direct sumoylation targets. All other proteins were identified

through the two-step purification or through both the two-step purification and the single-step FLAG IP.
{These proteins were validated through the bacterial sumoylation assay as SUMO substrates are underlined. A subset of these assays is shown in Figure 1.
doi:10.1371/journal.pone.0005905.t002

Table 3. Protein complexes that include multiple sumoylation substrates.

osk mRNP

Mago Nashi*, Tsunagi, Cup*, Me31b*, Hrb27C*, NACa, Smaug, Hel25E*, Valois, (eIF4E, squid, Vasa)#

PCNA

PCNA*, RFC2*, Caf1*, (DNApol-d, DNApol- d small subunit, RFC1)#

tRNA Multi-Synthetase Complex (MSC)

EPRS*, QRS*, RRS*, (p38)#

Protein Phosphatase 2A (PP2A)

65kD subunit A*, catalytic subunit Microtubule Star*, (regulatory subunit Twins)#

26S Proteasome

regulatory subunits: Dox-A2*, Rpn2*, Rpn7*, (Rpn11)#

Ribosome Complexes

RpS4*, RpL8*, RpS10b, RpL27A*, RpS7*, RpS3A*, RpS16*, RpS19*, RpL13*, RpL9*, RpS3*, RpL10Ab*, (RpS26, RpS6, RpS10a, RpL28, RpS13, RpL13A, RpS14a, RpS20, RpL15,
RpL31, RpS15Aa, RpL7A, RpS9, RpL23, RpS17, RpL7, RpL4, RpL14, RpL18A, RpS25, RpL22, RpLP0, RpL36, RpL11, RpS8, RpL32, RpS23, RpS18, RpS5a)#

*These proteins were identified through both two-step and one-step purification procedures.
#Proteins in parenthesis were found through the one-step purification only, and therefore may not be direct sumoylation targets.
doi:10.1371/journal.pone.0005905.t003
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incorporated a loxP site into a GST fusion protein expression

vector to enable high-throughput cloning of cDNAs encoding

potential sumoylation targets. To provide a control for specificity,

we generated a control vector, QDGG, which encodes a

conjugation defective form of SUMO lacking the C-terminal di-

glycine motif required for SUMO conjugation [6,23].

Using this system we confirmed sumoylation of PCNA, the

processivity factor for DNA polymerase d, and RFC2 (Figure 1C),

a subunit of the factor that loads PCNA onto DNA. We also

verified sumoylation of 14-3-3 f (Figure 1C), which belongs to a

family of small proteins that interact with a multitude of

functionally diverse signaling proteins by binding to phosphory-

lated serine or threonine residues [47]. Drosophila 14-3-3 f has been

shown to function both in the Ras/MAPK pathway and in

regulation of the nuclear cleavage cycles in the syncytial embryo

[48]. Using the same assay system, we also confirmed that EPRS,

CtBP, eIF4E (Figure 1C), Squid (Figure S4B), and several other

proteins found in our MS identification (proteins underlined in

Table 2) are sumoylation substrates. We also showed that eIF4E is

sumoylated in S2 cell culture, further confirming it as a genuine

SUMO substrate (Figure 1D).

This bacterial sumoylation system does not non-specifically

sumoylate any substrate as shown by the negative controls. In

addition to GST, we also did not detect sumoylation of GFP or

HP1 (Figure S4A). This latter protein was identified in the single-

step native purification, but not through the two-step protocol that

involved initial denaturation of the extract. This suggests that HP1

interacts with sumoylated proteins, but is not itself a sumoylation

substrate. In addition, using this assay, we have been able to map

specific sumoylation sites in a number of proteins including EPRS,

Grauzone, Meics (data not shown), and Ras1 (see below).

Maternally contributed SUMO is required for embryonic
development

Among the enriched functional groups from the proteomic

screen (Table 2) are groups of proteins with functions in embryonic

pattern formation, including transcription factors, such as Dorsal,

Bicoid, and Hunchback, that guide the dorsoventral or antero-

posterior patterning of the embryo, as well as proteins involved in

the localization and translational regulation of important maternal

transcripts. We also found significant enrichment of proteins

involved in cell cycle regulation and the Ras signaling pathway. To

determine if these enriched functional groups reflect the roles of

SUMO in Drosophila embryonic development, we carried out

genetic and phenotypic analysis of flies carrying hypomorphic sumo

alleles.

Two independent P-insertions sumo alleles, termed sumo04493 and

sumok01211, were subjected to phenotypic analysis. The P-insertion

in both alleles is 20 bp upstream of the transcription start site,

creating recessive lethal mutations with a lethal period before or

during the early second larval instar. Evaluation of mRNA levels

by RT-PCR in homozygous mutant larvae shows that the

sumo04493 mutation leads to an approximately 5-fold decrease in

the level of sumo transcripts (Figure S3). Antibody staining of

mutant follicle cell clones (see below) also demonstrates a

significant reduction in SUMO levels in mutant tissue

(Figure 2A). sumo04493, sumok01211, and a sumo EMS allele

(generated by Shanti Chandrashekaran, New Delhi, and obtained

through Dr. Lawrence Marsh), which contains a serine-glycine

sequence in place of the normal C-terminal di-glycine motif

required for efficient conjugation of SUMO to its targets [6,23] fail

to complement one another.

To determine the function of maternally contributed SUMO,

we created females containing homozygous sumo mutant germline

clones (GLCs) using the hsFLP/FRT dominant female sterile

method [49]. The two P-insertion alleles of sumo exhibited

overlapping spectra of defects, with the average severity of the

defects being greater in the sumok01211 GLC embryos (Table 4).

Since the sumok01211 GLC embryo-producing females laid

relatively few mature eggs, most of the subsequent phenotypic

analysis was carried out using the sumo04493 GLC embryos.

Less than 30% of the sumo04493 GLC embryos hatched, and all

hatched larvae died during the first larval instar. Greater than

90% of the unhatched embryos died prior to cuticle formation.

The embryos that deposited cuticle exhibited a wide range of both

anteroposterior and dorsoventral patterning defects (Figure 2B).

These defects are not rescued by zygotic SUMO expression since

embryos produced by GLC females mated with wild-type males

had similar high rates of lethality and a comparable spectrum of

defects as those embryos produced by GLC females mated with

heterozygous males. Both the patterning defects in the sumo mutant

GLC embryos and the large number of SUMO targets from our

proteomic analysis with roles in embryonic pattern formation

support the conclusion that SUMO modulates the activities of key

pattern formation gene products to help direct embryonic

development.

SUMO plays roles in eggshell patterning and potentiates
Ras/MAPK signaling

Approximately ten percent (39 out of 400) of the sumo04493 GLC

eggs exhibited partially to fully fused dorsal appendages, indicative

of weak to moderate eggshell ventralization (Figure 2C). Drosophila

eggshell patterning is regulated by the epidermal growth factor

receptor (EGFR) signaling pathway. EGFR, a transmembrane

receptor tyrosine kinase (RTK), is found in the follicle cells where

it receives a spatially localized signal from the developing oocyte.

This signal activates the Ras signaling cascade, which patterns the

follicle cell epithelium, and is therefore essential for proper

patterning of the eggshell [50–52]. Both sumo04493 and sumok01211

have been shown to enhance the weakly ventralized eggshell

phenotypes of a hypomorphic Ras1 mutant [53]. Our observation

that the sumo mutation leads to eggshell ventralization even in a

wild-type Ras1 background further supports a role for SUMO in

EGFR/Ras signaling.

Previous epistasis studies showed that reduced SUMO levels

suppressed the eggshell dorsalization resulting from a constitutively

active form of EGFR, indicating that SUMO acts downstream of

EGFR in the follicle cells [53]. Since the process of generating

GLC also leads to production of somatic clones in the follicle cells

(Figure 2A), our findings are consistent with a role for SUMO

downstream of EGFR in eggshell patterning. Intriguingly, our

proteomic analysis also found multiple proteins involved in Ras

signaling downstream of EGFR activation as potential SUMO

targets (Table 2). Further evidence that SUMO functions

downstream of EGFR is provided by experiments described

below in which we examine the effect of SUMO knockdown on

Ras signaling in S2 cells.

To determine if SUMO plays a role in Ras signaling, we

knocked down SUMO by RNAi in cultured S2R+ cells, which

express Drosophila EGFR [54], and examined the level of MAPK

activation in these cells upon activation of EGFR by the secreted

Spitz ligand, sSpi [55]. Anti-SUMO immunoblotting showed that

the treatment with SUMO dsRNA progressively decreased the

levels of both free SUMO and SUMO conjugates after 3 to 5 days

of treatment (Figure 3A). The level of Ras pathway activation was

assessed by immunoblotting for pMAPK, and all samples were

normalized by comparison to total MAPK using an antibody that

recognizes all forms of MAPK. The levels of pMAPK decreased

SUMO in Drosophila Development

PLoS ONE | www.plosone.org 5 June 2009 | Volume 4 | Issue 6 | e5905



Figure 2. Roles for SUMO in embryonic and eggshell patterning. A) Follicle cell clones in the sumo04493 GLC egg chambers. Wild-type (Ore-R;
top) and sumo04493 GLC egg chambers (bottom) were stained with SUMO antibodies (green) and DAPI (blue). The field in the lower panels contains a
sumo04493/04493 clone resulting from FLP/FRT recombination (yellow arrows), heterozygous sumo04493/+ cells with a reduced level of SUMO (white
arrows), and a sumo+/+ twin spot containing a level of SUMO comparable to that observed in Ore-R follicle cells (red arrows). B) A variety of
anteroposterior (3 panels on the left) and dorsoventral (panel on the right) patterning defects were observed in sumo04493 mutant GLC embryos.
Among the embryos that formed cuticles, 59% (n = 171) exhibited abnormal cuticular morphology. Top panel shows a wild type cuticle. C) Examples
of ventralized eggshells of sumo04493 GLC embryos are shown in the three panels on the right. A wild type Ore-R embryo is shown in the leftmost
panel.
doi:10.1371/journal.pone.0005905.g002

SUMO in Drosophila Development
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with increasing duration of SUMO RNAi up to five days, and

parallel treatment of cells with control YFP dsRNA had no effect

on MAPK activation (Figure 3B). SUMO RNAi similarly

impaired insulin-induced MAPK phosphorylation (Figure 3C).

Insulin or sSpi-induced MEK activation was also reduced by

SUMO knockdown (Figure 3D, normalized using the total MEK

levels). To further dissect the role of SUMO in Ras signaling, we

examined the requirement for SUMO in pathway activation by

RasV12, a constitutively active form of Ras1. SUMO knockdown

did not affect RasV12-induced MAPK activation (Figure 3E). This

suggests that SUMO knock down does not impair the processes

downstream of Ras1 activation, so SUMO pathway affects a step

upstream of Ras1 or at the level of Ras1 to activate the pathway.

Ras1 was identified in the single-step native FLAG IP of

sumoylated proteins (Table 2, Table S2), but not in the two-step

denaturing purification protocol. However, the bacterial sumoyla-

tion assay suggests that it is nonetheless a direct sumoylation

target. Sumoylated GST-Ras1 species were detected when the

functional sumoylation pathway (QSUMO) was co-expressed with

GST-Ras1 in E. coli (Figure 3F), and absent when conjugation

defective SUMODGG (QDGG) was employed instead (data not

shown). There is no consensus SUMO acceptor site found in the

Ras1 peptide sequence. The highest probability non-consensus

site, predicted by both SUMOsp2.0 [38] and SUMOplotTM, is lysine

104. Mutation of lysine 104 to arginine, did not dramatically

compromise Ras1 sumoylation (Figure 3F), suggesting that Ras1

contains multiple non-consensus sumoylation sites. Functional

sumoylation on non-consensus sites, however, has been widely

observed. For example, the yeast core histones contain multiple

mass-spectrometry validated non-consensus sites that can not be

identified by any of the existing SUMO prediction programs

[56,57]. Furthermore, 26% of experimentally validated SUMO

conjugation sites are non-consensus [58]. We found that deletion

of the C-terminal 25 amino acids of Ras1 or mutations of all

lysines in this region abolished Ras sumoylation (Figure 3G),

whereas the C-terminal Ras1165–189 peptide was sumoylated to

yield a pattern of bands in SDS-PAGE similar to that observed for

wild type Ras1 (Figure 3G), indicating that the hypervariable C-

terminal region of Ras1 contains the sites of SUMO modification.

SUMO is required for the syncytial mitotic cycles
The SUMO pathway has been shown to be required for cell

cycle progression in other organisms [59]. Consistent with this, our

proteomic analysis found proteins involved in cell cycle regulation

to be significantly over-represented among SUMO conjugates in

the early Drosophila embryo (Table 2, Table S6), and moreover our

findings significantly expands the list of know sumoylated cell cycle

regulators. To determine if the lethality caused by a reduced

maternal supply of SUMO is due to cycling defects, 0- to 3-hour

wild-type and sumo04493 GLC embryos were stained with DAPI to

visualize DNA. During the initial stage of Drosophila embryogen-

esis, 13 nuclear cleavage cycles occur rapidly and synchronously in

a syncytium (Figure 4A). We observed that over 50% of the

sumo04493 GLC embryos exhibited a broad spectrum of nuclear

cycle defects, including irregular size and distribution of nuclei,

asynchronous nuclear division, abnormal interphase chromosome

structure, overly condensed chromosomes, loss of sister chromatid

cohesion during metaphase, polyploidy, chromosome clustering,

fragmentation, and chromosome bridges (Figure 4B–E). Multiple

nuclear division defects were often observed in a single embryo

(Figure 4B). We also observed similar, although somewhat less

penetrant, nuclear cleavage cycle defects in embryos resulting from

GLC of a ubc9 (the SUMO conjugating enzyme) hypomorphic

allele [12], semi118 (Figure 4F). The diverse cycling defects observed

in the sumo and ubc9 GLC embryos indicate broad involvement of

SUMO in multiple stages of the nuclear cycle, and are consistent

with our proteomic analysis showing a significant enrichment in

SUMO targets with cell cycle functions.

The mitotic cycle defects in sumo mutant GLC embryos were

further characterized through visualization of centrosomes and

microtubules. Correct spatial organization and synchronous

nuclear division of the early embryos requires a high degree of

coordination between centrosome duplication, microtubule dy-

namics, and changes in nuclear structure. Abnormalities, such as

asynchronous division, irregular nuclear spacing, and polyploidy,

observed in sumo04493 GLC embryos, suggest an uncoupling of

these events. In wild type syncytial blastoderm embryos, each set

of chromosomes is associated with a pair of centrosomes

(Figure 5A, B). sumo04493 embryos often contain a reduced number

of nuclei in relation to the centrosome pairs (Figure 5C), a

common mitotic defect in Drosophila [60–62].

Defects in mitotic spindle organization and attachment to

centrosomes and chromosomes were also observed in sumo GLC

embryos (Figure 5D–J). Monoastral, anastral, and multipolar

spindles, as well as unfocused broad-based spindles were

documented. These results suggest that sumoylation is important

in coordinating multiple events of mitosis, such as centrosome

replication, centrosome-spindle association, and spindle-chromo-

some attachment. The broad spectrum of mitotic defects seen in

the sumo GLC embryos is consistent with the defective mitotic

spindle assembly induced by SUMO RNAi in Drosophila S2 cells

previously observed [63], as well as with our fly SUMO-ome,

which also suggests a broad role for SUMO in mitosis.

SUMO is required for cell cycle progression in S2 cells and
larval tissue

The syncytial nuclear cleavage cycles are non-canonical mitotic

cycles lacking the gap phases as well as cytokinesis. To determine if

sumoylation is essential for cells undergoing a canonical G1-S-G2-

M cell cycle, we investigated the requirement for SUMO in cell

cycle progression of cultured cells and larval wing imaginal discs.

The DNA content of S2 cells was measured by flow cytometry to

assess cell cycle stage following three to five days of SUMO RNAi.

The fraction of G2/M phase cells gradually diminished, suggesting

G1/S arrest as a result of sustained low levels of SUMO

(Figure 6A, B).

Imaginal discs undergo rapid proliferation during larval

development. We knocked down SUMO in larval tissue by RNAi

using Gal4 to drive the expression of a sumo hairpin RNA. The

effectiveness of the RNAi was demonstrated by anti-SUMO

staining of discs containing clones of cells that express sumo hairpin

RNA (Figure S5). To examine the effects of SUMO knockdown on

the wing imaginal disc cell cycle, we employed the MS1096-Gal4

driver, which directs a high level of expression in the dorsal

compartment and a lower level of expression in the ventral

Table 4. Summary of phenotypes observed in sumo mutant
GLC embryos.

sumok01211 sumo04493

Defective eggshells 30% (n = 171) 10% (n = 400)

Hatching rate 0% (n = 171) 2360.9% (n = 800)

Unhatched embryos forming cuticle 0% 10% (n = 200)

Cuticles formed that appear wild-type – 41% (n = 171)

doi:10.1371/journal.pone.0005905.t004
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Figure 3. SUMO is required for Ras/MAPK signaling. In panels A to E, lysates from equal number of cells were loaded onto SDS-PAGE. A) Anti-
SUMO immunoblot of total protein from cells treated with SUMO or control YFP dsRNA. B, C) EGFR expressing S2R+ cells were treated with YFP or
SUMO dsRNA for 3 to 5 days. At the end of the RNAi treatment, 26106 cells were incubated in serum-free medium for one hour, then exposed to
secreted Spitz (sSpi) ligand or insulin for 7 min and immediately lysed for Western analysis. The blots were probed with antibodies against double-
phosphorylated MAPK (pMAPK) or total MAPK in B and in left half of C. In the right half of panel C, S2 cells treated with dsRNA for 5 days were
stimulated with insulin, and the same samples were probed with antibodies against a-Tubulin, pMAPK, or SUMO. D) An immunoblot of cells treated
with YFP or SUMO dsRNA, and exposed to sSpi or insulin, was probed with antibodies against phosphorylated MEK (pMEK) or total MEK. E) An
immunoblot of RasV12-expressing S2 cells treated with YFP or SUMO dsRNA was probed with antibodies against pMAPK or total MAPK. RasV12

expression was induced with copper during the last 18 hr of dsRNA treatment. F) Bacterial sumoylation of GST-Ras1 and Ras1K104R using the
approach described in the legend to Figure 1. G) Bacterial sumoylation of GST-Ras11–164, Ras17KR, or Ras165–189. In the lower panel (GST-Ras165–189),
the black arrowheads point to the bands representing sumoylated proteins. Based on size, these are likely the mono-, di-, and tri-sumoylated species.
The di- and tri-sumoylated species are only visible in the anti-SUMO immunoblot as the anti-GST antibody is not sensitive enough to detect them.
The open arrowhead marks a non-specific cross-reacting band detected by the anti-GST antibody.
doi:10.1371/journal.pone.0005905.g003
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Figure 4. sumo is required for normal syncytial nuclear cycles. A) A wild type syncytial blastoderm embryo in metaphase. B–E)
Representative nuclear cycle defects in DAPI stained sumo04493 GLC embryos. DAPI staining revealed multiple cell cycle defects in sumo04493 GLC
embryos. Panel B shows a sumo04493 mutant embryo, while B9 and B0 are magnified views of two regions of the embryo in B. The arrow in B9 points
to an abnormally large cluster of chromosomes, indicating polyploidy, and the arrow in B0 points to a prominent chromosome bridge. C) Abnormal
chromosomal organization. The arrow in D highlights a possible cohesion defect. The left arrow in E points to a cluster of hypercondensed
chromosomes, and the right arrow points to chromosome fragments. F) Frequency of cell cycle defects in sumo and ubc9 mutant GLC embryos.
doi:10.1371/journal.pone.0005905.g004
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compartment of the third instar wing pouch (Figure 6C, C9). The

wing discs were stained with an antibody against phosphohistone

H3 (pHH3) to mark the mitotic cells (Figure 6D–E9). sumo RNAi

resulted in a marked reduction of pHH3 positive cells throughout

the wing pouch (Figure 6E, E9, F). The proliferation defect was

especially pronounced in the dorsal compartment where the Gal4

driver is most active (Figure 6E, E9), and was also manifested in

adult wings, which were greatly reduced in size and misshapen

(Figure 6G). A similar requirement for SUMO in cell proliferation

was also observed in eye discs when ey-Gal4 was used to drive the

expression of sumo hairpin RNA (data not shown). Thus, SUMO is

required for both the atypical mitotic cycle that occurs in nuclear

cleavage stage embryos as well as the canonical cell cycles that

occur in cultured cells and larval imaginal discs.

Dynamic localization of SUMO during mitosis
Our immunofluorescence studies on sumo GLC embryos clearly

indicate that SUMO plays diverse roles at various stages of the

mitotic cycle. To gain further insight into the role of SUMO in the

cell cycle, we systematically documented the localization of

SUMO through stages of the nuclear cleavage cycle (Figures 7A,

C). Previous studies have shown that SUMO assumes a

predominantly nuclear distribution in the early embryo at

interphase [16]. This observation was confirmed in this study.

During interphase and prophase, SUMO is distributed throughout

the nucleus, but is concentrated in puncta of unknown structure

(Figure 7A). As the embryonic nuclei progress to metaphase,

SUMO associates with the condensing chromosomes and appears

to be concentrated in regions around the centromeres, as marked

by the points of closest association between the spindle and the

chromosomes (Figure 7C, left panels). This pericentromeric

localization is also consistent with the central ring of anti-SUMO

staining observed in the polar body chromosomes (Figure 7B), and

with previous observations of SUMO association with the

chromocenter of the polytene chromosome [16,22].

The association of SUMO with the pericentromeric regions of

the chromosomes persists during anaphase and telophase

(Figure 7C, center and right panels). In addition, SUMO also

localizes to the spindle midbodies, which are clearly framed by the

midzone spindles (the spindles between the segregating sister

chromatids), as they form during anaphase (Figure 7C, center

panels). Localization of SUMO to the midbody is even more

apparent during telophase (Figure 7C, right panels). The

association of SUMO with the chromosomes and midbody was

also observed in S2 cells (Figure 7E and data not shown). The

association of SUMO with the chromosomes throughout mitosis

and its localization to the midbodies during anaphase and

telophase is consistent with our observation that SUMO plays

Figure 5. Defects in the coordination of centrosome replication and spindle attachment in sumo GLC embryos. A–B) Syncytial
blastoderm Ore-R embryos. C) Uncoupled chromosome and centrosome replication observed in sumo04493 GLC embryos. D–J) In sumo04493 GLC
embryos, multiple defects in metaphase spindle morphology are observed, including examples of anastral (arrow in F), monoastral (H), multipolar (E,
G, arrows), as well as unfocused mitotic spindles (D9 and arrows in I, J). The embryos were stained for DAPI (blue), centrosomin (CNN, green), and a-
Tubulin (red).
doi:10.1371/journal.pone.0005905.g005
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Figure 6. SUMO is required for cell cycle progression in cultured Drosophila cells and in larval tissues. A) FACS analysis of DNA content
in S2 cells treated with dsRNA against SUMO or YFP for 3, 4, or 5 days. The overall distribution (unfilled curve) has been fit to show the G1 (2N) and
G2/M (4N) cells (red-filled curves), the S phase cells (hatched curve), cells with less than 2N DNA content (blue-filled curves), and cells with more than
4N DNA content (green-filled curves). B) The percentages of YFP or SUMO dsRNA treated cells in G1, S, and G2/M phases. C–G) SUMO is required
for mitosis in wing imaginal discs. C) This MS1096.laminGFP wing disc shows the domain of MS1096-Gal4 expression. Mitotic cells were marked
by pHH3 staining in MS1096 (D), or MS1096.sumoRNAi (E) third instar larval wing discs (all discs are oriented with dorsal on the top and anterior on
the right). C9, D9, and E9 show DAPI overlay of the images on the left. F) The numbers of pHH3 positive cells in multiple discs were counted and
averaged (standard errors are indicated). G) Adult wings from the MS1096 (left) or MS1096.sumoRNAi (right) flies.
doi:10.1371/journal.pone.0005905.g006
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Figure 7. SUMO localization throughout the mitotic cycle. A) Interphase nuclei of syncytial blastoderm stage Oregon-R embryo stained with
SUMO antibodies (green) and DAPI (blue). B) Polar body stained with SUMO antibodies (green) and DAPI (blue) showing SUMO localization to the
pericentromeric regions of the polar body chromosomes. C) Metaphase, anaphase, and telophase nuclei of syncytial blastoderm embryo stained with
SUMO antibodies (green), a-tubulin antibodies (red), and DAPI (blue). Top panels show the SUMO/DAPI merge, while bottom panels show the SUMO/
a-tubulin merge. White arrowheads in left panels point to pericentromeric SUMO in one of the nuclei. Gray arrows in the center and right panels
point to spindle midzone SUMO. D) HA-Ubc9-expressing S2 cells [23] arrested at prometaphase with 25 mM colchicine and stained with SUMO
antibodies (red), HA antibodies (green, revealing localization of HA-Ubc9), and DAPI (blue). Ubc9 is diffusely localized but also exhibits intense puncta
that colocalize with SUMO near the kinetochores. E) S2 cell arrested at prometaphase with colchicine and stained with DAPI (blue), and antibodies
against SUMO (red) and Polo (green). SUMO and Polo partially colocalize at the outer kinetochore regions (white arrows point to the kinetochores of
one pair of sister chromatids). F) Syncyticial embryo expressing Polo-GFP (green; Polo-GFP flies were obtained from Dr. Claudio Sunkel) was stained
with DAPI (blue) and antibodies against SUMO (red). Polo and SUMO colocalize to the midbody (indicated for one nucleus by the gray arrow).
doi:10.1371/journal.pone.0005905.g007
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critical roles during multiple stages of the mitotic cycle. These

findings are also consistent with a report that SUMO-2/3 in HeLa

cells associates with the mitotic chromosome, while SUMO-1

associates with the spindle midzone [64]. Apparently, the multiple

mitotic functions of SUMO carried out by the single SUMO

isoform in Drosophila have been divided among multiple SUMO

isoforms in vertebrates.

The localization of SUMO during mitosis can be observed in

more detail in cultured cells. Cells arrested at prometaphase by

colchicine treatment display SUMO localization on condensed

chromosomes at the outer kinetochore and inner centromeric

regions (ICR) (Figure 7E). Like SUMO, Ubc9 assumes a

predominantly nuclear distribution during interphase (data not

shown). During mitosis, Ubc9 staining exhibited a largely diffuse

distribution along with concentrated foci that overlapped the

domain of SUMO localization at the centromeric regions and

kinetochores, suggesting that active sumoylation is taking place at

those locations (Figure 7D).

Polo, one of the SUMO targets identified in our proteomic screen

and validated using the bacterial sumoylation system (Table 2,

Figure S4C), is the only Drosophila Polo-like kinase family protein.

Polo is involved in multiple stages of cell cycle regulation, localizes to

the outer kinetochore early in mitosis, and subsequently relocalizes

to the midbodies late in mitosis [65]. Given these similarities

between the functions of SUMO and Polo, we decided to compare

directly the localization of SUMO and Polo during the mitotic

cycle. During interphase, Polo and SUMO occupy distinct cellular

compartments, being cytoplasmic and nuclear, respectively (data

not shown). During prometaphase and metaphase, partial overlap

between SUMO and Polo is observed at the outer kinetochore

(Figure 7E, and data not shown). At later stages of mitosis (anaphase

and later), Polo is localized to the midbody, and again exhibits

incomplete overlap with SUMO (Figure 7F). This partial co-

localization during multiple phases of mitosis suggests that Polo

could be one of the SUMO substrates at the kinetochores. However,

it also indicates that there are likely additional SUMO substrates at

the kinetochores and inner centromeric region, and that not all

kinetochore-associated Polo is sumoylated.

Discussion

The SUMO conjugation pathway is highly conserved in

eukaryotic evolution, and plays many key regulatory roles.

Drosophila embryos contain high levels of maternally supplied

SUMO, indicating that sumoylation may be especially important

in early Drosophila embryogenesis. Accordingly, reduced maternal

expression of SUMO has pleiotropic effects in oogenesis and

embryogenesis. Our proteomic, genetic, and cell culture analyses

converge to support roles for protein sumoylation in Ras signaling,

mitotic progression, and embryonic pattern formation.

SUMO and Ras signaling
The Ras signaling cascade is activated by a variety of RTKs

including EGFR, and controls cell proliferation and differentiation

as well as a large number of developmental patterning processes,

such as patterning of the eggshell [66–68]. Activation of EGFR in

the dorsal follicle cells during oogenesis leads to the sequential

activation of Ras, Raf, MEK, and MAPK, and results in the

upregulation of RTK target genes [69]. Complex positive and

inhibitory feedback loops ultimately result in the specification of

the dorsal follicle cells, which later secrete the dorsal eggshell,

including the dorsal appendages [52,70].

Previous genetic screens for mutations that enhance the eggshell

ventralization phenotype of a weak hypomorphic Ras1 allele

suggested a role for SUMO in the Ras pathway downstream of

EGFR activation [53]. In our analysis of the recessive sumo mutant

phenotype, we observed fused or single dorsal appendages,

indicative of eggshell ventralization and consistent with the

attenuation of EGFR signaling. Since the eggs under study

resulted from sumo GLCs, the observed eggshell defect could reflect

a function for SUMO upstream of EGFR in the production or

secretion by the germ line of EGFR ligands. However, since sumo

mutant clones are also present in the follicle cells of the GLC egg

chambers, the eggshell ventralization phenotype we observe is also

consistent with a role for SUMO downstream of EGFR activation

in the follicle cells. Interestingly, sumoylation pathway proteins in

C. elegans were also shown to interact with the Ras signaling

pathway [71]. Our cell culture experiments support a role for

protein sumoylation in Ras signaling that is downstream of EGFR

and upstream of, or parallel to, Ras activation. SUMO may

directly modulate Ras1 function since Ras1 was found in our

proteomic analysis and confirmed as a sumoylation substrate in

our bacterial sumoylation assay.

SUMO and cell cycle progression
Sumoylation is implicated in cell cycle regulation in many

organisms [59]. In this study, we observed diverse nuclear cleavage

defects in sumo GLC embryos suggestive of multiple roles for

SUMO in coordinating the chromosome cycle. The phenotypes,

including chromosome hypercondensation, aberrant segregation,

and polyploidy, are reminiscent of the defects observed in Ubc9-

deficient mouse embryos and Drosophila embryos mutant for pias, a

possible SUMO ligase [13,72], indicating conservation of SUMO

cell cycle functions in metazoan evolution. We also demonstrated

a requirement for SUMO in cell cycle progression in cultured cells

and in larval imaginal discs by RNAi-mediated SUMO knock-

down. While the cell proliferation defect in SUMO mutant wing

discs could result from a requirement for SUMO for the function

of many of the same cell cycle proteins found in our proteomic

screen of early embryos, it could also reflect a role for SUMO in

the function of Vg, a previously identified wing disc sumoylation

target [19] known to be required for wing growth [73–75].

In agreement with the diverse cell cycle defects in sumo mutant

embryos and other tissues, a spectrum of cell cycle regulators

involved in multiple stages of the cell cycle were identified in our

SUMO proteomic screens (Table 2). For example, the failure of

cultured cells to progress to G2/M could reflect a role for SUMO

in DNA replication, which is consistent with our finding that

PCNA, RFC2, Topoisomerase I, and Topoisomerase II are all

targets of sumoylation (Table 2 and Figure 1C). A role for SUMO

in the function of Polo kinase could further explain some of the

observed cell cycle defects since Polo has multiple roles in the cell

cycle [65,76]. Other sumoylation targets identified in our screen,

including PP2A, Arp3, Cofilin (Twinstar), Mago Nashi, and

Profilin, are also consistent with multiple roles of SUMO in

mitosis.

The requirement for SUMO throughout mitosis is further

supported by its dynamic, mitotic stage-dependent, localization. At

prometaphase and metaphase, sumoylated proteins are concen-

trated at the kinetochores and ICR, partially co-localizing with

Polo. Ubc9 co-localized with SUMO at the kinetochore-

centromeric regions during mitosis, suggesting that active

sumoylation is taking place at those locations. It is likely that

many kinetochore and centromere localized proteins are targeted

by SUMO, and cycles of sumoylation and de-sumoylation may

help to propel unidirectional mitotic progression.

While a number of studies have connected sumoylation to

centromere and kinetochore functions [59], spindle midbody
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localization of SUMO has not been widely reported [64,77]. The

midbody is a structure derived from the spindle midzone that

contains proteins indispensable for cytokinesis [78]. SUMO

association with the midbody, which we have observed in both

syncytial embryos and cultured cells beginning with anaphase and

extending through cytokinesis, therefore argues for a role of

sumoylation in the completion of cell division. The midbody

proteome has been dissected recently in mammalian cells,

revealing a large collection of proteins, including membrane

associated proteins, microtubule associated proteins, and kinases

[78]. Homologs of a number of these proteins, such as Arp3,

Cofilin (Twinstar), Mago Nashi, Polo, PP2A, and Profilin, were all

identified in our Drosophila SUMO proteomic screens (Table 2),

reinforcing the notion that SUMO is involved in midbody

function.

Cytokinesis does not occur in nuclear cleavage stage embryos.

However, the midbody has an important role in maintaining the

separation of telophase sister nuclei [79], a process that could be

related to the formation of pseudocleavage furrows at the end of

each nuclear cleavage cycle. Disruption of midbody function in

SUMO deficient embryos may therefore account for some of the

mitotic defects we observe in the syncytial embryo, including

polyploidy.

SUMO and embryonic patterning
We observe diverse patterning defects among the sumo GLC

embryos that developed a cuticle. In accordance with this

observation, three absolutely critical patterning proteins, Dorsal,

Bicoid, and Hunchback, are among the sumoylated proteins we

detected in early embryo extracts (Table 2). Previous studies have

shown that sumoylation of Dorsal potentiates its activity during the

immune response perhaps by making it a more potent transcrip-

tional activator [18]. While an earlier study showed that the loss of

Ubc9 results in a hunchback-like anterior patterning phenotype and

defective nuclear transport of Bicoid [12], our study is the first to

show that Hunchback, and its activator Bicoid, are direct SUMO

conjugation targets. Thus, it is possible that sumoylation of these

transcription factors plays a direct role in anterior patterning.

Posterior patterning and germ line specification depend upon

the posterior localization of the oskar transcript. We identified

several oskar mRNP components, including Mago Nashi, Tsunagi,

Cup, Hrb27C, and Smaug, as sumoylation targets (Table 2 and 3),

which have essential roles in the regulation of oskar mRNA

localization and translation [80]. This interesting and novel

finding suggests a role of SUMO in regulating the functions of

maternal mRNA by modifying components of oskar mRNP, and

therefore could explain some of the pleiotropic defects observed in

the embryonic patterning of embryos resulting from sumo mutant

GLCs.

The oskar mRNP is one of several instances in which multiple

members of the same complex appear to be direct targets of

sumoylation. For example, our screen turned up several members

of the multi-aminoacyl-tRNA synthetase complex, as well as

multiple ribosomal proteins (Table 3). Screens for sumoylation

targets in S. cerevisiae have similarly detected multiple sumoylation

targets in the same complex [26,29]. This suggests that oligomeric

protein complexes can be targeted as a whole for sumoylation

and/or that sumoylation may have a general role in stabilizing

protein complexes.

In contrast to previous studies in yeast and mammalian cell

culture [26,28,29,32–35], relatively few transcription factors were

identified in our study. This difference in fact accurately reflects

the unique metabolic state of the pre-cellularization embryo.

During the first two hours of Drosophila embryonic development,

rapid nuclear divisions depend upon a complex dowry of

maternally supplied proteins, as transcription of the zygotic

genome has not yet begun. Instead, the proper localization and

accurately regulated translation of maternally supplied mRNAs is

essential for establishing the system of positional information that

will later direct the spatially regulated transcription of the zygotic

genome [81]. Thus, the relatively small and selective group of

sumoylated transcription factors, along with the large number of

factors that control mRNA translation and localization found in

our screen, is consistent with regulatory roles for SUMO in this

critically important stage of fly development.

In conclusion, our genetic, cellular, and proteomic studies of

sumoylation suggest mechanisms for known biological roles of the

SUMO pathway and also uncover novel connections between

sumoylation, signal transduction, the cell cycle, and development.

Furthermore, our SUMO conjugated proteome should serve as a

rich resource for those studying the roles of sumoylation in

metazoan development.

Materials and Methods

Plasmid construction
Sequences encoding the (His)6- and FLAG-tags

(HHHHHHDYKDDDDK) were added to the 59 end of the sumo

coding region by PCR, using primers containing the sequences

corresponding to those tags as well as NotI and XbaI restriction sites

(primer sequences are given in supporting document S1). The

resulting PCR product was digested and ligated into the pUASp

vector [82] to produce pUASp-H6Flag-SUMO.

To construct the plasmid termed ‘‘Quartet’’ or ‘‘Q’’, which

expresses the Drosophila SUMO pathway in a single vector,

components of the pathway were first cloned into two Duet vectors

(Novagen), then combined into a single vector. Briefly, the mature

form of SUMO, SUMOGG (last 2 amino acids omitted), and ubc9

were amplified from cDNAs by PCR, and cloned into pRSF-Duet-

1 MCS1 at the EcoRI/NotI sites, and MCS2 at the NdeI/XhoI sites,

respectively, to generate pRSF-SUMOGG-Ubc9. Similarly, sae2

and sae1 were cloned into the MCS1 and MCS2 of the pCDF-

Duet-1 to create pCDF-SAE2-SAE1. Subsequently, the pCDF-

SAE2-SAE1 was digested with PfoI, filled in with Klenow, and

then cut at the AgeI site, and the sae2-sae1 fragment was then

introduced by ligation into the pRSF-SUMO-Ubc9 vector, which

has been digested with Bsu36I, blunted using Klenow, and then

digested with AgeI, to obtain, QSUMO (pRSF-SUMOGG-Ubc9-

SAE2-SAE1). The control vector, QDGG (pRSF-SUMODGG-

Ubc9-SAE2-SAE1), which expresses a conjugation defective form

of SUMO, SUMODGG, in place of SUMOGG, was constructed

using the same strategy. The ORFs of sumo and sae2 were cloned in

frame with an N-terminal (His)6 tag, and ubc9 and sae1 were cloned

in frame with a C-terminal S-tag.

The pGEX-loxP plasmid was generated by inserting a sequence

containing the loxP recombination site and bacterial promoter, for

Cre recombination and an antibiotic selection gene, respectively

(sequence information is available in The Creator Cloning System

Manual, Clontech), into pGEX-4T-1 (Amersham) at the EcoRI

and XhoI sites. This vector serves as an acceptor vector for

generating an in-frame amino terminal GST fusion with open

reading frames (ORFs) that have been introduced into a donor

vector. The donor pDNR-Dual vectors for PCNA (BS06345), RfC2

(BS06321), CtBP (BS10020), HP1 (BS03857), and Ras1 (BS04665)

were purchased from the Drosophila Genomics Resource Center

(DGRC). The ORFs of 14-3-3f, squid, polo, and eIF4E were

amplified from cDNA clones (RH61958, LD29474, BO04660,

and RE36735 from the DGRC) by PCR, and introduced into
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pDNR-Dual (Clontech) at the HindIII and SalI sites utilizing the

In-Fusion PCR Cloning Kit (Clontech). The ORFs were then

transferred from the pDNR vectors into the acceptor, pGEX-loxP

vector, by Cre recombination (Clontech). The eIF4E and Ras1

ORFs were also recombined into the S2 cell expression acceptor

vector, pMK33FlagHis-BD (obtained from Dr. Mark Stapleton).

The RasK104R point mutation was generated by PCR-based

site-directed mutagenesis of pDNR-Dual-Ras1. The Ras1–164,

Ras7KR, and Ras165–189 were cloned into pDNR-Dual vector by

insertion of PCR products (see supporting document S1 for primer

sequences). The sequences encoding these Ras variants were then

recombined into the pGEX-loxP vector. The RasV12 point

mutation was created by PCR-based mutagenesis of the

pMK33FlagHis-Ras1 vector. All plasmids generated in this study

were sequenced to verify the presence of the correct inserts and

sequences (UCLA Genotyping and Sequencing Core).

Two-step purification of SUMO conjugates
Wild type Oregon-R embryos or embryos expressing tagged

SUMO, were collected at 25uC over a three-hour period, washed,

incubated at 37uC for an additional 45 minutes, then immediately

frozen under liquid nitrogen. Five grams of frozen embryos were

ground to power under liquid nitrogen and suspended in 20 ml of

Urea Binding buffer A (100 mM NaH2PO4, 10 mM Tris, pH 8.0,

8 M urea, 5 mM imidazole, and 1% CHAPS), which was freshly

supplemented with 40 mM N-ethylmaleimide (NEM, Sigma) and

one Mini Complete Protease Inhibitor Cocktail Tablet (Roche).

The suspension was further lysed with a French Press, and the lysate

was centrifuged at 32,0006g at 4uC for 20 min. The supernatant

was filtered using Miracloth (CBC) to remove lipid clumps, and then

mixed with 1 ml of buffer A equilibrated Ni-NTA beads (QIAGEN)

at 22uC for one hour and 30 min in an Econo-column (BioRad).

After removal of the unbound material by gravity flow, the Ni-NTA

beads were washed twice with total of 40 ml of Wash buffer B
(100 mM NaH2PO4, 10 mM Tris, pH 8.0, 8 M urea, 5 mM

imidazole, and 1 mM PMSF), and eluted 4 times with 1 ml of

Elution buffer C (100 mM NaH2PO4, 10 mM Tris, pH 8.0, 8 M

urea, 20 mM EDTA, and 400 mM imidazole).

The eluted proteins were immediately dialyzed against three

liters of TBS (50 mM Tris, pH 7.4, 300 mM NaCl, 1 mM EDTA,

and 5% glycerol) over 2 hours at 4uC. The dialyzed sample was

further diluted five-fold with cold TBST buffer (TBS plus 1%

Triton X-100, and supplemented with 20 mM NEM and protease

inhibitor cocktail), and incubated with 100 ml of anti-FLAG

agarose (Sigma) at 4uC overnight. The next day, the beads were

separated from unbound proteins by centrifugation, washed four

times with TBST, and transferred to a spin collection column

(Zymo) to remove TBST. The proteins were eluted from the beads

with NuPAGE LDS loading buffer (Invitrogen) at 70uC for

15 min, and a portion of the eluted proteins were later separated

by SDS-PAGE and analyzed by Western blot or in-gel trypsin

digest followed by LC-MS/MS analysis of the tryptic peptides.

Protein identification by LC-MS/MS
The sliced SDS-PAGE gels were digested with sequencing-

grade trypsin (Promega). The digested peptides were extracted

from the gel slices using 50% acetonitrile/0.1% trifluoroacetic acid

(TFA) in water. The extracts were dried down, resuspended in

0.1% formic acid/water, and LC-MS/MS of the peptide mixtures

was performed on an Applied Biosystems QSTAR XL (ESI-

QqTOF) mass spectrometer coupled with an LC Packings

nanoflow HPLC system, through a nanoelectrospray ionization

source (Protana). A homemade trap column (150 mm62 mm) and

nano-column (75 mm6150 mm) packed with Jupiter Proteo C12

resin (particle size 4 mm, Phenomenex) were employed for the

nano-flow HPLC peptide separation using an 80-minute gradient.

Product ion (MS/MS) spectra of the peptides separated by HPLC

were recorded and then submitted to the Mascot database search

engine (Matrix Science) for protein identification. Positive protein

identification was based on standard Mascot scoring criteria

(p,0.05) for statistical analysis of the LC-MS/MS data. The

peptide assignments in the Mascot database search results were

then manually inspected for validation.

The bacterial sumoylation assay
A vector encoding a candidate SUMO conjugation target fused

to GST was co-transformed into BL21 cells (Novagen) with either

the QSUMO or the control QDGG expression vectors. Several

transformed bacterial colonies, selected for kanamycin and

ampicillin resistance, were picked to inoculate 0.5 ml cultures of

non-inducing medium, and shaken at 37uC overnight. This culture

was then used to inoculate 0.5 ml culture in auto-inducing

medium overnight at 25uC to induce expression of all five proteins.

The auto-induction was carried out as described by F. William

Studier [83]. These small-scale cultures were compared for levels

of expression of the GST fusion protein by anti-GST Western blot.

The culture with the highest expression was then scaled up to a

50 mL culture. The bacteria grown to saturation (O.D.600 of 12–

18) were collected by centrifugation, and the GST-fusion protein

was purified with glutathione beads according to the manufactur-

er’s protocol (Amersham). The eluted proteins were subsequently

resolved by SDS-PAGE, and analyzed by Sypro Ruby protein

staining and immunoblotting.

Fly stains and crosses
Flies were maintained on standard medium at 25uC. The

pUASp-H6Flag-SUMO vector was introduced into w1118 flies by

embryo injection (Model System Genomics of Duke University).

Multiple lines with insertions into the X, second, or third

chromosomes were recovered. The MatGal4 driver, which encodes

Gal4-VP16 under the control of a maternally active a4-Tubulin

promoter was generously provided by Dr. Daniel St. Johnston.

The sumo mutant fly stocks used in this study are P[ry[+t7.2] = PZ],

smt304493/CyO; ry506 (referred to as sumo04493 in this study; obtained

from Bloomington Stock Center) and Df1w67c23, y1;

P[lacW]smt3k01211/CyO (referred to as sumok01211; obtained from

Dr. Jon Schnorr). The original CyO balancer of the sumo mutant

lines was replaced with a GFP expressing CyO balancer (CyO,

ActGFP) to allow homozygous SUMO mutant flies (which lack

GFP) to be distinguished from their heterozygous siblings. The fly

strain containing a second chromosome insertion that expresses a

hairpin RNA against the SUMO gene under UAS control (UAS-

sumoRNAi) was obtained from the Vienna Drosophila RNAi Center.

Since the UAS-sumoRNAi flies are homozygous sterile, we balanced

the line with CyO, ActGFP to allow the UAS-sumoRNAi carrying flies

to be distinguished.

An FRT site (FRT40A) was introduced by recombination onto

the chromosome arms carrying the mutant sumo alleles. The

FRT40A line of mutant ubc9, semi118, was a obtained from Dr.

Sochi Tanda [12]. The standard dominant female sterile FLP/

FRT protocols were followed to generate germ line clones of sumo

P-element alleles or semi118 [49].

Scanning electron microscopy and cuticle preparation of
embryos

Fly embryos were attached to metal mounts as uncoated

samples using fingernail polish. Images were digitally acquired
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using a Hitachi S-2460N Scanning Electron Microscope at a ‘high

pressure’ setting of 30 Pa using a Robinson detector. To prepare

embryo cuticles, dechorionated and devitellinized embryos were

mounted on slides in Hoyer’s mounting medium [84], and imaged

with dark field optics on a Zeiss Axioskop microscope.

Immunofluorescence and Western blotting
Primary antibodies used for immunofluorescence were rabbit

anti-SUMO [23], mouse anti-a-tubulin (Sigma), rabbit anti-CNN

[85], rabbit anti-pHH3 (pSer10, Sigma), mouse anti-Polo (a gift of

Dr. Claudio Sunkel), and mouse anti-HA (Sigma). Secondary

antibodies used were goat anti-rabbit or goat anti-mouse

antibodies conjugated with Alexa Fluor 488 or Alexa Fluor 568

(Molecular Probes). DNA was stained with 1 mg/ml 49,6-

diamidino-2-phenylindole (DAPI). Confocal images of the embry-

os and imaginal discs were obtained on a Leica one-photon

confocal laser scanning microscope (Leica Microsystems, Heidel-

berg). The S2 cells were visualized on a Deltavision Spectris

deconvolution microscopy system (Applied Precision), and the

images were deconvolved using Applied Precision software.

Antibodies used for immunoblotting were rabbit anti-ERK

(Sigma), mouse anti-dpERK (Sigma), rabbit anti-MEK (Cell

Signaling), rabbit anti-pMEK (Cell Signaling), mouse anti-FLAG

(Sigma), rabbit anti-SUMO [23], rabbit anti-GST (Abcam), and

mouse anti-poly-His (Sigma). Signal detection was achieved with

secondary antibody conjugated with horseradish peroxidase (HRP)

(CalBiochem) and SuperSignal West Pico substrates (Pierce).

Cell culture, RNA interference, and cell cycle analysis
Drosophila cultured cells were maintained at 24uC in Schneider’s

insect medium (Gibco) supplemented with 10% fetal bovine serum

(JHR) and antibiotics (Invitrogen). PCR products with T7

promoters on both ends (primer information is given in supporting

document S1) were used as templates for in vitro transcription to

make dsRNAs using the Megascript RNAi kit (Ambion). The

dsRNA was introduced into the cultured cells as described [86].

To establish stable cell lines expressing FLAG-(His)6-RasV12 or

FLAG-(His)6-eIF4E under inducible condition, the pMK33Fla-

gHis-RasV12 or pMK33FlagHis-eIF4E plasmid was transfected

into S2 cells using Effectene (QIAGEN). The transfected cells were

then selected with hygromycin until stable cell lines were

established. For the flow cytometry, cells were suspended in

Propidium Iodide DNA staining buffer [87], and analyzed on a

Becton Dickinson FACScan Analytic Flow Cytometer at the

UCLA Flow Cytometry Core Facility.
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